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ABSTRACT. We make progress on a conjecture made by [DM], which states that the d-dimensional
frames of m-dimensional boxes resulting from a fragmentation process satisfy Benford’s law for all
1 ≤ d ≤ m. We provide a sufficient condition for Benford’s law to be satisfied, namely that the maximum
product of d sides is itself a Benford random variable. Motivated to produce an example of such a
fragmentation process, we show that processes constructed from log-uniform proportion cuts satisfy the
maximum criterion for d = 1.
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1. INTRODUCTION

1.1. Historical Background. At the dawn of the 20th century, the astronomer and mathematician
Simon Newcomb observed that the logarithmic books at his workplace showed a lot of wear and tear
at the early pages, but the more he progressed through the book, the less usage could be observed.
Newcomb deduced that his colleagues had a "bias" towards numbers starting with the digit 1. In
particular, the digit 1 shows up as the first digit roughly 30% of the time, the digit 2 about 17% of the
time, and so on. While he did come up with a mathematical model for this interesting relationship, his
work stayed mostly unnoticed.

It took another 57 years after Newcomb’s discovery for physicist Frank Benford to make the exact
same observation as Newcomb: the first pages of logarithmic tables were used far more than others.
He formulated this law as follows.

Definition 1.1. [Ben, Page 554] We say that data exhibits (weak) Benford behavior if the frequency Fd

of leading digit d satisfies

Fd = log10
d + 1

d
. (1.1)

Nowadays, Benford’s Law is used in detecting many different forms of fraud, and its prevalence in
the world fascinates not only mathematicians, but many other scientists as well (to learn more about
Benford’s Law and its many applications, we recommend [BeHi, Nig, Mil1] to name a few).

In 1986, Lemons [Lemons] proposed using Benford’s law to analyze the partitioning of a conserved
quantity. Since then, driven by the potential application to nuclear fragmentation, mathematicians and
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physicists have taken an interest in the Benfordness of various fragmentation processes. Among these
processes of interest is stick fragmentation. In the unrestricted stick fragmentation model, one begins
with a stick of length L. Draw p1 from a probability distribution on (0, 1). This fragments the stick into
two sub-sticks of lengths p1L and (1− p1)L. For each sub-stick, draw another independent probability
(p2 and p3, respectively) from the same distribution. Repeat this process N times. Of particular interest
is whether this fragmentation process follows Benford’s law.

1.2. Previous Work on Fragmentation. An important definition when studying a more precise
statistical version of Benford’s law is the notion of the significand of a real number, i.e., its leading
digits in scientific notation.

Definition 1.2 (Significand). Given a positive real number x, we say that its significand base B > 1,
denoted SB(x), is the unique real number SB(x) ∈ [1, B) such that k = logB(x)− logB(SB(x)) is an
integer. One can then write x = SB(x) ·Bk.

As is common practice with these techniques involving proofs of Benford’s law, we define a stricter
version of Benford behavior.

Definition 1.3 (Strong Benford’s Law). We say that a sequence of random variables X(n) converges to
strong Benford behavior in the base B if

P(SB(X
(n)) ≤ D) → logB(D), (1.2)

for all D ∈ [1, B]. Notice by compactness that this implies uniform convergence of (1.2).

We may now state the previous results on box fragmentation. Becker, et al. [B–] proved a theo-
rem regarding unrestricted stick fragmentation (compare with their Theorem 1.5) which was later
generalized by [DM] in the form of the following theorem.

Theorem 1.4 (Benfordness of the m-Volumes of a Branching-Fragmentation Process). Fix a continuous
probability density f : (0, 1) → R such that its Mellin transform1 M[fu] satisfies

lim
n→∞

∞∑
ℓ=−∞
ℓ ̸=0

∣∣∣∣∣
nm∏
u=1

M[fu]

(
1− 2πiℓ

log 10

)∣∣∣∣∣ = 0, (1.3)

where each fu(t) is either f(t) or f(1 − t) (the density of 1 − P if P has density f ). Given an m-
dimensional box of m-dimensional volume V , we independently choose density cuts p1, p2, . . . , pnm − 1, pnm
from the unit interval stemming from the probability density function f and the associated random
variable P . After N iterations we have

V1 = V p1p2p4 · · · p2nm−2p2nm−1 , V2 = V p1p2p4 · · · p2nm−2(1− p2nm−1), . . . ,

V(2m)n = V (1− p1)(1− p3)(1− p7) · · · (1− p2nm−1−1)(1− p2nm−1). (1.4)

Let φs denote the significand indicator function

φs(x) :=

{
1 s10(x) ≤ s

0 otherwise
. (1.5)

Let ρn(s) denote the fraction of volumes V1, . . . , V(2m)n with significand at most s, i.e.,

ρ(n)m (s) :=

∑(2m)n

i=1 φs(Vi)

(2m)n
. (1.6)

We have that the following two conditions hold.

