LOWER-ORDER BIASES IN ELLIPTIC CURVE FOURIER COEFFICIENTS IN
FAMILIES

BLAKE MACKALL, STEVEN J. MILLER, CHRISTINA RAPTI, AND KARL WINSOR

ABSTRACT. Let€ : y? = 23+A(T)z+B(T) be a nontrivial one-parameter family of elliptic curves
overQ(T), with A(T), B(T) € Z(T'), and consider the" momentsd ¢ (p) ==Y, modp OE: (p)*

of the Fourier coefficientse, (p) := p + 1 — |&; (F,)|. Rosen and Silverman proved a conjecture
of Nagao relating the first moment; ¢(p) to the rank of the family ove®(7"), and Michel proved
that the second moment is equalde ¢ (p) = p* + O (p3/2). Cohomological arguments show that
the lower order terms are of sizp$/2, p, p'/2, and1. In every case we are able to analyze, the
largest lower order term in the second moment expansioritiest not average to zero is on average
negative. We prove this “bias conjecture” for several lactpesses of families, including families
with rank, complex multiplication, and unusual distrilmuts of functional equation signs. We also
identify all lower order terms in large classes of familiseedding light on the arithmetic objects
controlling these terms. The negative bias in these lowgemterms has implications toward the
excess rank conjecture and the behavior of zeros near thr@lgeoint of elliptic curveL-functions.
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1. INTRODUCTION

We report on some recent theoretical and experimentaltsesoihcerning lower order terms in
the second moments of Fourier coefficients in families aped curve L-functions, especially
one-parameter families ov&(7"). In every family studied we have found that the first lowereord
term which does not average to zero either has a provableivegaerage or behaves consistent
with such a conclusion; in many cases we are able to derivealici formula for these values.
We conjecture that this is a universal phenomenon, and elil fmilies exhibit such a bias.

We first quickly review some needed results on elliptic carard previous results in the field,
and then summarize our findings. We end with some avenuesmntiand future research. The
goal of this note is to clearly state our bias conjecturesaadide complete calculations in several
cases to support it; for additional results along theseslge® the sequel paper [MMRW14].

1.1. Preliminaries and Previous Work. We assume the reader is familiar with the basics of el-
liptic curves and_-functions; good references include [IK04, Knd2, Si86, 2T %iven an elliptic
curve E overQ, we may write it as

v = 23 +ax + b, (1.1)
with ¢ andb integers. We set
9 3 2 +ar+b
ap(p) = p—#{(v,y) € Z/pZXL/pL: y* = 2*+ar+bmod p} = — Y )
z mod p
(1.2)
with (%) the Legendre symbol (it is 1 if is a non-zero square moduto O if n is zero modulo

p, and—1 otherwise). By Hasse’s theorejmz(p)| < 2,/p, and is the difference between how
many solutions modulp we expect on average, and how many we actually have. We eak tie
Fourier coefficients of the elliptic curve, and they are usdtie series expansion for the associated
L-function.

A common theme in many problems in number theory is to condatuilies of objects (for
example, the proof of the infinitude of primes in arithmetiogression looks at a family of Dirich-
let L-functions), and thus we consider families of elliptic cesv Most of our examples will be
one-parameter families, where

E:y? = 2+ AT)x+ B(T), A(T),B(T) € Z[T). (1.3)
For all but finitely many specializations @f to an integert we obtain an elliptic curve?; with

coefficientag, (p) (though for brevity we often writeg, (p)).
A lot is known about the distribution of thez(p)’s and the moments of the;, (p)’s, where we

set
Are(p) == > ag(p); (1.4)
t mod p

note we are not normalizing this sum by dividingf{the number of elements in the family), and
thus we expect it to be on the ordersf>+.

