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ABSTRACT. LetE : y2 = x3+A(T )x+B(T ) be a nontrivial one-parameter family of elliptic curves
overQ(T ), with A(T ), B(T ) ∈ Z(T ), and consider thekth momentsAk,E (p) :=

∑

t modp aEt
(p)k

of the Fourier coefficientsaEt
(p) := p + 1 − |Et (Fp)|. Rosen and Silverman proved a conjecture

of Nagao relating the first momentA1,E(p) to the rank of the family overQ(T ), and Michel proved
that the second moment is equal toA2,E(p) = p2 +O

(

p3/2
)

. Cohomological arguments show that
the lower order terms are of sizesp3/2, p, p1/2, and1. In every case we are able to analyze, the
largest lower order term in the second moment expansion thatdoes not average to zero is on average
negative. We prove this “bias conjecture” for several largeclasses of families, including families
with rank, complex multiplication, and unusual distributions of functional equation signs. We also
identify all lower order terms in large classes of families,shedding light on the arithmetic objects
controlling these terms. The negative bias in these lower order terms has implications toward the
excess rank conjecture and the behavior of zeros near the central point of elliptic curveL-functions.
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1. INTRODUCTION

We report on some recent theoretical and experimental results concerning lower order terms in
the second moments of Fourier coefficients in families of elliptic curveL-functions, especially
one-parameter families overQ(T ). In every family studied we have found that the first lower order
term which does not average to zero either has a provable negative average or behaves consistent
with such a conclusion; in many cases we are able to derive an explicit formula for these values.
We conjecture that this is a universal phenomenon, and all such families exhibit such a bias.

We first quickly review some needed results on elliptic curves and previous results in the field,
and then summarize our findings. We end with some avenues of current and future research. The
goal of this note is to clearly state our bias conjectures andprovide complete calculations in several
cases to support it; for additional results along these lines see the sequel paper [MMRW14].

1.1. Preliminaries and Previous Work. We assume the reader is familiar with the basics of el-
liptic curves andL-functions; good references include [IK04, Kn92, Si86, ST92]. Given an elliptic
curveE overQ, we may write it as

y2 = x3 + ax+ b, (1.1)

with a andb integers. We set

aE(p) = p−#{(x, y) ∈ Z/pZ×Z/pZ : y2 ≡ x3+ax+ b mod p} = −
∑

x mod p

(

x3 + ax+ b

p

)

,

(1.2)
with

(

n
p

)

the Legendre symbol (it is 1 ifn is a non-zero square modulop, 0 if n is zero modulo
p, and−1 otherwise). By Hasse’s theorem|aE(p)| ≤ 2

√
p, and is the difference between how

many solutions modulop we expect on average, and how many we actually have. We call these the
Fourier coefficients of the elliptic curve, and they are usedin the series expansion for the associated
L-function.

A common theme in many problems in number theory is to consider families of objects (for
example, the proof of the infinitude of primes in arithmetic progression looks at a family of Dirich-
let L-functions), and thus we consider families of elliptic curves. Most of our examples will be
one-parameter families, where

E : y2 = x3 + A(T )x+B(T ), A(T ), B(T ) ∈ Z[T ]. (1.3)

For all but finitely many specializations ofT to an integert we obtain an elliptic curveEt with
coefficientaEt

(p) (though for brevity we often writeaEt(p)).
A lot is known about the distribution of theaE(p)’s and the moments of theaEt(p)’s, where we

set
Ar,E(p) :=

∑

t mod p

aEt(p)
r; (1.4)

note we are not normalizing this sum by dividing byp (the number of elements in the family), and
thus we expect it to be on the order ofpr/2+1.

First, if E is a fixed elliptic curve without complex multiplication then the normalized coef-
ficientsaE(p)/2

√
p converge to the Sato-Tate distribution;1 see [B-LGHT11, CHT08, HS-BT10,

T08]. Second, at least conjecturally the first momentA1,E(p) is related to the rank of the elliptic

1If E has complex multiplication then writingcos θE,p = aE(p)/2
√
p one has the angles vanish for half the primes,

and are equidistributed for the remaining.
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surfaceE/Q. Specifically, Rosen and Silverman [RS98] prove a conjecture of Nagao, which says
that if Tate’s conjecture holds then

lim
X→∞

− 1

X

∑

p≤X

A1,E(p) log p

p
→ rank E(Q(T )); (1.5)

Tate’s conjecture is known for rational elliptic surfaces.Their result tells us that there is a negative
bias in the coefficientsaEt(p), and the larger the rank of the family the greater the averagebias.

