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similar unique decompositions exist for sequences arisingfrom recurrence relations
of the formGn+1 = c1Gn+ · · ·+ cLGn+1−L with ci positive and some other restric-
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of the elements inS with leading digitd is log10(1+

1
d ); in other words, smaller

leading digits are more likely to occur. We prove that asn→ ∞ for a randomly se-
lected integerm in [0,Gn+1) the distribution of the leading digits of the summands in
its generalized Zeckendorf decomposition converges to Benford’s law almost surely.
Our results hold more generally: one obtains similar theorems to those regarding the
distribution of leading digits when considering how often values in sets with density
are attained in the summands in the decompositions.
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1 Introduction

Zeckendorf’s theorem states that every positive integerm can be written uniquely
as a sum of nonconsecutive Fibonacci numbers, where the Fibonacci numbers are
defined byFn+1 = Fn+Fn−1 with F1 = 1 andF2 = 2 (we must re-index the Fibonac-
cis, as if we included 0 or had two 1’s we clearly could not haveuniqueness). Such
a sum is called the Zeckendorf decomposition ofm, and each number in the sum
is called a summand. Zeckendorf decompositions have been generalized to many
other sequences, specifically those arising from positive linear recurrences. More
generally, we can consider a positive linear recurrence sequence given by

Gn+1 = c1Gn+ · · ·+ cLGn+1−L, (1)

with ci nonnegative,L,c1 andcL positive, as well as rules to specify the firstL terms
of the sequence and a generalization of the non-adjacency constraint to what is a le-
gal decomposition. Unique decompositions exist both here and for other sequences;
see [Al, Day, DDKMMV, DDKMV, DG, DT, FGNPT, GT, GTNP, Ke, KKMW,
Len, MW1, MW2, Ste1, Ste2, Ze] for a sample of the vast literature on this topic.

Our purpose is to connect generalized Zeckendorf decompositions and Benford’s
law. In fact, what we show is more general, and the connectionwith Benford’s law
follows as a corollary. Still, Benford’s law was the motivation for our investigation,
so we discuss its history. First discovered by Simon Newcomb[New] in the 1880s,
it was rediscovered by Benford [Ben] approximately fifty years later, who noticed
that the distributions of the leading digits of numbers in many data sets were not
uniform. In fact, there was a strong bias towards lower values. For example, the
leading digit 1 appeared about 30% of the time and the leadingdigit 9 under 5% of
the time. Data sets with such leading digit distributions are said to follow Benford’s
law. More precisely, the probability of a first digit baseB of d is logB(1+1/d), or
more generally the probability that the significand1 is at mosts is logB(s). Benford’s
law appears in astoundingly many data sets, from physical constants to census infor-
mation to financial and behavioral data, and has a variety of applications (two of the
most interesting being its use to detect accounting or voting fraud). This digit bias is
in fact quite natural once one realizes that a data set will follow Benford’s law if its
logarithms modulo 1 are equidistributed.2 See [BHi, Hi1, Hi2, MT-B, Rai] for more
on the theory of Benford’s law, as well as the edited volume [M] for a compilation
of articles on its theory and applications.

Before exploring whether or not the summands in Zeckendorf decompositions
obey Benford’s law, it’s natural to ask the question about the sequence of Fibonacci
numbers themselves. The answer is yes, and follows almost immediately from Bi-
net’s formula,

1 If x> 0 andB> 1 we may uniquely writexasSB(x)·BkB(x), whereSB(x)∈ [1,B) is the significand
of x andkB(x) is an integer.
2 Given a data set{xn}, let yn = log10xn mod 1. If {yn} is equidistributed modulo 1 then in the
limit the percentage of the time it is in[α ,β ] ⊂ [0,1] is just β −α . For example, to restrict to
significands ofd takeα = log10d andβ = log10(d+1).
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(note this is slightly different than the standard expression for Binet’s formula as we
have re-indexed our sequence so that the Fibonaccis begin 1,2, 3, 5). The proof is
completed by showing the logarithms modulo 1 are equidistributed, which is imme-

diate from the irrationality of log10(
1+

√
5

2 ) and Kronecker’s theorem (ifα is irra-
tional thennα is equidistributed modulo 1) and simple book-keeping to bound the
error of the secondary piece; see [DG, MT-B, Was] for details.

