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ABSTRACT. Given an ensemble dV x N random matrices, a natural question to ask is whether
or not the empirical spectral measures of typical matricewerge to a limiting spectral measure
as N — oo. While this has been proved for many thin patterned enserditiing inside all real
symmetric matrices, frequently there is no nice closed fexpression for the limiting measure.
Further, current theorems provide few pictures of traosgibetween ensembles. We consider the
ensemble of symmetrie-block circulant matrices with entries i.i.d.r.v. Thesetrizes have toroidal
diagonals periodic of periogh. We viewm as a “dial” we can “turn” from the thin ensemble of
symmetric circulant matrices, whose limiting eigenvaleasity is a Gaussian, to all real symmetric
matrices, whose limiting eigenvalue density is a semileir@he limiting eigenvalue densitief,
show a visually stunning convergence to the semi-circleas oo, which we prove.

In contrast to most studies of patterned matrix ensemblaspaper gives explicit closed form
expressions for the densities. We prove tlfigtis the product of a Gaussian and a certain even
polynomial of degre@m — 2; the formula is the same as that for thex m Gaussian Unitary En-
semble (GUE). The proof is by derivation of the moments frtwm ¢igenvalue trace formula. The
new feature, which allows us to obtain closed form expressies converting the central combina-
torial problem in the moment calculation into an equivalaminting problem in algebraic topology.
We end with a generalization of the-block circulant pattern, dropping the assumption thatthe
random variables be distinct. We prove that the limitingcsae distribution exists and is determined
by the pattern of the independent elements withimaperiod, depending on not only the frequency
at which each element appears, but also the way the elenrerdsranged.
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1. INTRODUCTION

1.1. History and Ensembles. Random matrix theory is the study of properties of matridessen
according to some notion of randomness, which can rangetking the structurally independent
entries as independent identically distributed randorataées to looking at subgroups of the classi-
cal compact groups under Haar measure. While the origirteedafibject go back to Wishart’s [Wis]
investigations in statistics in the 1920s, it was WignerskvWigl, Wig2, Wig3, Wig4, Wig5] in
the 1950s and Dyson’s [Dy1, Dy2] a few years later that showgadcredible power and utility, as
random matrix ensembles successfully modeled the diffprolblem of the distribution of energy
levels of heavy nuclei. The next milestone was twenty yeater,| when Montgomery and Dyson
[Mon] observed that the behavior of eigenvalues in certandom matrix ensembles correctly de-
scribe the statistical behavior of the zeros of the Riemasta function. The subject continues to
grow, with new applications ranging from chemistry to netkvtheory [MNS] to transportation
systems [BBDS, KrSe]. See [FM, Hay] for a history of the depehent of the subject and the
discovery of some of these connections.

One of the most studied matrix ensembles is the ensemhlé »fN real symmetric matrices.
The N entries on the main diagonal and t%uﬁf(N — 1) entries in the upper right are taken to
be independent, identically distributed random variales a fixed probability distribution with
densityp having meart, variancel, and finite higher moments. The remaining entries are fithed i
so that the matrix is real symmetric. Thus

Bij
ProfA) = [[ play), Prob(A:a; € i, 8;) = ][] / plaij)dz;.  (1.1)

1<i<j<N 1<i<j< N ¥ Tij =%ij

We want to understand the eigenvaluesiods we average over the family. L&tr — x,) denote
the shifted Delta functional (i.e., a unit point massgtsatisfying [ f(x)d(x — z¢)dz = f(x0)).
To eachA we associate its empirical spacing measure:

pan(a) = %i( ﬁ)) (1.2)
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Using the Central Limit Theorem, one readily sees that tmeecbscale to study the eigenvalues is
on the order of/N.! The most natural question to ask is: How many normalizedwiaes of a
‘typical’ matrix lie in a fixed interval asvV — oo? Wigner proved that the answer is the semi-circle.
This means that a& — oo the empirical spacing measures of almost&adonverge to the density
of the semi-ellipse (with our normalization), whose dengst

fung() = {1 I, (1.3)

0 otherwise;

to obtain the standard semi-circle law we need to normalieestgenvalues byy/N and noty/N.

As the eigenvalues of any real symmetric matrix are real, areask whether or not a limiting
distribution exists for the density of normalized eigemes for other ensembles. There are many
interesting families to study. McKay [McK] proved that theniting spectral measure for adjacency
matrices attached t@d-regular graphs oV vertices exists, and a¥ — oo, for almost all such
graphs the associated measures converge to Kesten’s measur

{ﬁ Hd—1)—22, |zo|<2v/d—1

_ (1.4)
0 otherwise

fKoston,d («T) =

(note that the measures may be scaled such thatasx they converge to the semi-circle distri-
bution).

This example and its behavior are typical for what we hopent &#ind prove. Specifically, we
are looking for a thin subfamily that has different behaviot, as we fatten the ensemble to the full
family of all real symmetric matrices, the limiting spedtraeasure converges to the semi-circle.
Numerous researchers have studied a multitude of speattérped matrices; we do not attempt to
do this vast subject justice, but rather concentrate on a&fesgmbles closely related to our work.

All of the ensembles we consider here are linked ensemidedBanBo]). A linked ensemble of
N x N matrices is specified by a link functidny : {1,2,..., N}? — S to some sef. Tos € S,
assign random variables which are independent, identically distributed from a fixedbability
distribution with densityp having meart, variancel, and finite higher moments. Set the )™
entry of the matrix, ; ==z, ;).> For some linked ensembles, including those we examine here,
it is be more convenient to specify the ensemble not by theflinction, but by the equivalence
relation~ itinduceson{1,2, ..., N}2. Alink function may be uncovered as the quotient map to the
set of equivalence classés, 2,..., N}? — {1,2,..., N}?/ ~. For example, the real symmetric
ensemble is specified by the equivalence relation) ~ (j,1).

One interesting thin linked ensemble is that of real symimé&weplitz matrices, which are con-
stant along its diagonals. The limiting measure is closeutoniot a Gaussian (see [BCG, BDJ,
HM]); however, in [MMS] the sub-ensemble where the first r@wéplaced with a palindrome is
shown to have the Gaussian as its limiting measure. Whilagipeoach in [MMS] involves an
analysis of an associated system of Diophantine equatisitgy Cauchy’s interlacing property one

IS A2 = Trace(A?) = > <n i;; as the mean is zero and the variance is one for egglthis sum is of the
orderN?, implying the average square of an eigenvalu¥’is

2For general linked ensembles, it may make more sense to ttargnandom variables by how often they occur in
the matrix:a; ; := cN|L;,1({LN(1',j)})|‘1a:LN(i7j). For the real symmetric ensemble, this corresponds to wingh
the entries along the diagonal ByIn that case, and for the ensembles we examine here, thigication changes only

lower order terms in the calculations of the limiting spattneasure.



4 MURAT KOLOGLU, GENE S. KOPP, AND STEVEN J. MILLER

can show that this problem is equivalent to determiningith@ihg spectral measure of symmetric
circulant matrices (also studied in [BM]).

While these and other ensembles related to circulant, Teephd patterned matrices are a very
active area [BasBo1l, BasBo2, BanBo, BCG, BH, BM, BDJ, HM, MMS$ particular interest to
us are ensembles of patterned matrices with a variable gaeamontrolling the symmetry. We
desire to deform a family of matrices, starting off with aMligstructured family and ending with
the essentially structureless case of real symmetric castriThis is in contrast to some other work,
such as Kargin [Kar] (who studied banded Toeplitz matriees) Jackson, Miller, and Pham [JMP]
(who studied Toeplitz matrices whose first row had a fixed boitrarily number of palindromes).
In these cases the ensembles are converging to the fullitoepsemble (either as the band grows
or the number of palindromes decreases).

Our main ensemble is what we call the ensemble:dblock circulant matrices. A real sym-
metric circulant matrix (also called a symmetric circulamatrix) is a real symmetric matrix that
is constant along diagonals and has first faw, =1, s, . . ., x2, z1). Note that except for the main
diagonal, a diagonal of lengt — £ in the upper right is paired with a diagonal of lengthn
the bottom left, and all entries along these two diagonasegual. We study block Toeplitz and
circulant matrices withn x m blocks. The diagonals of such matrices are periodic of gerio

Definition 1.1 (m-Block Toeplitz and Circulant Matrices).etm|N. An N x N real symmetric
m-block Toeplitz matrix is a Toeplitz matrix of the form

BO Bl B2 e BN/77L_1
B_4 By By -+ DByju—
B_, B_4 By -+ Bz |,

Bi_~/ Ba-nj, Ba_ng, - By

with eachB; anm x m real matrix. Anm-block circulant matrix is one of the above form for which
B—i - Bn—i-

We investigate real symmetria-block Toeplitz and circulant matrices. In such matrices, a
generic set of paired diagonals is composeahahdependent entries, placed periodically; however,
as the matrix is real symmetric, this condition occasignfdices additional entries on the paired
diagonals of lengtt /2 to be equal.

For example, a8 x 8 symmetric2-block Toeplitz matrix has the form

Ch C1 | C2 C3|1C C5)|C6 C7
cp do|dy dy|ds dy|ds dg
cp di|co c1|ca c3|cq cs
c3 dy|cy do|dy dy|ds dy
cy dz|cy di|co ¢ |co ez |7
cs dy|cg dy|cy do|di dy
g ds|cy dz|cy di|co &
cr dg|cs dy|cs dy|ci dy

(1.5)
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while a6 x 6 and an8 x 8 symmetric2-block circulant matrix have the form

o C1|c c3lcy d3|cy dy
o c1|ca c3|cy dy cp do|dy dy|ds dy|cy dy
cp do|dy do|cs dy cp dy|co ci|cy c3|cy ds
ca dy|cy ci|c c3 c3 dy|cy do|dy dy|ds dy . (1.6)
c3 dy|cy do|dy dy |’ cs d3|co dy|cy cr]ca cg | '
2 c3|ca dy|c d3 dy|cg dy|ci do|dy d
dy dy|cg dy| e do o c3lcq dylcy di|cy

dy dy|ds dy|cs dy|ci dy

Note for the6 x 6 matrix that being real symmetric forces the paired diagooélengthV/2 (i.e.,

3) to have just one and not two independent random variaBlesguivalent viewpoint is that each
‘wrapped’ diagonal is periodic with perioah and hasn distinct random variables. Note that the
diagonals are wrapped toroidally, and each such diagosaVrelements.