(1) limn→∞ E[ρ(n)m (s)] = log10(s),
(2) limn→∞ Var

(
ρ
(n)
m (s)

)
= 0.

1The Mellin transform is related to the Fourier transform by a logarithmic change of variables, which we will discuss
further in Section 4. Often, the Mellin and Fourier transforms are useful tool for stating regularity conditions.
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Thus, in the limit, the m-dimensional volumes resulting from such a branching-fragmentation process
exhibit Benford behavior with high probability.

L

L K1 LH1-K1L

L K1K2 L K1H1-K2L LH1-K1LK3 LH1-K1LH1-K3L

L K1K2K4 L K1K2H1-K4L L K1H1-K2LK5 L K1H1-K2LH1-K45L LH1-K1LK3K6 LH1-K1LK3H1-K6L LH1-K1LH1-K3LK7 LH1-K1LH1-K3LH1-K7L

FIGURE 1. The side lengths of a one-dimensional branching-fragmentation process
for n = 3.

FIGURE 2. The volumes of a three-dimensional branching-fragmentation process for
n = 1.

Remark 1.5. The exact fragmentation process used in Theorem 1.4 features 2m·n boxes at time step n,
all of which are concurrent sub-boxes of the original box. We say that this is a branching-fragmentation
process, as there are exponentially many boxes which naturally are the leaves of a height n binary tree
of all the boxes at all the time steps up to n. Theorem 1.4 proves strong concentration, i.e., that the
variance goes to zero; morally this is because early decisions in the tree about where to cut have little
effect on future boxes that are far apart leaves on the tree.

The proof of Theorem 1.4 suggests that one might observe Benford behavior in the perimeter, area,
and other generalized volumes of lower-dimensional faces of boxes resulting from fragmentation.

1.3. Results. We prove results about linear-fragmentation processes, which we define as follows.

Definition 1.6 (Box). We say a set B ⊂ Rm is an m-dimensional box if it is a set of the form
[a1, b1]×· · · × [am, bm] ⊂ Rm, where ai < bi are finite numbers.
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FIGURE 3. A linear fragmentation process for n = 2 on a two-dimensional box.

Definition 1.7 (Linear-Fragmentation Process). A linear-fragmentation process is a sequence of
random variables B0,B1,B2, . . . such that the following hold.

(1) The random variables Bi are m-dimensional boxes.
(2) The random variables Bi form a descending chain B0 ⊃ B1 ⊃ B2 ⊃· · ·.
(3) The distribution of Bn+1 conditioned on Bn is some fixed distribution of independent propor-

tion cuts P1, . . . , Pm along each Cartesian axis. These Pi are fixed over all n ≥ 0.
(4) The proportion cuts Pi are continuous random variables with finite mean, variance, and third

moment.
(5) We assume for simplicity of analysis that E[logB Pi] and Var[logB Pi] are constants µP ∈ R

and σ2
P > 0 that are uniform over 1 ≤ i ≤ m.

The statistics we are interested in studying are the volumes of the frame random variables in a
linear-fragmentation process.

Definition 1.8 (d-Volume). Given an m-dimensional box B and a positive integer d ≤ m, we say the
d-volume of B =

∏
i[ai, bi] is the sum of the d-dimensional volumes of the d-dimensional faces of B.

More precisely, we define
Vold(B) := 2m−d

∑
|I| = d

∏
i ∈ I

(bi − ai), (1.7)

where we are summing over all subsets I ⊂ {1, . . . ,m} with cardinality d.

In Section 2, we prove the following theorem.

Theorem 1.9 (Maximum Criterion). Let B = B0 be a fixed m-dimensional box. Let B0 ⊃ B1 ⊃· · ·
be a a linear-fragmentation process whose proportion cuts Pi have probability density functions
fi : (0, 1) → (0,∞). Let

V
(n)
d := Vold(Bn) (1.8)

be the sequence of volumes obtained from this process. Let m(n)
d denote the maximum product of d

sides at each stage. If m(n)
d converges to strong Benford behavior, then so too does V (n)

d converge to
strong Benford behavior as n → ∞.

