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ABSTRACT. Given an ensemble ofN × N random matrices, a natural question to ask is whether
or not the empirical spectral measures of typical matrices converge to a limiting spectral measure
asN → ∞. While this has been proved for many thin patterned ensembles sitting inside all real
symmetric matrices, frequently there is no nice closed formexpression for the limiting measure.
Further, current theorems provide few pictures of transitions between ensembles. We consider the
ensemble of symmetricm-block circulant matrices with entries i.i.d.r.v. These matrices have toroidal
diagonals periodic of periodm. We viewm as a “dial” we can “turn” from the thin ensemble of
symmetric circulant matrices, whose limiting eigenvalue density is a Gaussian, to all real symmetric
matrices, whose limiting eigenvalue density is a semi-circle. The limiting eigenvalue densitiesfm
show a visually stunning convergence to the semi-circle asm → ∞, which we prove.

In contrast to most studies of patterned matrix ensembles, our paper gives explicit closed form
expressions for the densities. We prove thatfm is the product of a Gaussian and a certain even
polynomial of degree2m − 2; the formula is the same as that for them ×m Gaussian Unitary En-
semble (GUE). The proof is by derivation of the moments from the eigenvalue trace formula. The
new feature, which allows us to obtain closed form expressions, is converting the central combina-
torial problem in the moment calculation into an equivalentcounting problem in algebraic topology.
We end with a generalization of them-block circulant pattern, dropping the assumption that them

random variables be distinct. We prove that the limiting spectral distribution exists and is determined
by the pattern of the independent elements within anm-period, depending on not only the frequency
at which each element appears, but also the way the elements are arranged.
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1. INTRODUCTION

1.1. History and Ensembles. Random matrix theory is the study of properties of matrices chosen
according to some notion of randomness, which can range fromtaking the structurally independent
entries as independent identically distributed random variables to looking at subgroups of the classi-
cal compact groups under Haar measure. While the origins of the subject go back to Wishart’s [Wis]
investigations in statistics in the 1920s, it was Wigner’s work [Wig1, Wig2, Wig3, Wig4, Wig5] in
the 1950s and Dyson’s [Dy1, Dy2] a few years later that showedits incredible power and utility, as
random matrix ensembles successfully modeled the difficultproblem of the distribution of energy
levels of heavy nuclei. The next milestone was twenty years later, when Montgomery and Dyson
[Mon] observed that the behavior of eigenvalues in certain random matrix ensembles correctly de-
scribe the statistical behavior of the zeros of the Riemann zeta function. The subject continues to
grow, with new applications ranging from chemistry to network theory [MNS] to transportation
systems [BBDS, KrSe]. See [FM, Hay] for a history of the development of the subject and the
discovery of some of these connections.

One of the most studied matrix ensembles is the ensemble ofN × N real symmetric matrices.
TheN entries on the main diagonal and the1

2
N(N − 1) entries in the upper right are taken to

be independent, identically distributed random variablesfrom a fixed probability distribution with
densityp having mean0, variance1, and finite higher moments. The remaining entries are filled in
so that the matrix is real symmetric. Thus

Prob(A) =
∏

1≤i≤j≤N

p(aij), Prob(A : aij ∈ [αij , βij]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij . (1.1)

We want to understand the eigenvalues ofA as we average over the family. Letδ(x − x0) denote
the shifted Delta functional (i.e., a unit point mass atx0, satisfying

∫
f(x)δ(x − x0)dx = f(x0)).

To eachA we associate its empirical spacing measure:

µA,N(x) =
1

N

N∑

i=1

δ

(
x− λi(A)√

N

)
. (1.2)
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Using the Central Limit Theorem, one readily sees that the correct scale to study the eigenvalues is
on the order of

√
N .1 The most natural question to ask is: How many normalized eigenvalues of a

‘typical’ matrix lie in a fixed interval asN → ∞? Wigner proved that the answer is the semi-circle.
This means that asN → ∞ the empirical spacing measures of almost allA converge to the density
of the semi-ellipse (with our normalization), whose density is

fWig(x) =

{
1
π

√
1−

(
x
2

)2
if |x| ≤ 2

0 otherwise;
(1.3)

to obtain the standard semi-circle law we need to normalize the eigenvalues by2
√
N and not

√
N .

As the eigenvalues of any real symmetric matrix are real, we can ask whether or not a limiting
distribution exists for the density of normalized eigenvalues for other ensembles. There are many
interesting families to study. McKay [McK] proved that the limiting spectral measure for adjacency
matrices attached tod-regular graphs onN vertices exists, and asN → ∞, for almost all such
graphs the associated measures converge to Kesten’s measure

fKesten,d(x) =

{
d

2π(d2−x2)

√
4(d− 1)− x2, |x| ≤ 2

√
d− 1

0 otherwise
(1.4)

(note that the measures may be scaled such that asd → ∞ they converge to the semi-circle distri-
bution).

This example and its behavior are typical for what we hope to find and prove. Specifically, we
are looking for a thin subfamily that has different behaviorbut, as we fatten the ensemble to the full
family of all real symmetric matrices, the limiting spectral measure converges to the semi-circle.
Numerous researchers have studied a multitude of special, patterned matrices; we do not attempt to
do this vast subject justice, but rather concentrate on a fewensembles closely related to our work.

All of the ensembles we consider here are linked ensembles (see [BanBo]). A linked ensemble of
N ×N matrices is specified by a link functionLN : {1, 2, . . . , N}2 → S to some setS. To s ∈ S,
assign random variablesxs which are independent, identically distributed from a fixedprobability
distribution with densityp having mean0, variance1, and finite higher moments. Set the(i, j)th

entry of the matrixai,j := xLN (i,j).
2 For some linked ensembles, including those we examine here,

it is be more convenient to specify the ensemble not by the link function, but by the equivalence
relation∼ it induces on{1, 2, . . . , N}2. A link function may be uncovered as the quotient map to the
set of equivalence classes{1, 2, . . . , N}2 ։ {1, 2, . . . , N}2/ ∼. For example, the real symmetric
ensemble is specified by the equivalence relation(i, j) ∼ (j, i).

One interesting thin linked ensemble is that of real symmetric Toeplitz matrices, which are con-
stant along its diagonals. The limiting measure is close to but not a Gaussian (see [BCG, BDJ,
HM]); however, in [MMS] the sub-ensemble where the first row is replaced with a palindrome is
shown to have the Gaussian as its limiting measure. While theapproach in [MMS] involves an
analysis of an associated system of Diophantine equations,using Cauchy’s interlacing property one

1∑N

i=1 λ
2
i = Trace(A2) =

∑
i,j≤N a2ij ; as the mean is zero and the variance is one for eachaij , this sum is of the

orderN2, implying the average square of an eigenvalue isN .
2For general linked ensembles, it may make more sense to weight the random variables by how often they occur in

the matrix:ai,j := cN |L−1
N ({LN (i, j)})|−1xLN (i,j). For the real symmetric ensemble, this corresponds to weighting

the entries along the diagonal by2. In that case, and for the ensembles we examine here, this modification changes only
lower order terms in the calculations of the limiting spectral measure.
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can show that this problem is equivalent to determining the limiting spectral measure of symmetric
circulant matrices (also studied in [BM]).

While these and other ensembles related to circulant, Toeplitz, and patterned matrices are a very
active area [BasBo1, BasBo2, BanBo, BCG, BH, BM, BDJ, HM, MMS], of particular interest to
us are ensembles of patterned matrices with a variable parameter controlling the symmetry. We
desire to deform a family of matrices, starting off with a highly structured family and ending with
the essentially structureless case of real symmetric matrices. This is in contrast to some other work,
such as Kargin [Kar] (who studied banded Toeplitz matrices)and Jackson, Miller, and Pham [JMP]
(who studied Toeplitz matrices whose first row had a fixed but arbitrarily number of palindromes).
In these cases the ensembles are converging to the full Toeplitz ensemble (either as the band grows
or the number of palindromes decreases).

Our main ensemble is what we call the ensemble ofm-block circulant matrices. A real sym-
metric circulant matrix (also called a symmetric circulantmatrix) is a real symmetric matrix that
is constant along diagonals and has first row(x0, x1, x2, . . . , x2, x1). Note that except for the main
diagonal, a diagonal of lengthN − k in the upper right is paired with a diagonal of lengthk in
the bottom left, and all entries along these two diagonals are equal. We study block Toeplitz and
circulant matrices withm×m blocks. The diagonals of such matrices are periodic of periodm.

Definition 1.1 (m-Block Toeplitz and Circulant Matrices). Let m|N . AnN × N real symmetric
m-block Toeplitz matrix is a Toeplitz matrix of the form




B0 B1 B2 · · · BN/m−1

B−1 B0 B1 · · · BN/m−2

B−2 B−1 B0 · · · BN/m−3
...

...
...

. . .
...

B1−N/m B2−N/m B3−N/m · · · B0




,

with eachBi anm×m real matrix. Anm-block circulant matrix is one of the above form for which
B−i = Bn−i.

We investigate real symmetricm-block Toeplitz and circulant matrices. In such matrices, a
generic set of paired diagonals is composed ofm independent entries, placed periodically; however,
as the matrix is real symmetric, this condition occasionally forces additional entries on the paired
diagonals of lengthN/2 to be equal.