Clearly if m = 1 these ensembles reduce to the previous cases, and-asc they approach the
full family of real symmetric matrices; in other words, thecalant or Toeplitz structure vanishes as
m — oo, but for any finitem there is additional structure. The goal of this paper is temheine the
limiting spectral measures for these families and to gfiahtiw the convergence to the semi-circle
depends omn. We find an explicit closed form expression for the limitingestral density of the
m-block circulant family as a product of a Gaussian and a aegyre— 2 polynomial.

1.2. Results. Before stating our results, we must define the probabiliacep where our ensemble
lives and state the various types of convergence that we rcae pWe provide full details for the
m-block circulant matrices, as the related Toeplitz ensenbkimilar. The following definitions
and set-up are standard, but are included for completeWesparaphrase from [MMS, JMP] with
permission.

Fix m and for each intege¥ let(2,, 5 denote the set of.-block circulant matrices of dimension
N. Define an equivalence relation on {1,2,..., N}?. Say that(i,j) ~ (i, ') if and only if
a;; = a;yj for all m-block circulant matrices, in other words, if

e j—i=j —i(mod N)andi =i (mod m), or
e j—i=—(j—7) (mod N)andi = j’ (mod m).

Considerthe quotiertl, 2, ..., N} — {1,2,..., N}?/ ~. Thisinduces an injectioR{"%N}*/~
< RV, The sefR{:2--N}*/~ has the structure of a probability space with the productsmesof
p(x) dr withitself |{1,2, ..., N}?/ ~ | times, wherelz is Lebesgue measure. We define the prob-
ability space($2,, n, Frn v, P ) tO be its image iRN = Mye (R) under the injection, with the
same distribution.

To eachAy € Q,, y We attach a measure by placing a point mass of'gizat each normalized
eigenvalue\;(Ay):

S Ai(An)
P Ay (2)dx = N;é (x— N )dx, a.7)

whered(x) is the standard Dirac delta function; see Footnote 1 for ataeation of the normaliza-
tion factor equaling/N. We call ttm, 4, the normalized spectral measure associated With

Definition 1.2 (Normalized empirical spectral distributionllet Ay € €, x have eigenvalues
Ay > --- > A;. The normalized empirical spectral distribution (the erwgail distribution of
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N/VN

normalized eigenvaluesli)fl is defined by

_ #Hi <N MfyN <2}
— N )

As FpYN(x) = [*_ pm.ay (t)dt, we see that;,"¥™ is the cumulative distribution function

associated to the measyrg 4. We are interested in the behavior of a typiEéjN/ VN as we vary
Ay inour ensembleg,, y asN — oo.

Consider any probability spa€g,, which has thé,, y as quotients. (The most obvious example
is the independent product.) This paper build on a line oepafHM, MMS, JMP] concerning var-
ious Toeplitz ensembles which fiX,, to be the space dfi-indexed strings of real numbers picked
independently fronp, with quotient maps to ead,,, y mapping a string to a matrix whose free
parameters come from an initial segment of the right lengtiere is no need for the specificities
of this construction, so we consider the general case.

FoNY () (1.8)

Definition 1.3 (Limiting spectral distribution)If as N — oo we haver;, ¥/~ converges in some

sense (for example, in probability or almost surely) to arthsition F,,,, then we say,, is the
limiting spectral distribution of the ensemble.

We investigate the symmetria-block Toeplitz and circulant ensembles. We may view these a
structurally weakened real symmetric Toeplitz and cinctinsembles. Whemn is 1 we regain the
Toeplitz (circulant) structure, while if» = N we have the general real symmetric ensemble If
is growing with the size of the matrix, we expect the eigengalto be distributed according to the
semi-circle law, while for fixedn we expect to see new limiting spectral distributions.

Following the notation of the previous subsection, for eatbgerN we Ieth)N andeﬂV de-
note the probability space of real symmetrieblock Toeplitz and circulant matrices of dimension
N, respectively. We now state our main results.

Theorem 1.4(Limiting spectral measures of symmetric block Toeplitd airculant ensembles)
Letm|N.

(1) The characteristic function of the limiting spectral measaf the symmetrien-block cir-
culant ensemble is

1 _t2/2 _t2/2, (1) t2 _t2/2, 2
Om(t) = —e Pre Ll — ) = e PPM (m+ 1,2, = /m) (1.9)
m m

whereLSL)_1 is a generalized Laguerre polynomial and a confluent hypergeometric func-
tion. The expression equals the spectral characteristiction for them x m GUE. The
limiting spectral density function (the Fourier transfoohg,,) is

eI 1 (S om N @r2s) (1Y .
Fnl@) = e 2 (Z (r+s+1)m (—5) ) (may”. - (110)

r=0 0
For any fixedm, the limiting spectral density is the product of a Gaussiawl @n even
polynomial of degre@m — 2, and has unbounded support.

(2) If m tends to infinity with\V' (at any rate) then the limiting spectral distribution of the
symmetricm-block circulant and Toeplitz ensembles, normalized bgatisg x to x/2,
converge to the semi-circle distribution; without the remalization, the convergence is to
a semi-ellipse, with densitfy;, (see(1.3)).
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FIGURE 1. Plots forfy, fs, f1, fs, f1¢ @nd the semi-circle density.

(3) Asm — oo, the limiting spectral measurefs, of them-block circulant ensemble converge
uniformly and inL? for anyp > 1t0 fwig, With | f,,.(z) — fwig ()| < m~"**<for anye > 0.

(4) The empirical spectral measures of theblock circulant and Toeplitz ensembles converge
weakly and in probability to their corresponding limitingectral measures, and we have
almost sure convergenceyifis an even function.

Figure 1 illustrates the convergence of the limiting measuo the semi-circle; numerical simu-
lations (see Figures 2, 3 and 4) illustrate the rapidity efdbnvergence. We see that even for small
m, in which case there are ontyV/2 non-zero entries in the adjacency matrices (though these ca
be any of theV? — N non-diagonal entries of the matrix), the limiting spectredasure is close to
the semi-circle. This behavior is similar to what happenth wiregular graphs, though in our case
the convergence is faster and the support is unbounded ydiréie .

Finally, the limiting eigenvalue density fen-block circulant matrices is the same as the eigen-
value density of a certain Gaussian Hermitian ensemblecifsgaly, we considern x m Hermit-
ian matrices with off-diagonal entries picked indepenbjeindbm a complex Gaussian with density
functionp(z) = %e"Z'Q, and diagonal entries picked independently from a real 8an®f mear)
and variancd. We provide a heuristic for why these densities are the sang8.il; see also [ZV]
(especially Section 5.2) for a proof.

Our results generalize to related ensembles. For exant@gwrapped) diagonals of out-
block circulant ensembles have the following structuren@mber we assume|N):

(bl,j7 b2,j7 ey bm,j; bl,j7 b?,ja ey bm,ja ey bLj, bQJ, ey bm,j) (111)
Note that we have a periodic repeating block of siz&vith m independent random variables; for
brevity, we denote this structure by
(dy,da, ... dp). (1.12)
Similar arguments handle other related ensembles, sucheasubfamily of periodn—ciculant
matrices in which some entries within the period are forodatequal. Interesting comparisons are

(dq,dy) = (dy,ds, dy, ds) versugdy, dy, ds, d) OF (dy, ds, ds, dy). While itis a natural guess that the
limiting spectral measure is determined solely by the fezmy at which each letter appears, this is
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FIGURE 2. (Left) Plotfor f, and histogram of eigenvalues of 1000 symmetric period
2-block circulant matrices of siz&)0 x 400. (Right) Plot for f3 and histogram of
eigenvalues of 1000 symmetric perigdblock circulant matrices of siz€)2 x 402.
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FIGURE 3. (Left) Plotforf, and histogram of eigenvalues of 1000 symmetric period
4-block circulant matrices of siz&)0 x 400. (Right) Plot for fg and histogram of
eigenvalues of 1000 symmetric perigdblock circulant matrices of siz€)0 x 400.
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FIGURE 4. (Left) Plotforf; and histogram of eigenvalues of 1000 symmetric period
1-block circulant matrices of siz&)0 x 400. (Right) Plot for f5, and histogram of
eigenvalues of 1000 symmetric perid@block circulant matrices of siz&)0 x 400.

false as Theorem 1.5 shows, though the differences aresdtemall that visually different patterns
seem to give rise to the same limiting distribution (see Fedguand Tables 1 to 3 in Appendix B).

Theorem 1.5.Let P = (d;,.d;,,...,d;,) where eachd;, € {d,,...,d,} and eachd; occurs
exactlyr; times in the patterr®, with r; + --- + r, = m; equivalently,P is a permutation of
(di,...,dy,do, ... do,....d,, ..., d,) with r; copies ofd;. Modify theN x N period m-block
circulant matrices by replacing the pattefd,, d, . . ., d,,,) with P (remembern|N). Then for any
P asN — oo the limiting spectral measure exists. The resulting meadoes not depend solely on
the frequencies of the letters in the pattern but also orrtbeations; in particular, while the fourth
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FIGURE 5. Eigenvalue histograms for 200 pattermedblock circulant,1200 x 1200
matrices; the first is the pattefm, b} (which may also be written a&u, b, a, b} or
{dy, dy}), the second i$a, a, b, b} and the third iSa, b, b, a}.

moments of the measures associatefitod,, d;, d>} and{d,, dy, ds, d»} are equal (interestingly,
the fourth moment of any pattern only depends on the fregegnthe sixth moments differ.

We prove our main results using the method of moments. Asithef of Theorem 1.5 is sim-
ilar to that of Theorem 1.4, we just sketch the ideas and cdéatipns in Appendix B. For our
ensembles, we first show that the average ofifhenoments over our ensemble converge to the
moments of a probability density. By studying the variancéarth moment of the difference of
the moments of the empirical spectral measures and theslwhihe average moments, we obtain
the various types of convergence by applications of Chebyslnequality and the Borel-Cantelli
Lemma. These arguments are similar to previous works inité@iure, and yield only the exis-
tence of the limiting spectral measure.