First, if £ is a fixed elliptic curve without complex multiplication thehe normalized coef-
ficientsa(p)/2,/p converge to the Sato-Tate distributibsee [B-LGHT11[ CHT08, HS-BT10,
[TO8]. Second, at least conjecturally the first moméng(p) is related to the rank of the elliptic

Lf E has complex multiplication then writings 0k, = ap(p)/2./p one has the angles vanish for half the primes,
and are equidistributed for the remaining.
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surface€ /Q. Specifically, Rosen and Silverman [R$98] prove a conjeatdiNagao, which says
that if Tate’s conjecture holds then

lim —%Zw s rank £(Q(T)): (L5)

p<X p

Tate’s conjecture is known for rational elliptic surfac&beir result tells us that there is a negative
bias in the coefficientsg, (p), and the larger the rank of the family the greater the aveége

The purpose of this work is to explore the second moménigp). Our goal is to see if there
is a similar bias here and, if so, what are the consequences.irf@portant application is to the
behavior of the low-lying zeros (the zeros of the associdtddnctions near the central point).
The Katz-Sarnak Density Conjecturés [KS99a, KS$S99b] staethe behavior of these zeros, in
the scaling limit as the conductors tends to infinity, agréa the scaling limit of eigenvalues near
1 of a corresponding classical compact group; see [[LSOQ[AMX15] for a review of the theory
of low-lying zeros in general, and the 1-level density statiin particular. In previous work Miller
and his colleagues (see [Mi05, Mi09]) interpreted loweresrdorrections to moments of these
Fourier coefficients as controlling the rate of convergeofcthe low-lying zeros to the random
matrix theory predictions. For example, in [Mi09] the firstder order correction term is isolated
in the 1-level density of sever&élL, families of L-functions; it is always negative, and n [Mi05]
it is related to the observed excess rank in families of étlipurves with finite conductdis

1.2. The Bias Conjecture. An asymptotic result for the second moments of elliptic eudfourier
coefficients is given by Michel.

Theorem 1.1 (Michel [Mic95]). For a one-parameter familf : y* = 2° + A(T)x + B(T)
with non-constanj(7")-invariant j(7') = 1728%, the second moment of the Fourier
coefficients is given by

Asre(p) = P>+ 0(*?). (1.6)

The error term in Michel’s theorem cannot be improved, asetlage families where there is a
lower order term of size®/?; see [Mi02] Mi05]

We have observed an interesting phenomenon in the lower tedas of the second moments
of these Fourier coefficients. In every family we have stddike following conjecture holds.

Conjecture 1.2(Bias Conjecture)Let £ be a one-parameter family of elliptic curves o@(7").
The largest lower order term in the second moment expansdidn othat does not average to O is
on average negative.

The negative bias in the first moments of elliptic curve Fewdoefficients is related to their
rank (see equatiofi (1.5)). We will use this result to studpyifi@s of varying rank to see if the bias
we have observed in the second moments is also related tarthily fank.

Instead of investigating one-parameter families we coué@ne two-parameter families. The
larger cardinality of the family leads to significantly esrsaveraging, and the average second
moment for the family of all elliptic curves was computed hydB E

2Though the amount of excess rank it can explain is quite small
3There were some typos in the manuscript; 5ee [MIM11] for cbedbstatements.
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Theorem 1.3(Birch). For the familyF : 4> = 23 + ax + b (a,b € Z) of all elliptic curves, the
second moment of the Fourier coefficients is equal to

Aor = Y ag,p) = p* -1 (1.7)
a,b mod p

We may thus view our Bias Conjecture as a refinement of Birodssilt for one-parameter
families. Below we report on some theoretical and expertaleasults supporting our conjecture.
Unfortunately many of the families studied are speciaheitbecause we have carefully chosen
the defining polynomials to ensure certain properties haldheir degrees are small. However,
while it is possible that these are painting a false impaasesf the true behavior, it is encouraging
that to date all families studied support our conjecture.

2. TooLS FORCALCULATING BIASES

We quickly gather several useful lemmas for calculatingésdn elliptic curve families. Through-
out this paper(;) denotes a Legendre symbol, am(p) denotes a sum over all residue classes
modulop. Linear sums and quadratic sums of Legendre symbols candlilg egaluated (see for

example [BEW9B]).

Lemma 2.1. Leta, b, ¢ be positive integers, and assume- 0. For p 1 a,

Z(ax—i—b) _ 0 2.1)

o N

Z(ax2+bx+c> _ {—(%) if p1b%—4dac 2.2)

z(p) p (p— 1)(%) if p|b? — 4ac.