The purpose of this work is to explore the second momentsA2,E(p). Our goal is to see if there
is a similar bias here and, if so, what are the consequences. One important application is to the
behavior of the low-lying zeros (the zeros of the associatedL-functions near the central point).
The Katz-Sarnak Density Conjectures [KS99a, KS99b] state that the behavior of these zeros, in
the scaling limit as the conductors tends to infinity, agree with the scaling limit of eigenvalues near
1 of a corresponding classical compact group; see [ILS00, AAILMZ15] for a review of the theory
of low-lying zeros in general, and the 1-level density statistic in particular. In previous work Miller
and his colleagues (see [Mi05, Mi09]) interpreted lower order corrections to moments of these
Fourier coefficients as controlling the rate of convergenceof the low-lying zeros to the random
matrix theory predictions. For example, in [Mi09] the first lower order correction term is isolated
in the 1-level density of severalGL2 families ofL-functions; it is always negative, and in [Mi05]
it is related to the observed excess rank in families of elliptic curves with finite conductors2.

1.2. The Bias Conjecture. An asymptotic result for the second moments of elliptic curve Fourier
coefficients is given by Michel.

Theorem 1.1 (Michel [Mic95]). For a one-parameter familyE : y2 = x3 + A(T )x + B(T )

with non-constantj(T )-invariant j(T ) = 1728 4A(T )3

4A(T )3+27B(T )2
, the second moment of the Fourier

coefficients is given by

A2,E(p) = p2 +O(p3/2). (1.6)

The error term in Michel’s theorem cannot be improved, as there are families where there is a
lower order term of sizep3/2; see [Mi02, Mi05]

We have observed an interesting phenomenon in the lower order terms of the second moments
of these Fourier coefficients. In every family we have studied, the following conjecture holds.

Conjecture 1.2(Bias Conjecture). Let E be a one-parameter family of elliptic curves overQ(T ).
The largest lower order term in the second moment expansion of A2,E that does not average to 0 is
on average negative.

The negative bias in the first moments of elliptic curve Fourier coefficients is related to their
rank (see equation (1.5)). We will use this result to study families of varying rank to see if the bias
we have observed in the second moments is also related to the family rank.

Instead of investigating one-parameter families we could examine two-parameter families. The
larger cardinality of the family leads to significantly easier averaging, and the average second
moment for the family of all elliptic curves was computed by Birch [Bi68].3

2Though the amount of excess rank it can explain is quite small.
3There were some typos in the manuscript; see [MM11] for corrected statements.
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Theorem 1.3(Birch). For the familyF : y2 = x3 + ax + b (a, b ∈ Z) of all elliptic curves, the
second moment of the Fourier coefficients is equal to

A2,F =
∑

a,b mod p

aFa,b
(p) = p3 − p2. (1.7)

We may thus view our Bias Conjecture as a refinement of Birch’sresult for one-parameter
families. Below we report on some theoretical and experimental results supporting our conjecture.
Unfortunately many of the families studied are special, either because we have carefully chosen
the defining polynomials to ensure certain properties hold,or their degrees are small. However,
while it is possible that these are painting a false impression of the true behavior, it is encouraging
that to date all families studied support our conjecture.

2. TOOLS FORCALCULATING BIASES

We quickly gather several useful lemmas for calculating biases in elliptic curve families. Through-

out this paper,
(

·
p

)

denotes a Legendre symbol, and
∑

x(p) denotes a sum over all residue classes

modulop. Linear sums and quadratic sums of Legendre symbols can be easily evaluated (see for
example [BEW98]).

Lemma 2.1. Leta, b, c be positive integers, and assumea 6= 0. For p ∤ a,
∑

x(p)

(

ax+ b

p

)

= 0 (2.1)

and
∑

x(p)

(

ax2 + bx+ c

p

)

=

{

−
(

a
p

)

if p ∤ b2 − 4ac

(p− 1)
(

a
p

)

if p | b2 − 4ac.
(2.2)

We often use an averaging result for Legendre symbols.