Unlike other works for related ensembles, however, we deestalbbtain explicit closed form ex-
pressions for the moments for the symmetnidlock circulant ensemble. This should be compared
to the Toeplitz ensemble case, where previous studies cmlydelate these moments to volumes
of Eulerian solids or solutions to systems of Diophantingagipns. Similar to other ensembles, we
show that the only contribution in the limit is whén= 2¢ and the indices are matched in pairs
with opposite orientation. We may view this a&/@gon with verticesi,, is), (i2,%3), - . ., (i, i1).
The first step is to note that whem = 1, similar to the circulant and palindromic Toeplitz ensem-
bles, each matching contributes 1; as there(afe- 1)!! ways to matcl2/ objects in pairs, and as
(2¢ — 1)!!'is the2/"™" moment of the standard normal, this yields the Gaussianvi@h&or general
m, the key idea is to look at the dual picture. Instead of maigimdices we match edges. In the
limit as N — oo, the only contribution occurs when the edges are matchediis with opposite
orientation. Topologically, these are exactly the pasimgnich give orientable surfaces. dfis the
genus of the associated surface, then the matching cowsibir?9. Harer and Zagier [HarZa]
determined formulas for,(¢), the number of matchings that form these orientable susfathis
yields theN — oo limit of the average/" moment is

L¢/2]
> e (m™. (1.13)
g=0

After some algebra, we express the characteristic fun¢tuich is the inverse Fourier transform;
see Footnote 3) of the limiting spectral measure as a caelamin the convolution of the associated
generating function of the,’s and the normal distribution, which we can compute usingabg’s

residue theorem. Taking the Fourier transform (approgigiatormalized) yields an explicit, closed
form expression for the density. We note that the same famatise in investigations of the
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moments for Gaussian ensembles; see Section 1.6 of [FoXah¢hs well as the references therein)
for additional comments and examples.

The paper is organized as follows. In 82 we describe the metiigoroof and derive useful
expansions for the moments in terms of quantities from algelopology. We use these in 83 to
determine the limiting spectral measures, and show coaneryin 84. We conclude in 85 with
a description of future work and related results. Appendigrdvides some needed estimates for
proving the rate of convergence in Theorem 1.4, and we cdaedluAppendix B with a discussion
of the proof of Theorem 1.5 (see [Xi] for complete details).

2. MOMENTS PRELIMINARIES

In this section we investigate the moments of the assocgedtral measures. We first describe
the general framework of the convergence proofs and thevedeseful expansions for the average
moments for our ensemble for eadh(Lemma 2.2). The average odd moments are easily seen to
vanish, and we find a useful expansion for #& moment in Lemma 2.4, relating this moment to
the number of pairings of the edges dt/fagon giving rise to a genugsurface

2.1. Markov’s Method of Moments. For the eigenvalue density of a particuldr< N symmetric
m-block circulant matrix4, we use the redundant notatigf, 4 v(z) dz (to emphasize theV
dependence), setting

pan(z)de = %;5 <x — )\\Z/(%)) dz. (2.1)

To prove Theorem 1.4, we must show

(1) asN — oo atypical matrix has its spectral measure close to the syatemage;
(2) these system averages converge to the claimed measures.

The second claim follows easily from Markov’'s Method of Mam® which we now briefly
describe. To each integér> 0 we define the random variable,.,,, v on2,, by

X (A) = / o dEAN (g); 2.2)

oo

note this is thé:™ moment of the measuye,, 4 v-

Our main tool to understand the average overAlin our ensemble of th s is the
Moment Convergence Theorem (see [Ta] for example); whéathalysis in [MMS] was simplified
by the fact that the convergence was to the standard normmlaisarguments (see also [JMP]) hold
in our case as the growth rate of the moments of our limitistydiution implies that the moments
uniquely determine a probability distribution.

é?AN/\/N’

Theorem 2.1(Moment Convergence Theorem)et { Fiy(z)} be a sequence of distribution func-
tions such that the moments
My = / 1 dFy () (2.3)

exist for all k. Let { M}, be a sequence of moments that uniquely determine a protyabili
distribution, and denote the cumulative distribution ftioe by W. If limy_, . My y = M) then
th_)OO FN(.T) = \I/(JI)
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We will see that the average moments uniquely determine aumezgand will be left with proving
that a typical matrix has a spectral measure close to thersyaverage. The™ moment ofA’s
measure, given by integrating against,, 4 v, iS

1SN /A (A" -
ManAN) = 532 (2) = s o) .4
We define
Mn;m(N) = E(Mn;m(A> N))> (25)
and set
Mygn = Jim M (N) (2.6)

(we’ll show later that the limit exists). Bi(M,,...(A, N)), we mean the expected valueldf,..,(A, N)
for a random symmetrig:-block circulant matrixd € Q,, .

2.2. Moment Expansion. We use a standard method to compute the moments. By the algenv
trace lemma,

N
Tr(A") = > A7, (2.7)
=1
o) .
Expanding ouflr(A"),
1
Mn;m<A7 N) - W Z Ai1ioAigis * " Ay s (29)
1<i1 e in <N
so by linearity of expectation,
1
Mpim(N) = N > Bt 00i - ai,)- (2.10)

1<in, o in <N

Recall that we've defined the equivalence relatioon {1, 2, ..., N}? by (i, j) ~ (¢, 5/) if and
only if a;; = ay; for all real symmetrion-block circulant matrices. That i$i, j) ~ (¢, j') if and
only if

e j—i=j —i(mod N)andi =i (mod m), or
e j—i=—(j—17)(mod N)andi = j' (mod m).

For each term in the sum in (2.10}, induces an equivalence relatienon {(1, 2), (2,3), ...,
(n,1)} by its action or (i1, i2), (i2,43), . . ., (in, 41) }. Letn(~) denote the number of-tuples with
0 <iy,...,i, < N whose indices inherit- from ~. Say~ splits up{(1,2), (2,3), ..., (n,1)}
into equivalence classes with sizég~), ..., d;(~). Because the entries of our random matrices
are independent identically distributed,

B(@1i3Qigig * * * Qi) = My () "+ Mty (2.11)

where then, are the moments gf. Thus, we may write

1
My (N) = WZ”(N)mdl(N) S My () - (2.12)
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As p has mean), mg, () - - - mg,(~) = 0 unless all of thel; are greater thaih. So all the terms in
the above sum vanish except for those coming from a relatisrhich matches at least in pairs.
Then(~) denotes the number of solutions modiNahe following system of Diophantine equa-
tions: Wheneve(s, s+ 1) ~ (t,t + 1),
® iy —is =11 — i (mod N)andig = i; (mod m), or
® iy —is=—(iys1 — i) (mod N) andiy = 4,1 (mod m).
This system has at mo&t—'N'*! solutions, a bound we obtain by completely ignoring the
(mod m) constraints (see also [MMS]). Specifically, we pick oneefi#ncei,,; — i, from each
congruence class of freely, and we are left with at mog8tchoices for the remaining ones. Finally,

we picki; freely, and this now determines all the= 7; + Z(z’S/H — iy ). This method will not
s'<s
always produce a legitimate solution, even without theod m) constraints, but it suffices to give
an upper bound on the number of solutions.
Whenn is odd, sayn = 2k + 1, thenl is at mostk. Thus wwzrn(~) < 52" N <

Nk+3/2

Nkigm Nl VR — ﬁQ”‘l =0, <\/_1N> This implies the odd moments vanish in the limit, as

Myi1m(N) = Oy (\/Lﬁ) | (2.13)

Whenn is even, say, = 2k, then/ is at mostk. If [ < k, thenl < k£ — 1, and we have, similar
to the above——n(~) < 342" 'N*! < F277INF = Lont = O, (+). If | = k, then the
entries are exactly matched in pairs, that is, alldthe= 2. As p has variancé (i.e., m, = 1), the
formula for the even moments, (2.12), becomes

1 1
Mo (N) = <7 > n(o) + O (N) : (2.14)
We've changed notation slightly. The sum is now over pasiagn {(1,2), (2,3), ..., (n,1)},

which we may consider as functions (specifically, involagevith no fixed points) as well as equiv-
alence relations. We have thus shown

Lemma 2.2. For the ensemble of symmetricblock circulant matrices,

1
Mopi1m(N) = Op | —=
2k+1; ( ) k <\/N)
1 1
where the sum is over pairingson {(1,2), (2,3), ..., (n,1)}. In particular, asN — oo the

average odd moment is zero.

2.3. Even Moments. We showed the odd moments go to zero likgy as N — oo; we now
calculate the2k™ moments. From Lemma 2.2, the only terms which contributh@limit are
those in which they,; ;_,,’s are matched in pairs. We can think of the pairing as a paioithe
edges of &k-gon with verticesl, 2, ..., 2k and edges1,2),(2,3),...,(2k,1). The vertices are
labelediy, . . ., 15, and the edges are labeled,,, . . ., a;,,;,. See Figure 6.

Note that this is dual to the diagrams for pairings that apedM, MMS], in which thea,
are represented as vertices. For more on such an identficatid its application in determining
moments for random matrix ensembles, see [Fo] (Sectiorah®]Zv].
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7/3 Qigig 712

Z5 Qjgig 7/6
FIGURE 6. Diagram for a pairing arising in computing t6& moment.

Qiyis 712

i3

Qiyiy

FIGURE 7. Some possible orientations of paired edges fo6tgen.

If a;.;,,, anda,,;,,, are paired, we have either
® ig 1 — iy =11 — i (mod N)andig = i; (mod m), or
® iy —is = —(is1 — i) (mod N) andiy = i;1 (mod m).

We think of these two cases as pairisgs+1) and(¢, t+1) with the same or opposite orientation,
respectively. For example, in Figure 7 the hexagon on thehig$ all edges paired in opposite
orientation, and the one on the right has all but the red epgiesd in opposite orientation.

We now dramatically reduce the number of pairings we mussicien by showing that the only
pairings which contribute in the limit are those in whichediges are paired with opposite orienta-
tion. Topologically, these are exactly the pairings whicregrientable surfaces [Hat, HarZa]. This
result and its proof is a minor modification of their analag$he Toeplitz and palindromic Toeplitz
cases [HM, MMS, JMP].

Lemma 2.3. Consider a pairingsr with orientationss;. If anye; is equal tol, then the pairing
contributesOy (1/n).

Proof. The size of the contribution is equal to the number of sohgito thek equations
z.s—l—l — 1y = Ej(ia(s)—l-l — z'o(s)) (IIlOd N)’ (216)

as well as somémod m) equations, divided byV***. We temporarily ignore thémod m) con-
straints and bound the contribution from above by the nurobeolutions to the(mod N) equa-
tions overN*+!. Because the, are restricted to the valuds?2, ..., N, we can consider them as
elements ofZ/NZ, and we now notate thémod N) congruences with equality.
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The pairing puts the numbets2, . . ., 2k into k£ equivalence classes of size two; arbitrarily order
the equivalence classes and pick an element from each te;calaming the other element =
o(s;).