Remark 1.10. Condition (5) for a linear-fragmentation process can be dropped with more work. The
idea is that, by the law of large numbers, one expects the significand of our volumes to be largely
influenced by the sides whose proportion cuts have the largest mean; therefore we have a reduction
to the case of equal means. Having the same mean and different variances, there is little quantitative
difference in our analysis, but for sake of notation it is much clearer to assume that all variances are
the same.

When d = m there is only one choice of product, and therefore the maximum criterion is automati-
cally satisfied by a large class of continuous proportion distributions, namely all such distributions Pi
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for which repeated independent multiplications by X = P1· · ·Pm converges to strong Benford behav-
ior. Note that this gives us a result analogous to those of [B–] and [DM] for the linear-fragmentation
process. Therefore, Theorem 1.9 implies the following corollary.

Corollary 1.11 (Benfordness of the m-Volumes of a Linear-Fragmentation Process). Let B = B0

be a fixed m-dimensional box. Let B0 ⊃ B1 ⊃ · · · be a a linear-fragmentation process. Then the
sequences of box volumes Volm(Bn) converges to strong Benford behavior.

Indeed, one may appeal to the Central Limit Theorem in order to immediately see that the indepen-
dent products of such Pi satisfy the strong version of Benford’s law.

In Section 3, we produce an example family of distributions which satisfy the maximum criterion
for d = 1, namely those for which logB Pi are uniformly distributed. We prove the following theorem.

Theorem 1.12 (Example of the Maximum Criterion being Satisfied). Let P (j)
i be IID log-uniform

distributions. In the case of d = 1, i.e., perimeter, the maximum side-lengths

m
(n)
1 := max

1≤i≤m
P

(1)
i · · ·P (n)

i (1.9)

converge to Strong Benford behavior as n → ∞.

In view of Theorem 1.9, this gives an example of Benford behavior for lower dimensional volumes
of a box fragmentation process.

Corollary 1.13. Let B = B0 be a fixed m-dimensional box. Let B0 ⊃ B1 ⊃ . . . be a linear-
fragmentation process whose proportion cuts Pi are identically log-uniform. Then the sequence of
frame perimeters Vol1(Bn) converges to Strong Benford behavior as n → ∞.

2. REDUCTION TO THE MAXIMUM-VOLUME FACE

In this section, the following notation is fixed. We work under the assumptions of Definition 1.7.

• B: a fixed base in [1,∞).
• m: the dimension of the boxes B = B0 ⊃ B1 ⊃· · ·.
• d: the dimension of the frames we are considering.
• P

(0)
1 , . . . , P

(0)
m : the initial side lengths (i.e., bi − ai) of B0.

• P
(n)
1 , . . . , P

(n)
m , n ≥ 1: the m proportions drawn at the nth iteration.

• S
(n)
i :=

∏n
t=0 P

(t)
i : the side lengths of Bn.

• I, J : dummy indexing sets ranging over subsets of {1, . . . ,m} with cardinality d.
• P

(t)
I :=

∏
i∈I P

(t)
i .

• v
(n)
d := 2d−mV

(n)
d =

∑
I

∏
i∈I S

(n)
i =

∑
I p

(n)
I : the d-volume without the constant 2m−d.

• p
(n)
I :=

∏
i∈I S

(n)
i =

∏n
t=0 P

(t)
I : the product of the sides in I .

• m
(n)
d := maxI p

(n)
I : the maximum product of d sides.

It suffices to show that the random variables v(n)d converge to strong Benford behavior, because v
(n)
d

and V
(n)
d only differ by a fixed multiplicative constant of 2m−d. Indeed, if X is Benford, so is cX for

any fixed c > 0. Moreover, what we like is to control such a sum of products
∑

I p
(n)
I over |I|= d by

using the observation that the maximum product m(n)
d should typically be many orders of magnitude

larger than the other products. We quantify this statement in the form of Lemma 2.1, which is the tool
that allows us to control the strong Benford behavior of our sum of random variables, allowing us to
if one ascertains that the strong Benfordness of the maximum is suitable. In rare instances, such as
m

(n)
d = (B − ε) ·Bk where ε > 0 is small, the Benfordness of m(n)

d = p
(n)
I for some |I|= d does not

translate well to the Benfordness of m(n)
d +

∑
J ̸=I p

(n)
I , since there is an overflow of the digits base B

which tampers with the distribution of the significand greatly. We handle these events, showing they
almost always never occur (i.e., with probability tending towards 0) in a standard way (cf. §9.3.2 of
[MT-B]).