Lemma 2.2. Letπ(X) be the number of primesp ≤ X, and fixx ∈ Z. Then

lim
X→∞

1

π(X)

∑

p≤X

(

x

p

)

=

{

1 if x ∈ Z is a non-zero square

0 otherwise.
(2.3)

Proof. The proof is immediate from Dirichlet’s theorem on primes inarithmetic progressions, as
the number of residue classes modulop that are non-zero squares equals the number that are not
square. �

To compute the rank of the families we analyze, we use the following consequence of Rosen
and Silverman’s work. A key input is Tate’s conjecture, alluded to earlier.

Conjecture 2.3(Tate’s Conjecture for Elliptic Surfaces [Ta65]). LetE/Q be an elliptic surface and
L2(E , s) be theL-series attached toH2

t (E/Q,Ql). ThenL2(E , s) has a meromorphic continuation
to C and satisfies−ords=2L2(E , s) = rank NS(E/Q), whereNS(E/Q) is theQ-rational part of
the Néron-Severi group ofE . Further,L2(E , s) does not vanish on the lineRe(s) = 2.

Tate’s conjecture is known ifE is a rational surface. An elliptic surfacey2 = x3+A(T )x+B(T )
is rational iff one of the following is true:(1) 0 < max{3 degA, 2 degB} < 12; (2) 3 degA =
2degB = 12 andordT=0T

12∆(T−1) = 0. See pages 46–47 of [RS98] for more details.
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Lemma 2.4. If E is a one-parameter family withA1,E(p) = −rp + O(1) and Tate’s conjecture
holds, thenrank(E(Q(T ))) = r.

Proof. This follows from the Prime Number Theorem applied to (1.5). �

Lemma 2.4 was used by Miller [Mi02] and Arms, Lozano-Robledoand Miller [AL-RM07] to
construct one-parameter families of elliptic curves with moderate, prescribed rank. Interestingly,
this method allows us to write down families of a given rankwithoutcomputing the determinant
of the height matrix associated tor points conjectured to be independent, though frequently one
can extract the requisite number of candidate points for theheight matrix from the calculations
performed to determineA1,E(p).

3. PROVEN SPECIAL CASES

3.1. Preliminaries. Most of our proven special cases are for families of the form

E : y2 = (aT + b)x3 + (cT + d)x2 + (eT + f)x+ (gT + h), (3.1)

that is, families where theT -polynomials are all linear. The technical advantage of studying these
families is that the corresponding second moment expansions only involve quadratic polynomials
in T , for which we can obtain clean explicit sum formulas. We begin by calculating the possible
ranks of these families.

Lemma 3.1. Consider a one-parameter family of elliptic curves of the form

E : y2 = (aT + b)x3 + (cT + d)x2 + (eT + f)x+ (gT + h), (3.2)

wherea, . . . , h ∈ Z. The rank of this family is at most 3.

Proof. A simple change of variables convertingE to Weierstrass form shows that it is a rational
surface, and therefore we may use Lemma 2.4 to compute its rank. For primesp > 3, the first
moment of the Fourier coefficients for this family is

A1,E(p) = −
∑

t(p)

∑

x(p)

(

(at+ b)x3 + (ct+ d)x2 + (et+ f)x+ (gt+ h)

p

)

= −
∑

x(p)

∑

t(p)

(

t(ax3 + cx2 + ex+ g) + bx3 + dx2 + fx+ h

p

)

. (3.3)

By (2.1), the innert-sum is 0 unlessax3 + cx2 + ex+ g ≡ 0. We then have

A1,E(p) = −p
∑

ax3+cx2+ex+g≡0(p)

(

bx3 + dx2 + fx+ h

p

)

≥ −3p (3.4)

sinceax3 + cx2 + ex+ g has at most 3 roots inFp. By Lemma 2.4 we can now conclude the rank
is at most 3. �

By choosing our coefficients so thatbx3 + dx2 + fx + h is a non-zero square in the integers
when evaluated at the roots ofax3 + cx2 + ex+ g, we can construct families of this form of ranks
0, 1, 2, and 3.