OurZ/NZ equations now look like

is;41 — is; = €5(ir;41 — 1;) mod N. (2.17)
Defining
Ty = gy — s,
Yj = g1 — by, (2.18)

our equations now look like; = ;y,. Thus
2k k k k

0 = D iga—ic =Y z+Y y = > (5+ Dy
s=1 j=1 j=1 j=1
If any one of thes; = 1, this gives a nontrivial relation among thye, and we lose a degree of
freedom. We may choose— 1 of they; freely (inZ/NZ), and we are left with or possibly2
choices for the remaining; (depending on the parity o¥). Thez, are now determined as well,
S0is 1 — is IS Now determined for every. If we choosei; freely, this now determines all the
s =11 + Z(isq_l —iy). Thus, we have at most“~! - 2. N = 2N* solutions to (2.16). So the
s'<s
contribution from a pairing with a positive sign is at mogt(2V*/n++1) = O (1/n). (The reason
for the big-Oh constant depending éns that if some of the different pairs have the same value,
we might not havé: copies of the second moment but instead maybe four seconeénts@nd two
eighth moments; however, the contribution is trivially bded bymax; <,<x (1 + mag)*, Wheremsy,

is the2/™ moment ofp.) O
Thus we have .
Mopn(N) = Z:w(a)zv—(k“) + Oy <N) : (2.19)
wherew(o) denotes the number of solutions to
ijy1 — 1 = —(lgj41 — ipj) mod N (2.20)
and
ij = ()1, Lj+1 = lg(j) mod m (2.21)

(the second'mod m) constraint is redundant). We discuss how to evaluate thimembin closed
form, culminating in Lemma 2.4.

We now consider a given pairing as a topological identifaafsee [Hat] for an exposition of the
standard theory); this is the crux of our argument. Spedificgonsider &k-gon with the interior
filled in (homeomorphic to the disk), and identify the paissltjes with opposite orientation. Under
the identification, some vertices are identified;letenote the number of vertices in the quotient.

Consider th€Z/NZ)-submoduleA of (Z/NZ)* in which the (mod N) constraints hold. We
haveA is isomorphic taZ/NZ)**+!. Specifically, we may freely choose the value of exactly half
of the differences, . ; — i,, and then the rest are determined. Because all the painieggoposite
orientation, these “differences” sum to zero, so they ataadly realizable as differences. Now

choose;, freely, and the rest of the = i, + Z(is’ﬂ — iy ) are determined.

s'<s
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Let A denote the quotient ot in which everything is reduced modute, and consider the
(Z/mZ)-submoduleB C A in which the modulan constraints hold. By (2.21), we can see that
the labels at two vertices of ok-gon are forced to be congruefitnod m) if and only if the
vertices are identified in the quotient, and these are all(thed m) constraints. In other words,
B is isomorphic to(Z/mZ)*. An element ofA for which the (mod m) constraints also hold is
exactly one in the preimage ¢ We haven' choices for an element i, and there aré¥/m)"*!
ways to lift such an element to an elementAin its fiber. Thus, the equations have a total of
mV(N/m)F 1 = m~(k+1=0) Nk+1 g0 the pairing has a contribution af~(+1=v),

Let X be the 2-dimensional cell complex described by the paisingf the edges of th&k-
gon. Because all edges were paired in the reverse direckiors, an orientable surface. After
identifications, the complex we've described has 1 facedges, and, say,vertices. If we denote
by ¢ the genus of the surface, we obtain two expressions for ther Ebaracteristic of. By the
standard (homological) definition of Euler characteristie havey(X) = 1 — k + v. On the other
hand, for a genug surfaceX, x(X) = 2 — 2¢ [Hat]. Equating and rearranging,

2g = k+1—w. (2.22)
Thus the pairingr contributesn =29, and we have shown

Lemma 2.4. For the ensemble of symmetricblock circulant matrices,

Min(N) = Y, (kym~ + 0, (%) (2.23)

wheree, (k) denote the number of pairings of the edges a@kagon which give rise to a genus
surface.

3. DETERMINING THE LIMITING SPECTRAL MEASURES

We prove parts (1) and (2) of Theorem 1.4. Specifically, wavddhe density formula for the
limiting spectral density of symmetrie-block circulant matrices. We show thatpif grows at any
rate with IV, then the limiting spectral density is the semi-circle fottbthe symmetrien-block
circulant and Toeplitz ensembles.

3.1. The Limiting Spectral Measure of the Symmetricm-Block Circulant Ensemble.

Proof of Theorem 1.4(1)By deriving an explicit formula, we show that the limitingesyiral den-
sity function f,,, of the real symmetrien-block circulant ensemble is equal to the spectral density
function of them x m GUE.

From Lemma 2.4, th&/ — oo limit of the averagek™ moment equals

[7/2]
My = 3 ey (k)ym™, (3.1)
g=0

with ¢,(k) the number of pairings of the edges af/agon giving rise to a genugsurface. Harer
and Zagier [HarZa] give formulas for thg(k). They prove

/o k41
gy(k) = G H(ﬁ(k]j!_ ke (coefﬁcient ofz% in <m) ) (3.2)
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and

[#/2]

D e (k)T = 2k = D) e(k,7), (3.3)
where

o 1+x T
142 k,r)zhtt = : 3.4
#23 elhora = (157) 34

Thus, we may write

Mok = m~* D2k — D) e(k, m). (3.5)

We construct the characteristic functfaf the limiting spectral distribution. LeX,,, be arandom
variable with densityf,,,. Then (remembering the odd moments vanish)

oult) = Bt = 3 U M

— 14
_ i(it)%M%;m
— (2k)!
_ - 1 (k+1) 2\k
= Z . 2R — D2k — D e(k, m)(—t%)". (3.6)
In order to obtain a closed form expression, we rewrite thagatteristic function as
1 & 1/ —t2\"
onlt) = > ethom (5= 3.7

k=0

using(2k —1)!! = ml The reason for this is that we can interpret the above adaircepefficient
in the convolution of two known generating functions, whaan be isolated by a contour integral.
Specifically, consider the two functions

1 1+y\" = y = yk
F(y) = % <(Ty) —1) = kz:%c(k‘,m)yk and G(y) = €' = 2 T (3.8)

Note thatp,, (t) is the function whose power series is the sum of the prodd¢ted™ coefficients
of G(—¥’/2m) (which is related to the exponential distribution) aRly) (which is related to the
generating function of the,(k)). Thus, we may use a multiplicative convolution to find a fatan
for the sum. By Cauchy’s residue theorem, integratitig —')G(—**2/2m)2~" over the circle of
radius2 yields

onlt) = o b PG (-52) F @9

2mim z

since the constant term in the expansiod ¢t —!)G/(—#*2/2m) is exactly the sum of the products of
coefficients for which the powers gfin F(y) andG(y) are the sam&We are integrating along the

3 The characteristic function i6,,(t) = E[eXm f fm(z)e*®dz. This is the inverse Fourier transform of

fm-
4All functions are meromorphic in the region with finitely mapoles; thus the contour integral yields the sum of
the residues. See for example [SS2].
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circle of radius2 instead of the unit circle to have the pole inside the cirdlé aot on it. Thus

1 1 14+ 271\ 2 dz
() = — 1) e 2
Om(t) 2mim J), = 2271 ((1 — 2‘1) ) ‘ 2
= 1. ((Z il 1) - 1) e~
4mim J). = z—1
—t2/om m
S ]{ <(1 T ) - 1) eI
dmim )| — z—1
—t2/2m m 9 [ oo 1 P ANE
e m t s
T dmim ﬁ:2;< l ) (z—l) Zg (%) (2 —1)dz

—t2/2m

‘ e~V (3.10)

4mim |z|=2

By Cauchy’s Residue Theorem the second integral vanisteethaonly surviving terms in the
first integral are wheh— s = 1, whose coefficient is the residue. Thus

_t /2m

) = S (D)2t ()

l

1 ey e (m\ 1 (—2\"" 1 O )
:;f/”z(ﬂa_mﬂﬁ) = Ik (), (310

=1

which equals the spectral density function of thex m GUE (see [Led)]).

As the density and the characteristic function are a Fotna@isform pair, each can be recovered
from the other through either the Fourier or the inverse leouransform (see for example [SS1,
SS2]). Since the characteristic function is given by

onlt) = Be) = [ (o) do (3.12)
(whereX,, is a random variable with densitfy,), the density is regained by the relation
— 1 [ .
f(z) = Om(z) = %/ e "M, (t) dt. (3.13)

Taking the Fourier transform of the characteristic funetig,(¢), and interchanging the sum and
the integral, we get

1 o8] —t /2m m _t2 -1 "
m — - —1 xdt
f(@) o) . m ;( )l—l)'(m) ‘
— 1 - m 1 -l - Z(l—l) —t2/27n —itx
= 52 () AR /_Oot ¢ et

1 < /m 1 »
- _%Z<z>(1—1)!(_m> I (3:14)
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Completing the square in the integrand/gf we obtain

2 o 1 t 2
I, = e ™" /_OO 2= exp (—5 (\/—% +z\/ﬁx) ) dt. (3.15)

Changing variables by = \/Lmt +iy/mz, dy = \/—%dt, we find7,,, equals

]m - 6_“112/2/ (y_l-\/mx)Z(l—l) (m)?(l—l) 6_y2/2\/mdy

2(1-1)

el 3 (2@_1))(—@-@9:)2“_”_3 | veta @i

S
s=0 -

The integral above is thé" moment of the Gaussian, andiQr (s — 1)!! for evens and0 for odd
s. Since the odd terms vanish, we replace the variableith 2s and sum ovef < s < (I —1).
We find

. L /200—1)
L, = \V2me ™ Pml2 E ( 5 )(—mxz)l_l_s (2s — 1)L
s
s=0
(3.17)

Substituting this expression fdy, into (3.14) and making the change of variables [ — 1 — s,
we find that the density is

_mw2/2 m—1 1 m—r (2 + 2 )' 1 s
e m r+2s) (1 onr
Jml@) = —— Z,:o (2r)! (Zs:o (r+s+1) (r + s)ls! ( 2) (ma”)" (3.18)
This completes the proof of Theorem 1.4(1). O

3.2. The m — oo Limit and the Semi-Circle. Before proving Theorem 1.4(2), we first derive
expressions for the limits of the average moments of the sgtmenn-block Toeplitz ensemble.
We sketch the argument. Though the analysis is similar toiitsilant cousin, it presents more
difficult combinatorics. Because diagonals do not “wrapuady, certain diagonals are better to be
on than others. Consequently, the Diophantine obstruewbiHM] are present. The problems are
the matchings with “crossings”, or, in topological langaathose matchings which give rise to tori
with genusg > 1 as opposed to spheres wijh= 0. For a detailed analysis of the Diophantine
obstructions and how the added circulant structure fixas tisee [HM] and [MMS]. Fortunately,
it is easy to show that the contributions to te" moment of the symmetriee-block Toeplitz
distribution from the non-crossing (i.e, the sphericalchatgs or, in the language of [BanBo], the
Catalan words) are unhindered by Diophantine obstructimaisthus contribute fully. The number
of these matchings i€}, which is thek" Catalan numbefi; (2:) as well as thek™" moment of
the Wigner density

1 )2 H
fwig(r) = {ﬂ L=(5)" <2 (3.19)
0 otherwise.