For example, an8× 8 symmetric2-block Toeplitz matrix has the form




c0 c1 c2 c3 c4 c5 c6 c7
c1 d0 d1 d2 d3 d4 d5 d6
c2 d1 c0 c1 c2 c3 c4 c5
c3 d2 c1 d0 d1 d2 d3 d4
c4 d3 c2 d1 c0 c1 c2 c3
c5 d4 c3 d2 c1 d0 d1 d2
c6 d5 c4 d3 c2 d1 c0 c1
c7 d6 c5 d4 c3 d2 c1 d0




, (1.5)
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while a6× 6 and an8× 8 symmetric2-block circulant matrix have the form




c0 c1 c2 c3 c2 d1
c1 d0 d1 d2 c3 d2
c2 d1 c0 c1 c2 c3
c3 d2 c1 d0 d1 d2
c2 c3 c2 d1 c0 c1
d1 d2 c3 d2 c1 d0




,




c0 c1 c2 c3 c4 d3 c2 d1
c1 d0 d1 d2 d3 d4 c3 d2
c2 d1 c0 c1 c2 c3 c4 d3
c3 d2 c1 d0 d1 d2 d3 d4
c4 d3 c2 d1 c0 c1 c2 c3
d3 d4 c3 d2 c1 d0 d1 d2
c2 c3 c4 d3 c2 d1 c0 c1
d1 d2 d3 d4 c3 d2 c1 d0




; (1.6)

Note for the6 × 6 matrix that being real symmetric forces the paired diagonals of lengthN/2 (i.e.,
3) to have just one and not two independent random variables.An equivalent viewpoint is that each
‘wrapped’ diagonal is periodic with periodm and hasm distinct random variables. Note that the
diagonals are wrapped toroidally, and each such diagonal hasN elements.

Clearly ifm = 1 these ensembles reduce to the previous cases, and asm → ∞ they approach the
full family of real symmetric matrices; in other words, the circulant or Toeplitz structure vanishes as
m → ∞, but for any finitem there is additional structure. The goal of this paper is to determine the
limiting spectral measures for these families and to quantify how the convergence to the semi-circle
depends onm. We find an explicit closed form expression for the limiting spectral density of the
m-block circulant family as a product of a Gaussian and a degree2m− 2 polynomial.

1.2. Results. Before stating our results, we must define the probability spaces where our ensemble
lives and state the various types of convergence that we can prove. We provide full details for the
m-block circulant matrices, as the related Toeplitz ensemble is similar. The following definitions
and set-up are standard, but are included for completeness.We paraphrase from [MMS, JMP] with
permission.

Fix m and for each integerN letΩm,N denote the set ofm-block circulant matrices of dimension
N . Define an equivalence relation≃ on {1, 2, . . . , N}2. Say that(i, j) ≃ (i′, j′) if and only if
aij = ai′j′ for all m-block circulant matrices, in other words, if

• j − i ≡ j′ − i′ (mod N) andi ≡ i′ (mod m), or
• j − i ≡ −(j′ − i′) (mod N) andi ≡ j′ (mod m).

Consider the quotient{1, 2, . . . , N}2 ։ {1, 2, . . . , N}2/ ≃. This induces an injectionR{1,2,...,N}2/≃

→֒ RN2
. The setR{1,2,...,N}2/≃ has the structure of a probability space with the product measure of

p(x) dx with itself |{1, 2, . . . , N}2/ ≃ | times, wheredx is Lebesgue measure. We define the prob-
ability space(Ωm,N ,Fm,N ,Pm,N) to be its image inRN2

= MN2(R) under the injection, with the
same distribution.

To eachAN ∈ Ωm,N we attach a measure by placing a point mass of size1/N at each normalized
eigenvalueλi(AN ):

µm,AN
(x)dx =

1

N

N∑

i=1

δ

(
x− λi(AN)√

N

)
dx, (1.7)

whereδ(x) is the standard Dirac delta function; see Footnote 1 for an explanation of the normaliza-
tion factor equaling

√
N . We callµm,AN

the normalized spectral measure associated withAN .

Definition 1.2 (Normalized empirical spectral distribution). Let AN ∈ Ωm,N have eigenvalues
λN ≥ · · · ≥ λ1. The normalized empirical spectral distribution (the empirical distribution of
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normalized eigenvalues)F
AN/

√
N

m is defined by

F
AN/

√
N

m (x) =
#{i ≤ N : λi/

√
N ≤ x}

N
. (1.8)

As F
AN/

√
N

m (x) =
∫ x

−∞ µm,AN
(t)dt, we see thatF

AN/
√

N
m is the cumulative distribution function

associated to the measureµn,AN
. We are interested in the behavior of a typicalF

AN/
√

N
m as we vary

AN in our ensemblesΩm,N asN → ∞.
Consider any probability spaceΩm which has theΩm,N as quotients. (The most obvious example

is the independent product.) This paper build on a line of papers [HM, MMS, JMP] concerning var-
ious Toeplitz ensembles which fixΩm to be the space ofN-indexed strings of real numbers picked
independently fromp, with quotient maps to eachΩm,N mapping a string to a matrix whose free
parameters come from an initial segment of the right length.There is no need for the specificities
of this construction, so we consider the general case.

Definition 1.3 (Limiting spectral distribution). If asN → ∞ we haveF
AN/

√
N

m converges in some
sense (for example, in probability or almost surely) to a distribution Fm, then we sayFm is the
limiting spectral distribution of the ensemble.

We investigate the symmetricm-block Toeplitz and circulant ensembles. We may view these as
structurally weakened real symmetric Toeplitz and circulant ensembles. Whenm is 1 we regain the
Toeplitz (circulant) structure, while ifm = N we have the general real symmetric ensemble. Ifm
is growing with the size of the matrix, we expect the eigenvalues to be distributed according to the
semi-circle law, while for fixedm we expect to see new limiting spectral distributions.

Following the notation of the previous subsection, for eachintegerN we letΩ(T )
m,N andΩ(C)

m,N de-
note the probability space of real symmetricm-block Toeplitz and circulant matrices of dimension
N , respectively. We now state our main results.

Theorem 1.4(Limiting spectral measures of symmetric block Toeplitz and circulant ensembles).
Letm|N .

(1) The characteristic function of the limiting spectral measure of the symmetricm-block cir-
culant ensemble is

φm(t) =
1

m
e−

t2/2me−
t2/2mL

(1)
m−1

(
t2

m

)
= e−

t2/2mM (m+ 1, 2,−t2/m) , (1.9)

whereL(1)
m−1 is a generalized Laguerre polynomial andM a confluent hypergeometric func-

tion. The expression equals the spectral characteristic function for them × m GUE. The
limiting spectral density function (the Fourier transformof φm) is

fm(x) =
e−mx2/2

√
2πm

m−1∑

r=0

1

(2r)!

(
m−r∑

s=0

(
m

r + s+ 1

)
(2r + 2s)!

(r + s)!s!

(
−1

2

)s
)
(mx2)r. (1.10)

For any fixedm, the limiting spectral density is the product of a Gaussian and an even
polynomial of degree2m− 2, and has unbounded support.

(2) If m tends to infinity withN (at any rate) then the limiting spectral distribution of the
symmetricm-block circulant and Toeplitz ensembles, normalized by rescaling x to x/2,
converge to the semi-circle distribution; without the renormalization, the convergence is to
a semi-ellipse, with densityfWig (see(1.3)).
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FIGURE 1. Plots forf1, f2, f4, f8, f16 and the semi-circle density.

(3) Asm → ∞, the limiting spectral measuresfm of them-block circulant ensemble converge
uniformly and inLp for anyp ≥ 1 to fWig, with |fm(x)−fWig(x)| ≪ m−2/9+ǫ for anyǫ > 0.

(4) The empirical spectral measures of them-block circulant and Toeplitz ensembles converge
weakly and in probability to their corresponding limiting spectral measures, and we have
almost sure convergence ifp is an even function.

Figure 1 illustrates the convergence of the limiting measures to the semi-circle; numerical simu-
lations (see Figures 2, 3 and 4) illustrate the rapidity of the convergence. We see that even for small
m, in which case there are onlymN/2 non-zero entries in the adjacency matrices (though these can
be any of theN2 −N non-diagonal entries of the matrix), the limiting spectralmeasure is close to
the semi-circle. This behavior is similar to what happens with d-regular graphs, though in our case
the convergence is faster and the support is unbounded for any finitem.

Finally, the limiting eigenvalue density form-block circulant matrices is the same as the eigen-
value density of a certain Gaussian Hermitian ensemble. Specifically, we considerm×m Hermit-
ian matrices with off-diagonal entries picked independently from a complex Gaussian with density
functionp(z) = 1

π
e−|z|2, and diagonal entries picked independently from a real Gaussian of mean0

and variance1. We provide a heuristic for why these densities are the same in §5.1; see also [Zv]
(especially Section 5.2) for a proof.