We first require a lemma.
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Lemma 2.1 (Wafer Lemma). Let 0 < δn < 1 be a decreasing sequence. Then the probability that v(n)d

is at most (1 + δn) times m(n)
d is

P
(
m

(n)
d ≤ v

(n)
d ≤ (1 + δn)m

(n)
d

)
= 1−O

(
− log δn√

n

)
, (2.1)

where the implied constant depends on the distribution of Y (t)
j and m. We say that such an event at

time n is a δn-Wafer.

Proof. Our goal is to show that as n → ∞, it is with probability tending to 1 that there exists a product
p
(n)
I which is significantly greater in magnitude than the other products p(n)J for J ̸= I . That is, it is

with probability tending to 1 that there exists an indexing set I which has the largest product and is
large in the sense that log p(n)I − log p

(n)
J ≥ αn for all J ̸= I, where αn slowly tends towards infinity.

We first write for every I

log p
(n)
I =

∑
i∈I

logS
(n)
i =

∑
i∈I

∑
t≤n

logP
(t)
i . (2.2)

Notice that, due to the inequality below, we may reduce to the d = 1 dimensional case, since showing
that it tends to 1 will squeeze all other probabilities. Indeed,

P

 ⋃
|I|=d

⋂
J ̸=I

{log p(n)I − log p
(n)
J ≥ αn}

 ≥ P

(
m⋃
i=1

⋂
j ̸=i

{logS(n)
i − logS

(n)
j ≥ αn}

)
. (2.3)

This can be seen by using the middle expression for log p(n)I in (2.2). Notice that for αn > 0, the union
of events over i is disjoint, therefore we calculate

P

(
m⋃
i=1

⋂
j ̸=i

{logS(n)
i − logS

(n)
j ≥ αn}

)
=

m∑
i=1

P

(⋂
j ̸=i

{logS(n)
i − logS

(n)
j ≥ αn}

)

=
m∑
i=1

∫ ∞

−∞
f
(n)
i (s)

∏
j ̸=i

F
(n)
j (s− αn) ds, (2.4)

where we have used the integral version of the law of total probability with respect to the values
that the maximum value s = logS

(n)
i may take, as well as independence of the Sj’s. The functions

f
(n)
j , F

(n)
j denote the PDF and CDF of logS(n)

j respectively. One version of the Berry–Esseen theorem
(cf. [Berry] and [Esseen]) gives us, in consideration of (2.2) for each logS

(n)
j ,

F
(n)
j (x) = Φ

(
x− n · µP√

n · σP

)
+OP

(
1√
n

)
(2.5)

where Φ is the PDF of the standard normal N (0, 1), and the implied constant for OP (1/
√
n) is uniform

over x ∈ R. By our convention in Definition 1.7, µP = E[logB P
(1)
j ] and σP = Var[logB P

(1)
j ] are

uniform over 1 ≤ j ≤ m. Applying (2.5) to (2.4) yields, for 1 ≪ αn ≪
√
n,

m∑
i=1

∫ ∞

−∞
f
(n)
i (s)

(
Φ

(
s− n · µP√

n · σP

)
+OP

(
αn√
n

))m−1

ds

=

(
m∑
i=1

∫ ∞

−∞
f
(n)
i (s)Φ

(
s− n · µP√

n · σP

)m−1

ds

)
+ OP,m

(
αn√
n

)
. (2.6)

Integrating by parts, applying (2.5) to F
(n)
i and absorbing error, we obtain

OP,m

(
αn√
n

)
+

m∑
j=1

(
1−

∫ ∞

−∞

m− 1√
n · σP

· Φ
(
s− n · µP√

n · σP

)m−1

Φ′
(
s− n · µP√

n · σP

)
ds

)
. (2.7)
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One may recognize that the above integrand has primitive (1− 1
m
)Φ( s−n·µP√

n·σP
)m, and so each integral

contributes 1− 1
m

, leaving us with

1−OP,m

(
αn√
n

)
. (2.8)

Taking αn = − log
(
δn/
(
m
d

))
, we have by considering subevents

P
(
m

(n)
d ≤ v

(n)
d ≤ (1 + δn)m

(n)
d

)
≥ P

 ⋃
|I|=d

⋂
J ̸=I

{log p(n)I − log p
(n)
J ≥ − log

(
δn/
(
m
d

))
}


≥ P

(
m⋃
i=1

⋂
j ̸=i

{logS(n)
i − logS

(n)
j ≥ − log

(
δn/
(
m
d

))
}

)

= 1−OP,m

(
− log δn√

n

)
. (2.9)

This finishes our proof. □

We claim that Lemma 2.1 reduces the question of strong Benford behavior of v(n)d to m
(n)
d . That is,

the Wafer lemma implies

Lemma 2.2 (Reduction to Max). Assume m
(n)
d converges to strong Benford behavior. Then v

(n)
d does

as well.

