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Abstract. Recent work of Altuğ completes the preliminary analysis of Lang-
lands’ Beyond Endoscopy proposal for GL(2) and the standard representation.
We show that Altuğ’s method of smoothing the real elliptic orbital integrals
using an approximate functional equation extends to GL(n). We also discuss
the case of an arbitrary reductive group, and obstructions for generalizing the
analysis of the p-adic orbital integrals.
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1. Introduction

1.1. Overview of Beyond Endoscopy. One of the key conjectures of the Lang-
lands Program is the Functoriality Conjecture: given two reductive groups G′ and
G, and an L-homomorphism of the associated L-group LG′ to LG, one expects a
transfer of automorphic forms on G′ to automorphic forms on G. Most cases of
functoriality known today fall under the banner of endoscopy, that is, where G′ is
an endoscopic group of G. The problem of endoscopy is addressed by the stable
trace formula, recently made unconditional by Ngô’s solution of the Fundamental
Lemma [Ngô]. Anticipating this, Langlands proposed a new strategy to attack the
general case, referred to as Beyond Endoscopy [Lan1].

If an automorphic form π on G is a functorial transfer from a smaller G′, then
one expects the L-function L(s, π, r) to have a pole at s = 1 for some representation
r of LG. In particular, the order of L(s, π, r) at s = 1, which we denote by mr(π),
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should be nonzero if and only if π is a transfer. Langlands’ idea then is to weight
the spectral terms in the stable trace formula by mr(π), resulting in a trace formula
whose spectral side detects only π for which the mr(π) is nonzero.

Since in general L(s, π, r) is not a priori defined at s = 1, we account for
the weight factor by taking the residue at s = 1 of the logarithmic derivative
of L(s, π, r).1 This should lead to an r-trace formula,

Sr
cusp(f) = lim

N→∞

1

|VN |
∑

v∈VN

log(qv)S
1
cusp(f

r
v ), (1.1)

where S1
cusp represents the usual stable trace formula, VN is a finite set of valuations

of the global field F , and qv the order of the residue field of Fv is less than N (see
[Art, §2] for details).

Following Arthur [Art], the stable distribution should have a decomposition

Sr
cusp(f) =

∑

G′

ι(r,G′)P̂ G̃′

cusp(f
′), (1.2)

where P̂ G̃′

cusp(f
′) are called primitive stable distributions on elliptic ‘beyond endo-

scopic’ groups G′, and by primitive one means the spectral contribution to the
stable trace formula of tempered, cuspidal automorphic representations that are
not functorial images from some smaller group. These primitive distributions, giv-
ing a new primitive trace formula, are to be defined inductively, and one hopes to
establish these from the r-trace formula.

As is usual with trace formulae, one would like both the r-trace formula and the
primitive trace formula to be an identity of spectral and geometric sides. But since
one only wants tempered automorphic representations to contribute to (1.1), one
has to first remove the contribution of the nontempered representations. Inspired
by work of Ngô, a suggestion was put forth in [FLN] to apply Poisson summation
to the elliptic contribution, over a linear space called the Steinberg-Hitchin base.
There it was shown that the dominant term of the Poisson summation canceled with
the contribution of the trivial representation, the most nontempered term. One of
the key issues that arise is the singularities of orbital integrals, which prevent the
use of the Poisson formula, and is discussed in [Lan2] for the group SL(2).

In related work, the recent thesis of Altuğ completes the preliminary analysis
carried out in [Lan1, Part II], for GL(2) and the standard representation ([Alt1],
see also [Alt2]). Working over Q, and restricting ramification to the infinite prime,
Altuğ smooths the singularities of the archimedean orbital integral by expressing
the volume factors as values of Hecke L-functions and a strategic application of
the approximate functional equation. By a detailed analysis, Altuğ shows that not
only does the trivial representation contribute to the dominant term of the Pois-
son summation, but also the continuous spectral term associated to the nontrivial
Weyl element of GL(2). Based on this analysis, Arthur outlines in [Art] a list of
problems to be addressed in order to establish the primitive trace formula. Finally,
we mention recent work of Mok [Mok] that establishes a weak form of the r-trace
formula for odd orthogonal groups with r being the standard or second fundamental
representation, using the endoscopic classification of orthogonal groups and known
properties of the relevant L-functions.