Our results generalize to related ensembles. For example, the (wrapped) diagonals of ourm-
block circulant ensembles have the following structure (remember we assumem|N):

(b1,j , b2,j , . . . , bm,j, b1,j , b2,j , . . . , bm,j , . . . , b1,j, b2,j , . . . , bm,j). (1.11)

Note that we have a periodic repeating block of sizem with m independent random variables; for
brevity, we denote this structure by

(d1, d2, . . . , dm). (1.12)

Similar arguments handle other related ensembles, such as the subfamily of periodm–ciculant
matrices in which some entries within the period are forced to be equal. Interesting comparisons are
(d1, d2) = (d1, d2, d1, d2) versus(d1, d1, d2, d2) or (d1, d2, d2, d1). While it is a natural guess that the
limiting spectral measure is determined solely by the frequency at which each letter appears, this is



8 MURAT KOLOĞLU, GENE S. KOPP, AND STEVEN J. MILLER

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

FIGURE 2. (Left) Plot forf2 and histogram of eigenvalues of 1000 symmetric period
2-block circulant matrices of size400 × 400. (Right) Plot forf3 and histogram of
eigenvalues of 1000 symmetric period3-block circulant matrices of size402× 402.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

FIGURE 3. (Left) Plot forf4 and histogram of eigenvalues of 1000 symmetric period
4-block circulant matrices of size400 × 400. (Right) Plot forf8 and histogram of
eigenvalues of 1000 symmetric period8-block circulant matrices of size400× 400.
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FIGURE 4. (Left) Plot forf1 and histogram of eigenvalues of 1000 symmetric period
1-block circulant matrices of size400 × 400. (Right) Plot forf20 and histogram of
eigenvalues of 1000 symmetric period20-block circulant matrices of size400×400.

false as Theorem 1.5 shows, though the differences are oftenso small that visually different patterns
seem to give rise to the same limiting distribution (see Figure 5 and Tables 1 to 3 in Appendix B ).

Theorem 1.5. Let P = (di1, di2 , . . . , dim) where eachdij ∈ {d1, . . . , dν} and eachdi occurs
exactlyri times in the patternP, with r1 + · · · + rν = m; equivalently,P is a permutation of
(d1, . . . , d1, d2, . . . , d2, . . . , dν , . . . , dν) with ri copies ofdi. Modify theN × N period m-block
circulant matrices by replacing the pattern(d1, d2, . . . , dm) withP (rememberm|N). Then for any
P asN → ∞ the limiting spectral measure exists. The resulting measure does not depend solely on
the frequencies of the letters in the pattern but also on their locations; in particular, while the fourth
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{a,b}
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FIGURE 5. Eigenvalue histograms for 200 patternedm-block circulant,1200×1200
matrices; the first is the pattern{a, b} (which may also be written as{a, b, a, b} or
{d1, d2}), the second is{a, a, b, b} and the third is{a, b, b, a}.

moments of the measures associated to{d1, d2, d1, d2} and{d1, d1, d2, d2} are equal (interestingly,
the fourth moment of any pattern only depends on the frequencies), the sixth moments differ.

We prove our main results using the method of moments. As the proof of Theorem 1.5 is sim-
ilar to that of Theorem 1.4, we just sketch the ideas and computations in Appendix B. For our
ensembles, we first show that the average of thekth moments over our ensemble converge to the
moments of a probability density. By studying the variance or fourth moment of the difference of
the moments of the empirical spectral measures and the limits of the average moments, we obtain
the various types of convergence by applications of Chebyshev’s inequality and the Borel-Cantelli
Lemma. These arguments are similar to previous works in the literature, and yield only the exis-
tence of the limiting spectral measure.

Unlike other works for related ensembles, however, we are able to obtain explicit closed form ex-
pressions for the moments for the symmetricm-block circulant ensemble. This should be compared
to the Toeplitz ensemble case, where previous studies couldonly relate these moments to volumes
of Eulerian solids or solutions to systems of Diophantine equations. Similar to other ensembles, we
show that the only contribution in the limit is whenk = 2ℓ and the indices are matched in pairs
with opposite orientation. We may view this as a2ℓ-gon with vertices(i1, i2), (i2, i3), . . . , (i2ℓ, i1).
The first step is to note that whenm = 1, similar to the circulant and palindromic Toeplitz ensem-
bles, each matching contributes 1; as there are(2ℓ− 1)!! ways to match2ℓ objects in pairs, and as
(2ℓ− 1)!! is the2ℓth moment of the standard normal, this yields the Gaussian behavior. For general
m, the key idea is to look at the dual picture. Instead of matching indices we match edges. In the
limit asN → ∞, the only contribution occurs when the edges are matched in pairs with opposite
orientation. Topologically, these are exactly the pairings which give orientable surfaces. Ifg is the
genus of the associated surface, then the matching contributesm−2g. Harer and Zagier [HarZa]
determined formulas forεg(ℓ), the number of matchings that form these orientable surfaces. This
yields theN → ∞ limit of the average2ℓth moment is

⌊ℓ/2⌋∑

g=0

εg(ℓ)m
−2g. (1.13)

After some algebra, we express the characteristic function(which is the inverse Fourier transform;
see Footnote 3) of the limiting spectral measure as a certainterm in the convolution of the associated
generating function of theεg’s and the normal distribution, which we can compute using Cauchy’s
residue theorem. Taking the Fourier transform (appropriately normalized) yields an explicit, closed
form expression for the density. We note that the same formulas arise in investigations of the
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moments for Gaussian ensembles; see Section 1.6 of [Fo] and [Zv] (as well as the references therein)
for additional comments and examples.

The paper is organized as follows. In §2 we describe the method of proof and derive useful
expansions for the moments in terms of quantities from algebraic topology. We use these in §3 to
determine the limiting spectral measures, and show convergence in §4. We conclude in §5 with
a description of future work and related results. Appendix Aprovides some needed estimates for
proving the rate of convergence in Theorem 1.4, and we conclude in Appendix B with a discussion
of the proof of Theorem 1.5 (see [Xi] for complete details).

2. MOMENTS PRELIMINARIES

In this section we investigate the moments of the associatedspectral measures. We first describe
the general framework of the convergence proofs and then derive useful expansions for the average
moments for our ensemble for eachN (Lemma 2.2). The average odd moments are easily seen to
vanish, and we find a useful expansion for the2kth moment in Lemma 2.4, relating this moment to
the number of pairings of the edges of a2k-gon giving rise to a genusg surface

2.1. Markov’s Method of Moments. For the eigenvalue density of a particularN ×N symmetric
m-block circulant matrixA, we use the redundant notationµm,A,N(x) dx (to emphasize theN
dependence), setting

µA,N(x) dx :=
1

N

N∑

i=1

δ

(
x− λi(A)√

N

)
dx. (2.1)

To prove Theorem 1.4, we must show

(1) asN → ∞ a typical matrix has its spectral measure close to the systemaverage;
(2) these system averages converge to the claimed measures.

The second claim follows easily from Markov’s Method of Moments, which we now briefly
describe. To each integerk ≥ 0 we define the random variableXk;m,N onΩm by

Xk;m,N(A) =

∫ ∞

−∞
xk dF

AN/
√

N

m (x); (2.2)

note this is thekth moment of the measureµm,A,N .
Our main tool to understand the average over allA in our ensemble of theF

AN/
√

N
m ’s is the

Moment Convergence Theorem (see [Ta] for example); while the analysis in [MMS] was simplified
by the fact that the convergence was to the standard normal, similar arguments (see also [JMP]) hold
in our case as the growth rate of the moments of our limiting distribution implies that the moments
uniquely determine a probability distribution.

Theorem 2.1(Moment Convergence Theorem). Let {FN(x)} be a sequence of distribution func-
tions such that the moments

Mk;N =

∫ ∞

−∞
xkdFN(x) (2.3)

exist for all k. Let {Mk}∞k=1 be a sequence of moments that uniquely determine a probability
distribution, and denote the cumulative distribution function byΨ. If limN→∞Mk,N = Mk then
limN→∞ FN(x) = Ψ(x).
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We will see that the average moments uniquely determine a measure, and will be left with proving
that a typical matrix has a spectral measure close to the system average. Thenth moment ofA’s
measure, given by integratingxn againstµm,A,N , is

Mn;m(A,N) =
1

N

N∑

i=1

(
λi(A)√

N

)n

=
1

Nn/2+1

N∑

i=1

λn
i (A). (2.4)

We define
Mn;m(N) := E(Mn;m(A,N)), (2.5)

and set
Mn;m := lim

N→∞
Mn;m(N) (2.6)

(we’ll show later that the limit exists). ByE(Mn;m(A,N)), we mean the expected value ofMn;m(A,N)
for a random symmetricm-block circulant matrixA ∈ Ωm,N .

2.2. Moment Expansion. We use a standard method to compute the moments. By the eigenvalue
trace lemma,

Tr(An) =

N∑

i=1

λn
i , (2.7)

so

Mn;m(A,N) =
1

Nn/2+1
Tr(An). (2.8)

Expanding outTr(An),

Mn;m(A,N) =
1

Nn/2+1

∑

1≤i1,...,in≤N

ai1i2ai2i3 · · · aini1 , (2.9)

so by linearity of expectation,

Mn;m(N) =
1

Nn/2+1

∑

1≤i1,...,in≤N

E(ai1i2ai2i3 · · · aini1). (2.10)

Recall that we’ve defined the equivalence relation≃ on {1, 2, . . . , N}2 by (i, j) ≃ (i′, j′) if and
only if aij = ai′j′ for all real symmetricm-block circulant matrices. That is,(i, j) ≃ (i′, j′) if and
only if

• j − i ≡ j′ − i′ (mod N) andi ≡ i′ (mod m), or
• j − i ≡ −(j′ − i′) (mod N) andi ≡ j′ (mod m).