Instead of studying Benfordness of summands in Zeckendorf decompositions,
we could instead look at other properties of the summands, such as how often we
have an even number or how often they are a square moduloB for some fixedB.
So long as our sequence has a positive density, our argumentswill be applicable.3

We quickly review this notion. Given a set of positive integersG = {Gn}∞
n=1 and a

subsetS⊂ G , we letq(S,n) be the fraction of elements ofG with index at mostn
that are inS:

q(S,n) :=
#{Gi ∈ S : 1≤ i ≤ n}

n
. (3)

When limn→∞ q(S,n) exists, we define theasymptotic densityq(S) as

q(S) := lim
n→∞

q(S,n), (4)

and for brevity often say the sequenceShasdensity q(S).
In an earlier work we proved that if a setS has a positive densityq(S) in the

Fibonaccis, then so too do its summands in the Zeckendorf decompositions, and in
particular Zeckendorf decompositions using Fibonacci numbers follow Benford’s
law [BDEMMTTW]. Our main result below is generalizing theseresults to the case
of a positive linear recurrence sequence, which is a sequence of positive integers
{Gn}∞

n=1 and a set of non-negative coefficientsc1, . . . ,cL with L,c1,cL > 0,

Gn+1 = c1Gn+ c1Gn−1+ · · ·+ cLGn+1−L, (5)

and prescribed positive initial termsG1,G2, . . . ,GL.

Theorem 1.1 Fix a positive linear recurrence sequence{Gn}. Let S⊆ {Gn}∞
n=1

be a set with positive density q(S), and fix anε > 0. As n→ ∞, for an integer m
selected uniformly at random from[0,Gn+1) the proportion of the summands in m’s
Zeckendorf decomposition which belong to S is withinε of q(S) with probability
1+o(1).

We define some concepts needed to prove Theorem 1.1 in§2, in particular the
notion of a super-legal decomposition. We derive some needed properties of these

3 For example, in the limit one-third of the Fibonacci numbersare even. To see this we look at
the sequence modulo 2 and find it is 1,0,1,1,0,1,1,0,1, . . .; it is thus periodic with period 3 and
one-third of the numbers are even.
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decompositions, and then prove our main result in§3 by showing related random
variables (the number of summands, and the number of summands in our set with
positive density in our recurrence sequence) are strongly concentrated.

Acknowledgements:This research was conducted as part of the 2014 SMALL REU
program at Williams College and was supported by NSF grants DMS 1347804 and
DMS 1265673, Williams College, and the Clare Boothe Luce Program of the Henry
Luce Foundation. It is a pleasure to thank them for their support, and the participants
at SMALL and at the 16th International Conference on Fibonacci Numbers and their
Applications for helpful discussions.

2 Legal and Super-Legal Decompositions

For the rest of the paper any positive linear recurrence sequence{Gn}∞
n=1 satisfies

(5) with ci ≥ 0 andL,c1,cL ≥ 1.

Let {Gn}∞
n=1 be a positive linear recurrence sequence. Its the characteristic poly-

nomial is

f (λ ) = c0+ c1λ + · · ·+ cL−1λ L−1+ cLλ L, (6)

with roots λ1, . . . ,λL. By the Generalized Binet Formula (for a proof see, for
example, Appendix A of [BBGILMT]) we haveλ1 is the unique positive root,
λ1 > |λ2|≥ · · · ≥ |λL|, and there exists anA> 0 such that

Gn = Aλ n
1 +O(nL−2λ n

2 ). (7)

We introduce a few important terms needed to state our results.

Definition 2.1 Let {Gn} be a positive linear recurrence sequence. Given non-
negative integers a1, . . . ,an, the sum∑n

i=1aiGn+1−i is a legal Zeckendorf decom-
position if one of the following conditions holds.