Proof. Let En be the event that m(n)
d and v

(n)
d are a δn-Wafer and (1+ δn)SB(m

(n)
d ) < B. We condition

on this event to prevent an overflow of the order of magnitude. Then

SB(m
(n)
d ) ≤ SB(v

(n)
d ) ≤ (1 + δn)SB(m

(n)
d ). (2.10)

Moreover, the conditional probabilities are

P(SB(m
(n)
d ) ≤ D/(1 + δn) | En) ≤ P(SB(v

(n)
d ) ≤ D | En) ≤ P(SB(m

(n)
d ) ≤ D | En). (2.11)

Making basic estimates such as inclusion-exclusion, we estimate the unconditional probability as

P
(
SB(m

(n)
d ) ≤ D/(1+ δn)

)
+P(En)−1 ≤ P(SB(v

(n)
d ) ≤ D) ≤ P

(
SB(m

(n)
d ) ≤ D

)
+1−P(En).

(2.12)
We show that v(n)d converges to strong Benford behavior by taking δn → 0 at a slow enough rate.

Because δn → 0, one has

P
(
(1 + δn)SB(m

(n)
d ) < B

)
→ 1. (2.13)

Also, by assuming that δn slowly goes to zero in the sense that log
(

1
δn

)
= o(

√
n), we have by Lemma

2.1 that

P(δn-wafer) = 1−O

(
− log δn√

n

)
→ 1. (2.14)

Since En is the intersection of these two events, we see that P(En) → 1 because of an inclusion-
exclusion bound that we also used to obtain (2.12).

P(A ∩B) ≥ P(A) + P(B)− 1. (2.15)

By our assumption that m(n)
d converges to strong Benford behavior, we have that

P
(
SB(m

(n)
d ) ≤ D

)
→ logB(D). (2.16)

Because of uniform convergence (due to compactness), we also have that

P
(
SB(m

(n)
d ) ≤ D/(1 + δn)

)
→ logB(D). (2.17)
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Therefore by the squeeze theorem, we deduce that

P
(
SB(v

(n)
d ) ≤ D

)
→ logB(D), (2.18)

provided that m(n)
d converges to strong Benford behavior. □

This proves Theorem 1.9, because v
(n)
d and V

(n)
d differ by only a constant multiplicative factor of

2m−d.

3. A FAMILY OF DISTRIBUTIONS WHOSE MAXIMUM SIDE-LENGTHS ARE BENFORD

For the sake of clean and transparent analysis, we select as our example family identically log-
uniform distributions: logB Pi ∼ Uniform(a, b) where a < b ≤ 0. By shifting and scaling each
logarithm of a proportion by a constant, we realize that we may “work” with the normalized distribution
Uniform(−

√
3,
√
3), which has mean zero and variance one. Of course, this means that we are no

longer strictly considering a physically realistic linear fragmentation process, because the boxes Bn

no longer form a descending chain, however for the sake of purely analyzing the Benfordness of our
system, this statistical normalization clearly generalizes, and we lose nothing by assuming it. For
1 ≤ i ≤ m, we let

Z
(n)
i :=

logB(P
(1)
i · · ·P (n)

i )− nµP√
n · σP

=
logB(P

(1)
i · · ·P (n)

i )√
n

. (3.1)

If fn(x) denotes the probability density function of any one of the random variables above, then its
characteristic function is

f̂n(k) :=

∫ ∞

−∞
fn(x)e

ikx dx =

(
sinc

(
k
√
3√
n

))n

. (3.2)

Note that the function sinc : R → R is defined by

sinc(u) :=

{
sin(u)

u
u ̸= 0

1 u = 0
. (3.3)

The above formula for f̂n(k) follows by writing fn(x) as the n-fold convolution of the PDF of Pi, and
then normalizing the PDF by subtracting mean and dividing by variance. We then use the fact that the
characteristic function (or Fourier transform) turns convolutions into products.

Our goal is to produce an estimate of the closeness of the PDF fn(x) and the Gaussian function

φ(x) :=
1√
2π

e−x2/2. (3.4)

As we will see, this closeness will allow us to correctly estimate the probability of events involving the
significand.