1Another possibility is to take the residue of L(s, π, r) itself at s = 1, in which case mr(π) is
more complicated.
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1.2. Main result. In this paper, we study to what extent Altuğ’s method general-
izes to a more general reductive group, focusing on Problem III in [Art]. Relying on
Shelstad’s characterization of real orbital integrals [Sh], we show that Altuğ’s use
of the approximate functional equation to smooth the singularities of real orbital
integrals can be generalized to GL(n).

In particular, we apply Altuğ’s method [Alt1] to study the elliptic part of the
trace formula of G = GL(n),

∑

γ ell

meas(γ)

∫

Gγ(A)\G(A)

f(g−1γg)dg, (1.3)

the sum is taken over elliptic conjugacy classes of G(Q). Choosing test functions
as in §2.1, we rewrite it in (2.20) as

∑

±pk

∑

tr(γ),...,tr(γn−1)

1

|sγ |
L(1, σE)θ

±
∞(γ)

∏

q

Orb(fq; γ), (1.4)

where E is the extension of Q defined by the elliptic element γ, σE the Galois rep-
resentation appearing in the factorization ζE(s) = ζQ(s)L(s, σE), and the product
is taken over all primes q of Q. (See Section 2 for precise definitions.) Here the
L-value represents the global volume term meas(γ) before.

We show that the approximate functional equation can be used again to smooth
the archimedean orbital integral. By using Shelstad’s characterization of real orbital
integral ([Sh]), we have:

Theorem 1.1. Let θ±∞(γ) be defined as in (2.19), φ any Schwartz function on R,
and α > 0. Then the function defined by

f(x1, . . . , xn−1) = θ±∞(x1, . . . , xn−1)φ(|D(x1, . . . , xn−1)|−α) (1.5)

is smooth.

In particular, we take φ to be the cutoff functions Vs and V1−s in the approximate
functional equation (cf. Theorem 3.1), we obtain the main result:

Corollary 1.2. Assume Artin’s conjecture for n > 3.

L(1, σE)θ
±
∞(γ) (1.6)

is smooth. This result is unconditional for n = 2, 3.

This result represents a first step in towards establishing (1.1) for general groups.
In particular, in order to apply Poisson summation over the Steinberg-Hitchin base
one must address the singularities of the orbital integrals. As a side note, in es-
tablishing the invariant trace formula Arthur circumvents this by applying Fourier
transform to the spectral terms instead.

We should point out that our application of the approximate functional equation
is not completely similar to Altuǧ’s for reasons related to the p-adic orbital integrals.
The obstruction to directly applying Altuğ’s analysis is the following: in [Lan1,
Lemma1], the p-adic orbital integrals are expressed in terms of the quadratic residue
symbol (D· ), so that in [Alt1] they are combined with the volume terms L(1, (D· ))
into an auxiliary Dirichlet series. The approximate functional equation is then
applied to this Dirichlet series. In the general case, it is not clear that the p-
adic orbital integrals can be related to the Artin representation obtained. More
importantly, for general groups one does not have a closed formula for evaluating
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orbital integrals, with certain exceptions likeGL(3) due to [Kot1] (see the discussion
in Appendix A). For this reason, we expect that new methods will be required to
address the general case.

1.3. Outline. This paper is organized as follows: In Section 2, we introduce the
necessary definitions and notation, and using the class number formula arrive at
(1.4). In Section 3, we introduce the approximate functional equation for Artin L-
functions. In Section 4, we describe the characterization of orbital integrals on real
reductive groups, and prove Theorem 1.1. Finally, in Section 5 we give indications
on how our analysis can be generalized to general reductive groups, using work of
Ono and Shyr on Tamagawa numbers of algebraic tori. In Appendix A, we state
the p-adic orbital integrals for GL(3), and briefly discuss the problems in higher
rank.

2. Preliminaries

2.1. Notation. We follow closely the setting of [Lan1] and [Alt1]. Let G = GL(n)
and A = AQ be the ring of adeles of Q. Denote by v any valuation of Q, q any
finite prime, and p a fixed prime.