Next, we prove a structural lemma for the second moments of these families. The families of
ranks 0, 1 and 2 studied by Fermigier [Fe96] are all included in this analysis (as are half of his
families of rank 3 after a simple change of variables). As these families provided strong evidence
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of excess rank, it is encouraging that these all satisfy our Bias Conjecture (and might even suggest
a connection between our bias and excess rank).

Lemma 3.2. Consider a one-parameter family of elliptic curves of the form

E : y2 = (aT + b)x3 + (cT + d)x2 + (eT + f)x+ (gT + h), (3.5)

wherea, . . . , h ∈ Z. Let

P (x) := ax3 + cx2 + ex+ g, Q(x) := bx3 + dx2 + fx+ h. (3.6)

Then the second moment can be expanded as

A2,E(p) = p





∑

P (x)≡0

(

Q(x)

p

)





2

−





∑

x(p)

(

P (x)

p

)





2

+ p
∑

∆(x,y)≡0

(

P (x)P (y)

p

)

(3.7)

where∆(x, y) = (P (x)Q(y)− P (y)Q(x))2.

Proof. We can write the second moment as

A2,E(p) =
∑

t(p)





∑

x(p)

(

tP (x) +Q(x)

p

)





2

=
∑

x(p)

∑

y(p)

∑

t(p)

(

Q(x)Q(y) + t(P (x)Q(y) + P (y)Q(x)) + t2P (x)P (y)

p

)

. (3.8)

WhenP (x), P (y) 6= 0 we use (2.2) for quadratic Legendre sums, and whenP (x) orP (y) are≡ 0
we use (2.1) for linear Legendre sums. By inclusion-exclusion,

A2,E(p) = 2
∑

P (x)≡0

∑

y(p)

∑

t(p)

(

Q(x)Q(y) + tP (y)Q(x)

p

)

− p
∑

P (x)≡0

∑

P (y)≡0

(

Q(x)Q(y)

p

)

+
∑

P (x)6=0

∑

P (y)6=0

∑

t(p)

(

Q(x)Q(y) + t(P (x)Q(y) + P (y)Q(x)) + t2P (x)P (y)

p

)

Then since

2
∑

P (x)≡0

∑

y(p)

∑

t(p)

(

Q(x)Q(y) + tP (y)Q(x)

p

)

= 2
∑

P (x)≡0

(

Q(x)

p

)

∑

y(p)

∑

t(p)

(

Q(y) + tP (y)

p

)

= 2p
∑

P (x)≡0

∑

P (y)≡0

(

Q(x)Q(y)

p

)

, (3.9)
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we can write

A2,E(p) = p





∑

P (x)≡0

(

Q(x)

p

)





2

−
∑

P (x)6=0

∑

P (y)6=0

(

P (x)P (y)

p

)

+ p
∑

P (x),P (y) 6=0
∆(x,y)≡0(p)

(

P (x)P (y)

p

)

= p





∑

P (x)≡0

(

Q(x)

p

)





2

−





∑

x(p)

(

P (x)

p

)





2

+ p
∑

∆(x,y)≡0

(

P (x)P (y)

p

)

(3.10)

where
∆(x, y) = (P (x)Q(y)− P (y)Q(x))2 (3.11)

is the discriminant of the quadratic int arising in (3.7). �

Lemma 3.2 removes any dependence of the second moment on sumsover thet parameter. The
leftmost term is a sum over at most 3 Legendre symbols, and themiddle term is the square of
a Legendre sum over a polynomial of at most degree 3, so averaging these terms over primes is
tractable. The rightmost term is more complicated, and in general we are not able to explicitly
analyze it. However, when the discriminant∆(x, y) factors reasonably nicely, we can construct
large classes of one-parameter families where all calculations can be explicitly done. Expanding
outP (x) andQ(x), we find that

∆(x, y) = ((x− y)R(x, y))2 (3.12)

where

R(x, y) = (ad− bc)x2y2 + (af − be)(x2y + xy2) + (ah− bg)(x2 + xy + y2)

+ (cf − de)xy + (ch− dg)(x+ y) + eh− fg. (3.13)

We can now prove a variety of special cases of the Bias Conjecture.

