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1 Introduction

Zeckendorf’s theorem states that every positive integean be written uniquely

as a sum of nonconsecutive Fibonacci numbers, where the&isonumbers are

defined byF,, 1 = Fn+ F,_1 with F; = 1 andF, = 2 (we must re-index the Fibonac-
cis, as if we included 0 or had two 1's we clearly could not hamiEgueness). Such
a sum is called the Zeckendorf decompositiompfand each number in the sum
is called a summand. Zeckendorf decompositions have basgrgjezed to many

other sequences, specifically those arising from positheal recurrences. More
generally, we can consider a positive linear recurrenceesscg given by

Gni1 = G+ +cGpy1-1, 1)

with ¢; nonnegativel,, c; andc, positive, as well as rules to specify the fitsterms
of the sequence and a generalization of the non-adjacensyramt to what is a le-
gal decomposition. Unique decompositions exist both heddar other sequences;
see [Al,[Day DDKMMV,[DDKMV, DG, DT, [EGNPT[ GT[ GTNF, Ke, KKMW
[Cen,[MW1,MW?2[Stell, Ste?, Ze] for a sample of the vast literabn this topic.

Our purpose is to connect generalized Zeckendorf decotiqasand Benford’s
law. In fact, what we show is more general, and the connegtitmBenford’s law
follows as a corollary. Still, Benford’s law was the motiiat for our investigation,
so we discuss its history. First discovered by Simon Newcfix&w] in the 1880s,
it was rediscovered by Benford [Ben] approximately fifty sekater, who noticed
that the distributions of the leading digits of numbers innpnadata sets were not
uniform. In fact, there was a strong bias towards lower \&ll®r example, the
leading digit 1 appeared about 30% of the time and the leatigig9 under 5% of
the time. Data sets with such leading digit distributioressaid to follow Benford’s
law. More precisely, the probability of a first digit baBeof d is logg(1+ 1/d), or
more generally the probability that the significErimlat mosstis logg(s). Benford’s
law appears in astoundingly many data sets, from physicedtaots to census infor-
mation to financial and behavioral data, and has a varietppli@tions (two of the
most interesting being its use to detect accounting or gdtaud). This digit bias is
in fact quite natural once one realizes that a data set WithvfoBenford’s law if its
logarithms modulo 1 are equidistributd&ee [BHi[Hil [Hi2[MT-B[R&i] for more
on the theory of Benford’s law, as well as the edited volumé fidd a compilation
of articles on its theory and applications.

Before exploring whether or not the summands in Zeckendecbthpositions
obey Benford’s law, it's natural to ask the question aboatdbguence of Fibonacci
numbers themselves. The answer is yes, and follows almaesediately from Bi-
net's formula,

11f x> 0 andB > 1 we may uniquely writa asS(x) - B¢, whereSg(x) € [1, B) is the significand
of x andkg(x) is an integer.

2 Given a data sefx,}, letyn = l0g;o%, mod 1. If {y,} is equidistributed modulo 1 then in the
limit the percentage of the time it is ifor, 3] C [0,1] is just 8 — a. For example, to restrict to
significands ofl takea = log;qd andf3 = log,o(d + 1).
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Fn = 10 2 10 2 (2)

(note this is slightly different than the standard expm@s$or Binet's formula as we
have re-indexed our sequence so that the Fibonaccis begj815). The proof is
completed by showing the logarithms modulo 1 are equidisteid, which is imme-
diate from the irrationality of Iog)(”T\/g) and Kronecker’s theorem (i is irra-
tional thenna is equidistributed modulo 1) and simple book-keeping tortabihe
error of the secondary piece; see [DG, MIT-B, Was] for details

Instead of studying Benfordness of summands in Zeckendmrbmipositions,
we could instead look at other properties of the summands, as how often we
have an even number or how often they are a square mdifdo some fixedB.
So long as our sequence has a positive density, our argumiine applicableﬁ
We quickly review this notion. Given a set of positive integ@ = {G,},,_; and a
subsetSC ¢, we letq(S,n) be the fraction of elements &f with index at mosn
that are inS;

~ #GeS:1<i<n}

q(sSn) : - @)
When limy_» q(S,n) exists, we define thasymptotic densityq(S) as
q(S) = lim q(Sn), 4)

n—oo

and for brevity often say the sequerghasdensity q(S).