Lemma 3.1. The following estimate is satisfied by the random variables Z(n)
i .

fn(x) = φ(x) +O(n−1+4ε). (3.5)
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Proof. We begin by writing, for |k|≤ nε,

f̂n(k) =

(
1− k2

2n
+O

(
k4

n2

))n

= exp

[
n log

(
1− k2

2n
+O

(
k4

n2

))]
= exp

[
n

(
log

(
1− k2

2n

)
+

1

1− k2

2n

O

(
k4

n2

))]

= exp

[
n

(
− k2

2n
+O

(
k4

n2

)
+O(1)O

(
k4

n2

))]
= exp

[
− k2

2n
+O(n−1+4ε)

]
= e−k2/2 ·

(
1 +O(n−1+4ε)

)
. (3.6)

In terms of Fourier inversion, this allows us to manage the bulk part of our sum, namely we obtain
1

2π

∫
|k|≤nε

f̂n(k)e
−ikx dk = φ(x) +O(n−1+4ε). (3.7)

It therefore suffices to show that we have adequate bandwidth |k|≤ nε for recovering fn(x) from f̂n(k)
as n → ∞, i.e., to bound the strength of higher frequencies. Using the bound |sinc(u)|≤ |u|−1, we
obtain for all k that

|f̂n(k)| ≤

(
|k|

√
3√

n

)−n

. (3.8)

This immediately shows that we may discard the set of frequencies |k|≥ n1/2, since our bound yields∫
|k|≥n1/2

|f̂n(k)| dk ≤ 2

n− 1
· 3−n/2 = O

(
3−n/2

n

)
. (3.9)

We want to show that the Fourier inversion over the middle range of frequencies nε ≤ |k|≤ n1/2 is
also a small error term. This is because for nε ≤ |k|≤ n1/2, we estimate, using sinc(

√
3u) ≤ 1− u2

2.1

for small u, as well as (1− 1
N
)N ≤ e−1 for N large,

0 ≤ f̂n(k) ≤ f̂n(n
−ε) ≤

(
1− n−1+2ε

2.1

)n

≤ e−n2ε/2.1. (3.10)

This allows us to estimate∫
nε≤|k| ≤ n1/2

|f̂n(k)| dk ≤ 2n1/2e−n2ε/2.1 = O(n1/2e−n2ε/2.1). (3.11)

We therefore have proven, combining all of our estimates, that

fn(x) =
1

2π

∫ ∞

−∞
f̂n(k)e

−ikx dk = φ(x) +O(n−1+4ε) +O(n1/2e−n2ε/2.1) +O(3−n/2/n). (3.12)

This yields the desired estimate.
□

Using estimate (3.5), we are able to prove Theorem 1.12.

Remark 3.2. We crucially rely on the fact that the Z
(n)
i are independent. For d > 1, this is no longer

true, as p(n)I , p
(n)
J share proportion cuts even if I ̸= J . This obstruction should be able to be removed

with further work.

Corollary 1.13 follows from applying Theorem 1.9 and Theorem 1.12. Let us now prove Theorem
1.12.
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Proof. Because the side-lengths S(n)
i = P

(1)
i · · ·P (n)

i are independent and identically distributed, the
probability density function gn(x) for the normalized random variable (logB m

(n)
1 − nµP )/

√
nσP is

given by
gn(x) := mFn(x)

m−1fn(x). (3.13)

This is a basic fact about order statistics (see [Mil2]). Notice that the support of Z(n)
i is [−

√
3n,

√
3n].

Using Lemma 3.1, we have

Fn(x) =

∫ x

−
√
3n

φ(x) +O(n−1+4ε) dx = Φ(x) +O(n−1/2+4ε). (3.14)

This allows us to say that the maximum of approximate Gaussian random variables is approximately
the maximum of Gaussian random variables, i.e., expanding (3.13) using (3.14) and (3.5), one derives

gn(x) = mΦ(x)m−1φ(x) +O(m2n−1/2+4εφ(x)) +O(m2n−3/2+8ε) +O(mn−1+4ε). (3.15)

Our last step is to compute the probability that logB m
(n)
1 ∈ (a, b) + Z where (a, b) ⊂ (0, 1). This is

given by integrating gn(x) over the set En = (a/
√
n, b/

√
n) + Z/

√
n. Thus the probability is∫

En

gn(x) dx =

∫
En

mΦ(x)m−1φ(x) dx+O(m2n−1/2+4ε)+O(m2n−1+8ε)+O(mn−1/2+4ε). (3.16)