Lemma 3.3. Fix integersb, d andf with b 6= 0, and a primep > 3. The one-parameter family
E : y2 = bx3 + dx2 + fx+ T has rank 0 overQ(T ), and forp ∤ b its second moment expansion is

A2,E(p) = p2 − p

(

1−
(−3

p

)

+

(

d2 − 3bf

p

))

. (3.14)

Proof. By Lemma 3.1, the first moment of the Fourier coefficients overthis family is

A1,E(p) = 0. (3.15)

AsE is a rational surface, the rank of the family overQ(T ) is 0. Using Lemma 3.2, the discriminant
of the quadratic int is

∆(x, y) = ((x− y)(b(x2 + xy + y2) + d(x+ y) + f))2, (3.16)

and thus the second moment can be expanded as

A2,E(p) = −





∑

x(p)

(

1

p

)





2

+ p
∑

∆(x,y)≡0

(

1

p

)

= −p2 + p
∑

x≡y(p)

1 + p
∑

x(p)

∑

y:by2+(bx+d)y+(bx2+dx+f)≡0

1− p
∑

3bx2+2dx+f≡0

1. (3.17)
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Note that the number of roots to a quadratic congruenceAx2+Bx+C ≡ 0(p) is equal to1+
(

D
p

)

,

whereD = B2 − 4AC is the discriminant of the quadratic. From this, we have

A2,E(p) = p
∑

x(p)

(

1 +

(

(bx+ d)2 − 4b(bx2 + dx+ f)

p

))

− p

(

1 +

(

4d2 − 12bf

p

))

= p2 − p

(

1 +

(

d2 − 3bf

p

))

+ p
∑

x(p)

(−3b2x2 − 2bdx+ d2 − 4bf

p

)

. (3.18)

By assumption,p ∤ b andp > 3, sop ∤ −3b2 and the rightmost sum is equal to−
(

−3b2

p

)

=
(

−3
p

)

.

Thus

A2,E(p) = p2 − p

(

1−
(−3

p

)

+

(

d2 − 3bf

p

))

. (3.19)

�

As an aside, the choice of family in Lemma 3.3 is just as general as the formE : y2 = bx3 +
dx2+fx+gT +h for primesp ∤ g, since the mapst → t andt → gt+h are both bijections on the
set of residue classes modulop. We can go further and quantify the average bias in these families
with the following definition.

Definition 3.4. Let C(p) denote the sum of the terms of orderp in the expansion of the second
momentA2,E(p). Theaverage bias of sizep in the second moment is defined as

lim
X→∞

1

π(X)

∑

p≤X

C(p)

p
, (3.20)

when this limit exists.

For example, in (3.14),C(p) = −p
(

1−
(

−3
p

)

+
(

d2−3bf
p

))

.

3.2. Rank 0 Families.

Theorem 3.5(Proof of the Bias Conjecture for the Rank 0 Family from Lemma3.3). Fix integers
b, d andf with b 6= 0. The one-parameter familyE : y2 = bx3 + dx2 + fx + T satisfies the Bias
Conjecture, with an explicitly computable bias (in terms ofb, d andf ), giving a lower order term
on average of size−αp for someα = α(b, d, f) ∈ [1, 2].

Proof. The average bias in the families (see in Lemma 3.3) is

lim
X→∞

1

π(X)

∑

p≤X

(

−1 +

(−3

p

)

−
(

d2 − 3bf

p

))

. (3.21)

By Lemma 2.4, the limit in (3.21) is equal to−2 or−1, according to whether or notd2 − 3bf is a
non-zero square inZ (note the termπ(X)−1

∑

p≤X

(

−3
p

)

averages to zero). �

We thus have a large class of rank 0 families proven to obey theBias Conjecture. The natural
next step is to construct a class of families with positive rank satisfying the Bias Conjecture.
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3.3. Rank 0 and Rank 1 Families.

Theorem 3.6 (Proof of the Bias Conjecture for some Rank 0 and Rank 1 Families). A one-
parameter familyE : y2 = x3 + Tx2 + etx + e3 has rank0 or 1 overQ(T ) and second moment
expansion

A2,E(p) = p2 − p

(

2 +

(−1

p

))

− 1 (3.22)

for p ∤ e. In particular, these curves show an average bias of−2. Whene is a square in the integers,
these families are of rank1. Otherwise, they are of rank0.