In an earlier work we proved that if a s8thas a positive density(S) in the
Fibonaccis, then so too do its summands in the Zeckendooindgasitions, and in
particular Zeckendorf decompositions using Fibonacci pers follow Benford’s
law [BDEMMTTW]. Our main result below is generalizing thessults to the case
of apositive linear recurrence sequencewhich is a sequence of positive integers
{Gn}n_4 and a set of non-negative coefficients...,c_ with L,c1,c. > 0,

Gni1 = €1Gn+¢1Gn_1+ -+ Gnr1-, 5)

and prescribed positive initial tern, G,,...,GL.

Theorem 1.1 Fix a positive linear recurrence sequen¢&y}. Let SC {Gn};_;
be a set with positive density($), and fix ane > 0. As n— o, for an integer m
selected uniformly at random frof@, G, 1) the proportion of the summands in m’s
Zeckendorf decomposition which belong to S is withiof q(S) with probability
1+0(1).

We define some concepts needed to prove Thebrem XA, iim particular the
notion of a super-legal decomposition. We derive some riepdgperties of these

3 For example, in the limit one-third of the Fibonacci numbers even. To see this we look at
the sequence modulo 2 and find it i011,1,0,1,1,0,1,...; it is thus periodic with period 3 and
one-third of the numbers are even.
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decompositions, and then prove our main resulf3rby showing related random
variables (the number of summands, and the number of sunsnamdir set with
positive density in our recurrence sequence) are stromglgentrated.

Acknowledgement3his research was conducted as part of the 2014 SMALL REU
program at Williams College and was supported by NSF gramM§ 347804 and
DMS 1265673, Williams College, and the Clare Boothe LuceggPam of the Henry
Luce Foundation. Itis a pleasure to thank them for their sufppand the participants

at SMALL and at the 18 International Conference on Fibonacci Numbers and their
Applications for helpful discussions.

2 Legal and Super-Legal Decompositions

For the rest of the paper any positive linear recurrence semaee{Gn},_; satisfies
®) with ¢ > 0andL,cy,c. > 1.

Let{Gn};,_, be a positive linear recurrence sequence. Its the chaistitgoly-
nomial is

f(A) = o+ A+ Fo A" T+l (6)

with roots A1,...,AL. By the Generalized Binet Formula (for a proof see, for
example, Appendix A of[[BBGILMT]) we have\; is the unique positive root,
A1 > |A2|>--- > |AL|, and there exists afv > 0 such that

Gn = AA]+0O(n-2A0). (7)
We introduce a few important terms needed to state our gesult

Definition 2.1 Let {G,} be a positive linear recurrence sequence. Given non-
negative integers ..., an, the sumy ,aGn1-i is alegal Zeckendorf decom-
position if one of the following conditions holds.

1. WehavercLandg=c¢for1<i<n.
2. There exists ans {1,...,L} such that

ap=0C1, @=Cy -+ , 8 1=Cs1, and &<Cs, (8)

asi1,...,as¢ = O for somel >0, and {bi}" 5 “ with by = as, ., is either legal
or empty.

Definition 2.2 Let {Gn} be a positive linear recurrence sequence. Given non-
negative integersa. .., an, the suny ! ; aGn:1-i is asuper-legalZzeckendorf de-
composition if there exists anss{1,...,L} such that
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a=C;, &=C, '+ , & 1=C1, and &<, 9)

asi1,...,as¢ = 0 for somel > 0, and {b;}"5* with bj = as,(.; is either super-
legal or empty.

In other words, a decomposition is super-legal if it satssfiendition (2) of Def-
inition 2.1.
Definition 2.3 Let{Gp} be a positive linear recurrence sequence, and assume that
the sumy ;aGn;1-i is a legal Zeckendorf decomposition. We call each string

described by one of the conditions of Definifiod 2.1 (not ¢imgrthe additionaD's)
a block, and call the number of terms in each blockl@agth.

We note that every super-legal Zeckendorf decompositidegal and that a
concatenation of super-legal Zeckendorf decompositicaleama super-legal Zeck-
endorf decomposition.