1. We have n< L and ai = ci for 1≤ i ≤ n.
2. There exists an s∈ {1, . . . ,L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (8)

as+1, . . . ,as+ℓ = 0 for someℓ ≥ 0, and{bi}n−s−ℓ
i=1 with bi = as+ℓ+i is either legal

or empty.

Definition 2.2 Let {Gn} be a positive linear recurrence sequence. Given non-
negative integers a1, . . . ,an, the sum∑n

i=1aiGn+1−i is a super-legalZeckendorf de-
composition if there exists an s∈ {1, . . . ,L} such that
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a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (9)

as+1, . . . ,as+ℓ = 0 for someℓ ≥ 0, and{bi}n−s−ℓ
i=1 with bi = as+ℓ+i is either super-

legal or empty.

In other words, a decomposition is super-legal if it satisfies condition (2) of Def-
inition 2.1.

Definition 2.3 Let{Gn} be a positive linear recurrence sequence, and assume that
the sum∑n

i=1aiGn+1−i is a legal Zeckendorf decomposition. We call each string
described by one of the conditions of Definition 2.1 (not counting the additional0’s)
a block, and call the number of terms in each block itslength.

We note that every super-legal Zeckendorf decomposition islegal and that a
concatenation of super-legal Zeckendorf decompositions makes a super-legal Zeck-
endorf decomposition.

Example 2.4 The recurrence Gn+1 = Gn + 2Gn−1 + 3Gn−2 with G1 = 1, G2 =
2, G3 = 5 produces the sequence1,2,5,12,28,67,159,377, . . .. The decomposition
of 858 is

858 = 377+2(159)+2(67)+28+1 = G8+2G7+2G6+G5+G1. (10)

This example gives coefficients(1,2,2,1,0,0,0,1), so the blocks of1274are (1,
2,2),(1,0), and(1), with lengths3, 2, and1 respectively. Note that even though
the definition of a block excludes the additional0’s (i.e., the as+1 = as+2 = · · · =
as+ℓ = 0 from the Definition 2.1), it is still permissible for a block to end with a0.
The decomposition for1274 is legal but not super-legal, since the final block(1)
satisfies condition (1) but not condition (2) from Definition2.1.

Example 2.5 An example of a super-legal decomposition using the recurrence from
Example 2.4 is

860= 377+2(159)+2(67)+28+2+1 = G8+2G7+2G6+G5+G2+G1, (11)

which gives coefficients(1,2,2,1,0,0,1,1). In this case, the final block is(1,1),
which satisfies the condition of Definition 2.2.

Given two legal decompositions, we do not necessarily obtain a new legal se-
quence by concatenating the coefficients. However, if we require that the leading
block be super-legal, we do obtain a new legal decompositionby concatenation.
With the help of a few lemmas which help us count the number of super-legal de-
compositions, we can circumvent this obstruction.

Lemma 2.6 Let {Gn} be a positive linear recurrence sequence with relation given
by (5), and let Hn be the number of super-legal decompositions using only G1,G2,
. . . ,Gn. We have
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Hn+1 = c1Hn+ c2Hn−1+ · · ·+ cLHn+1−L. (12)

Proof. Note thatHn+1 − Hn is the number of super-legal decompositions with
largest elementGn+1. We count how many such decompositions there are by sum-
ming over the possible lengths of the leading block. Say the leading block is of
length j with 1< j ≤ L. Then the leading block is(c1,c2, . . . ,c j−1,a j), wherea j is
chosen from{0,1, . . . ,c j −1}. Therefore there arec j ways of choosing this leading
block. Because we requireGn+1 to be included in the decomposition, ifj = 1 there
arec1 − 1 ways of choosing this leading block, since the leading coefficient must
be nonzero. For any choice of leading block of lengthj, there areHn+1− j ways of
choosing the remaining coefficients. Therefore, we find that

Hn+1−Hn =
L

∑
j=1

c jHn+1− j −Hn, (13)

completing the proof.