Note that with this normalization have a semi-ellipse ant aasemi-circle; to obtain the semi-
circle, we normalize the eigenvalues by’ N and noty/N. As the other matchings contribute zero
in the limit, we obtain convergence to the Wigner semi-ei@sm — oo. We now prove the above
assertions.
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Lemma 3.1. The limit of the average of tH&:" moment of the symmetrig-block Toeplitz ensem-
ble equals
[#/2]
Mo = Cr+ Y _d(k, gym™, (3.20)
g=1
whereC}, is the k™ Catalan number and(k, g) € [0, 1] are constants corresponding to the total
contributions from the genugpairings for the2k" moment.

Proof. For the symmetrien-block Toeplitz ensemble, the analysis in 82 applies alrarattly. In
the condition fora;; = a;j-, equality replaces congruence modilo
e j—i=j —iandi =7 (mod m), or
o j—i=—(j'—1i)andi =5 (mod m).
These constraints are more restrictive, so we again obtaiiv*! as an upper bound on the
number of solutions. Following the previous argument, tdd cmoments aré\/s; . 1.,,(N) =
Ox(1/v~), and the even moments are

Mun(¥) = 55 S (o) + 0 (7). 3.21)

wheren(o) is the number of solutions to the Diophantine equationsreyisom the pairingsr on
{(1,2),(2,3),...,(2k, 1)} of the indices. Thus the odd moments vanish in the limit. Mueg, the
only matchings that contribute are the ones with negatiyessiTo see this fact, one can follow the
proof of Lemma 2.3, except working i instead ofZ /NZ.

While it is known that most matchings for the real symmetoelitz ensemble do not contribute
fully, a general expression for the size of the contribugismunknown, though there are expressions
for these in terms of volumes of Eulerian solids (see [BDdplostructions to Diophantine equa-
tions (see [HM]). These expressions imply that each magcbamtributes at most 1. We introduce
constants to denote their contribution (this correspoadsdm = 1 case). This allows us to handle
the real symmetrien-block Toeplitz ensemble, and (arguing as in the proof of ren?.4), write
the limit of the average of th&%™ moments as

/2]
MQk;m = d(kvg)m_zg' (322)
g=0

Hered(k, g) is the constant corresponding to the contributions of theige matchings. All that
is left is to show thati(k, 0), the contributions from the non-crossing or spherical imags, is the
Catalan numbet’;..

We know that the number of non-crossing matching&/bbjects intok pairs is the Catalan
numberC,. This is well-known in the literature. Alternatively, we é&w the number of non-
crossing matchings aeg(k), as these are the ones that give the genus 0 sphere. The clkivsf
immediately from (3.2) by taking the constant term ¢as 0) and notingtanh(3) = 5 — g—z +e
We are thus reduced to proving that, even with the moperiodicity, each of these pairings still
contributes 1.

One way of doing this is by induction on matchings. Considapa-crossing configuration of
contributing matchings for th2k™ moment. Consider an arbitrary matching in the configuration
and denote the matching lay;. The matching corresponds to an equation i, 1 = ;11 — .

If the matching is adjacent, meanisg= t + 1, theni,,, is free andi; = i;,5, and there is no
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“penalty” (i.e., a decrease in the contribution) from theod m) condition. We call this having the
ends of a matching “tied” (note that adjacent matchings pbaee their ends). Otherwise, note that
since we are looking at even moments, there are an even nuhipelices. Thus, to either side of
the matchingy; there can only be an even number of indices matched betweers#lves, since
otherwise some matching would be crossing aver Thus, to either side, we are reduced to the
non-crossing configurations for a lesser moment. By inductihese two sub-configurations are
tied, and then trivially tie with our initial matched pair.sAat each step there were no obstructions
on the indices, this matching contributes fully, complgtihe proof. U

Our claims about convergence to semi-circular behavior fotlaw immediately.

Proof of Theorem 1.4(2)it is trivial to show that the symmetriz-block circulant ensemble has its
limiting spectral distribution converge to the semi-edipasn — oo because we have an explicit
formula for its moments. From Lemma (2.4), we see that

. T gq(k)
lim Mg (N) = nll_rgo Z

m—o0 mZg
g<k/2

— (k) (3.23)

which in the proof of Lemma 3.1 we saw equals the Catalan nudipe
We now turn to the symmetrig:-block Toeplitz case. The proof proceeds similarly. From
Lemma 3.1 we have

lim My, = lim | Cit+ > d(k’f) = Oy, (3.24)

m—o0 m—o0

completing the proof. O

4. CONVERGENCE OF THELIMITING SPECTRAL MEASURES

We investigate several types of convergence.
(1) (Almost sure convergence) For eachXy.,, v — X, almost surely if

P ({A€Q: Xemn(A) = Xem(A) as N — o0}) = 1; 4.1)
(2) (Convergence in probability) For ea&hXy.,, v — X ., in probability if for all e > 0,
Nlim P (| Xkm n(A) = X m(A)| > €) = 0; (4.2)
—00

(3) (Weak convergence) For eakhXjy.,, v — X, weakly if
Pm(Xk’;m,N(A) < x) - P(Xk,m(A) < 1’) (4.3)

asN — oo forall z atwhichFy,  (7) :=P(X;m(A) < ) is continuous.

Alternate notations are to say eithvéith probability 1or stronglyfor almost sure convergence and
in distributionfor weak convergence; both almost sure convergence anegemnce in probability
imply weak convergence. For our purposes we tike, as the random variable which is identically
M, 1, the limit of the averagen™ moment (i.e.Jimy_, oo M, m:n), Which we show below exist and
uniquely determine a probability distribution for our engses.

We have proved the first two parts of Theorem 1.4, which tedlthat the limiting spectral mea-
sures exist and giving us, for the symmetrieblock circulant ensemble, a closed form expression
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for the density. We now prove the rest of the theorem, andrhéte the various types of conver-
gence we have. We first prove the claimed uniform convergehpart (3), and then discuss the
weak, in probability, and almost sure convergence of part (4

We use characteristic functions and Fourier analysis tavshoform (and thus pointwise) con-
vergence of the limiting spectral distribution of the syntneem-block circulant ensemble to the
semi-ellipse distribution (remember it is an semi-ellips®l not a semi-circle due to our normal-
ization). We note that this implies? convergence for every. The proof follows by showing the
characteristic functions are close, and then the Fouaastorm gives the densities are close.

Proof of Theorem 1.4(3)The densityf,, is the Fourier transform ob,, (equivalently,,, is the
characteristic function associated to the dengity where we have to be slightly careful to keep
track of the normalization of the Fourier transform; sed 2}); similarly the Wigner distribution
fwig(z) is the Fourier transform af, where the Wigner distribution (a semi-ellipse in our case d
to our normalizations) is

Foia(z) = {% 1_(%)2 if |z <2 (4.4)

0 otherwise.

As our densities are nice, we may use the Fourier inversiondta to evaluate the difference.
We find for anye > 0 that

~

[Om(@) = o) =

1 / " (Gnlt) — B(0)) et

2 J_ o
< / (Gt — O(8)] dt
< mTre (4.5)

where the bound for this integral is proved in Lemma A.1 ardbbfes from standard properties
of Laguerre polynomials and Bessel functions. Thuspass oo, f,,(z) = ggm(x) converges to
fwig(x) = qAS(x) for all z € R. As the bound on the difference depends only:oand not one, the
convergence is uniform.

We now showL? convergence. We have™ convergence because it is equivalent to a.e. uni-
form convergence. Far < p < oo, we automatically havé? convergence as we have bath
convergence and the™ norm is bounded. O

Proof of Theorem 1.4(4)The proofs of these statements follow almost immediateignfthe argu-
ments in [HM, MMS, JMP], as those proofs relied on degreeeddiom arguments. The additional
structure imposed by thénod m) relations does not substantially affect those proofs (asean
in the generalizations of the arguments from [HM] to [MMS]3d/1P]). U

5. FUTURE RESEARCH
We discuss some natural, additional questions which we toogidy in future work.

5.1. Representation Theory. The N x N m-block circulant matrices form a semisimple algebra
overR. This algebra may be decomposed infsimple subalgebras of dimensiot?, all but one

or two of which are isomorphic tl,,(C). One can show that, up to first order, this decomposition
sends our measure on symmetrieblock circulant matrices to the x m Gaussian Unitary Ensem-
ble. One may then give a more algebraic proof of our resuliscencumvent the combinatorics of
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FIGURE 8. Density of nonzero spacings of the 10 central eigenvati&801024 x
1024 symmetric circulant matrices, with independent entrieggul i.i.d.r.v. from a
Gaussian, normalized to have mean spacing 1. Compared tmexpal and GOE
densities.

pairings; combining the two proofs gives a new proof of theutts of [HarZa]. This approach will
appear in a more general setting in an upcoming paper of Kbpggeneral result may be regarded
as a central limit theorem for Artin-Wedderburn decomposibf finite-dimensional semisimple
algebras

5.2. Spacings. Another interesting topic to explore is the normalized spg& between adjacent
eigenvalues. For many years, one of the biggest conjecimreendom matrix theory was that
if the entries of a full,N x N real symmetric matrix were chosen from a nice dengitisay
mean 0, variance 1, and finite higher moments), theN as oo the spacing between normalized
eigenvalues converges to the scaling limit of the GOE, thesGan Orthogonal Ensemble (these
matrices have entries chosen from Gaussians, with diffeserances depending on whether or not
the element is on the main diagonal or not). After resistigcks for decades, this conjecture was
finally proved; see the work of Eéd, Ramirez, Schlein, and Yau [ERSY, ESY] and Tao and Vu
[TV1, TV2].

While this universality of behavior for differences seembld, not just for these full ensembles,
but also for thin ensembles such&segular graphs (see the numerical observations of Jakgpbso
(S. D.) Miller, Rivin and Rudnick [JMRRY]), we clearly do noxgect to see GOE behavior for all
thin families. A simple counterexample are diagonal masj@asV — oo the density of normalized
eigenvalues will be whatever density the entries are drasm fand the spacings between normal-
ized eigenvalues will converge to the exponential. We aésothis exponential behavior in other
ensembles. It has numerically been observed in variouslitoepsembles (see [HM, MMS]).