An element γ ∈ G(Q) is said to be elliptic if its characteristic polynomial is
irreducible over Q. Let Z+ be the set of all matrices in the center of G(R) with
positive entries, and Gγ be the centralizer of γ in G. The discriminant of γ is given
by

Dγ =
∏

i<j

(γi − γj)
2, (2.1)

where the γi’s are the distinct eigenvalues of γ. An elliptic element γ defines, by
its characteristic polynomial, a degree n extension E of Q, such that

Dγ = s2γDE. (2.2)

for some integer sγ , and DE is the discriminant of E.
Now let f =

∏

v fv be a function in C∞
c (G(A)). Define the global volume term

meas(γ) = meas(Z+Gγ(Q)\Gγ(A)) (2.3)

and the orbital integral

Orb(fv; γ) =

∫

Gγ(Qv)\G(Qv)

fv(g
−1γg)dgv. (2.4)

The elliptic part of the Arthur-Selberg trace formula refers to

∑

γ ell

meas(γ)

∫

Gγ(A)\G(A)

f(g−1γg)dg =
∑

γ ell

meas(γ)
∏

v

Orb(fv; γ), (2.5)

where the sum is understood to be over representatives γ of elliptic conjugacy
classes in G(Q). Note that since G = GL(n), these orbital integrals are in fact
stable distributions.

The measures and test functions in (2.3) and (2.4) are to be chosen analogously
as in [Alt1]. We mention the choices once again here. We first describe the choice
of measure on G. At any finite prime q, we choose any Haar measure on G(Qq)
giving measure 1 on G(Zq), and the same with Gγ(Qq); at infinity, we choose any
Haar measure on G(R). In keeping with [Alt1, p.1797], we note that there are more
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natural ways to normalize measures, but we make this choice so as to remain in
consistent with the hypotheses of [Lan1, Alt1].

For a finite prime q and a nonnegative integer k let us first define f
(r)
q ∈ Cc(Qq)

to be the characteristic function of the set

{X ∈ Matn(Zq) : | det(X)|q = q−r}, (2.6)

where Matn(Zq) denotes the set of n by n matrices with entries in Zq, and | · |q the
q-adic absolute value on Q.

The local functions fv ∈ C∞
c (Qv) are defined as follows.

• At q 6= p, choose f
(0)
q .

• At p, choose fp,k
p := p−k/2f

(k)
p for a fixed k > 0.

• At ∞, choose f∞ ∈ C∞
c (Z+\G(R)) such that its orbital integrals are com-

pactly supported.

Note that the choice of fp relates to L(s, π, Symk), and the rest meaning we only
allow ramification at infinity. For further discussion of these choices, see [Lan1, §2].

Finally, define fp,k by

fp,k := f∞ · fp,k
p ·

∏

q 6=p

fp,k
q . (2.7)

This is the test function we shall use throughout.

2.2. Class number formula and measures. Denote by AE the adele ring of E,
and IE = A×

E the ideles of E. Let | · |v be the normalized absolute value on the
completion Ev and | · |AE

: IE → R× be the absolute value defined by

|x|AE
=
∏

v

|xv|v, (2.8)

where x = (xv). Here | . |AE
is a group homomorphism and we define the norm-one

idele group to be its kernel, denoted I1E , and E×\I1E the norm-one idele class group.
Let γ be an elliptic element in G(Q). Recall that it defines a degree n extension

E of Q. It was observed by Langlands (c.f. Equation (19) in [Lan1]) that

Z+Gγ(Q)\Gγ(A) = Z+E
×\IE = E×\I1E . (2.9)

Having chosen the measures on Z+Gγ(Q)\Gγ(A) as above, we then require the
measure on E×\I1E to be such that

meas(Z+Gγ(Q)\Gγ(A)) = meas(E×\I1E). (2.10)

With this choice of measure on E×\I1E , by Tate’s thesis [T, Theorem 4.3.2], we
have

meas(E×\I1E) =
2r1(2π)r2hERE

wE
, (2.11)

where hE is the class number of E, RE is the regulator of E, r1 is the number of
real embeddings of E and r2 is the number of pairs of complex embeddings of E,
and wE is the number of roots of unity in E.

Definition 2.1. Let E be a number field. The Dedekind zeta function of E is
defined by

ζE(s) =
∑

a

1

NE/Q(a)s
=
∏

p

1

1−NE/Q(p)s
(2.12)
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for ℜs > 1, where the sum is over all non-zero integral ideals of E and the product
is over all prime ideals of E.

Hecke showed that Dedekind zeta function ζE(s) can be analytically continued to
the whole complex plane except having a simple pole at s = 1. Recall the classical
Dirichlet class number formula

Ress=1ζE(s) =
2r1(2π)r2hERE

wE

√

|DE |
, (2.13)

which will be related to the idele class group via (2.11).