We often use an averaging result for Legendre symbols.

and

Lemma 2.2. Let7(X) be the number of primes< X, and fixx € Z. Then

lim 1 Z(£> )1 iferisanon-zerosquare 2.3)
X—o0 m(X) S\P 0 otherwise

Proof. The proof is immediate from Dirichlet’s theorem on primesanthmetic progressions, as
the number of residue classes modulthat are non-zero squares equals the number that are not
square. U

To compute the rank of the families we analyze, we use theatlg consequence of Rosen
and Silverman’s work. A key input is Tate’s conjecture, d#d to earlier.

Conjecture 2.3(Tate’s Conjecture for Elliptic Surfacéds [Ta65DetE /Q be an elliptic surface and
Ly (&, 5) be theL-series attached té/2(£/Q, Q;). ThenL,(&, s) has a meromorphic continuation
to C and satisfies-ord,_2Ls(€, s) = rank NS(E/Q), whereNS(E/Q) is theQ-rational part of
the Néron-Severi group &f. Further, L, (&, s) does not vanish on the lifge(s) = 2.

Tate’s conjecture is known & is a rational surface. An elliptic surfagé = x>+ A(T)x+ B(T)
is rational iff one of the following is true(1) 0 < max{3deg A,2deg B} < 12; (2) 3deg A =
2deg B = 12 andordr—T?A(T~!) = 0. See pages 46—-47 6f [RS98] for more details.
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Lemma 2.4. If £ is a one-parameter family witi, ¢(p) = —rp + O(1) and Tate’s conjecture
holds, thenank(E(Q(T))) = r.

Proof. This follows from the Prime Number Theorem appliedfal(1.5). O

Lemmal2Z.%4 was used by Miller [Mi02] and Arms, Lozano-Robleda Miller to
construct one-parameter families of elliptic curves witbhdarate, prescribed rank. Interestingly,
this method allows us to write down families of a given ramkhout computing the determinant
of the height matrix associated tgpoints conjectured to be independent, though frequentty on
can extract the requisite number of candidate points fohtight matrix from the calculations
performed to determing, ¢(p).

3. PROVEN SPECIAL CASES
3.1. Preliminaries. Most of our proven special cases are for families of the form
E:y* = (aT +b)2° + (cT +d)2® + (eT + f)x + (¢T + h), (3.1)

that is, families where th&-polynomials are all linear. The technical advantage odgng these
families is that the corresponding second moment expassioly involve quadratic polynomials
in T', for which we can obtain clean explicit sum formulas. We bdgy calculating the possible
ranks of these families.

Lemma 3.1. Consider a one-parameter family of elliptic curves of therfo
E:y? = (aT +b)x® + (T + d)2?® + (eT + f)a + (9T + h), (3.2)
wherea, . .., h € Z. The rank of this family is at most 3.

Proof. A simple change of variables convertidgto Weierstrass form shows that it is a rational
surface, and therefore we may use Lenima 2.4 to compute ks fear primesp > 3, the first
moment of the Fourier coefficients for this family is

Are(p) = ZZ( (at + b)a? + (ct + d)a? +(et+f):c+(gt+h))

t( p
p) =(p)
__ZZ< ax3+cx2+ex+g)+bx3+dx2+fx+h) (3.3)
z(p) t(p) b
By (2.1), the innet-sum is 0 unlesaz® + cx? + ex + g = 0. We then have
ba® +dx* + fx +h
Arelp) = —p > < p ) > —3p (3.4)

az3+cx?+ex+g=0(p)

sinceaz® + cx? + ex + g has at most 3 roots ifi,. By Lemmd2.% we can now conclude the rank
is at most 3. 0

By choosing our coefficients so théat® + dz? + fz + h is a non-zero square in the integers
when evaluated at the roots @f? + cx? + ex + g, we can construct families of this form of ranks
0,1,2,and 3.

Next, we prove a structural lemma for the second momentsesfetfiamilies. The families of
ranks 0, 1 and 2 studied by Fermigier [FE96] are all includethis analysis (as are half of his

families of rank 3 after a simple change of variables). As¢hiamilies provided strong evidence
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of excess rank, it is encouraging that these all satisfy aas Bonjecture (and might even suggest
a connection between our bias and excess rank).

Lemma 3.2. Consider a one-parameter family of elliptic curves of tharfo
E:y* = (aT +b)2* + (T +d)2* + (eT + flz + (¢ + h), (3.5)
wherea, ..., h € Z. Let
P(x) = ar’ +cx® +ex+g, Qx) := ba® +dax* + fx + h. (3.6)

Then the second moment can be expanded as

Aze(p) pLgo(Q;@)r_ Z(P@)TWA(ZO (FAP0) - )

oo N P )=
whereA(z,y) = (P()Q(y) — P(y)Q(x))?.