Proof. Assume all of the same notation from Lemma 3.1, witha = 0, b = 1, c = 1, d = 0, e free,
f = 0, g = 0, andh = e3. By the same steps as in Lemma 3.3, we can write

A2,E = p

[

∑

x=0,−e

(

x3 + e3

p

)

]2

−





∑

x(p)

(

x2 + ex

p

)





2

+ p
∑

∆(x,y)

(

(x2 + ex)(y2 + ey)

p

)

(3.23)

where
∆(x, y) = (x− y)(x+ e)(y + e)(e2 − xy). (3.24)

Sincee 6= 0, by the quadratic Legendre sum formula (Lemma 2.1) and inclusion-exclusion,

A2,E = p− 1 + p
∑

∆(x,y)

(

(x2 + ex)(y2 + ey)

p

)

= p− 1 + p
∑

x(p)

(

x2 + ex

p

)2

+

p
∑

(x+e)(y+e)(e2−xy)≡0

(

(x2 + ex)(y2 + ey)

p

)

− p
∑

(x+e)2(e2−x2)≡0

(

x2 + ex

p

)2

= p− 1 + p(p− 2) + p
∑

R(x,y)≡0

(

P (x)P (y)

p

)

− p
∑

R(x,x)≡0

(

P (x)2

p

)

. (3.25)

We begin our analysis with the last term. SinceR(x, x) (defined in (3.13)) factors as(e +
x)3(e − x), R(x, x) is only zero whenx = e or x = −e. Note that these are mutually exclusive

for p > 2. Whenx = e we get−p
(

(e2+e2)2

p

)

= −p
(

4e4

p

)

= −p, while for x = −e we have

−p
(

(e2−e2)2

p

)

= 0. Thus we are left with

A2,E(p) = p2 − 2p− 1 + p
∑

R(x,y)≡0

(

P (x)P (y)

p

)

. (3.26)

This family is constructed so thatR(x, y) factors into(e + x)(e + y)(e2 − xy). Thus, us-
ing inclusion-exclusion and lettingS(f(x), p) denote the set of solutions off(x) ≡ 0 (mod p),
S(R(x, y), p) can be expressed as

S(e+ x, p) + S(e+ y, p)− (S(e+ x, p) ∩ S(e+ y, p))

+ S(e2 − xy, p)− (S(e2 − xy, p) ∩ S(e+ x, p))− (S(e2 − xy, p) ∩ S(e+ y, p))

+ (S(e2 − xy, p) ∩ S(e+ x, p) ∩ S(e+ y, p)).
9



To evaluate the double sum in (3.26), we can evaluate it over each of thesex, y regions with the
appropriate sign. AsP (−e) = 0, we can omit the summation over all regions wherex = −e or
y = −e (and this includes regions withx = −e or y = −e as part of an intersection). The only
region we are left with isS(e2 − xy, p). The sum over this region can be expressed as

∑

x(p),x 6=0,y=e2x−1

(

P (x)P (y)

p

)

=
∑

x(p),x 6=0

(

(x2 + ex)(e4x−2 + e3x−1)

p

)

=
∑

x(p),x 6=0

(

(x2 + ex)(e2 + ex)

p

)

=
∑

x(p),x 6=0

(

ex(x+ e)2

p

)

=
∑

x(p)

(

ex(x+ e)2

p

)

. (3.27)

As
(

(x+e)2

p

)

= 1 unlessx = −e in which case it is0, we can rewrite the last sum in (3.27) as

∑

x(p)

(

ex

p

)

−
(−e2

p

)

= −
(−e2

p

)

= −
(−1

p

)

. (3.28)

Thus the contribution from this sum is−p
(

−1
p

)

, and the second moment formula is

A2,E(p) = p2 − 2p− 1− p

(−1

p

)

, (3.29)

and this formula matches the one proposed. �

3.4. Complex Multiplication Families. We now turn to proving the Bias Conjecture for several
families with complex multiplication. Note these familieshave constantj(T )-invariant of 0, so
Theorem 1.1 by Michel does not apply. In particular, we will see that the term of sizep2 is not
constant, but is on averagep2 (in a sense that can be made precise). Once we separate all of the
sizep2 terms from the lower order terms, we find that a similar Bias Conjecture holds.