Definition 2.2. Let E be a number field. Let ρ : Gal(E/Q) → GL(d,C) be a finite
dimensional Galois representation. The Artin L-function associated to ρ is given
in terms of the Euler product:

L(s, ρ) =
∏

p

det(I − ρ(Frp)p
−s)−1, (2.14)

where Frp is the Frobenius element in Gal(E/Q).

Denote by σE the Artin representation obtained from the factorization ζE(s) =
ζQ(s)L(s, σE), where ζQ is the Riemann zeta function. Note that σE may be re-
ducible.

By equations (2.11) and (2.13), we have

meas(E×\I1E) =
√

|DE | L(1, σE), (2.15)

hence we have

meas(Z+Gγ(Q)\Gγ(A)) =
√

|DE | L(1, σE). (2.16)

2.3. Rewriting the elliptic term. By the choice of test function fp,k in (2.7),
the right hand side of (2.5) is non-vanishing if and only if | det(γ)|q = 1 for any
finite prime q 6= p and | det(γ)|p = p−k. Therefore det(γ) ∈ Zq for any finite prime
q and det(γ) ∈ Z. Moreover, | det(γ)| = pk.

Also γ is elliptic if and only if Dγ is not a perfect square. We parametrize
γ ∈ G(Q) by the coefficients of its characteristic polynomial,

Xn − a1X
n−1 + · · ·+ (−1)nan (2.17)

where

(a1, . . . , an) = (tr(γ), . . . , tr(γn−1), det(γ)). (2.18)

By (2.18) and det(γ) = ±pk, we write

θ±∞(γ) = θ±∞(tr(γ), . . . , tr(γn−1),±pk), (2.19)

where θ±∞(γ) = |Dγ |1/2 Orb(f∞; γ), since θ∞ is invariant under conjugation, there-
fore we can consider θ±∞(γ) as a function on Rn−1.

The right hand side of (2.5) then becomes

∑

±pk

∑′ 1

|sγ |
L(1, σE)θ

±
∞(γ)

∏

q

Orb(fp,k
q ; γ), (2.20)

where the inner sum is taken over n-tuples (tr(γ), . . . , tr(γn−1)) in Zn−1, with Dγ

non-square.
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Remark 2.3. The discriminant that appears in the class number formula is that of
the number field, whereas the discriminant that appears in the orbital integral is
that of the characteristic polynomial. Since sγ 6= 0, the factor 1/|sγ | does not affect
our proof of smoothness.

In order to establish the r-trace formula, one would like to be able to apply
the Poisson summation formula to (2.20), so as to remove the contribution of the
nontempered spectrum. However as noted in [Alt1, p.1799], one of the issues is
the smoothness of θ±∞(γ), which may have singularities on the variety Dγ = 0,
described in Section 4. We shall use the approximate functional equation of Artin
L-function to smooth out the singularities of θ±∞(γ) in the next two sections.

3. Approximate Functional Equation

In this section, we follow the exposition of [IK, pp. 94–95, 98, 125–126, 141–143]
and show that the cutoff functions Vs and V1−s in Theorem 3.1 are Schwartz. This
will be used in the next section to show L(1, σE)θ

±
∞(γ) is smooth.

First, we recall the approximate functional equation for Artin L-functions.

Theorem 3.1. Let L(s, ρ) be the Artin L-function associated to a Galois repre-
sentation ρ, and assume the Artin Conjecture. Let G(u) be any function which
is holomorphic and bounded in the strip −4 < ℜu < 4, even, and normalized by
G(0) = 1. Let X > 0. Then for s in the strip 0 ≤ ℜs ≤ 1, we have

L(s, ρ) =
∑

n

λρ(n)

ns
Vs

(

n

X
√
q

)

+ ǫ(s, ρ)
∑

n

λ̄ρ(n)

n1−s
V1−s

(

nX√
q

)

, (3.1)

where

L(s, ρ) =
∞
∑

n=1

λρ(n)

ns

Vs(y) =
1

2πi

∫

(3)

y−uG(u)
γ(s+ u, ρ)

γ(s, ρ)

du

u

ǫ(s, ρ) = ǫ(ρ)q
1
2
−s γ(1− s, ρ)

γ(s, ρ)
; (3.2)

ǫ(ρ) is the root number of L(s, ρ) and is a complex number with modulus 1.