Proof. We can write the second moment as

UEDY {z (W)]

t(p) | =(p)
_ ;;; (Q(x)Q(y)+t(P(w)Q(y);P(y)Q(x))HQP(SC)P(y)). (3.8)

WhenP(z), P(y) # 0 we use[(2R) for quadratic Legendre sums, and wiRén or P(y) are= 0
we usel[(2.1) for linear Legendre sums. By inclusion-exclusi

Apelp) =2 Y ZZ( ;tP( y)Q >)_p D3 (@)

P(z)=0 y(p) t(p) P(z)=0 P(y)=0
t(P(x P T t2P(x)P
+ 222( y) +4( ()Q(y); (1)Q(x)) + *P(x) <y>)

Then since

)Y Yy (U )

P(2)=0 y(p) t(p)

ey (Qx) < QW) +17)
ny ( ) a9

P(z)=0 P(y)=0



we can write
- 12

w2 ()] -2 5 ) 2 (222)

| P(2)= | P(x)#0 P(y)#0 2@, Pw)#0 p
r q2 2
=p Z <Q;$)) _ Z (P](f)>:| +p Z <w> (3.10)
[ P()=0 ] 2(p) Ale.y)=0
where
Alz,y) = (P(2)Q(y) — P(y)Q(x))* (3.11)
is the discriminant of the quadratic #rarising in [3.7). U

Lemma 3.2 removes any dependence of the second moment orosantbet parameter. The
leftmost term is a sum over at most 3 Legendre symbols, andnitidle term is the square of
a Legendre sum over a polynomial of at most degree 3, so augrtigese terms over primes is
tractable. The rightmost term is more complicated, and imegd we are not able to explicitly
analyze it. However, when the discriminah{z, y) factors reasonably nicely, we can construct
large classes of one-parameter families where all calonlgattan be explicitly done. Expanding
out P(z) and@(x), we find that

Az,y) = ((x—y)R(z,y))* (3.12)
where
R(z,y) = (ad—bo)z’y? + (af — be)(z’y + xy?) + (ah — bg)(2* + zy + y?)
+ (cf —de)xy + (ch — dg)(x +y) +eh — fg. (3.13)

We can now prove a variety of special cases of the Bias Canmgct

Lemma 3.3. Fix integersbh, d and f with b # 0, and a primep > 3. The one-parameter family
E 1 y? = ba’ + dz* + fx + T has rank 0 ovef)(T'), and forp { b its second moment expansion is

Ase(p) = p* —p (1 - (_?3) + <d2 ;%f)) . (3.14)

Proof. By Lemmd 3.1, the first moment of the Fourier coefficients dkierfamily is
Aie(p) = 0. (3.15)

As ¢ is arational surface, the rank of the family o@(7") is 0. Using Lemm&3]2, the discriminant
of the quadratic irt is

Alz,y) = ((z =) (=" + 2y +y?) +d(x +y) + f))?, (3.16)
and thus the second moment can be expanded as

S(0)] - £ ()

z(p)

:_p+p21+pz > l-p Y L (317)

z(p) y:by?+(bz+d)y+(bx2+dz+ f)=0 3bx2+2dz+ f=0
7
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Note that the number of roots to a quadratic congruehée+ Bz +C = 0(p) is equal tol + (%)
whereD = B? — 4AC is the discriminant of the quadratic. From this, we have

Aze(p) = px% (1+ <(bx+d)2 _4b(bx2+dx+f))) —p <1+ (M))

p p

_ —p(l—l— <d2 —p?)bf)) .S (—36%2 —2bd:c+d2—4bf) s

() p

By assumptiony t b andp > 3, sop + —3b* and the rightmost sum is equal%o(%f) = (‘73)
Thus

Aye(p) = p*—p (1 - (_?3) + <d2 _p?’bf)) . (3.19)

U

As an aside, the choice of family in Lemmal3.3 is just as géraeraéhe form€ : y? = ba® +
dx® + fx+gT + h for primesp 1 g, since the maps— t andt — gt + h are both bijections on the
set of residue classes modyloWe can go further and quantify the average bias in thesdiésmi
with the following definition.