For each term in the sum in (2.10),≃ induces an equivalence relation∼ on {(1, 2), (2, 3), . . . ,
(n, 1)} by its action on{(i1, i2), (i2, i3), . . . , (in, i1)}. Let η(∼) denote the number ofn-tuples with
0 ≤ i1, . . . , in ≤ N whose indices inherit∼ from ≃. Say∼ splits up{(1, 2), (2, 3), . . . , (n, 1)}
into equivalence classes with sizesd1(∼), . . . , dl(∼). Because the entries of our random matrices
are independent identically distributed,

E(ai1i2ai2i3 · · · aini1) = md1(∼) · · ·mdl(∼), (2.11)

where themd are the moments ofp. Thus, we may write

Mn;m(N) =
1

Nn/2+1

∑

∼
η(∼)md1(∼) · · ·mdl(∼). (2.12)
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As p has mean0, md1(∼) · · ·mdl(∼) = 0 unless all of thedj are greater than1. So all the terms in
the above sum vanish except for those coming from a relation∼ which matches at least in pairs.

Theη(∼) denotes the number of solutions moduloN the following system of Diophantine equa-
tions: Whenever(s, s+ 1) ∼ (t, t+ 1),

• is+1 − is ≡ it+1 − it (mod N) andis ≡ it (mod m), or
• is+1 − is ≡ −(it+1 − it) (mod N) andis ≡ it+1 (mod m).

This system has at most2n−lN l+1 solutions, a bound we obtain by completely ignoring the
(mod m) constraints (see also [MMS]). Specifically, we pick one differenceis+1 − is from each
congruence class of∼ freely, and we are left with at most2 choices for the remaining ones. Finally,
we pick i1 freely, and this now determines all theis = i1 +

∑

s′<s

(is′+1 − is′). This method will not

always produce a legitimate solution, even without the(mod m) constraints, but it suffices to give
an upper bound on the number of solutions.

Whenn is odd, sayn = 2k + 1, thenl is at mostk. Thus 1
Nn/2+1η(∼) ≤ 1

Nk+3/22
n−lN l+1 ≤

1

Nk+3/22
n−lNk+1 = 1√

N
2n−l = On

(
1√
N

)
. This implies the odd moments vanish in the limit, as

M2k+1;m(N) = Ok

(
1√
N

)
. (2.13)

Whenn is even, sayn = 2k, thenl is at mostk. If l < k, thenl ≤ k − 1, and we have, similar
to the above, 1

Nn/2+1η(∼) ≤ 1
Nk+12

n−lN l+1 ≤ 1
Nk+12

n−lNk = 1
N
2n−l = On

(
1
N

)
. If l = k, then the

entries are exactly matched in pairs, that is, all thedj = 2. As p has variance1 (i.e.,m2 = 1), the
formula for the even moments, (2.12), becomes

M2k;m(N) =
1

Nk+1

∑

σ

η(σ) +Ok

(
1

N

)
. (2.14)

We’ve changed notation slightly. The sum is now over pairings σ on {(1, 2), (2, 3), . . . , (n, 1)},
which we may consider as functions (specifically, involutions with no fixed points) as well as equiv-
alence relations. We have thus shown

Lemma 2.2. For the ensemble of symmetricm-block circulant matrices,

M2k+1;m(N) = Ok

(
1√
N

)

M2k;m(N) =
1

Nk+1

∑

σ

η(σ) +Ok

(
1

N

)
, (2.15)

where the sum is over pairingsσ on {(1, 2), (2, 3), . . . , (n, 1)}. In particular, asN → ∞ the
average odd moment is zero.

2.3. Even Moments. We showed the odd moments go to zero like1/
√
N asN → ∞; we now

calculate the2kth moments. From Lemma 2.2, the only terms which contribute in the limit are
those in which theaisis+1 ’s are matched in pairs. We can think of the pairing as a pairing of the
edges of a2k-gon with vertices1, 2, . . . , 2k and edges(1, 2), (2, 3), . . . , (2k, 1). The vertices are
labeledi1, . . . , i2k and the edges are labeledai1i2 , . . . , ai2ki1 . See Figure 6.

Note that this is dual to the diagrams for pairings that appear in [HM, MMS], in which theaisis+1

are represented as vertices. For more on such an identification and its application in determining
moments for random matrix ensembles, see [Fo] (Section 1.6)and [Zv].



LIMITING SPECTRAL MEASURE FOR SYMMETRIC BLOCK CIRCULANT MATRICES 13

FIGURE 6. Diagram for a pairing arising in computing the6th moment.

FIGURE 7. Some possible orientations of paired edges for the6-gon.

If aisis+1 andaitit+1 are paired, we have either

• is+1 − is ≡ it+1 − it (mod N) andis ≡ it (mod m), or
• is+1 − is ≡ −(it+1 − it) (mod N) andis ≡ it+1 (mod m).

We think of these two cases as pairing(s, s+1) and(t, t+1)with the same or opposite orientation,
respectively. For example, in Figure 7 the hexagon on the left has all edges paired in opposite
orientation, and the one on the right has all but the red edgespaired in opposite orientation.

We now dramatically reduce the number of pairings we must consider by showing that the only
pairings which contribute in the limit are those in which alledges are paired with opposite orienta-
tion. Topologically, these are exactly the pairings which give orientable surfaces [Hat, HarZa]. This
result and its proof is a minor modification of their analogs in the Toeplitz and palindromic Toeplitz
cases [HM, MMS, JMP].

Lemma 2.3. Consider a pairingσ with orientationsεj. If any εj is equal to1, then the pairing
contributesOk(1/N).

Proof. The size of the contribution is equal to the number of solutions to thek equations

is+1 − is ≡ εj(iσ(s)+1 − iσ(s)) (mod N), (2.16)

as well as some(mod m) equations, divided byNk+1. We temporarily ignore the(mod m) con-
straints and bound the contribution from above by the numberof solutions to the(mod N) equa-
tions overNk+1. Because theis are restricted to the values1, 2, . . . , N , we can consider them as
elements ofZ/NZ, and we now notate the(mod N) congruences with equality.
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The pairing puts the numbers1, 2, . . . , 2k into k equivalence classes of size two; arbitrarily order
the equivalence classes and pick an element from each to callsj, naming the other elementtj =
σ(sj).

OurZ/NZ equations now look like

isj+1 − isj = εj(itj+1 − itj ) mod N. (2.17)

Defining

xj := isj+1 − isj
yj := itj+1 − itj , (2.18)

our equations now look likexj = εjyj. Thus

0 =
2k∑

s=1

is+1 − is =
k∑

j=1

xj +
k∑

j=1

yj =
k∑

j=1

(εj + 1)yj.

If any one of theεj = 1, this gives a nontrivial relation among theyj, and we lose a degree of
freedom. We may choosek − 1 of theyj freely (inZ/NZ), and we are left with1 or possibly2
choices for the remainingyj (depending on the parity ofN). Thexj are now determined as well,
so is+1 − is is now determined for everys. If we choosei1 freely, this now determines all the
is = i1 +

∑

s′<s

(is′+1 − is′). Thus, we have at mostNk−1 · 2 · N = 2Nk solutions to (2.16). So the

contribution from a pairing with a positive sign is at mostOk(2N
k/Nk+1) = Ok(1/N). (The reason

for the big-Oh constant depending onk is that if some of the different pairs have the same value,
we might not havek copies of the second moment but instead maybe four second moments and two
eighth moments; however, the contribution is trivially bounded bymax1≤ℓ≤k(1+m2ℓ)

k, wherem2ℓ

is the2ℓth moment ofp.) �

Thus we have

M2k;m(N) =
∑

σ

w(σ)N−(k+1) +Ok

(
1

N

)
, (2.19)

wherew(σ) denotes the number of solutions to

ij+1 − ij ≡ −(iσj+1 − iσj) mod N (2.20)

and
ij ≡ iσ(j)+1, ij+1 ≡ iσ(j) mod m (2.21)

(the second(mod m) constraint is redundant). We discuss how to evaluate this moment in closed
form, culminating in Lemma 2.4.

We now consider a given pairing as a topological identification (see [Hat] for an exposition of the
standard theory); this is the crux of our argument. Specifically, consider a2k-gon with the interior
filled in (homeomorphic to the disk), and identify the pairededges with opposite orientation. Under
the identification, some vertices are identified; letv denote the number of vertices in the quotient.

Consider the(Z/NZ)-submoduleA of (Z/NZ)2k in which the (mod N) constraints hold. We
haveA is isomorphic to(Z/NZ)k+1. Specifically, we may freely choose the value of exactly half
of the differencesis+1 − is, and then the rest are determined. Because all the pairings are opposite
orientation, these “differences” sum to zero, so they are actually realizable as differences. Now
choosei1 freely, and the rest of theis = i1 +

∑

s′<s

(is′+1 − is′) are determined.
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Let Ā denote the quotient ofA in which everything is reduced modulom, and consider the
(Z/mZ)-submoduleB ⊆ Ā in which the modulom constraints hold. By (2.21), we can see that
the labels at two vertices of our2k-gon are forced to be congruent(mod m) if and only if the
vertices are identified in the quotient, and these are all the(mod m) constraints. In other words,
B is isomorphic to(Z/mZ)v. An element ofA for which the (mod m) constraints also hold is
exactly one in the preimage ofB. We havemv choices for an element inB, and there are(N/m)k+1

ways to lift such an element to an element ofA in its fiber. Thus, the equations have a total of
mv(N/m)k+1 = m−(k+1−v)Nk+1, so the pairing has a contribution ofm−(k+1−v).