Example 2.4 The recurrence &1 = G, + 2G,_1 + 3G, 2 with Gy =1, G, =
2, Gz = 5 produces the sequente?,5,12,28 67,159 377,.... The decomposition
of 858is

858 = 377+ 2(159)+2(67) +28+1 = Gg+2G;+2Gs+Gs+Gy.  (10)

This example gives coefficients 2,2,1,0,0,0,1), so the blocks of274are (1,
2,2),(1,0), and(1), with lengths3, 2, and 1 respectively. Note that even though
the definition of a block excludes the additiofd (i.e., the @,.1 = agio = --- =
as ¢ = 0 from the Definitiof.Z11), it is still permissible for a bloak €nd with a0.
The decomposition fat274is legal but not super-legal, since the final blod
satisfies condition (1) but not condition (2) from Definit&d.

Example 2.5 An example of a super-legal decomposition using the rengedéom
Examplé 24 is

860 = 377+2(159 +2(67)+28+2+1 = Gg+2G7+2Gg+Gs+Gy+ Gy, (11)

which gives coefficientfl, 2,2,1,0,0,1,1). In this case, the final block €L, 1),
which satisfies the condition of Definitibn2.2.

Given two legal decompositions, we do not necessarily albdanew legal se-
guence by concatenating the coefficients. However, if waireghat the leading
block be super-legal, we do obtain a new legal decomposiiiononcatenation.
With the help of a few lemmas which help us count the numbeupéslegal de-
compositions, we can circumvent this obstruction.

Lemma 2.6 Let{Gn} be a positive linear recurrence sequence with relation igive
by @), and let H, be the number of super-legal decompositions using oal¥&
...,Gn. We have
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Hni1 = CiHn+CoHn1+ - +cHnpa L. (12)

Proof. Note thatH, 1 — Hp is the number of super-legal decompositions with
largest elemen®, . ;. We count how many such decompositions there are by sum-
ming over the possible lengths of the leading block. Say #¢aelihg block is of
lengthj with 1 < j < L. Then the leading block i&1,¢»,...,cj_1,aj), wherea, is
chosen from{0,1,...,c; — 1}. Therefore there argy ways of choosing this leading
block. Because we requif@, 1 to be included in the decomposition,jit= 1 there
arec; — 1 ways of choosing this leading block, since the leadingfeneht must

be nonzero. For any choice of leading block of lengtthere areHn, 1 j ways of
choosing the remaining coefficients. Therefore, we find that

L
Hni1—Hn = Z CiHny1-j —Hn, (13)
=1

completing the proof.

Lemma 2.7 Let {Gn} be a positive linear recurrence sequence, and lgtld the
number of super-legal decompositions using only&, . .., Gn. Thenlimp_. Hn/Gn
exists and is positive.

Proof. SinceH, is generated by the same recursiorGasit has the same charac-
teristic polynomial, which then has the same roots. Theesfor someB > 0 we
have

Hn = BAl4+0O(nt 2. (14)

Thus limy—« Hn/Gn = B/A and it suffices to show th& > 0. Note that we always
haveH; > 0, so we must have

. Hj

= — 0. 15

a 1rsnjlgL G > (15)

It follows by induction om thatH, > a Gy, for all n. Thus we conclude th& > 0,
as desired.

3 Density Theorem

To prove the main result as stated in Theoferh 1.1, we comppteeed values and
variances of the relevant random variables. An essentibpthe ensuing analysis

is the following estimate on the probability that = k for a fixedk, and showing
that it has little dependence gnWe prove the theorem via casework based on the
structure of the blocks in the decompositiormafNamely, in the case thai is in
therth position of a block of lengtld, the two subcases are= ¢ (that is,a; is the

last element in the block) ar< /¢ (that is,a; is not the last element in the block).



Benford Behavior of Generalized Zeckendorf Decomposition 7

This is why the notion of a super-legal decomposition is uls&fwe want to know
whether the legal decompositidns,ay, . ..,an) has a block that terminates at,
this is equivalent to whethérs,ay, ..., a) forms a super-legal decomposition. So,
we first prove some useful lemmas and then collect our resujpsove Theorem

11

Lemma 3.1 Let{Gp} be a positive linear recurrence sequence, and choose an in-
teger m uniformly at random frof®, G,1), with legal decomposition

n
m = aj Gn+1,j. (16)
=1

Note that this defines random variableg A. , A, taking on values a...,an.
Let p; k(n) := Prob(Aj = k). Then, forlogn < j < n—logn, we have

Pik(n) = p(n)(1+0(1)), (17)
where g(n) is computable and does not depend on j.