Definition 3.4. Let C'(p) denote the sum of the terms of orgein the expansion of the second
momentA; ¢(p). Theaverage bias of sizein the second moment is defined as

lim — Zc(p), (3.20)

when this limit exists.
For example, in[(3.14),(p) = —p (1 - (‘73) + <d2‘pf3bf)>

3.2. Rank 0 Families.

Theorem 3.5(Proof of the Bias Conjecture for the Rank 0 Family from LenBd). Fix integers

b,d and f with b # 0. The one-parameter family : 2 = bz + do? + fa + T satisfies the Bias
Conjecture, with an explicitly computable bias (in term$.,af and f), giving a lower order term
on average of size-ap for somen = «a(b, d, f) € [1,2].

Proof. The average bias in the families (see in Lenima 3.3) is

mAE () (1) em

By Lemmd 2.4, the limit in[(3.21) is equal te2 or —1, according to whether or nat — 3bf is a
non-zero square i (note the termr(X)~! Y op<x (‘73) averages to zero). O

We thus have a large class of rank 0 families proven to obeBitae Conjecture. The natural

next step is to construct a class of families with positivekraatisfying the Bias Conjecture.
8



3.3. Rank 0 and Rank 1 Families.

Theorem 3.6 (Proof of the Bias Conjecture for some Rank 0 and Rank 1 Fas)ilA one-
parameter family¢ : y? = 23 + T2? + etx + € has rank0 or 1 overQ(T') and second moment

expansion
—1
Aselp) = p* —p (2 + <?)) —1 (3.22)

for p t e. In particular, these curves show an average bias df Where is a square in the integers,
these families are of rank Otherwise, they are of rarnk

Proof. Assume all of the same notation from Lemma 3.1, wite 0,b =1,c=1,d = 0, e free,
f=0,g=0,andh = ¢3. By the same steps as in Lemmal 3.3, we can write

e p[Z (ﬁ;é”) . {Z <x2—;6x)] . Z (:g tex (y —i—ey)) 523

x=0,—e (p)

where
Alz,y) = (z—y)(z+e)(y +e)(e® —zy). (3.24)
Sincee # 0, by the quadratic Legendre sum formula (Lenima 2.1) and shmhiexclusion,

M = p14p Y ((x2+ex)(y2+ey))
)

p

, > )O<(x2+€x;(y2+ey))_p > )O<x2;%)2

(ate)(y+e)(e?—ay)= (z+e)2(e2—z2)=

= p—1l4p(p—2)+p Y <M>_p > (%93)2) (3.25)

R(z,y)=0 p R(z,z)=0
We begin our analysis with the last term. SinBér, z) (defined in [3.IB)) factors ag +
x)3(e — z), R(z,z) is only zero when: = ¢ or z = —e. Note that these are mutually exclusive

forp > 2. Whenz = e we get—p (m> = —p (%) = —p, while for x = —e we have
—p <%> = 0. Thus we are left with

Aoe(p) = P"=2p—14p Y (M) . (3.26)

R(z,y)=0 p

This family is constructed so that(z,y) factors into(e + z)(e + y)(e? — xy). Thus, us-
ing inclusion-exclusion and lettin§(f(x), p) denote the set of solutions ¢gfz) = 0 (mod p),
S(R(z,y),p) can be expressed as

S(e+x,p)+ Sle+y,p)— (Sle+z,p)NSle+y,p))
+5(e® —ay,p) — (S(¢® —xy,p) N S(e+x,p)) — (S(€® — xy,p) N S(e+y,p))

+ (S(e* —zy,p)N S(e +x,p) N S(e +y,p)).
9



To evaluate the double sum [n_(3126), we can evaluate it e of these:, y regions with the
appropriate sign. A$(—e) = 0, we can omit the summation over all regions where- —e or
y = —e (and this includes regions with = —e or y = —e as part of an intersection). The only
region we are left with isS(e? — zy, p). The sum over this region can be expressed as

) (M) . ((:ﬁ + e:c)(e‘*;—? + e3x—1))

2(p) a0 g=e2a—1 p 2(p) @40

-y ((x2+ex)(62+ex)) . <6$(+;L6)2> _ Z(W)'(S'ﬂ)

2(p) 20 p 2(p) 20 ()