For the ensemble of symmetric circulant matrices, we cahaweé strictly exponential behavior
because all but or 2 (depending on the parity df/m) of the eigenvalues occur with multiplicity
two. This can be seen from the explicit formula for the eiggugs of a circulant matrix. Thus, the
limiting spacing density has a point of ma%sato. Nonetheless, theonzerospacings appear to be
distributed exponentially; see Figure 8.

Similarly, for a symmetrien-block circulant matrix, all butv —m or N—m—1 of the eigenvalues
occur with multiplicity two. The nonzero spacings appedndue the same exponential distribution
(see Figure 9). This is somewhat surprising, given that ipernsalue density varies witln and
converges to the semi-circle as — oo. While we see new eigenvalue densities forconstant,
numerics suggest that we’ll see new spacing densitie§/feiconstant.
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However, for symmetrien-block Toeplitz matrices, we see different behavior (segufé 10).
The spacings look exponentially distributed for= 1 and appear to converge to the GOE distribu-
tion as we increaser. In the Toeplitz case, but not in the circulant, we see theisga behaving

as the spectral densities do.

The representation theoretic approach will be used to shkvspacings problem for symmetric
m-block circulant matrices in an upcoming paper of Kopp. Tjp&ceng problem for block Toeplitz

matrices will require some new innovation.

APPENDIX A. POINTWISE CONVE

RGENCE ASm — o0

This appendix by Gene Kopp, Steven J. Miller and Frederickustr.

SDepartment of Physics, Williams College, fws1@williantkie
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a Gaussian, normalized to have mean spacing 1, with- 1,2,4, 16,128, 1024,
respectively. Compared to exponential and GOE densities.

The characteristic function for the spectral measureseptriodm-block circulant matrices is

(t) = - _t%micn) : (_t2)H (A1)
omlt) = e e)e—1\m ) '

(=1
which solves the differential equation

tor () + 3¢, () +t (4— (%) >¢m(t) =0 (A.2)

with initial condition,,,(0) = 1; lettingm — oo givesty” (t) + 3¢'(t) + 4té(t) = 0, with initial
condition¢(0) = 1. The solution to the finite: equation is a Laguerre polynomial, and the= oo
limitis /:(2)/; with .J; the Bessel function of order 1.

To see this, recall that the generalized Laguerre polynigise@ [AS]) has the explicit represen-
tation

8w = 3 (1) »3)

: n—1)il
=0
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To compare (A.1) with (A.3), we first shift the summation ird®y one ¢ — ¢ + 1) to find

B 1 _t2/2mm_1 m 1 [ —t? ¢
ult) = o € §:Q+Ja<%0- (A4)

=0

<€+1) B <m—1—£) (A3)

we see thah = m — 1, @ = 1, and thus the characteristic function can be written in seofthe
Laguerre polynomial:

Using the identity

1

b(t) = —e' P LM (), (A.6)
or equivalently in terms of the confluent hypergeometriction
Gm(t) = M (m+ 1,2, ~m). (A.7)

From 13.2.2 of [AS] we havém,, .. ¢,,(t) = ¢(t); however, we need some control on the rate
of convergence.

LemmaA.l. Letr > 1/sand = 2(1 — r). For all m and all¢ we have

m~(1=r) if |t < m?
[9m() = 6] < {t‘3/2 +m~ "/ exp(—/2m) otherwise, (A-8)
where the implied constant is independentobut may depend on This implies
/ () — B(8)] dt < m~ 5" (A.9)

Lettinge > 0 and takingr = 1 + 3¢ implies the integral i) (m~%°*°).

Proof. We first consider smait [t| < m” with 3 = %(1 —r). Using 13.3.7 of [AS] withu = m+1,

b =2 andz = —#/m to bound the confluent hypergeometric functiah we find

J1(2t)
t

o0

dm(t) = e M(m+ 1,2, —fm) = + 3 Au(2m) (1) 0 (20), (AL0)
n=1

whered, =1, A, =0,A, =1andA, ., = A, + j—flAn_g for n > 2.

For anyr > 1/3 andm sufficiently large we havel,, < m™ (we can'’t do better than > 1/3
asA; = %m). This follows by induction. It is clear fon < 2, and for largem we have by the
inductive assumption that

2m
Appg = A1+ ——A, 5, < m'®™Y
n+1 n1+n+1n2_m
asr > 1/3 the above is less than™ ™1 for m large. If we desire a bound to hold for ail, we
instead usel,, < ¢,m™ for ¢, sufficiently large. Substituting this bound fdr, into (A.10), noting
120 /y = ¢(t) and usingJ,,(z)| < 1 (see 9.1.60 of [AS]) yields, fot| < m!'™,

+m- mr(n—2) _ mr(n+1) . (m—27' + m1—37"); (All)

o0

n—1
(Gt —0(1)] < o Z(L) < m~ 1), (A.12)

le—r 2m1—r
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We now turn tot large: [t| > m”. Using

[Om(t) = ()] < |dm(t)] + [6(1)] (A.13)

to trivially bound the difference, the claim follows the égof the Bessel and Laguerre functions.
Specifically, (see 8.451(1) of [GR]) we have(z) < z~"/? and thus

Ji(2t o
o(t) = C (A.14)
For ¢,,(t), we use 8.978(3) of [GR], which states
L () = m= e Pyl ip 2= o (2 nx — % - g) + 0O (n*7) (A.15)

so long adm(a) = 0 andx > 0. Lettingxz = ¢*/m with |¢] > %logwm, a=1landn =m—1we
find

Snlt) = m7le LY ()
<< m—le—tQ/Q'nL |:6t2/27n (t2/m)_3/4m1/4 _|_ m—1/4]
< Y (A.16)

All that remains is to prove the claimed bound §F_[¢,,(¢) — ¢(¢)| dt. The contribution from
[t| < m” is easily seen to b®,(m"/mi-—) = O,(m~"""/*) with our choice of3. For|t| > m”, we
have a contribution bounded by

00 ' ) ) ' %) 1
2/ (t_3/2 +m e 2/2'"> dt < m™7*+ m_3/4/ exp(—*/2m)dt
mB

—o V2Tm
< m_(lf'r)/g_'_m—f’/él’ (Al?)

as the last integral is that of a Gaussian with mean zero amahe&m and hence is 1. (We chose
3 = 2(1 — r) to equalize the bounds for the two integrals.) O

APPENDIX B. GENERALIZED m-BLOCK CIRCULANT MATRICES

This appendix by Steven J. Miller and Wentao Xfong

As the proofs are similar to the proof fer-block circulant matrices, we just highlight the differ-
ences. The trace expansion from before holds, as do the arganhat the odd moments vanish.

We first explore the modulo condition to compute some low muieand show that the differ-
ence in the modulo condition between theblock circulant matrices and the generalizeeblock
circulant matrices leads to different values for momentsl, lsence limiting spectral distributions.
Thus the limiting spectral distribution depends on the ity of each element, as well as the way
the elements are arranged, inrarpattern.

6Department of Mathematics and Statistics, Williams Cdalegl@williams.edu



LIMITING SPECTRAL MEASURE FOR SYMMETRIC BLOCK CIRCULANT MARICES 27

. N/2 N
Zone 2
Zone 1
N/2 o N/2
Zone 4
Zone 3
N N/2 N

FIGURE 11. The four zones fam-block circulant matrices.

B.1. Zone-wise Locations and Pairing Conditions.Since we have restricted the computation of
moments to even moments, and have shown that the only coatfigis that contribute to thzk™
moment are those in which tl2& matrix entries are matched inpairs in opposite orientation, we
are ready to compute the moments explicitly. We start byutaling the2"® moment, which by
(2.10) is+ >1<ij<n @ijaji- As long as the matrix is symmetrie;; = a;; and the2" moment is
1. We now describe the conditions for two entrigs_ . ,, a,,;,., to be paired, denoted as,  , =
Qi <= (s,5+1) ~ (t,t+1), which we need to consider in detail for the computation ghler
moments. To facilitate the practice of checking pairingditans, we divide anV x N symmetric
m-block circulant matrix intel zones (see Figure 11), and then reduce an entry, in the matrix
to its “basic form”. Writei, = mn, + €,, wheren, € {1,2, ..., %} ande, € {0,1,...,m — 1}, we
have

o e e e e
5 > ls41 s > isist1 slst1
() ¥ <iy—isy1 <N -1=a;,,, €2zone3and,;,,, = Oy e+ renss’
4 0<iy—igy1 <5 —1=a;,, €zonedandi ., = e, m(m—nosi)+e-

In short, (i,41 — is) determines which diagonal ;. , ison. Ifa,;_,, isin zone 1 or 3 (Area l);
determines the slot af; ;. , in anm-pattern; ifa, ; , is in zone 2 or 4 (Area ll)¢,,, determines
the slot ofa;, ;. , in anm-pattern.

esr1mms+ X —ne1)+es?

Recall the two basic pairing conditions, the diagonal cbodithat we have explored before, and
the modulo condition, for which we will define an equivalemetationR. For a real symmetric
m-block circulant matrix following a generalized-pattern and any two entries;_, ,, a;,i,., inthe
matrix, suppose that andi, ., are the indices that determine the slot of the respectivéesnthen
isRiw1 ifandonlyifa, ;. ,, i, @areincertain slots in am-pattern such that these two entries can
be equal. For example, for tHe, b} pattern,i;Ri;.; <= is = i1, (mod 2); for the{a, a,b, b}
pattern,isRi;y1 <= mod (is,4), mod (it+1,4) € {1,2} or mod (is,4), mod (izy1,4) €
{3,0}.

We now formally define the two pairing conditions.

(1) (diagonal condition); — i1 = —(iy — 4¢41) (mod N).
(2) (modulo condition),Ri;;; or is11Ri;, depending on which zone(s),;. ., a;,,., are lo-
cated in.
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Since the diagonal condition implies a Diophantine equieioo each of thé: pairs of matrix entries,
we only need to choosk + 1 out of 2k i,'s, and the remaining,’s are determined. This shows
that, trivially, the number of non-trivial configuratiors hounded above hy*+!. In addition, the
diagonal condition always ensure that, ., anda,,;, ., are located in different areas. For instance,
if a;;.,, € zone 1 and; — is41 = —(iy — 941), thena,,; . € zone 4; ifa;; ., € zone 1 and
is — lsy1 = —(i — 441) — N, thena,; ., € zone 2, etc. Thus, if; determines the slot for
a;.,., Inanm pattern, then, ., determines for. if i, determines the slot far; theni,
determines for,,;, . ., and vice versa.