Proof. We divide the argument into cases based on the length of tok bbntain-
ing a;, as well as the position; takes in this block. Suppose that is in therth
place in a block of lengtl. In order to havea; = k, we must either have< ¢ and
k=¢,orr=/andk < c.

In the former case, there acgways to choose the terms in the block containing
a;j, due to thec, choices there are for the final term, and everything else elfix
There areH;_r ways to choose the coefficients for the terms greater thasetho
the block containingj, andG,_;j_r41 ways to choose the smaller terms.

We now consider the latter case, where ¢ andk < ¢;. There is now only one
possibility for the coefficients in the block containiag but the rest of the argument
remains the same as in the previous case. Therefore, by LB find that

Njker(n) := #{meZN[0,Ghy1) @) =k, ajin ri"position in block of lengtt}
CGnjriraHjr ifr <f k=g,
= GnojrpraaHjr  ifr=4k<cr,
0 otherwise

= Nger(n)(1+0(1)), (18)
where

CABA L ifr <4, k=c,
Neer(n) == ¢ ABA ifr=¢, k<, (19)
0 otherwise,

andNg ¢ (n) does not depend oj) these formulas follow from applications of the
Generalized Binet Formula to the sequences foGkie andH,'s. We conclude the
proof by noting that
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1 L ¢

L ¢
P S LR (b A KL

where we used(18) to replabg ¢ (n). The claim now follows by defining

1 L 7/

3. 3 Nt (21)
(=1r=

n =
Pk(n) Gt

and noting that its size is independentjoMore is true, as the Generalized Binet
Formula again gives us th&,  ; is a constant timeﬁ;{”rl (up to lower order terms),
and similarly the sum fopy(n) is a multiple of/\{‘+1 plus lower order terms.

We also use the following result, which follows immediatgtyn Theorems 1.2
and 1.3 in[[MW1] (see alsd [MW?2] for a survey on the subject).

Lemma 3.2 Let{Gp} be a positive linear recurrence sequence, witmssthe num-
ber of summands in the decomposition of m. That is, fet E]T:]_aj Gni1-j, let
s(m) := 31 aj. Let X% (m) be the random variable defined by(¥) = s(m), where
m is chosen uniformly at random froj® G,1). Then

E[X\,(m)] = nC+o(n) and VarX,(m)] = o(n?). (22)
We define another random variable similarly.

Lemma 3.3 Let {G} be a positive linear recurrence sequence, and let §5,}
be a set with positive densityf$) in {Gn}. For m chosen uniformly at random in
[O, GrH,l), Iet

Ya(m) = aj, (23)

where = {j <n|Gp;1-j € S}.
Then, for some constant€ 0, we have
E[Ya(m)] = dnC+o(n), Var[Ya(m)] = o(n?). (24)

Proof. We first compute the expected value. We have
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EYa(m)] = ]ELEZ‘naj = > Elaj] = j;nélkpj,k(n)

J€Tn
ol k 1+0(1)).
(ogn)JrjeanZl P(n)(1+0(1))

8

= O(logn)+dn(1+o0(1)) $ kp(n)
k=1

= O(Iogn)+d(1+0(1))i ika(n)
J=1k=1

= O(Iogn)+d(1+0(1))i 3 kpj k(n)
J=1k=1

M
=
2

H\_
+ M
o
o
'_\
r
=

O(logn)+d(1+o0(1))

= O(logn) + E[Xq(m)]d(
= dnC+o(n). (25)

Note that the above sums are actually finite, sipge= px = 0 for sufficiently
largek. The logn term appears since Lemmal3.1 only allows us topsay= px(1+
o(1)) whenlogh < j < n—logn.