Let X be the 2-dimensional cell complex described by the pairingσ of the edges of the2k-
gon. Because all edges were paired in the reverse direction,X is an orientable surface. After
identifications, the complex we’ve described has 1 face,k edges, and, say,v vertices. If we denote
by g the genus of the surface, we obtain two expressions for the Euler characteristic ofX. By the
standard (homological) definition of Euler characteristic, we haveχ(X) = 1− k + v. On the other
hand, for a genusg surfaceX, χ(X) = 2− 2g [Hat]. Equating and rearranging,

2g = k + 1− v. (2.22)

Thus the pairingσ contributesm−2g, and we have shown

Lemma 2.4. For the ensemble of symmetricm-block circulant matrices,

M2k;m(N) =
∑

g

εg(k)m
−2g +Ok

(
1

N

)
, (2.23)

whereεg(k) denote the number of pairings of the edges of a2k-gon which give rise to a genusg
surface.

3. DETERMINING THE L IMITING SPECTRAL MEASURES

We prove parts (1) and (2) of Theorem 1.4. Specifically, we derive the density formula for the
limiting spectral density of symmetricm-block circulant matrices. We show that, ifm grows at any
rate withN , then the limiting spectral density is the semi-circle for both the symmetricm-block
circulant and Toeplitz ensembles.

3.1. The Limiting Spectral Measure of the Symmetricm-Block Circulant Ensemble.

Proof of Theorem 1.4(1).By deriving an explicit formula, we show that the limiting spectral den-
sity functionfm of the real symmetricm-block circulant ensemble is equal to the spectral density
function of them×m GUE.

From Lemma 2.4, theN → ∞ limit of the average2kth moment equals

M2k;m =

⌊k/2⌋∑

g=0

εg(k)m
−2g, (3.1)

with εg(k) the number of pairings of the edges of a2k-gon giving rise to a genusg surface. Harer
and Zagier [HarZa] give formulas for theεg(k). They prove

εg(k) =
(2k)!

(k + 1)!(k − 2g)!
×
(

coefficient ofx2g in

(
x/2

tanh(x/2)

)k+1
)

(3.2)
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and
⌊k/2⌋∑

g=0

εg(k)r
k+1−2g = (2k − 1)!! c(k, r), (3.3)

where

1 + 2
∞∑

k=0

c(k, r)xk+1 =

(
1 + x

1− x

)r

. (3.4)

Thus, we may write
M2k;m = m−(k+1)(2k − 1)!! c(k,m). (3.5)

We construct the characteristic function3 of the limiting spectral distribution. LetXm be a random
variable with densityfm. Then (remembering the odd moments vanish)

φm(t) = E[eitXm ] =
∞∑

ℓ=0

(it)ℓMℓ;m

ℓ!

=
∞∑

k=0

(it)2kM2k;m

(2k)!

=
∞∑

k=0

1

(2k)!
m−(k+1)(2k − 1)!! c(k,m)(−t2)k. (3.6)

In order to obtain a closed form expression, we rewrite the characteristic function as

φm(t) =
1

m

∞∑

k=0

c(k,m)
1

k!

(−t2

2m

)k

, (3.7)

using(2k−1)!! = (2k)!
2kk!

. The reason for this is that we can interpret the above as a certain coefficient
in the convolution of two known generating functions, whichcan be isolated by a contour integral.
Specifically, consider the two functions

F (y) :=
1

2y

((
1 + y

1− y

)m

− 1

)
=

∞∑

k=0

c(k,m)yk and G(y) := ey =

∞∑

k=0

yk

k!
. (3.8)

Note thatφm(t) is the function whose power series is the sum of the products of thekth coefficients
of G(−y2/2m) (which is related to the exponential distribution) andF (y) (which is related to the
generating function of theεg(k)). Thus, we may use a multiplicative convolution to find a formula
for the sum. By Cauchy’s residue theorem, integratingF (z−1)G(−t2z/2m)z−1 over the circle of
radius2 yields

φm(t) =
1

2πim

∮

|z|=2

F (z−1)G

(
− t2z

2m

)
dz

z
, (3.9)

since the constant term in the expansion ofF (z−1)G(−t2z/2m) is exactly the sum of the products of
coefficients for which the powers ofy in F (y) andG(y) are the same.4 We are integrating along the

3 The characteristic function isφm(t) = E[eitXm ] =
∫∞

−∞
fm(x)eitxdx. This is the inverse Fourier transform of

fm.
4All functions are meromorphic in the region with finitely many poles; thus the contour integral yields the sum of

the residues. See for example [SS2].
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circle of radius2 instead of the unit circle to have the pole inside the circle and not on it. Thus

φm(t) =
1

2πim

∮

|z|=2

1

2z−1

((
1 + z−1

1− z−1

)m

− 1

)
e−

t2z/2m dz

z

=
1

4πim

∮

|z|=2

((
z + 1

z − 1

)m

− 1

)
e−

t2z/2mdz

=
e−t2/2m

4πim

∮

|z|=2

((
1 +

2

z − 1

)m

− 1

)
e−

t2(z−1)/2mdz

=
e−t2/2m

4πim

∮

|z|=2

m∑

l=0

(m
l

)( 2

z − 1

)l ∞∑

s=0

1

s!

(−t2

2m

)s

(z − 1)sdz

−e−t2/2m

4πim

∮

|z|=2

e−
t2(z−1)/2mdz. (3.10)

By Cauchy’s Residue Theorem the second integral vanishes and the only surviving terms in the
first integral are whenl − s = 1, whose coefficient is the residue. Thus

φm(t) =
e−t2/2m

2m

m∑

l=1

(m
l

)
2l

1

(l − 1)!

(−t2

2m

)l−1

=
1

m
e−

t2/2m
m∑

l=1

(
m

l

)
1

(l − 1)!

(−t2

m

)l−1

=
1

m
e−

t2/2mL
(1)
m−1 (t

2/m) , (3.11)

which equals the spectral density function of them×m GUE (see [Led]).
As the density and the characteristic function are a Fouriertransform pair, each can be recovered

from the other through either the Fourier or the inverse Fourier transform (see for example [SS1,
SS2]). Since the characteristic function is given by

φm(t) = E[eitXm ] =

∫ ∞

−∞
eitxfm(x) dx (3.12)

(whereXm is a random variable with densityfm), the density is regained by the relation

fm(x) = φ̂m(x) =
1

2π

∫ ∞

−∞
e−itxφm(t) dt. (3.13)

Taking the Fourier transform of the characteristic function φm(t), and interchanging the sum and
the integral, we get

fm(x) =
1

2π

∫ ∞

−∞

e−t2/2m

m

m∑

l=1

(m
l

) 1

(l − 1)!

(−t2

m

)l−1

e−itxdt

= − 1

2π

m∑

l=1

(m
l

) 1

(l − 1)!
(−m)−l

∫ ∞

−∞
t2(l−1)e−

t2/2me−itxdt

= − 1

2π

m∑

l=1

(m
l

) 1

(l − 1)!
(−m)−l Im. (3.14)
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Completing the square in the integrand ofIm, we obtain

Im = e−
mx2/2

∫ ∞

−∞
t2(l−1) exp

(
−1

2

(
t√
m

+ i
√
mx

)2
)
dt. (3.15)

Changing variables byy = 1√
m
t+ i

√
mx, dy = 1√

m
dt, we findIm equals

Im = e−
mx2/2

∫ ∞

−∞

(
y − i

√
mx
)2(l−1) (√

m
)2(l−1)

e−
y2/2

√
mdy

= e−
mx2/2ml− 1

2

2(l−1)∑

s=0

(
2(l − 1)

s

)(
−i

√
mx
)2(l−1)−s

∫ ∞

−∞
yse−

y2/2dy. (3.16)

The integral above is thesth moment of the Gaussian, and is
√
2π(s− 1)!! for evens and0 for odd

s. Since the odds terms vanish, we replace the variables with 2s and sum over0 ≤ s ≤ (l − 1).
We find

Im =
√
2πe−

mx2/2ml− 1
2

l−1∑

s=0

(
2(l − 1)

2s

)(
−mx2

)l−1−s
(2s− 1)!!.

(3.17)

Substituting this expression forIm into (3.14) and making the change of variablesr = l − 1 − s,
we find that the density is

fm(x) =
e−mx2/2

√
2πm

m−1∑

r=0

1

(2r)!

(
m−r∑

s=0

(
m

r + s+ 1

)
(2r + 2s)!

(r + s)!s!