Proof. See Theorem 5.4 of [IK]. �

Note that the formula is valid even without assuming the Artin conjecture, in
which case there would be additional terms accounting for possible contributions
of poles of L(s, ρ) along the lines ℜs = 0, 1.

3.1. Gamma factors of Artin L-functions. The gamma factor of the Artin L-
function is a product of local gamma factors γv(s, ρ) over infinite places v of E. Let
r1 and r2 be as before, so that r1 + 2r2 = n, where n is the degree of the number
field E. Let σv be the Frobenius conjugacy class associated to the completion Ev.
Then σv is of order 2 if v is a real place that extends to two complex places of L,
and equals 1 otherwise. Hence, we have

γv(s, ρ) =







π−ds/2 Γ
(

s
2

)d
Γ
(

s+1
2

)d
if v is a complex place

π−ds/2 Γ
(

s
2

)d+
v Γ
(

s+1
2

)d−

v if v is a real place,
(3.3)
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where d = deg(ρ) is the dimension of ρ and d+v , d
−
v are the multiplicities, respec-

tively, of the eigenvalue +1, −1 for ρ(σv)
If E is a degree n number field, then the degree of the representation ρ is n− 1.

If ρ is a reducible representation, then L(ρ, s) further factorizes into a product of
L-functions of non-trivial irreducible representations of Gal(E/Q).

Example 3.2. Suppose E is a cubic field. We have the factorization ζE(s) =
ζQ(s)L(s, σE), and the degree of the Galois representation σE is 2. Either (r1, r2) =
(1, 1) or (r1, r2) = (3, 0). We consider both cases.

(1) Case (1): (r1, r2) = (1, 1). The cubic extension E/Q is not Galois, and σE

is an irreducible representation.
(2) Case (2): (r1, r2) = (3, 0). The cubic extension is Galois, and σE is a

reducible representation, decomposing as χ and χ−1, where χ is the cubic
character. The conjugacy class is order two and our character is order
three, so we only get d+ = 2 and d− = 0. Hence, we have the following
factorization:

ζE(s) = ζQ(s)L(s, χ)L(s, χ
−1),

where L(s, χ) is the Hecke L-function associated to the cubic character χ
defined by E.

One knows that the irreducible two-dimensional representation of Gal(E/Q) = S3

corresponds to a modular form, hence L(s, σE) is entire in Case (1). Case (2) is
simpler, and is known by class field theory.

Remark 3.3. The case of n = 2 has been completed in [Alt1]. For n > 3, there could
be Artin L-functions associated to irreducible representations of degree greater
than 2. It was conjectured by Artin that such Artin L functions are indeed entire.
However, this conjecture remains wide open. Hence for n > 3, we assume Artin’s
conjecture.

3.2. The cutoff functions. We now examine the cutoff functions in the approx-
imate functional equation of Artin L functions for general Galois representation ρ
with degree d.

Theorem 3.4. The functions Vs and V1−s are Schwartz, where s is any complex
number such that 0 ≤ ℜs ≤ 1.

Proof. Let u = σ + it. Fix any s ∈ C such that 0 ≤ ℜs ≤ 1. We use the following
form of Stirling’s approximation:

|Γ(u)| = (2π)1/2|t|σ−1/2e−π|t|/2(1 +O(|t|−1)). (3.4)
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Through shifting contours we show that Vs(y) is bounded by y−m for any m; below
d+, d− denote the sum over complex v of d+v and d−v , respectively:

γ(s+ u, ρ) =
∏

v|∞

γv(s+ u, ρ)

=
∏

v real

(

π−d(s+u)/2 Γ

(

s+ u

2

)d+
v

Γ

(

s+ u+ 1

2

)d−

v

)

×
∏

v complex

(

π−d(s+u)/2 Γ

(

s+ u

2

)d

Γ

(

s+ u+ 1

2

)d
)

= π−d(s+u)r1/2 Γ

(

s+ u

2

)d+

Γ

(

s+ u+ 1

2

)d−

× π−d(s+u)r2 Γ

(

s+ u

2

)2dr2

Γ

(

s+ u+ 1

2

)2dr2

= π−d(s+u)n/2Γ

(

s+ u

2

)d++2dr2

Γ

(

s+ u+ 1

2

)d−+2dr2

. (3.5)

Recall that

Vs(y) =
1

2πi

∫

(3)

y−uG(u)
γ(s+ u, ρ)

γ(s, ρ)

du

u
. (3.6)

Since G(u) is bounded in this region, we may without loss of generality assume
that G(u) is identical to 1. Then

Vs(y) =
1

2πi γ(s, ρ)

∫

(3)

y−uΓ
(

s+u
2

)a
Γ
(

s+u+1
2

)b

uπd(s+u)n/2
du, (3.7)

where a := d+ + 2dr2 and b := d− + 2dr2.