Lemma 2.7 Let {Gn} be a positive linear recurrence sequence, and let Hn be the
number of super-legal decompositions using only G1,G2, . . . ,Gn. Thenlimn→∞ Hn/Gn

exists and is positive.

Proof. SinceHn is generated by the same recursion asGn, it has the same charac-
teristic polynomial, which then has the same roots. Therefore for someB ≥ 0 we
have

Hn = Bλ n
1 +O(nL−2λ n

2 ). (14)

Thus limn→∞ Hn/Gn = B/A and it suffices to show thatB> 0. Note that we always
haveH j > 0, so we must have

α := min
1≤ j≤L

H j

G j
> 0. (15)

It follows by induction onn thatHn ≥ αGn for all n. Thus we conclude thatB> 0,
as desired.

3 Density Theorem

To prove the main result as stated in Theorem 1.1, we compute expected values and
variances of the relevant random variables. An essential part of the ensuing analysis
is the following estimate on the probability thata j = k for a fixedk, and showing
that it has little dependence onj. We prove the theorem via casework based on the
structure of the blocks in the decomposition ofm. Namely, in the case thata j is in
the rth position of a block of lengthℓ, the two subcases arer = ℓ (that is,a j is the
last element in the block) orr < ℓ (that is,a j is not the last element in the block).
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This is why the notion of a super-legal decomposition is useful; if we want to know
whether the legal decomposition(a1,a2, . . . ,an) has a block that terminates atar ,
this is equivalent to whether(a1,a2, . . . ,ar) forms a super-legal decomposition. So,
we first prove some useful lemmas and then collect our resultsto prove Theorem
1.1.

Lemma 3.1 Let {Gn} be a positive linear recurrence sequence, and choose an in-
teger m uniformly at random from[0,Gn+1), with legal decomposition

m =
n

∑
j=1

a jGn+1− j . (16)

Note that this defines random variables A1, . . . ,An taking on values a1, . . . ,an.
Let pj ,k(n) := Prob(A j = k) . Then, forlogn< j < n− logn, we have

p j ,k(n) = pk(n)(1+o(1)), (17)

where pk(n) is computable and does not depend on j.

Proof. We divide the argument into cases based on the length of the block contain-
ing a j , as well as the positiona j takes in this block. Suppose thata j is in therth
place in a block of lengthℓ. In order to havea j = k, we must either haver < ℓ and
k= cr , or r = ℓ andk< cr .

In the former case, there arecℓ ways to choose the terms in the block containing
a j , due to thecℓ choices there are for the final term, and everything else is fixed.
There areH j−r ways to choose the coefficients for the terms greater than those in
the block containinga j , andGn− j−ℓ+r+1 ways to choose the smaller terms.

We now consider the latter case, wherer = ℓ andk< cr . There is now only one
possibility for the coefficients in the block containinga j , but the rest of the argument
remains the same as in the previous case. Therefore, by Lemma2.7 we find that

Nj ,k,ℓ,r(n) := #{m∈ Z∩ [0,Gn+1) : a j = k, a j in rthposition in block of lengthℓ}

=







cℓGn− j−ℓ+r+1H j−r if r < ℓ, k= cr ,
Gn− j−ℓ+r+1H j−r if r = ℓ, k< cr ,
0 otherwise

= Nk,ℓ,r(n)(1+o(1)), (18)

where

Nk,ℓ,r(n) :=







cℓABλ n−ℓ+1
1 if r < ℓ, k= cr ,

ABλ n−ℓ+1
1 if r = ℓ, k< cr ,

0 otherwise,
(19)

andNk,ℓ,r(n) does not depend onj; these formulas follow from applications of the
Generalized Binet Formula to the sequences for theGn’s andHn’s. We conclude the
proof by noting that
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p j ,k(n) =
1

Gn+1

L

∑
ℓ=1

ℓ

∑
r=1

Nj ,k,ℓ,r(n) =

(

1
Gn+1

L

∑
ℓ=1

ℓ

∑
r=1

Nk,ℓ,r(n)

)

· (1+o(1)), (20)

where we used (18) to replaceNj ,k,ℓ,r(n). The claim now follows by defining

pk(n) :=
1

Gn+1

L

∑
ℓ=1

ℓ

∑
r=1

Nk,ℓ,r(n) (21)

and noting that its size is independent ofj. More is true, as the Generalized Binet
Formula again gives us thatGn+1 is a constant timesλ n+1

1 (up to lower order terms),
and similarly the sum forpk(n) is a multiple ofλ n+1

1 plus lower order terms.