The integral on the right hand side represents the probability that the max of m Gaussian random
variables lies in the set En, and the probability approaches (b − a). Indeed, one way to see this is
that we are performing an improper Riemann sum of width 1/

√
n on the fixed Riemann-integrable

function mΦ(x)m−1φ(x), and that the set En simply is a “dense” subset of the rectangles. Therefore
the integral over En in the limit approaches the “probability” that a chosen rectangle intersects En,
which is (b− a), times the limit of the improper Riemann sums of mΦ(x)m−1φ(x), which is simply 1.
Therefore choosing ε < 1/8, we have

lim
n→∞

∫
En

gn(x) dx = (b− a). (3.17)

From this we deduce that the maximum perimeter sequence m(n)
1 exhibits Strong Benford behavior. □

4. FUTURE WORK

We conjecture that the maximum criterion, i.e., the assumption in Theorem 1.9, holds for a large
family of proportion cut distributions. More precisely, we conjecture the following.

Conjecture 4.1. Every linear-fragmentation process (that is continuous, with finite mean, variance,
and third moment) satisfies the maximum criterion in all dimensions 1 ≤ d ≤ m.

From our work, this conjecture implies the following corollary.

Corollary 4.2 (Strong Benfordness). Assume that Conjecture 4.1 holds. Then every linear-fragmentation
process satisfies the strong form of Benford’s law for all dimensions 1 ≤ d ≤ m.

While the tools we have employed thus far in our work with linear-fragmentation processes are
distinct from the methods used previously in working with branching-fragmentation processes, the only
substantial difference between linear-fragmentation and branching-fragmentation is the presence of a
binary tree of weakly correlated events. Applying linearity of expectation, one sees that the expectation
values of the leaves of the tree are the expectation value of the end of a linear-fragmentation process
with the same height. Therefore we obtain the following corollary.

Corollary 4.3. Assume that Conjecture 4.1 holds. Then every branching-fragmentation process (with
proportion cuts Pi as in Definition 1.7) satisfies

lim
n→∞

E[ρ(n)d (s)] = logB(s), (4.1)
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where

ρ
(n)
d (s) =

1

2mn

2mn∑
i=1

φs(Vold(Bi)). (4.2)

4.1. Restating the Mellin Condition in Terms of Characteristic Functions. Our last remark section
for this paper concerns how to interpret the Mellin condition that is presented in the works of [B–] and
[DM] in terms of characteristic functions for the logarithm of proportion cuts.

If f(t) is the probability density of P ∈ (0, 1) where P is a proportion cut, then we want to state the
Mellin condition

lim
n→∞

∞∑
ℓ=−∞
ℓ ̸=0

∣∣∣∣M[f ]

(
1 +

iℓ

logB

)∣∣∣∣n = 0, (4.3)

in terms of a characteristic function condition for fn(x), the probability density of Z(n), defined as

Z(n) :=
logB(P

(1)· · ·P (n))− nµP√
n · σP

, (4.4)

where µP , σP are constants which denote the mean and variance of logB P .

Remark 4.4. We have slightly modified the Mellin condition originally specified in equation 1.3. The
reason for this change is that we want (i) an arbitrary base B, (ii) an answer in terms of characteristic
functions rather than Fourier transforms (dropping 2π), and (iii) we may without loss of generality
always take fu = f (see Remark 1.7 of [DM]).

Now take t = P , s = logB P , and define

g(s) = f(Bs) ·Bs ln(B). (4.5)

A change of variables from t to s gives

M[f ]

(
1 +

iℓ

logB

)
=

∫ ∞

0

f(t)tiℓ/ln(B) dt =

∫ ∞

−∞
g(s)eisℓ ds = ĝ(ℓ) (4.6)

We have by definition of the random variable Z(n) that fn(x) =
√
n · σP · (g∗n)(nµP +

√
n · σPx).

Without loss of generality assume that µP = 0 and σP = 1. Then one obtains by applying the
characteristic transform

f̂n(k) = (ĝ)n(k/
√
n). (4.7)

Therefore we see that the Mellin condition is equivalent to the statement that

lim
n→∞

∞∑
ℓ=−∞
ℓ̸=0

|f̂n(ℓ
√
n)| = 0. (4.8)

Thus we observe that this is a very mild regularity condition, since we expect f̂n(k) ≈ e−k2/2 for nice
P . We have seen this condition concretely hold for the family of proportion distributions in Section 3.
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[DM] I. Durmić and S. J. Miller, Benford Behaviour of a Higher Dimensional Fragmentation Pro-

cess, preprint 2023. https://librarysearch.williams.edu/permalink/01WIL_INST/
1faevhg/alma991013795585602786.