We now shift contours to (m). We note that the integrand defining Vs has no
poles in the region ℜs > 3, so it suffices to show that for the rectangle of height 2T
that is symmetric about the x-axis with vertical sides at (3) and (m),2 the contour
integrals along the upper and lower edges go to 0 as T → ∞. In what follows we
absorb all constant factors as C = Cs. First we treat the integral along the top

2Unless m = 3, in which case no shift is necessary.
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contour. Let a′ := dn/2.

C

∫ m

3

y−(σ+iT ) Γ

(

s+ σ + iT

2

)a

Γ

(

s+ σ + iT + 1

2

)b

π−a′(σ+iT ) dσ

σ + iT

≪
∫ m

3

y−σ Γ

(

s+ σ

2
+ i

T

2

)a

Γ

(

s+ σ + 1

2
+ i

T

2

)b

π−a′σ dσ√
σ2 + T 2

≪
∫ m

3

y−σ

(

√
2π

(

T

2

)(σ−1)/2

e−πT/4

)a

(1 +O(T−a))

×
(

√
2π

(

T

2

)(σ−1)/2

e−πT/4

)b

(1 +O(T−b)) π−a′σ dσ√
σ2 + T 2

, (3.8)

where the last estimate follows from (3.4). We see that this is majorized by

e−aπT/4e−bπT/4

T

∫ m

3

(

T
2

)(a+b)σ/2

(πa′y)σ
dσ

≪ e−(a+b)πT/4

T

∫ m

3

T (a+b)σ/2

(2(a+b)/2πa′y)σ
dσ

≪ e−(a+b)πT/4

T

∫ m

3

(

T (a+b)/2

2(a+b)/2πa′y

)m

dσ

≪m e−(a+b)πT/4 T (a+b)m/2−1, (3.9)

which tends to 0 as T → ∞.

The calculation for the bottom contour follows similarly. Therefore we may shift
contours to obtain

∫

(3)

y−uΓ
(

s+u
2

)a
Γ
(

s+1+u
2

)b

uπa′(s+u)
du =

∫

(m)

y−uΓ
(

s+u
2

)a
Γ
(

s+u+1
2

)b

uπa′(s+u)
du

=

∫ ∞

−∞

y−(m+it)
Γ
(

s+(m+iT )
2

)a

Γ
(

s+1+(m+iT )
2

)b

πa′(s+(m+iT ))

idt

m+ it

=
C

ym

∫ ∞

−∞

y−itΓ

(

s+ (m+ iT )

2

)a

Γ

(

s+ 1 + (m+ iT )

2

)b

π−a′iT dt

m+ it
.

(3.10)

The integral converges, therefore

Vs(y) ≪m y−m (3.11)

for any n. Hence Vs(y) is Schwartz. Since s was chosen arbitrarily in the strip
0 < ℜs < 1, V1−s(y) is also Schwartz. �

4. Smoothing of the real orbital integral

We now prove our main theorem. Consider the real orbital integral Orb(f∞; γ).
Let γ be a regular element in G, which is an n by n matrix with distinct eigenvalues,
and Treg be the set of all regular elements in T = Gγ . Also let f∞ ∈ C∞

c (Z+\G(R)).
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We have the following characterization which can be deduced from Shelstad [Sh],
describing the smoothness of the real orbital integral.

Consider a real reductive group G(R), for example, GL(n,R), and f a rapidly de-
creasing (Schwartz) function on this group, in the sense of Harish-Chandra. Define
the orbital integral

ΦT
f (γ) =

∫

G/T

f(gγg−1)
dg

dt

where T is a Cartan subgroup of G, the measures dg, dt are defined by fixing an
invariant form ωG on G(R), and γ is a regular element in T , which to us will be a
n by n matrix with distinct eigenvalues.