We also use the following result, which follows immediatelyfrom Theorems 1.2
and 1.3 in [MW1] (see also [MW2] for a survey on the subject).

Lemma 3.2 Let{Gn} be a positive linear recurrence sequence, with s(m) the num-
ber of summands in the decomposition of m. That is, for m= ∑n

j=1a jGn+1− j , let
s(m) := ∑n

j=1a j . Let Xn(m) be the random variable defined by Xn(m) = s(m), where
m is chosen uniformly at random from[0,Gn+1). Then

E[Xn(m)] = nC+o(n) and Var[Xn(m)] = o(n2). (22)

We define another random variable similarly.

Lemma 3.3 Let {Gn} be a positive linear recurrence sequence, and let S⊆ {Gn}
be a set with positive density q(S) in {Gn}. For m chosen uniformly at random in
[0,Gn+1), let

Yn(m) := ∑
j∈Tn

a j , (23)

where Tn = { j ≤ n|Gn+1− j ∈ S}.
Then, for some constant C> 0, we have

E[Yn(m)] = dnC+o(n), Var[Yn(m)] = o(n2). (24)

Proof. We first compute the expected value. We have
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E[Yn(m)] = E

[

∑
j∈Tn

a j

]

= ∑
j∈Tn

E[a j ] = ∑
j∈Tn

∞

∑
k=1

kpj ,k(n)

= O(logn)+ ∑
j∈Tn

∞

∑
k=1

kpk(n)(1+o(1)).

= O(logn)+dn(1+o(1))
∞

∑
k=1

kpk(n)

= O(logn)+d(1+o(1))
n

∑
j=1

∞

∑
k=1

kpk(n)

= O(logn)+d(1+o(1))
n

∑
j=1

∞

∑
k=1

kpj ,k(n)

= O(logn)+d(1+o(1))
n

∑
j=1

E[a j ]

= O(logn)+E[Xn(m)]d(1+o(1))

= dnC+o(n). (25)

Note that the above sums are actually finite, sincep j ,k = pk = 0 for sufficiently
largek. The logn term appears since Lemma 3.1 only allows us to sayp j ,k = pk(1+
o(1)) when logn< j < n− logn.

We now must consider the variance. First note that ifi + logn< j, then letting

qi,r(n) := Prob(the block containingai ends atai+r |ai = k) , (26)

we have

Prob(a j = ℓ|ai = k) =
L−1

∑
r=1

qi,r(n)p j−i−r,ℓ(n)

= (1+o(1))pℓ(n)
L−1

∑
r=1

qi,r(n)

= pℓ(n)(1+o(1)). (27)

Thus, we compute



10 Best, Dynes, Edelsbrunner, McDonald, Miller, Tor, Turnage-Butterbaugh and Weinstein

E[Yn(m)2] = E

[

∑
i, j∈Tn

aia j

]

= ∑
i, j∈Tn

E[aia j ]

= ∑
i, j∈Tn

∞

∑
k,ℓ=1

kℓpi,k(n)Prob(a j = ℓ|ai = k)

= O(nlogn)+2 ∑
i, j∈Tn

2 logn<i+logn< j<n−logn

∞

∑
k,ℓ=1

kℓpi,k(n)Prob(a j = ℓ|ai = k)

≤ O(nlogn)+2 ∑
i, j∈Tn

2 logn<i+logn< j<n−logn

∞

∑
k,ℓ=1

kℓpk(n)pℓ(n)(1+o(1))

= O(nlogn)+ (1+o(1))d2n2
∞

∑
k,ℓ=1

kℓpk(n)pℓ(n)

= O(nlogn)+ (1+o(1))d2n2

(

∞

∑
k=1

kpk(n)

)2

= O(nlogn)+d2n2C2(1+o(1)) = d2n2C2+o(n2). (28)

Therefore

Var[Yn(m)] = E[Yn(m)2]−E[Yn(m)]2 = o(n2), (29)

completing the proof.