Theorem 3.7(Proof of the Bias Conjecture for some CM-families). Fix an integerb 6= 0. For the
CM-families of the formE : y2 = bx3 + T andp ∤ b, rank(E(Q(T )) = 0 and

A2,E(p) =
(

p2 − p
)

(

1 +

(−3

p

))

. (3.30)

As
(

−3
p

)

averages to zero, these families have an average bias of−1.

Proof. For a familyE : y2 = bx3 + T , by Lemma 3.1,A1,E(p) = 0 and the family rank is 0. For
p ∤ b, by Lemma 3.2 and inclusion-exclusion, the second moment is

A2,E(p) = −p2 + p
∑

(x−y)(x2+xy+y2)≡0

1

= −p2 + p
∑

x(p)

1 + p
∑

x(p)

∑

y:x2+xy+y2≡0

1− p
∑

3x2≡0

1

(3.31)
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Since the discriminant ofx2+xy+y2 as a quadratic iny is−3x2, by the quadratic formula modulo

p, the number of solutions to the congruencex2 + xy + y2 ≡ 0 is 1 +
(

−3x2

p

)

. Then

A2,E(p) = p
∑

x(p)

(

1 +

(−3x2

p

))

− p

= p

(

p+ (p− 1)

(−3

p

))

− p

=
(

p2 − p
)

(

1 +

(−3

p

))

(3.32)

�

4. NUMERICAL INVESTIGATIONS

4.1. Measuring Average Bias. In general, analyzing the double sum

A2,E(p) =
∑

t(p)





∑

x(p)

(

x3 + A(t)x+B(t)

p

)





2

(4.1)

explicitly is extremely difficult, especially for one-parameter families involving higher degree
polynomials. We would like to analyze more complicated families numerically. Unfortunately,
this is not always feasible.

Consider the following heuristic. Recall that Michel’s result bounds the error in the second
moment expansion byO(p3/2). Miller [Mi05] showed that this bound is sharp, and our numerical
explorations suggest that in some sense, an arbitrarily chosen family with high-degree polynomials
almost always has an error term of sizep3/2. Central limit theorem intuition would predict, if the
p3/2 term averages to0, that this average converges to0 at a rate of about1/

√
p. However, this

risks oscillations that conceal the sizep biases for arbitrarily large primes. Thus our numerics must
seek an understanding of the sizep3/2 error term that will allow us to isolate the contribution from
the orderp terms.

4.2. Distributions of the Error Terms. In the absence of a reliable method to numerically mea-
sure negative bias occurring in the sizep, we want to better understand the larger error terms of
sizep3/2. From our experiments, it appears that most one-parameter families have sizep3/2 error
terms. Only especially nice families have second moments equal top2 +O(p).

Consider a family of the formE : y2 = (aT + b)x3 + (cT + d)x2 + (eT + f)x+ (gT + h), and
consider the term

∑

∆(x,y)≡0

(

P (x)P (y)

p

)

(4.2)

in the notation of Lemma 3.2. Recall that

∆(x, y) = ((x− y)(R(x, y))2 (4.3)

with R(x, y) as in (3.13). After applying inclusion-exclusion to isolate out the term

Y (p) =
∑

R(x,y)≡0

(

P (x)P (y)

p

)

, (4.4)

11



all other terms including the original terms in Lemma 3.2 areof sizesp2, p, or 1, and are tractable.
Also, these terms have a simple structure, given by polynomials inp, Legendre symbols, or elliptic
curve coefficients. As it is written, there is no clear arithmetic object associated to the term in
(4.4). However, we believe that this term is concealing a Fourier coefficient of someL-function, in
particular a hyperelliptic curve coefficient; some evidence for this belief can be found in [Mi05],
where such a term is identified, as well as other families studied in [MMRW14]. Our goal is to
provide evidence for this idea.

We examine families of ranks from 0 to 3 from [Fe96], compute an approximation to the dis-
tribution of the error terms, and compare the distribution to those found in [KS14] based on a
generalized Sato-Tate conjecture. We also examine some CM-families and some irrational fami-
lies.