Theorem 4.1 (Shelstad [Sh]). The orbital integral ΦT
f is a well-defined, smooth

function on Treg, invariant under the Weyl group and such that |Dγ |
1
2ΦT

f is rapidly
decreasing in Treg.

Moreover let Z = T −Treg. Then behavior of ΦT
f near z ∈ Z is as follows: There

exist a neighborhood Nz of z in T and smooth functions g1 and g2 on Nz such that
for γ ∈ Nz ∩ Treg,

ΦT
f (γ) = g1(γ) + |Dγ |−1/2g2(γ)

where Dγ is the discriminant function of γ. It satisfies the following properties:

(1) g1(γ) ≡ 0 when T is split (for us, it means the eigenvalues of γ are in Q),
and

(2) for each X in the center of the universal enveloping algebra of g(C) the
restriction of XT g2 to Z ∩ Nz is independent of T (this is a condition on
the derivatives of all orders).

Proof. The proof of this statement as given in [Sh] follows from Theorem 17.1 in
[HC1, p.145], and in particular Lemma 17.4 of [HC1, p.147] and Lemma 40 of [HC2,
p.491]. �

We apply this result easily to our setting.

Corollary 4.2. The orbital integral Orb(f∞; γ) is a smooth function on Treg and

θ±∞(γ) := |Dγ |1/2 Orb(f∞; γ) is Schwartz on Treg. Moreover for z 6∈ Treg, there
exists a Weyl group invariant neighborhood Nz of z and smooth functions g1, g2 on
Nz such that for any γ ∈ Nz ∩ Treg,

Orb(f∞; γ) = g1(γ) + |Dγ |−1/2g2(γ), (4.1)

satisfying the properties in Theorem 4.1.

We remark that z ∈ Treg if and only if Dγ is nonzero. In other words, Orb(f∞; γ)
may have singularities on T \ Treg. Note also that for p-adic orbital integrals, a
similar behavior may also occur, but we do not consider this here.

Theorem 4.3. Let φ be any Schwartz function on R and α > 0. Then the function
defined by

f(x1, . . . , xn−1) = θ±∞(x1, . . . , xn−1)φ(|D(x1, . . . , xn−1)|−α) (4.2)

is smooth.



12 O.E. GONZÁLEZ, C.H. KWAN, S.J. MILLER, R. VAN PESKI, AND T.A. WONG

Proof. By Theorem 4.2, f is smooth on Treg. Now consider (a1, . . . , an−1) 6∈ Treg,
i.e., D(a1, . . . , an−1) = 0.

Since gi is smooth on a neighborhood of (a1, . . . , an−1) and φ is Schwartz, we
have

lim
(x1,...,xn−1)→(a1,...,an−1)

f(x1, . . . , xn−1) = 0. (4.3)

So, we can redefine f(a1, . . . , an−1) = 0. Choose M > 0 such that Mα > 1. Since
φ is Schwartz,

φ(x) ≪M |x|−M (4.4)

for x 6= 0.
Let h 6= 0. By the differentiability of D(x, y),

lim
h→0

D(a1 + h, . . . , an−1)

h
=

∂D

∂x1
(a1, . . . , an−1) (4.5)

1

h
φ(|D(a1+h, . . . , an−1)|−α) ≪M

∣

∣

∣

∣

D(a1 + h, . . . , an−1)

h

∣

∣

∣

∣

|D(a1+h, . . . , an−1)|Mα−1,

(4.6)
which tends to 0 as h tends to 0.

We have θ±∞(x, y) is Schwartz on Treg = {(x1, . . . , xn−1) : D(x1, . . . , xn−1) 6= 0}.
In particular it is bounded on Treg. We have

∂f

∂x1
(a1, . . . , an−1) = lim

h→0

f(a1 + h, . . . , an−1)− f(a1, . . . , an−1)

h

= lim
h→0

1

h
θ±∞(a1 + h, . . . , an−1)φ(|D(a1 + h, . . . , an−1)|−α) = 0. (4.7)

Similarly, ∂f
∂xi

(a1, . . . , an−1) = 0 for 1 ≤ i ≤ n−1. Inductively and noting that (4.4)

indeed holds for all M > 0, we have all of the partial derivatives at (a1, . . . , an−1)
exists. Thus f is a smooth function on Rn−1 and this completes the proof. �

5. Further directions

Now let G be a reductive group over Q. In this section we indicate how the
preceding analysis can be extended to general G, though for general G we only
consider unstable elliptic orbital integrals. As before, γ will be an elliptic element
of G(Q), so that Gγ(Q) is a torus. Based on work of Ono [Ono], Shyr deduced a
class number relation for tori. We briefly describe this, and refer to [Shy, §3] for
details.