We are now ready to prove our main result. The idea of the proofis that the
results above strongly concentrateYn(m) andXn(m).

Proof (Proof of Theorem 1.1).Note that the proportion of the summands inm’s
Zeckendorf decomposition which belong toS is Yn(m)

Xn(m) , whereXn(m),Yn(m) are de-
fined as in the previous lemmas. Therefore it suffices to show that for anyε > 0,
with probability 1+o(1) we have

∣

∣

∣

∣

Yn(m)

Xn(m)
−d

∣

∣

∣

∣

< ε. (30)

By Chebyshev’s inequality, lettingg(n) = n1/2Var[Xn(m)]−1/4, we obtain

Prob

(

|Xn(m)−E[Xn(m)]|> E[Xn(m)]

g(n)

)

≤ Var[Xn(m)]g(n)2

E[Xn(m)]2
= o(1). (31)

Letting

e1(n) :=
1

nC

(

E[Xn(m)]

g(n)
+ |E[Xn(m)]−nC|

)

, (32)

we have with probability 1+o(1) that
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nC(1−e1(n)) ≤ Xn(m) ≤ Cn(1+e1(n)). (33)

Note thate1(n) = o(1). A similar argument forYn(m) shows that there exists some
e2(n) = o(1) such that with probability 1+o(1) we have

dnC(1−e2(n)) ≤ Yn(m) ≤ dnC(1+e2(n)). (34)

Therefore, we have that

Yn(m)

Xn(m)
≤ dnC(1+e2(n))

nC(1−e1(n))
< d+ ε, (35)

with probability 1+o(1), and we can similarly obtain

Yn(m)

Xn(m)
> d− ε. (36)

Thus we conclude that with probability 1+o(1)
∣

∣

∣

∣

Yn(m)

Xn(m)
−d

∣

∣

∣

∣

< ε, (37)

completing the proof.

The Benfordness of the summands follows from Theorem 1.1. Let S be the set
of numbers in{Gn}∞

n=1 that start with a given digit. SinceGn is a positive linear
recurrence sequence, the density ofS in {Gn}∞

n=1 will follow Benford’s law in base
B, provided that logB λ is irrational, whereλ is the characteristic polynomial of
{Gn}∞. If we have a Zeckendorf decomposition with summands from{Gn}∞

n=1, the
proportion of those summands which are inS will also follow Benford’s law. We
can state this more precisely as follows.

Corollary 3.4 Fix a positive linear recurrence sequence{Gn}. Let Sd ⊆ {Gn}∞
n=1

be a set of numbers with a given first digit d. Then S has Benforddensity (base
B) q(Sd) = logB(1+ 1

d ). Fix an ε > 0. As n→ ∞, for an integer m selected uni-
formly at random from[0,Gn+1) the proportion of the summands in m’s Zeckendorf
decomposition which belong to Sd is within ε of q(Sd) with probability1+o(1).

4 Conclusion and Future Work

We were able to handle the behavior of Zeckendorf decompositions in fairly gen-
eral settings by cleverly separating any decomposition into manageable blocks. The
key step was the notion of a super-legal decomposition, which simplified the com-
binatorial analysis of the generalized Zeckendorf decompositions significantly. This
allowed us to prove not just Benford behavior for the leadingdigits, but also similar
results for other sequences with positive density.
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We obtained results for a large class of linear recurrences by considering only
the main term of Binet’s formula for each linear recurrence.In future work we
plan on revisiting these problems for other sequences. Obvious candidates include
far-difference representations [Al, DDKMV],f -decompositions [DDKMMV], and
recurrences with leading term zero (some of which do not haveunique decomposi-
tions) [CFHMN1, CFHMN2].
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