As (@) = 1 unlesst = —e in which case it i%), we can rewrite the last sum In(3127) as

2 2 _
26 (G)-G) em
( p p p p
x(p)
Thus the contribution from this sum isp < ) and the second moment formula is

—1
Age(p) = p*—=2p—1-p (?) ; (3.29)
and this formula matches the one proposed. O

3.4. Complex Multiplication Families. We now turn to proving the Bias Conjecture for several
families with complex multiplication. Note these familibave constanj(7')-invariant of 0, so
Theoren I by Michel does not apply. In particular, we wieghat the term of sizg? is not
constant, but is on averagé (in a sense that can be made precise). Once we separatefadl of t
sizep? terms from the lower order terms, we find that a similar Biasj€cture holds.

Theorem 3.7(Proof of the Bias Conjecture for some CM-familie§jx an integerb # 0. For the
CM-families of the forng : y* = bz® + T'andp 1 b, rank(€(Q(T")) = 0 and

Aselp) = (0 —p) <1+ (_?3)) (3.30)

As( ) averages to zero, these families have an average biad of

Proof. For a family& : y? = ba® + T, by Lemmd31L A, ¢(p) = 0 and the family rank is 0. For
p + b, by Lemmd3.R and inclusion-exclusion, the second moment is

Ase(p) = —p* +p > 1

(z—y) (x2+zy+y?)=0

- poXiny ¥ ¥

z(p) y:x2+zy+y?=0 322=0
(3.31)
10



Since the discriminant af? +zy +? as a quadratic ip is —322, by the quadratic formula modulo
p, the number of solutions to the congruenéer zy + 3> = 0is 1 + (-3;&)_ Then

w2 (1 ()

= p<p+(p—1) (%3)) —p
vn(+(2)

O
4. NUMERICAL INVESTIGATIONS
4.1. Measuring Average Bias. In general, analyzing the double sum
2
2+ A(t)x + B(t
Aoelp) = > [D. ( (; ( )) (4.1)

t(p) | =(p)

explicitly is extremely difficult, especially for one-pana&ter families involving higher degree
polynomials. We would like to analyze more complicated fasinumerically. Unfortunately,
this is not always feasible.

Consider the following heuristic. Recall that Michel's uéisbounds the error in the second
moment expansion b§(p*?). Miller [Mi05] showed that this bound is sharp, and our nuicer
explorations suggest that in some sense, an arbitrarilyeshfamily with high-degree polynomials
almost always has an error term of sj#¢?. Central limit theorem intuition would predict, if the
p*/? term averages t0, that this average converges(tat a rate of about/ V/P- However, this
risks oscillations that conceal the sjzbiases for arbitrarily large primes. Thus our numerics must
seek an understanding of the sj?€ error term that will allow us to isolate the contributionrino
the ordermp terms.

4.2. Distributions of the Error Terms. In the absence of a reliable method to numerically mea-
sure negative bias occurring in the sjzewe want to better understand the larger error terms of
sizep®?. From our experiments, it appears that most one-paranaataliés have size®? error
terms. Only especially nice families have second momentaléqp® + O(p).

Consider a family of the fornd : y? = (aT + b)a® + (¢T + d)z* + (T + f)z + (¢T + h), and

consider the term

p
A(z,y)=0
in the notation of Lemm@a3.2. Recall that
Az, y) = ((z —y)(R(z,9))? (4.3)
with R(z,y) as in [3.18). After applying inclusion-exclusion to is@atut the term
P(x)P
Y(p) = ), (%) , (4.4)

R(z,y)=0
11



all other terms including the original terms in Lemmal 3.2@frsizesp?, p, or 1, and are tractable.
Also, these terms have a simple structure, given by polyatsmp, Legendre symbols, or elliptic
curve coefficients. As it is written, there is no clear arittim object associated to the term in
(4.4). However, we believe that this term is concealing arfeogoefficient of somé.-function, in
particular a hyperelliptic curve coefficient; some evidefwr this belief can be found in [Mi05],
where such a term is identified, as well as other familiesisthoh [MMRW14]. Our goal is to
provide evidence for this idea.

We examine families of ranks from 0 to 3 from [F€96], compuieapproximation to the dis-
tribution of the error terms, and compare the distributioritose found in[[KS14] based on a
generalized Sato-Tate conjecture. We also examine soméa@iilies and some irrational fami-
lies.