Consider T = Gγ as an algebraic torus over Q, and let T̂ = Hom(T,Gm) be the
Z-module of rational characters of T . The torus T splits over a finite separable
extension K of Q, and Γ = Gal(K/Q) acts on T̂ . Then T̂ becomes a free Γ-module
with rank r = dim(T ), and denote by χT the character of the Γ-module. The
character decomposes into

χT =

h
∑

i=0

miχi (5.1)

for some integer h. Here χi are irreducible characters of G with χ0 the principal
character, and mi the multiplicity, whereby m0 = r. It follows then that the Artin
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L-function factorizes as

L(s, χT ) = ζ(s)r
h
∏

i=1

L(s, χi)
mi . (5.2)

Moreover, for i ≥ 2, L(1, χi) is nonzero, so that the value

ρT := lim
s→1

(s− 1)rL(s, χT ) =

h
∏

i=1

L(1, χi) (5.3)

is finite and nonzero, and is called the quasi-residue of T over Q. By [Ono], it is
independent of choice of splitting field.

Now, choosing canonical Haar measures related to the Tamagawa numbers, Shyr
obtains the relation

ρT =
hTRT

τTwTD
1/2
T

(5.4)

where τT is the Tamagawa number of T , and the other hT , RT , wT , and DT are
arithmetic invariants of T defined analogous to those appearing in Dirichlet’s class
number formula (2.13).

Then one may proceed as in Section 2, and in particular, using (2.16) to write the
volume term as the value at 1 of an Artin L-function, and apply the approximate
functional equation. Then by similar estimates in Section 4 the real orbital integral
may be smoothed.

Remark 5.1. In the case of G = GL(n) the element γ defines a degree n extension
E over Q, and the torus is simply the Weil restriction ResE/Q(Gm), split by K. By
the remark following [Shy, Theorem 1], one indeed recovers

ρT = Ress=1ζE(s), (5.5)

recovering the original case, and in particular the analytic class number formula.

Appendix A. The p-adic orbital integrals

In this appendix we discuss the obstructions to carrying out the analysis for
p-adic orbital integrals. By Equation (59) in [Lan1, §2.5], the product of the p-adic
orbital integrals for GL(2) can be expressed using the Kronecker symbol,

∏

q

∫

Gγ(Qq)\G(Qq)

fq(g
−1γg)dḡq =

∑

f |s

f
∏

q|f

(

1−
(

D

q

)

1

q

)

. (A.1)

Then by [Alt1, §2.2.2], this can be combined with global volume factor by a change
of variables to give

√

|D|L
(

1,

(

D

·

))

∑

f |s

f
∏

q|f

(

1−
(

D

q

)

1

q

)

=
∑

f |s

1

f
L

(

1,

(

(m2 −N)/f2

·

))

,

(A.2)

where s2D = m2 − N and D a fundamental discriminant of a quadratic number
field.

In order to generalize this to other groups, one would need an expression for
the p-adic orbital integrals related to the Artin representation χT as in Section 5.
Unfortunately, for general groups we do not know of a closed formula for these
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integrals. Though it is interesting to note that by [Ngô], and not to mention
[Hal], one knows that evaluating such p-adic orbital integrals are closely related to
counting points on varieties over finite fields.

Finally, for the readers’ interest we point out that in the case of GL(3) the p-
adic orbital integrals for the unit element of the Hecke algebra have in fact been
computed explicitly by Kottwitz [Kot1, p.661]. If the elliptic element γ = α+ πnβ
generates an unramified cubic extension, one has

p3n+1(p+ 1)(p2 + p+ 1)− 3p2n(p2 + p+ 1) + 3

(p− 1)2(p+ 1)
, (A.3)

while for a ramified cubic extension one has

p3n+1(p+ 1)p1+val(β) − p2n(p2 + (p+ 1)p2val(β)) + 1

(p− 1)2(p+ 1)
, (A.4)

where val(β) = 1 or 2, but it does not seem clear what the analogous identity for
(A.1) might be.
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