[Esseen] C. Esseen, On the Liapounoff limit of error in the theory of probability., Arkiv För Matematik, Astronomi Och
Fysik, (1942).

[Hi1] T. P. Hill, A Statistical Derivation of the Significant-Digit Law, Statistical Science 10 (1995), no. 4, 354-363.
[Hi2] T. P. Hill, The first-digit phenomenon, American Scientists 86 (1996), 358–363.
[JKKKM] D. Jang, J. U. Kang, A. Kruckman, J. Kudo and S. J. Miller, Chains of distributions, hierarchical Bayesian

models and Benford’s Law, Journal of Algebra, Number Theory: Advances and Applications, volume 1, number
1 (March 2009), 37–60.

[Jing] Joy Jing, Benford’s Law and Stick Decomposition.
[KM] A. Kontorovich and S. J. Miller, Benford’s Law, values of L-functions and the 3x+1 problem, Acta Arithmetica

120 (2005), no. 3, 269–297.
[Kh] A. Y. Khinchin, Continued Fractions, Third Edition, The University of Chicago Press, Chicago 1964.
[LSE] L. M. Leemis, B. W. Schmeiser and D. L. Evans, Survival Distributions Satisfying Benford’s Law, The American

Statistician 54 (2000), no. 3.
[Lemons] Don. S. Lemons, “On the Numbers of Things and the Distribution of First Digits,” American Journal of Physics

(1986), 816–817.
[Mil1] S. J. Miller, Benford’s Law: Theory and Applications, Princeton University Press, Princeton, NJ, 2015.
[Mil2] S. J. Miller, The Probability Lifesaver, Princeton University Press, Princeton, NJ, 2017. https://doi.org/

10.1515/9781400885381.
[MT-B] S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory, Princeton University Press,

Princeton, NJ, 2006.
[MiNi1] S. J. Miller and M. Nigrini, The Modulo 1 Central Limit Theorem and Benford’s Law for Products, International

Journal of Algebra 2 (2008), no. 3, 119–130.
[MiNi2] S. J. Miller and M. J. Nigrini, Order Statistics and Benford’s Law, International Journal of Mathematics and

Mathematical Sciences, (2008), 1-13.
[Ne] S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Amer. J. Math. 4 (1881),

39-40.
[Nig] M. J. Nigrini and S. J. Miller, Data diagnostics using second order tests of Benford’s Law, John Wiley&Sons,

Inc., Hoboken, New Jersey, 2012
[NiMi] M. J. Nigrini, Benford’s Law: Applications for Forensic Accounting, Auditing, and Fraud Detection, Auditing:

A Journal of Practice and Theory 28 (2009), no. 2, 305–324.
[RSZ] Z. Rudnick, P. Sarnak, and A. Zaharescu, The Distribution of Spacings Between the Fractional Parts of n2α,

Invent. Math. 145 (2001), no. 1, 37–57.
[Rai] R. A. Raimi, The First Digit Problem, The American Mathematical Monthly, 83:7 (1976), no. 7, 521-538.
[Sta] E. W. Stacy, A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics 33 (1962), no.

3, 1187-1192.

http://www.benfordonline.net
https://librarysearch.williams.edu/permalink/01WIL_INST/1faevhg/alma991013795585602786
https://librarysearch.williams.edu/permalink/01WIL_INST/1faevhg/alma991013795585602786
https://doi.org/10.1515/9781400885381
https://doi.org/10.1515/9781400885381


BENFORDNESS OF MEASUREMENTS RESULTING FROM BOX FRAGMENTATION 13

Email address: lbetti@u.rochester.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627

Email address: idurmic@student.jyu.fi

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLÄ, JYVÄSKYLÄ, FI, 40740

Email address: zmcd@bu.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, BOSTON, MA, 02215

Email address: jack.miller.jbm82@yale.edu

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CT, 06511

Email address: Steven.J.Miller@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267


	1. Introduction
	1.1. Historical Background
	1.2. Previous Work on Fragmentation
	1.3. Results

	2. Reduction to the Maximum-Volume Face
	3. A Family of Distributions whose Maximum Side-Lengths are Benford
	4. Future Work
	4.1. Restating the Mellin Condition in Terms of Characteristic Functions

	References