Considering the “basic” form of the entries, the two corali§ above are equivalent to

(1) (diagonal condition)mn,+¢€5) — (mnss1+€s11) = —(mng+€;) + (mnee1+€41) (mod N)
= M(Ns — Nop1 + M — Mg1) + (€5 — €41 + 6 — €41) =000 £ N.
(2) (modulo conditiony Re; 1 Or €, 1Re;.
Sincem|N, this requiresn|(e; — ;11 + €, — €,41). Given the range of the,’s ande,’s, we have
€s — €541 + € — €41 = 0 Oor £ m, which indicates that

Ns — Ns1 + M — Neg1 zo,il,g,gil,—g, or —Eil. (B.1)
m o m m m
As discussed before, if we allow repeated elements imgvattern, the equivalence relati@h
no longer necessitates a congruence relation as in pattesreveach element is distinct. While the
computation of high moments for generalpatterns appears intractable, fortunately we are able to
illustrate how the difference in the modulo condition affemoment values by comparing the low

moments for two simple patterds, b, a, b} and{a, a, b, b}.

Tl sls+17

B.2. The Fourth Moment. Although we can show that the higher moments differ by the thiay
elements are arranged in anpattern, thel™ moment is in fact independent of the arrangement of
elements. We show that tH& moment for anyn-pattern is determined solely by the frequency at
which each element appears, and refer the reader to App8n8liaf [KKMSX] (or [Xi]) for the
computation that thé™ moment depends on not just the frequencies but also thematte omit
the proof as it is similar to the computation of the 4th momaitthough significantly more book-
keeping is required. Briefly, for the higher moments for gats with repeated elements, there exist
“obstructions to modulo equations” that make trivial sone@trivial configurations for patterns
without repeated elements. Due to the obstructions to noocglypliations, some configurations that
are non-trivial for all-distinct patterns become trivial fpatterns with repeated elements, making
the higher moments for repeated patterns smaller.

Lemma B.1. For an ensemble of real symmetric periodblock circulant matrices of siz/, if
within eachm-pattern we have i.i.d.r.v. {a,}""_,, each of which has a fixed number of occurrences

v, such thafy""_, v, = m, the4™ moment of the limiting spectral distributionds+ """ (%)3.

I
matching thel entries in2 péirs:
(1) (adjacent, 2 variations); = a;; anday = a;; (or equivalentlya;; = a; anda;, = ax);
(2) (diagonal, 1 variation),; = ay; anda;, = ay;.
there are3 matchings, with the two adjacent matchings contributiregghme to the'™ moment.
We first consider one of the adjacent matchings,= a;;, anday, = a;;,. The pairing conditions
(B.1) in this case are:

(1) (diagonal condition) — j = k — j(mod N), k-1 =i —[(mod N);

By (2.10), we calculateNl— Zléi,j,k,lSN Q5 QARG for the 4" moment. There arg ways of
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(2) (modulo condition)Rk or jRj, kRi or IRI.

Sincel < i,j,k,l < N, the diagonal condition requirés= k, and then the modulo condition
follows trivially, regardless of then-pattern we study. Hence, we can chogsend! freely, each
with NV choices,: freely with N choices, and thet is fixed. This matching then contributes
# = 1 (fully) to the 4™ moment, so does the other adjacent matching.

We proceed to the diagonal matching, = ax anda;, = a;;. The pairing conditions (B.1) in
this case are:

(1) (diagonal condition) — j =1 — k (mod N),j — k=i —[(mod N);

(2) (modulo condition)RI or Rk, jRi or kRI.

The diagonal conditionj — & = i — [ (mod N) is equivalentta — j = [ — k (mod N), which
entails

Q)i+k=j+1o0r

2i+k=j+1l+N,or

B)i+k=j+1—N.

In any case, we only need to choose 3 indices out Hf, k£, and then the last one is fixed. In the
following argument, without loss of generality, we choose;, [) and thus fixk.

For a generain-pattern, we writg = 41, + €1, j = 41y + €3, k = 4ns + €3, = 4n4 + €4, Where
N, M2, M3,M4 € {0,1,. .., %} andey, ep,€3,¢4 € {0,1,...,m — 1}. Before we consider the’s, we
note that there exist Diophantine constraints. For exanfple k£ = j+[, giventhatl <i,j,l < N,

k = j+ 1 — i also needs to satisfy < £ < N. As aresult, we need < 7y, +ny — 1 < %
Note that, due to the,’s, sometimes we may have< 7, +ny, — n; < ﬁ + ¢, where the error
terme € (=%, %) and only trivially affects the number of choices (af, 7747771) for a fixedm as
N — oc.

We now explore the Diophantine constraints for each vamadif the diagonal condition (B.2).
Thei+ k = j+1 case is similar to that in [HM], where, in a Toeplitz matriketdiagonal condition
only entailsi + £ = j + [, and there are obstructions to the system of Diophantinatems
following the diagonal condition. However, the circulatrusture that adds+ £ = j + [+ N and
i+ k = 7+ 10— N to the diagonal condition fully makes up the Diophantinetalzdions. This
explains why the limiting spectral distribution for ensdesbof circulant matrices has the moments
of a Gaussian, while that for ensembles of Toeplitz matriessmaller even moments. We now
study the3 possibilities of the diagonal condition for the circulatrusture.

(1) Consideri + k£ = j + . We use Lemma 2.5 from [HM] to handle the obstructions to
Diophantine equations, Which sayket Iy = {1,...,N}. Then#{z,y,z € Iy : 1 <
x—i—y—zSN}:%N?’ N

In our case, letf\/ = ¥ The number of possible combinations(at, n,, 7;) that allow
0<n < % is %M?’ 1M For each ofy,, n4, n1, we havemn free choices o¢,, and thus
the number ofi, 5, 1) ISm S(EMP + 1M) = 2N3 + O(N).

(2) Consideti+k = j+1+N. Notel < k < Nrequwesﬂ <mtm-mt+E< S N
12+ 14 —m < 0. Similar to thei + k = j + [ case, we writé// = % andS = n, +n4, and
then—2 <5 —n <0= 5 < < M+ S where obviouslyS < M. We haveS + 1
ways to choosén,, ns) s.t. 7o +n4 = S, andM — S + 1 choices ofp;. The number of

’In [HM], the related lemma is proven fag, 74,17, € N, i.e., no cases whergn,m, = 0. Thus we are supposed
to start fromS = 0; however, asV — oo, the error from this becomes negligible.
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(1,7,1) is thus

ul M? 5 N3
m*> (S+1)(M -5 +1) =m? <—+M2+—M) = — +O(N?). (B.2)
& 6 6 6

(3) Consideri + k = j+1—N. Nowl < k < NrequiresO < gy +m — 1 — X <

= X<yt —m < 2L Again, we writeM = £ andS = n, + 4, and then
M<S—ng <2M = S —2M < n < S — M where obviouslyS > M. We have
2M — S + 1 ways to choosé€r,, n,) S.t. 2 + 4 = S, andS — M + 1 choices ofy);. The

number of(s, j,1) is thus

2M M3 5 N3
m* Y " (2M - S+1)(S - M+1) =m? <?+M2+6M) = ?+O(N2). (B.3)
S=M

Therefore, with the additional diagonal conditionsk = j+1+ N andi+k = 7+ 11— N induced
by the circulant structure, the number @f j, 1) is of the order(2 + 1 + )N* = N3 ie. the
circulant structure makes up the obstructions to Diopln@ngiquations in the Toeplitz case. Since
then,’s do not matter for the modulo condition, to make a non-éiconfiguration, we may choose
threen,’s freely, each with% choices, and then choose soags that satisfy the modulo condition,
which we will study below.

For the modulo condition, it is necessary to figure out whiohes the four entries are located in.
Recall that the diagonal condition will always ensure that paired entries are located in different
areas. For the" moment, each of tha variations of the diagonal condition is sufficient to ensure
that any pair of entries involved are located in the rightemanWe may check this rigorously by
enumerating all possibilities of the zone-wise locatiohthe 4 entries, e.g. if + £ = j + 1+ N,
if a;; € zone 1, themy, € zone 22 As a result, for a pair of matrix elements in the diagonal
matching, say:;; = ay,, if ¢ determines the slot in am-pattern fora,;; and thus matters for the
modulo condition, the determines for,; if ; determines for;;, thenk determines for,;, and
vice versa.

With the zone-wise issues settled, we study how to obtaimatrigial configuration for thet™
moment. Recall the modulo condition for the diagonal maighiR! or jRk, jRi or kRIl. This
entails2? = 4 sets of equivalence relations,

iRIRj; iRIRE, iRERi, jRKRI (B.4)

Each set of equivalence relations appears with a certaipapility, depending on the zone-wise
locations of thet entries. For exampléRIR; follows from:R{ andjR:, which requires both,;
anda,, € Area |. Regardless of the probability with which each setuwoscwe choose one free
index with N choices, and then another two indices such that tAesdices are related to each
other undefR. The number of choices of the two indices after the free oetisrmined solely by
the number of occurrences of the elements imapattern.

We give a specific example of making a non-trivial configunatior the4™" for two simple pat-
terns{a, b, a, b} and{a, a, b, b}. Under the conditioti + k£ = j + [, if a;; € zone 1 and;;, € zone
3, thenay, € zone 4 andy; € zone 2. We first seleat;, 7,74 such thati, j,l andk = j +1 — ¢

8This enumeration is complicated since the zone where aw eftis located imposes restrictions on the choice of
i,j, e.g. wheny, ; € zone 2, we have > & andj < §.
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k || abab (theory)|l abab (observed) aabb (observed) abba (observed) N (0, 1)
2 1.0000 1.0016 1.0014 0.9972 1
4 2.2500 2.2583 2.2541 2.2405 3
6 7.5000 7.5577 7.3212 7.2938 15
8 32.8125 33.2506 30.4822 30.5631 105
10 177.1880 180.8270 153.9530 155.6930 945

TABLE 1. Comparison of moments for various patterns involvirandb. The first
column are the theoretical values for the moments of thepatt b, and the final are

the moments of the standard normal. The middle three colamn800 simulations
of 4000 x 4000 matrices.

satisfy the zone-wise locatiofldn this case, based on pairing conditions (B.1), pairig= a
anda;, = a;; will require e;Res ande;Re;, or equivalentlye; ReoRe,. Without loss of generality,
we can start with a free, with 4 choices, then there atefree choices for each ef, ande,, and
then we have a non-trivial configuration. We have similarisunder the other two variations of
the diagonal condition and with other zone-wise locatidng; panday,. Therefore, we can choose
three out of fourm),’s freely, each with% choices, then one, with 4 choices, then another two
€,'s each with2 choices, and finally the last index is determined under thgatal condition. As
discussed before, such a choice of indices will alwaysfyatie zone-wise requirements and thus
the e-based pairing conditions. Thus there &fg)* -4 -2 -2 = NT’ choices of(i, j, k, ) that will
produce a non-trivial configuration. It follows that the tdibution from the diagonal matching to
the4 momentisy; (2 + & + 52 = 1.