(
−1

2

)s
)
(mx2)r. (3.18)

This completes the proof of Theorem 1.4(1). �

3.2. The m → ∞ Limit and the Semi-Circle. Before proving Theorem 1.4(2), we first derive
expressions for the limits of the average moments of the symmetric m-block Toeplitz ensemble.
We sketch the argument. Though the analysis is similar to itscirculant cousin, it presents more
difficult combinatorics. Because diagonals do not “wrap around”, certain diagonals are better to be
on than others. Consequently, the Diophantine obstructions of [HM] are present. The problems are
the matchings with “crossings”, or, in topological language, those matchings which give rise to tori
with genusg ≥ 1 as opposed to spheres withg = 0. For a detailed analysis of the Diophantine
obstructions and how the added circulant structure fixes them, see [HM] and [MMS]. Fortunately,
it is easy to show that the contributions to the2kth moment of the symmetricm-block Toeplitz
distribution from the non-crossing (i.e, the spherical matchings or, in the language of [BanBo], the
Catalan words) are unhindered by Diophantine obstructionsand thus contribute fully. The number
of these matchings isCk, which is thekth Catalan number 1

k+1

(
2k
k

)
as well as the2kth moment of

the Wigner density

fWig(x) =

{
1
2π

√
1−

(
x
2

)2
if |x| ≤ 2

0 otherwise.
(3.19)

Note that with this normalization have a semi-ellipse and not a semi-circle; to obtain the semi-
circle, we normalize the eigenvalues by2

√
N and not

√
N . As the other matchings contribute zero

in the limit, we obtain convergence to the Wigner semi-circle asm → ∞. We now prove the above
assertions.
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Lemma 3.1. The limit of the average of the2kth moment of the symmetricm-block Toeplitz ensem-
ble equals

M2k;m = Ck +

⌊k/2⌋∑

g=1

d(k, g)m−2g, (3.20)

whereCk is thekth Catalan number andd(k, g) ∈ [0, 1] are constants corresponding to the total
contributions from the genusg pairings for the2kth moment.

Proof. For the symmetricm-block Toeplitz ensemble, the analysis in §2 applies almostexactly. In
the condition foraij = ai′j′, equality replaces congruence moduloN .

• j − i = j′ − i′ andi ≡ i′ (mod m), or
• j − i = −(j′ − i′) andi ≡ j′ (mod m).

These constraints are more restrictive, so we again obtain2n−lN l+1 as an upper bound on the
number of solutions. Following the previous argument, the odd moments areM2k+1;m(N) =
Ok(1/

√
N), and the even moments are

M2k;m(N) =
1

Nk+1

∑

σ

η(σ) +Ok

(
1

N

)
, (3.21)

whereη(σ) is the number of solutions to the Diophantine equations arising from the pairingsσ on
{(1, 2), (2, 3), . . . , (2k, 1)} of the indices. Thus the odd moments vanish in the limit. Moreover, the
only matchings that contribute are the ones with negative signs. To see this fact, one can follow the
proof of Lemma 2.3, except working inZ instead ofZ/NZ.

While it is known that most matchings for the real symmetric Toeplitz ensemble do not contribute
fully, a general expression for the size of the contributions is unknown, though there are expressions
for these in terms of volumes of Eulerian solids (see [BDJ]) or obstructions to Diophantine equa-
tions (see [HM]). These expressions imply that each matching contributes at most 1. We introduce
constants to denote their contribution (this corresponds to them = 1 case). This allows us to handle
the real symmetricm-block Toeplitz ensemble, and (arguing as in the proof of Lemma 2.4), write
the limit of the average of the2kth moments as

M2k;m =

⌊k/2⌋∑

g=0

d(k, g)m−2g. (3.22)

Hered(k, g) is the constant corresponding to the contributions of the genusg matchings. All that
is left is to show thatd(k, 0), the contributions from the non-crossing or spherical matchings, is the
Catalan numberCk.

We know that the number of non-crossing matchings of2k objects intok pairs is the Catalan
numberCk. This is well-known in the literature. Alternatively, we know the number of non-
crossing matchings areε0(k), as these are the ones that give the genus 0 sphere. The claim follows
immediately from (3.2) by taking the constant term (asg = 0) and notingtanh(x

2
) = x

2
− x3

24
+ · · · .

We are thus reduced to proving that, even with the modm periodicity, each of these pairings still
contributes 1.

One way of doing this is by induction on matchings. Consider anon-crossing configuration of
contributing matchings for the2kth moment. Consider an arbitrary matching in the configuration,
and denote the matching byα1. The matching corresponds to an equationis − is+1 = it+1 − it.
If the matching is adjacent, meanings = t + 1, thenit+1 is free andit = it+2, and there is no
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“penalty” (i.e., a decrease in the contribution) from the(mod m) condition. We call this having the
ends of a matching “tied” (note that adjacent matchings always tie their ends). Otherwise, note that
since we are looking at even moments, there are an even numberof indices. Thus, to either side of
the matchingα1 there can only be an even number of indices matched between themselves, since
otherwise some matching would be crossing overα1. Thus, to either side, we are reduced to the
non-crossing configurations for a lesser moment. By induction, these two sub-configurations are
tied, and then trivially tie with our initial matched pair. As at each step there were no obstructions
on the indices, this matching contributes fully, completing the proof. �

Our claims about convergence to semi-circular behavior nowfollow immediately.

Proof of Theorem 1.4(2).It is trivial to show that the symmetricm-block circulant ensemble has its
limiting spectral distribution converge to the semi-ellipse asm → ∞ because we have an explicit
formula for its moments. From Lemma (2.4), we see that

lim
m→∞

M2k;m(N) = lim
m→∞

∑

g≤k/2

εg(k)

m2g
= ε0(k), (3.23)

which in the proof of Lemma 3.1 we saw equals the Catalan number Ck.
We now turn to the symmetricm-block Toeplitz case. The proof proceeds similarly. From

Lemma 3.1 we have

lim
m→∞

M2k;m = lim
m→∞


Ck +

∑

g≤k/2

d(k, g)

m2g


 = Ck, (3.24)

completing the proof. �

4. CONVERGENCE OF THEL IMITING SPECTRAL MEASURES

We investigate several types of convergence.

(1) (Almost sure convergence) For eachk, Xk;m,N → Xk,m almost surely if

Pm ({A ∈ Ωm : Xk;m,N(A) → Xk,m(A) as N → ∞}) = 1; (4.1)

(2) (Convergence in probability) For eachk, Xk;m,N → Xk,m in probability if for all ǫ > 0,

lim
N→∞

Pm(|Xk;m,N(A)−Xk,m(A)| > ǫ) = 0; (4.2)

(3) (Weak convergence) For eachk, Xk;m,N → Xk,m weakly if

Pm(Xk;m,N(A) ≤ x) → P(Xk,m(A) ≤ x) (4.3)

asN → ∞ for all x at whichFXk,m
(x) := P(Xk,m(A) ≤ x) is continuous.

Alternate notations are to say eitherwith probability 1orstronglyfor almost sure convergence and
in distributionfor weak convergence; both almost sure convergence and convergence in probability
imply weak convergence. For our purposes we takeXk,m as the random variable which is identically
Mk,m, the limit of the averagemth moment (i.e.,limN→∞Mk,m;N ), which we show below exist and
uniquely determine a probability distribution for our ensembles.

We have proved the first two parts of Theorem 1.4, which tells us that the limiting spectral mea-
sures exist and giving us, for the symmetricm-block circulant ensemble, a closed form expression
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for the density. We now prove the rest of the theorem, and determine the various types of conver-
gence we have. We first prove the claimed uniform convergenceof part (3), and then discuss the
weak, in probability, and almost sure convergence of part (4).

We use characteristic functions and Fourier analysis to show uniform (and thus pointwise) con-
vergence of the limiting spectral distribution of the symmetric m-block circulant ensemble to the
semi-ellipse distribution (remember it is an semi-ellipseand not a semi-circle due to our normal-
ization). We note that this impliesLp convergence for everyp. The proof follows by showing the
characteristic functions are close, and then the Fourier transform gives the densities are close.

Proof of Theorem 1.4(3).The densityfm is the Fourier transform ofφm (equivalently,φm is the
characteristic function associated to the densityfm, where we have to be slightly careful to keep
track of the normalization of the Fourier transform; see (3.12)); similarly the Wigner distribution
fWig(x) is the Fourier transform ofφ, where the Wigner distribution (a semi-ellipse in our case due
to our normalizations) is

fWig(x) =

{
1
π

√
1−

(
x
2

)2
if |x| ≤ 2

0 otherwise.
(4.4)

As our densities are nice, we may use the Fourier inversion formula to evaluate the difference.
We find for anyǫ > 0 that

|φ̂m(x)− φ̂(x)| =

∣∣∣∣
1

2π

∫ ∞

−∞
(φm(t)− φ(t)) e−itxdt

∣∣∣∣

≤
∫ ∞

−∞
|φm(t)− φ(t)| dt

≪ m−2/9+ǫ, (4.5)

where the bound for this integral is proved in Lemma A.1 and follows from standard properties
of Laguerre polynomials and Bessel functions. Thus, asm → ∞, fm(x) = φ̂m(x) converges to
fWig(x) = φ̂(x) for all x ∈ R. As the bound on the difference depends only onm and not onx, the
convergence is uniform.

We now showLp convergence. We haveL∞ convergence because it is equivalent to a.e. uni-
form convergence. For1 ≤ p < ∞, we automatically haveLp convergence as we have bothL1

convergence and theL∞ norm is bounded. �

Proof of Theorem 1.4(4).The proofs of these statements follow almost immediately from the argu-
ments in [HM, MMS, JMP], as those proofs relied on degree of freedom arguments. The additional
structure imposed by the(mod m) relations does not substantially affect those proofs (as can seen
in the generalizations of the arguments from [HM] to [MMS] to[JMP]). �

5. FUTURE RESEARCH

We discuss some natural, additional questions which we hopeto study in future work.