All of the rank 0 and rank 1 families studied in [F&é96] are @aient, via a coordinate change
for primesp > 3, to a family of the form

E:y? = ba® +da? + (eT + flz + h. (4.5)
These families contain the exact same curves as the conaisggafamilies
E:y? = br* +da® +Tx + h. (4.6)

We assume 1 b, d, h. In these cases, the term in Equafiod 4.4 is equal to
Ty
Y(p) = > (—) . (4.7)
b(z2+zy+y?)+d(z+y)—h=0(p) p

For the sake of computational efficiency, we can convertdhia into a sum only over by noting
that we are summing over the roots of a quadratig. Ve have

Y(p) = 3 (@) (4.8)

by2+(bx+d)y+(bz2+dz—h)=0(p) p

and the discriminant of the quadraticyns

D(z) = (br +d)* — 4b(ba* + dx — h) = —3b%*x? — 2bdx + d* + 4bh, 4.9)
so by the quadratic formula moduto
x(20)* (=bx — d £ D(x)"/?
Y(p) = ) ( ( - ) (4.10)

(22)c0)

where+ indicates an inner sum of two Legendre symbols W(@Iﬁ)) = 1 and one Legendre

symbol when(%) = 0. In the cases we analyze, it appears ffigt) = O(p'/?) and that this

bound is sharp.

In Figure[4.2 we computé€'(p) over the first 10,000 primes and report the first 8 moments of
the error distribution in the number of points on the cunies,(on theug, (p)’s). These numerics
suggest that the errors are converging to a semicircul&iliifon. This is not inconsistent with
the error term being governed by a non-CM elliptic curve §iay weighted by a Legendre sym-
bol). We find similar agreement when we look at rank 0 famigiethis form. We end by looking

at the distribution of the normalized, (p)'s for a specific one-parameter family in Figlirel4.2.
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[ d| S| My | My | My | My | M5 | Ms | My | My

-7 -0.015| 1.013| -0.017| 2.044| -0.0089| 5.149| 0.066 | 14.515
-.007 | 0.990| 0.004 | 1.975| 0.044 | 4.938| 0.215| 13.834
0.007 | 0.993| 0.024|1.980| 0.085 | 4.943| 0.300| 13.804
0.008 | 0.997| 0.013|1.981| 0.035 | 4.937| 0.118] 13.795
0.006 | 0.993| 0.013|1.970| 0.016 | 4.892|-0.007| 13.635
0.006 | 0.986| 0.024 | 1.963| 0.067 | 4.914| 0.193| 13.824
0.006 | 1.016| 0.037|2.038| 0.130 | 5.096| 0.435| 14.282
-0.007| 1.016| -0.016| 2.051| -0.045 | 5.175| -0.123| 14.594
0.006 | 0.991| 0.001|1.973| -0.029 | 4.927| -0.159| 13.792

b
4
4
4
4
4
4
4
4
4

RO DNRRRO
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FIGURE 1. Moments of rank 1 family error distributions. The odd manseof the
normalized semi-circular distribution are all zero, whiie even moments (starting
with the second) are 1, 2, 5 and 14.

160

140+

120+

100 -

80

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

FIGURE 2. Error Distribution of theug, (p)’s for the familyy? = 423+ 522 +Ta+1
for the first 10,000 primes.

5. CONCLUSION AND FUTURE WORK

We have found strong support, both numerical and theotefarathe bias conjecture for one-
parameter families with coefficients low degree polynosjiadditional examples may be found
in [MMRW14].

While we have concentrated on the second moments of thedfagefficients in families of
elliptic curve L-functions, there are many other related systems and qusstib study. We can
also investigate higher moments as well as other familigs-fainctions, and see if similar biases

exist. If so, such biases can again have consequences fdisthibution of low-lying zeros.
13



Another natural question is to better understand the nafiufee bias. Specifically, what can be
said about the possible values of these terms? To date, iy faraily where we can write down
a closed form expression for the bias it has always been aioatidn of polynomials irp and
coefficients of elliptic curvd.-functions (though we allow ourselves to have differentrespions
depending on the congruence property of the prime). Doesisist both for other families of
elliptic curves, and for the other generalizations mergtaarlier? We are currently investigating
these and other related questions in [MMRW14].
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