The computation of theé™ moment for the simple patterns:, b, a,b} and {a,a,b,b} can be
immediately generalized to thé' moment for other patterns. As emphasized before, both ajac
matchings contribute fully to thé™ moment regardless of the-pattern. For diagonal matching,
the system of Diophantine equations induced by the diagmralition are also independent of the
m-pattern in question, and the way we count possible configuracan be easily generalized to an
arbitrarym-pattern. We have thus proved Lemma B.1.

Note that Lemma B.1 implies that th' moment for any pattern depends solely on the fre-
quency at which each element appears imaperiod. Besides théu, a, b, b} pattern that we have
studied in depth, we may easily test two extreme cases. 3ewheren = m, i.e. each ran-
dom variable appears only once, representsitigock circulant matrices from Theorem 1.4 for
which the4 moment is2 + # (andm = 1 represents the circulant matrices for which #emo-
ment is3). Numerical simulations for numerous patterns includinga, b}, {a, b, b}, {a,b,b,a},
{a,b,c,a,b,c},{a,b,c,d e e d cb a} etceterasupportLemmaB.1 as well; we present results of
some simulations in Tables 1 to 3.

At is noteworthy that the specific location of an element dépends on the,’s, but asN — oo, the probability
that then,’s alone determine the zone-wise locations of elementsoagpied,, i.e. the probability that adding the’s
changes the zone-wise location of an element approdches
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k ababab aaabbb | aaaabbbb | aaaaabbbbb aababb
2 1.0000 1.0008] 1.0001 0.9984| 0.9996
4 2.2500 2.2541) 2.2441 2.2449| 2.2502
6 7.5000 7.3011| 7.2098 7.2551| 7.2319
8| 32.8125| 30.3744) 29.5004 30.0127| 29.5378
10| 177.1880| 155.0380 145.8240 150.7220 145.4910

TABLE 2. Comparison of moments for various patterns involvirandb. The first
column are the theoretical values for the moments of thepatt b. The remaining
columns are 200 simulations 8600 x 3600 matrices.

k| abcabc || abccba | aabbee | abbecca | aabcbe
2| 1.0000|{ 1.0005| 1.0006| 0.9983| 1.0013
4| 2.1111) 2.1122] 2.1153| 2.1047| 2.1161
6| 6.1111] 6.0248] 6.0540; 6.0083| 6.0235
8| 22.0370|| 20.9398| 21.2004| 20.9908| 20.8411
10| 94.6296| 85.0241| 87.0857| 85.9902| 84.2097

TABLE 3. Comparison of moments for various patterns involvingnd b. The
first column are the theoretical values for the moments ofpiterna, b, c. The
remaining columns are 200 simulations360 x 3600 matrices.

B.3. Existence and Convergence of High MomentsAlthough it is impractical to find every mo-
ment for a generam-block circulant pattern using brute-force computatior ave still able to
prove that, for anyn-block circulant pattern, every moment exists, is finited@atisfies certain
bounds), and that there exists a limiting spectral distiiou In addition, the empirical spectral
measure of a typical real symmetric-block circulant matrix converge to this limiting measure,
and we have convergence in probability and almost sure cgenee.

We have shown that all the odd moments vanistiVas+ oo, and thus we focus on the even
moments. We need to prove the following theorem.

Theorem B.2. For any patternedn-block circulant matrix ensembl&m ., Mo (V) exists and
is finite.
Proof. It is trivial that M,,(N) is finite. As discussed before, it is bounded below by 28
moment for the ensemble of-block circulant matrices where, in the-pattern, each element is
distinct, and more importantly it is bounded above by2h® moment for the ensemble of circulant
matrices, and we know that the limiting spectral distribntior this matrix ensemble is a Gaussian.
We now show thatimy_.., Mo (N) exists. To calculatéd/,,(N), we match2k elements from
the matrix,{a;, i, Giyis» - - - » inyiy }» IN k pairs, where, € {1,2,..., N} and this will give(2k — 1)!!
matchings. For each matching, there are a certain numbeordigarations, and most of such
configurations do not contribute to the momentsvass oc.
For them-block circulant pattern, the equivalence relati®nmplies thate,Re; 1 < €, = €41,
and sincen| (e, — €41 + €, — ,41), We haver, ., = ¢, as well (see (B.1))° Thusn, — 11 + 1, —

10This explains why, for ame-pattern without repeated elements, the zone-wise latsitid matrix entries do not
matter in making a non-trivial configuration.
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m+1 = 0or =X three equations that haye )® + O((£)?) solutions in total, as we have shown
in the4™ moment computation.

However, if there are repeated elements innaperiod, thene,Re,,; no longer necessitates
€s = €41, and it is possible thae;, — e,41 + ¢, — €,.1) = £m. Thus, the zone-wise locations of
elements matter in making non-trivial configurations. Rldbat the zone-wise location (see (B.1))
of an element; ;_,, is determined byi,, — i): if a; ;.. , iSin zone 1 or 3 (Area ), determines
the slot ofa, ;_,, in anm-period; ifa; ; ., isin zone 2 or 4 (Area ll)¢,;; determines the slot of
a;;,., iInanm-period. In addition, the diagonal condition will alwaysseine that two paired entries
a;;,., anda;,;, ., are located in different areas.

Recall that for any matching, thek pairs of matrix elements, each pair in the formugf ., =
a;,q,,,, are fixed. For anyM, to make a non-trivial configuration, we first choosecarector of
length2k. If we choose all the,’s freely, there aren?* possible choices for anvector, most of
which do not meet the modulo condition, and trivialty?* is an upper bound for the number of
valid e vectors. Itis noteworthy that out of tRé& ¢,’s of ane vector, only some of the’s will matter
for the modulo condition. Whick,’s in fact matter depends on how we pair ttiematrix entries
a;,i,.,'s and the zone-wise locations of the pairgd,_ ,’s, which we cannot determine without
fixing then,’s (and thus thé,’s).

However, for any matching, the way we pair tbde matrix entries intat pairs is fixed, and for
each fixed paiwn;,; ., = a;,,,,, twWo ¢'s will matter for the modulo condition: eithetRe,.; or
€s+1Re;,. Thus there ar@* ways to choosé: pairs ofe¢,’s for each matching. For each way of
fixing the k& pairs ofe,’'s, we examine each pair, say(e, , €, ), and there are a certain number of
choices of(e, , ,,) such that,, Re,,. Continuing in this way, for eachpair, we choose twe,’s
that satisfy the equivalence relatidth Note that are, may matter twice, once, or never for the
modulo condition depending on the zone-wise locations @fifh) . ,'s. We then choose the other
e,’'s that do not matter for the modulo condition such that fategair ofa; ;_ ., = ai,,,,, we have
€s — €11+ 6 —€,.1 = 0 0r =m, and finally we have a validvector. The number of valielvectors
will be determined byn, k, and the pattern of am-period, but will be independent df since the
system ofk equivalence relations for the modulo condition does nabler V.

With a valide vector, we have fixed the zone-wise locations ofZhematrix elements by fixing
the¢,’s that matter for the modulo condition. We now turn to thegdiaal condition and study the
n,'s. With k£ equations in the form of

s+1

m(Ns — Neg1 + 1 — Mig1) + (€6 — €41 + & —€41) =00r £ N, (B.5)

and(es —es11 + €, — €,41) known in each of thé equations, we in fact haveequations in the form
of

Ns = Ns+1 T Nt — N1 = 75 (B.6)

wherey € {0,+1, 2 X +1 & X 41} This gives usk + 1 degrees of freedom in choosing
then,’s, and trivially, we can have at mos;.‘%)k“ vectors ofy,’s. Since thee vector is fixed, for
one equatioms — 7,1 + 1, — .21 = 7, there are only3 choices ofy. With k£ equations in this
form, we have at most* systems of; equations. Note that not all of thevectors satisfying an
n equation system derived from the diagonal condition wilphmake a non-trivial configuration,
since they,’'s need to be chosen such that the resulted. s will satisfy the zone-wise locations
in order to be coherent with the pre-determiregkctor. For example, if in a pair of matrix entries
Qigiy,, = Qi Wheree;Req, 1, eventhough the,’s are chosen such that — 1,1 + 7 — 91 = 7,
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it is possible that;; ., ai,i,.,
non-trivial configuration.

The following steps mirror those in [HM]. Denote grequation system bg. For anyS we
havek equations withy, n, ..., me € {1,2,.... 2} Letz, = N € {m 2z .., 1}. Without
the zone-wise concerns discussed before, the systéneqbtiations would have + 1 degrees of
freedom and determine a nice region in {lhe+ 1)-dimensional unit cube. Taking into account
the zone-wise concerns, however, we will still have- 1 degrees of freedom. For example, for
a pair of matrix elements, ;. , = a;,;,,,, the systenS requiresn, — ns41 + 1 — Ney1 = 7. |
we neede,Re, 1 t0 make a non-trivial configuration, say; ., € zone 1, then we will obtain
an additional equatiof < iy — iy < ¥ =1 = 0 < (ey1 — 1) + €41 — € < F — 1 with
(€541 —€) € {—-m+1,—m+2,...,0,1,...,m — 2,m — 1}. Based on the region determined
by ns — ns11 + n: — me1 = 7, this additional zone-related restriction will only all@nslice of the
region for us to choose valigi’'s. With £ zone-wise restrictions, only a proportion of the original
region in the unit cube will be preserved for the choice ofiflvector. Nevertheless, the “width” of
each slice is of ordeg, and we still have: + 1 degrees of freedom.

Therefore, withm fixed and asV=— oo, we obtain to first order the volume of this region,
which is finite. Unfolding back to the,’s, we obtain} s, (S)(X)*1 4+ Oy ((£)¥), whereMa(S)
is the volume associated with thissystem. Summing over all systems, we obtain the number
of non-trivial configurations for thek™ moment from this particular vector. Next, within a given
matchingM, we sum over all valid vectors, the number of which is independenf\do&s we have
shown before. In the end, we sum over {Bg — 1)!! matchings to obtain/,, N**! 4+ O, (N*), and

the 2™ moment is simplyX2X" 0N — pp, 4 O(L), 0

are located in certain zones such that we ngedRe; to ensure a

The above proves the existence of the moments. The conveegeoof follows with only minor
changes to the convergence proofs from [HM, MMS].
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