5.1. Representation Theory. TheN × N m-block circulant matrices form a semisimple algebra
overR. This algebra may be decomposed intoN simple subalgebras of dimensionm2, all but one
or two of which are isomorphic toMm(C). One can show that, up to first order, this decomposition
sends our measure on symmetricm-block circulant matrices to them×m Gaussian Unitary Ensem-
ble. One may then give a more algebraic proof of our results and circumvent the combinatorics of
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FIGURE 8. Density of nonzero spacings of the 10 central eigenvaluesof 1001024×
1024 symmetric circulant matrices, with independent entries picked i.i.d.r.v. from a
Gaussian, normalized to have mean spacing 1. Compared to exponential and GOE
densities.

pairings; combining the two proofs gives a new proof of the results of [HarZa]. This approach will
appear in a more general setting in an upcoming paper of Kopp.The general result may be regarded
as a central limit theorem for Artin-Wedderburn decomposition of finite-dimensional semisimple
algebras

5.2. Spacings. Another interesting topic to explore is the normalized spacings between adjacent
eigenvalues. For many years, one of the biggest conjecturesin random matrix theory was that
if the entries of a full,N × N real symmetric matrix were chosen from a nice densityp (say
mean 0, variance 1, and finite higher moments), then asN → ∞ the spacing between normalized
eigenvalues converges to the scaling limit of the GOE, the Gaussian Orthogonal Ensemble (these
matrices have entries chosen from Gaussians, with different variances depending on whether or not
the element is on the main diagonal or not). After resisting attacks for decades, this conjecture was
finally proved; see the work of Erdős, Ramirez, Schlein, and Yau [ERSY, ESY] and Tao and Vu
[TV1, TV2].

While this universality of behavior for differences seems to hold, not just for these full ensembles,
but also for thin ensembles such asd-regular graphs (see the numerical observations of Jakobson,
(S. D.) Miller, Rivin and Rudnick [JMRR]), we clearly do not expect to see GOE behavior for all
thin families. A simple counterexample are diagonal matrices; asN → ∞ the density of normalized
eigenvalues will be whatever density the entries are drawn from, and the spacings between normal-
ized eigenvalues will converge to the exponential. We also see this exponential behavior in other
ensembles. It has numerically been observed in various Toeplitz ensembles (see [HM, MMS]).

For the ensemble of symmetric circulant matrices, we cannothave strictly exponential behavior
because all but1 or 2 (depending on the parity ofN/m) of the eigenvalues occur with multiplicity
two. This can be seen from the explicit formula for the eigenvalues of a circulant matrix. Thus, the
limiting spacing density has a point of mass1

2
at0. Nonetheless, thenonzerospacings appear to be

distributed exponentially; see Figure 8.
Similarly, for a symmetricm-block circulant matrix, all butN−m orN−m−1 of the eigenvalues

occur with multiplicity two. The nonzero spacings appear tohave the same exponential distribution
(see Figure 9). This is somewhat surprising, given that the eigenvalue density varies withm and
converges to the semi-circle asm → ∞. While we see new eigenvalue densities form constant,
numerics suggest that we’ll see new spacing densities forN/m constant.
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FIGURE 9. Density of nonzero spacings of the 10 central eigenvaluesof 100
1024 × 1024 symmetricm-block circulant matrices, with independent entries
picked i.i.d.r.v. from a Gaussian, normalized to have mean spacing 1, withm =
2, 16, 128, 256, 512, 1024, respectively. Compared to exponential and GOE densi-
ties.

However, for symmetricm-block Toeplitz matrices, we see different behavior (see Figure 10).
The spacings look exponentially distributed form = 1 and appear to converge to the GOE distribu-
tion as we increasem. In the Toeplitz case, but not in the circulant, we see the spacings behaving
as the spectral densities do.

The representation theoretic approach will be used to solvethe spacings problem for symmetric
m-block circulant matrices in an upcoming paper of Kopp. The spacing problem for block Toeplitz
matrices will require some new innovation.

APPENDIX A. POINTWISE CONVERGENCE ASm → ∞
This appendix by Gene Kopp, Steven J. Miller and Frederick Strauch5.

5Department of Physics, Williams College, fws1@williams.edu
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FIGURE 10. Density of spacings of the 10 central eigenvalues of 1001024× 1024
symmetricm-block Toeplitz matrices, with independent entries pickedi.i.d.r.v. from
a Gaussian, normalized to have mean spacing 1, withm = 1, 2, 4, 16, 128, 1024,
respectively. Compared to exponential and GOE densities.

The characteristic function for the spectral measures of the periodm-block circulant matrices is

φm(t) =
1

m
e−

t2/2m
m∑

ℓ=1

(
m

ℓ

)
1

(ℓ− 1)!

(−t2

m

)ℓ−1

, (A.1)

which solves the differential equation

tφ′′
m(t) + 3φ′

m(t) + t

(
4−

(
t

m

)2
)
φm(t) = 0 (A.2)

with initial conditionφm(0) = 1; lettingm → ∞ givestφ′′(t) + 3φ′(t) + 4tφ(t) = 0, with initial
conditionφ(0) = 1. The solution to the finitem equation is a Laguerre polynomial, and them = ∞
limit is J1(2t)/t with J1 the Bessel function of order 1.

To see this, recall that the generalized Laguerre polynomial (see [AS]) has the explicit represen-
tation

L(α)
n (x) =

n∑

i=0

(
n+ α

n− i

)
1

i!
(−x)i. (A.3)
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To compare (A.1) with (A.3), we first shift the summation index by one (ℓ 7→ ℓ+ 1) to find

φm(t) =
1

m
e−

t2/2m
m−1∑

ℓ=0

(
m

ℓ+ 1

)
1

ℓ!

(−t2

m

)ℓ

. (A.4)

Using the identity (
m

ℓ+ 1

)
=

(
m

m− 1− ℓ

)
(A.5)

we see thatn = m − 1, α = 1, and thus the characteristic function can be written in terms of the
Laguerre polynomial:

φm(t) =
1

m
e−

t2/2mL
(1)
m−1(t

2/m), (A.6)

or equivalently in terms of the confluent hypergeometric function

φm(t) = e−
t2/2mM(m+ 1, 2,−t2/m). (A.7)

From 13.2.2 of [AS] we havelimm→∞ φm(t) = φ(t); however, we need some control on the rate
of convergence.

Lemma A.1. Let r > 1/3 andβ = 2
3
(1− r). For all m and all t we have

|φm(t)− φ(t)| ≪r

{
m−(1−r) if |t| ≤ mβ

t−3/2 +m−5/4 exp(−t2/2m) otherwise,
(A.8)

where the implied constant is independent ofm but may depend onr. This implies
∫ ∞

−∞
|φm(t)− φ(t)| dt ≪ m− 1−r

3 . (A.9)

Lettingǫ > 0 and takingr = 1
3
+ 3ǫ implies the integral isO(m−2/9+ǫ).

Proof. We first consider smallt: |t| ≤ mβ with β = 2
3
(1−r). Using 13.3.7 of [AS] witha = m+1,

b = 2 andz = −t2/m to bound the confluent hypergeometric functionM , we find

φm(t) = e−
t2/2mM(m+ 1, 2,−t2/m) =

J1(2t)

t
+

∞∑

n=1

An(2m)−n(−1)ntn−1Jn+1(2t), (A.10)

whereA0 = 1, A1 = 0, A2 = 1 andAn+1 = An−1 +
2m
n+1

An−2 for n ≥ 2.
For anyr > 1/3 andm sufficiently large we haveAn ≤ mrn (we can’t do better thanr > 1/3

asA3 = 2
3
m). This follows by induction. It is clear forn ≤ 2, and for largern we have by the

inductive assumption that

An+1 = An−1 +
2m

n+ 1
An−2 ≤ mr(n−1) +m ·mr(n−2) = mr(n+1) · (m−2r +m1−3r); (A.11)

asr > 1/3 the above is less thanmr(n+1) for m large. If we desire a bound to hold for allm, we
instead useAn ≤ crm

rn for cr sufficiently large. Substituting this bound forAn into (A.10), noting
J1(2t)/t = φ(t) and using|Jn(x)| ≤ 1 (see 9.1.60 of [AS]) yields, for|t| ≤ m1−r,

|φm(t)− φ(t)| ≤ cr
2m1−r

∞∑

n=1

(
t

2m1−r

)n−1

≪r m−(1−r). (A.12)
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We now turn tot large: |t| ≥ mβ . Using

|φm(t)− φ(t)| ≤ |φm(t)|+ |φ(t)| (A.13)

to trivially bound the difference, the claim follows the decay of the Bessel and Laguerre functions.
Specifically, (see 8.451(1) of [GR]) we haveJ1(x) ≪ x−1/2 and thus

φ(t) =
J1(2t)

t
≪ t−

3/2. (A.14)

Forφm(t), we use 8.978(3) of [GR], which states

L(α)
n (x) = π−1/2e

x/2x−α/2−1/4n
α/2−1/4 cos

(
2
√
nx− απ

2
− π

4

)
+O

(
n

α/2−3/4
)
, (A.15)

so long asIm(α) = 0 andx > 0. Lettingx = t2/m with |t| ≥ 1
3
log

1/2 m, α = 1 andn = m− 1 we
find

φm(t) = m−1e−
t2/2mL

(1)
m−1(t

2/m)

≪ m−1e−
t2/2m

[
e
t2/2m(t2/m)−

3/4m
1/4 +m−1/4

]

≪ t−
3/2 +m−5/4e−

t2/2m. (A.16)

All that remains is to prove the claimed bound for
∫∞
−∞ |φm(t)− φ(t)| dt. The contribution from

|t| ≤ mβ is easily seen to beOr(m
β/m1−r) = Or(m

−(1−r)/3) with our choice ofβ. For |t| ≥ mβ , we
have a contribution bounded by

2

∫ ∞

mβ

(
t−

3/2 +m−5/4e−
t2/2m

)
dt ≪ m−β/2 +m−3/4

∫ ∞

−∞

1√
2πm

exp(−t2/2m)dt

≪ m−(1−r)/3 +m−3/4, (A.17)

as the last integral is that of a Gaussian with mean zero and variancem and hence is 1. (We chose
β = 2

3
(1− r) to equalize the bounds for the two integrals.) �

APPENDIX B. GENERALIZED m-BLOCK CIRCULANT MATRICES

This appendix by Steven J. Miller and Wentao Xiong6.