All of the rank 0 and rank 1 families studied in [Fe96] are equivalent, via a coordinate change
for primesp > 3, to a family of the form

E : y2 = bx3 + dx2 + (eT + f)x+ h. (4.5)

These families contain the exact same curves as the corresponding families

E : y2 = bx3 + dx2 + Tx+ h. (4.6)

We assumep ∤ b, d, h. In these cases, the term in Equation 4.4 is equal to

Y (p) =
∑

b(x2+xy+y2)+d(x+y)−h≡0(p)

(

xy

p

)

. (4.7)

For the sake of computational efficiency, we can convert thissum into a sum only overx by noting
that we are summing over the roots of a quadratic iny. We have

Y (p) =
∑

by2+(bx+d)y+(bx2+dx−h)≡0(p)

(

xy

p

)

(4.8)

and the discriminant of the quadratic iny is

D(x) = (bx+ d)2 − 4b(bx2 + dx− h) = −3b2x2 − 2bdx+ d2 + 4bh, (4.9)

so by the quadratic formula modulop

Y (p) =
∑

(D(x)
p )∈{0,1}

(

x(2b)−1
(

−bx− d±D(x)1/2
)

p

)

, (4.10)

where± indicates an inner sum of two Legendre symbols when
(

D(x)
p

)

= 1 and one Legendre

symbol when
(D(x)

p

)

= 0. In the cases we analyze, it appears thatY (p) = O(p1/2) and that this
bound is sharp.

In Figure 4.2 we computeC(p) over the first 10,000 primes and report the first 8 moments of
the error distribution in the number of points on the curves (i.e., on theaEt(p)’s). These numerics
suggest that the errors are converging to a semicircular distribution. This is not inconsistent with
the error term being governed by a non-CM elliptic curve (possibly weighted by a Legendre sym-
bol). We find similar agreement when we look at rank 0 familiesof this form. We end by looking
at the distribution of the normalizedaEt(p)’s for a specific one-parameter family in Figure 4.2.
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b d f M1 M2 M3 M4 M5 M6 M7 M8

4 -7 4 -0.015 1.013 -0.017 2.044 -0.0089 5.149 0.066 14.515
4 5 1 -.007 0.990 0.004 1.975 0.044 4.938 0.215 13.834
4 1 1 0.007 0.993 0.024 1.980 0.085 4.943 0.300 13.804
4 1 4 0.008 0.997 0.013 1.981 0.035 4.937 0.118 13.795
4 1 9 0.006 0.993 0.013 1.970 0.016 4.892 -0.007 13.635
4 4 1 0.006 0.986 0.024 1.963 0.067 4.914 0.193 13.824
4 5 4 0.006 1.016 0.037 2.038 0.130 5.096 0.435 14.282
4 4 9 -0.007 1.016 -0.016 2.051 -0.045 5.175 -0.123 14.594
4 5 9 0.006 0.991 0.001 1.973 -0.029 4.927 -0.159 13.792

FIGURE 1. Moments of rank 1 family error distributions. The odd moments of the
normalized semi-circular distribution are all zero, whilethe even moments (starting
with the second) are 1, 2, 5 and 14.

FIGURE 2. Error Distribution of theaEt(p)’s for the familyy2 = 4x3+5x2+Tx+1
for the first 10,000 primes.

5. CONCLUSION AND FUTURE WORK

We have found strong support, both numerical and theoretical, for the bias conjecture for one-
parameter families with coefficients low degree polynomials; additional examples may be found
in [MMRW14].

While we have concentrated on the second moments of the Fourier coefficients in families of
elliptic curveL-functions, there are many other related systems and questions to study. We can
also investigate higher moments as well as other families ofL-functions, and see if similar biases
exist. If so, such biases can again have consequences for thedistribution of low-lying zeros.
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Another natural question is to better understand the natureof the bias. Specifically, what can be
said about the possible values of these terms? To date, in every family where we can write down
a closed form expression for the bias it has always been a combination of polynomials inp and
coefficients of elliptic curveL-functions (though we allow ourselves to have different expressions
depending on the congruence property of the prime). Does this persist both for other families of
elliptic curves, and for the other generalizations mentioned earlier? We are currently investigating
these and other related questions in [MMRW14].
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