We now must consider the variance. First note that-ifogn < j, then letting

gir(n) := Prob(the block containing; ends agj.|aj =K), (26)

we have

L-1
Prob(aj = (|aj = k) = ;qi’r(n) Pj—i—re(N)

L-1

= (1+0(1))pe(n) ZQi,r(n)
= pe(n)(1+0(1)). (27)

Thus, we compute
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Z aiaj] = > Elaay]
i,]JETh i,J€M

klpi k(n)Prob(aj = ¢|a; = k)

E[Ya(m)?] = E

i,

= O(nlogn) + 2 Z ; kepi k(n)Prob(a; = ¢|aj = k)
i,JE€ET k(=1
2logn<i+logn<j<n—logn
< O(nlogn) +2 Zr Z kepk(n)pe(n)(1+0(1))
i, €ln k, =1

J
2logn<i+logn<j<n—logn

O(nlogn) + (1+0(1))d*n? i kepk(n) pe(n)
k=1

= O(nlogn) + (1+o0(1))d?n? < 3 ka(n)>2
= 0(n|ogn)+o|2n2<:2(1+o(1))k;l d?n’C? + o(n?). (28)
Therefore
VarYa(m)] = E[Ya(m)?] - E[Ya(m)]* = o(n?), (29)

completing the proof.

We are now ready to prove our main result. The idea of the pitiat the
results above strongly concentratg¢m) andX,(m).

Proof (Proof of Theoreri Il1Note that the proportion of the summandsnits

Zeckendorf decomposition which belongSas ;:((:r?) whereXn(m), Ya(m) are de-
fined as in the previous lemmas. Therefore it suffices to siawfor anye > 0,

with probability 1+ o(1) we have

Yn(m)
Xn(m)

By Chebyshev’s inequality, letting(n) = n'/2Var[X,(m)] /4, we obtain

—d’ < e (30)

2
prob( xo(m) — Bpso(m)|> “EoL) < YETWRIE o).
Letting
) = o (25 sixo(m] el (32)

we have with probability % o(1) that
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nC(1—ex(n)) < Xa(m) < Cn(1+ex(n)). (33)

Note thate; (n) = o(1). A similar argument folY,,(m) shows that there exists some
e(n) = 0(1) such that with probability  o(1) we have

dnC(1—ex(n)) < Ya(m) < dnC(1+ex(n)). (34)
Therefore, we have that

Yn(m) - dnC(1+ex(n))
Xa(m) — nC(1—ey(n))

with probability 1+ o(1), and we can similarly obtain

< d+¢, (35)

Yn(m)

> d—e. 36
Xo(m) %)
Thus we conclude that with probability1o(1)
Yn(m) ’
—d| < g, 37
Xo(m) 7

completing the proof.

The Benfordness of the summands follows from Thedrerh 1.1.Slbe the set
of numbers in{Gn},_; that start with a given digit. Sinc€, is a positive linear
recurrence sequence, the densityaf {Gn};y_; will follow Benford’s law in base
B, provided that logA is irrational, whereA is the characteristic polynomial of
{Gn}*. If we have a Zeckendorf decomposition with summands f{@n}_,, the
proportion of those summands which areSmvill also follow Benford’s law. We
can state this more precisely as follows.

Corollary 3.4 Fix a positive linear recurrence sequen{@,}. Let § C {Gn}y_;

be a set of numbers with a given first digit d. Then S has Berfertity (base
B) g(&y) = logs(1+ %). Fix an € > 0. As n— o, for an integer m selected uni-
formly at random froni0, G,..1) the proportion of the summands in m’s Zeckendorf
decomposition which belong tq & within € of q(S) with probability1+ o(1).

4 Conclusion and Future Work

We were able to handle the behavior of Zeckendorf decomipositn fairly gen-
eral settings by cleverly separating any decompositianimanageable blocks. The
key step was the notion of a super-legal decomposition, wsiimplified the com-
binatorial analysis of the generalized Zeckendorf decasitipms significantly. This
allowed us to prove not just Benford behavior for the leadliggts, but also similar
results for other sequences with positive density.
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We obtained results for a large class of linear recurrengeshsidering only
the main term of Binet's formula for each linear recurrenicefuture work we
plan on revisiting these problems for other sequences.ddbwandidates include
far-difference representations [Al, DDKMV},-decompositions [DDKMMV], and
recurrences with leading term zero (some of which do not hiangue decomposi-

tions) [CEFHMN1/CFHMNZ2].
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