As the proofs are similar to the proof form-block circulant matrices, we just highlight the differ-
ences. The trace expansion from before holds, as do the arguments that the odd moments vanish.

We first explore the modulo condition to compute some low moments, and show that the differ-
ence in the modulo condition between them-block circulant matrices and the generalizedm-block
circulant matrices leads to different values for moments, and hence limiting spectral distributions.
Thus the limiting spectral distribution depends on the frequency of each element, as well as the way
the elements are arranged, in anm-pattern.

6Department of Mathematics and Statistics, Williams College, xx1@williams.edu
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FIGURE 11. The four zones form-block circulant matrices.

B.1. Zone-wise Locations and Pairing Conditions.Since we have restricted the computation of
moments to even moments, and have shown that the only configurations that contribute to the2kth

moment are those in which the2k matrix entries are matched ink pairs in opposite orientation, we
are ready to compute the moments explicitly. We start by calculating the2nd moment, which by
(2.10) is 1

N2

∑
1≤i,j≤N aijaji. As long as the matrix is symmetric,aij = aji and the2nd moment is

1. We now describe the conditions for two entriesaisis+1, aitit+1 to be paired, denoted asaisis+1 =
aitit+1 ⇐⇒ (s, s+1) ∼ (t, t+1), which we need to consider in detail for the computation of higher
moments. To facilitate the practice of checking pairing conditions, we divide anN ×N symmetric
m-block circulant matrix into4 zones (see Figure 11), and then reduce an entryaisis+1 in the matrix
to its “basic form”. Writeiℓ = mηℓ + ǫℓ, whereηℓ ∈ {1, 2, . . . , N

m
} andǫℓ ∈ {0, 1, . . . , m− 1}, we

have

(1) 0 ≤ is+1 − is ≤ N
2
− 1 ⇒ aisis+1 ∈ zone 1 andaisis+1 = aǫs,m(ηs+1−ηs)+ǫs+1;

(2) N
2
≤ is+1 − is ≤ N − 1 ⇒ aisis+1 ∈ zone 2 andaisis+1 = aǫs+1,m(ηs+

N
m
−ηs+1)+ǫs

;

(3) N
2
≤ is − is+1 ≤ N − 1 ⇒ aisis+1 ∈ zone 3 andaisis+1 = aǫs,m(ηs+1+

N
m
−ηs)+ǫs+1

;

(4) 0 ≤ is − is+1 ≤ N
2
− 1 ⇒ aisis+1 ∈ zone 4 andaisis+1 = aǫs+1,m(ηs−ηs+1)+ǫs.

In short,(is+1 − is) determines which diagonalaisis+1 is on. If aisis+1 is in zone 1 or 3 (Area I),ǫs
determines the slot ofaisis+1 in anm-pattern; ifaisis+1 is in zone 2 or 4 (Area II),ǫs+1 determines
the slot ofaisis+1 in anm-pattern.

Recall the two basic pairing conditions, the diagonal condition that we have explored before, and
the modulo condition, for which we will define an equivalencerelationR. For a real symmetric
m-block circulant matrix following a generalizedm-pattern and any two entriesaisis+1, aitit+1 in the
matrix, suppose thatis andit+1 are the indices that determine the slot of the respective entries, then
isRit+1 if and only ifaisis+1, aitit+1 are in certain slots in anm-pattern such that these two entries can
be equal. For example, for the{a, b} pattern,isRit+1 ⇐⇒ is ≡ it+1 (mod 2); for the{a, a, b, b}
pattern,isRit+1 ⇐⇒ mod (is, 4), mod (it+1, 4) ∈ {1, 2} or mod (is, 4), mod (it+1, 4) ∈
{3, 0}.

We now formally define the two pairing conditions.

(1) (diagonal condition)is − is+1 ≡ −(it − it+1) (mod N).
(2) (modulo condition)isRit+1 or is+1Rit, depending on which zone(s)aisis+1, aitit+1 are lo-

cated in.
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Since the diagonal condition implies a Diophantine equation for each of thek pairs of matrix entries,
we only need to choosek + 1 out of 2k iℓ’s, and the remainingiℓ’s are determined. This shows
that, trivially, the number of non-trivial configurations is bounded above byNk+1. In addition, the
diagonal condition always ensure thataisis+1 andaitit+1 are located in different areas. For instance,
if aisis+1 ∈ zone 1 andis − is+1 = −(it − it+1), thenaisis+1 ∈ zone 4; ifaisis+1 ∈ zone 1 and
is − is+1 = −(it − it+1) − N , thenaisis+1 ∈ zone 2, etc. Thus, ifis determines the slot for
aisis+1 in anm pattern, thenit+1 determines foraitit+1; if is+1 determines the slot foraisis+1 , thenit
determines foraitit+1 , and vice versa.

Considering the “basic” form of the entries, the two conditions above are equivalent to
(1) (diagonal condition)(mηs+ǫs)−(mηs+1+ǫs+1) ≡ −(mηt+ǫt)+(mηt+1+ǫt+1) (mod N)

⇒ m(ηs − ηs+1 + ηt − ηt+1) + (ǫs − ǫs+1 + ǫt − ǫt+1) = 0 or ±N .
(2) (modulo condition)ǫsRǫt+1 or ǫs+1Rǫt.

Sincem|N , this requiresm|(ǫs − ǫs+1 + ǫt − ǫt+1). Given the range of theηℓ’s andǫℓ’s, we have
ǫs − ǫs+1 + ǫt − ǫt+1 = 0 or ±m, which indicates that

ηs − ηs+1 + ηt − ηt+1 = 0,±1,
N

m
,
N

m
± 1,−N

m
, or − N

m
± 1. (B.1)

As discussed before, if we allow repeated elements in anm-pattern, the equivalence relationR
no longer necessitates a congruence relation as in pattern where each element is distinct. While the
computation of high moments for generalm-patterns appears intractable, fortunately we are able to
illustrate how the difference in the modulo condition affects moment values by comparing the low
moments for two simple patterns{a, b, a, b} and{a, a, b, b}.

B.2. The Fourth Moment. Although we can show that the higher moments differ by the waythe
elements are arranged in anm-pattern, the4th moment is in fact independent of the arrangement of
elements. We show that the4th moment for anym-pattern is determined solely by the frequency at
which each element appears, and refer the reader to AppendixB.3 of [KKMSX] (or [Xi]) for the
computation that the6th moment depends on not just the frequencies but also the pattern; we omit
the proof as it is similar to the computation of the 4th moment, although significantly more book-
keeping is required. Briefly, for the higher moments for patterns with repeated elements, there exist
“obstructions to modulo equations” that make trivial some non-trivial configurations for patterns
without repeated elements. Due to the obstructions to modulo equations, some configurations that
are non-trivial for all-distinct patterns become trivial for patterns with repeated elements, making
the higher moments for repeated patterns smaller.

Lemma B.1. For an ensemble of real symmetric periodm-block circulant matrices of sizeN , if
within eachm-pattern we haven i.i.d.r.v. {αr}nr=1, each of which has a fixed number of occurrences
νr such that

∑n
r=1 νr = m, the4th moment of the limiting spectral distribution is2 +

∑n
r=1(

νr
m
)3.

By (2.10), we calculate 1

N
4
2+1

∑
1≤i,j,k,l≤N aijajkaklali for the4th moment. There are2 ways of

matching the4 entries in2 pairs:
(1) (adjacent, 2 variations)aij = ajk andakl = ali (or equivalentlyaij = ali andajk = akl);
(2) (diagonal, 1 variation)aij = akl andajk = ali.

there are3 matchings, with the two adjacent matchings contributing the same to the4th moment.
We first consider one of the adjacent matchings,aij = ajk andakl = ali. The pairing conditions
(B.1) in this case are:

(1) (diagonal condition)i− j ≡ k − j (mod N), k − l ≡ i− l (mod N);
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(2) (modulo condition)iRk or jRj, kRi or lRl.

Since1 ≤ i, j, k, l ≤ N , the diagonal condition requiresi = k, and then the modulo condition
follows trivially, regardless of them-pattern we study. Hence, we can choosej andl freely, each
with N choices,i freely with N choices, and thenk is fixed. This matching then contributes
N3

N
4
2+1

= 1 (fully) to the4th moment, so does the other adjacent matching.

We proceed to the diagonal matching,aij = akl andajk = ali. The pairing conditions (B.1) in
this case are:

(1) (diagonal condition)i− j ≡ l − k (mod N), j − k ≡ i− l (mod N);
(2) (modulo condition)iRl or jRk, jRi or kRl.

The diagonal conditionj − k ≡ i − l (mod N) is equivalent toi − j ≡ l − k (mod N), which
entails

(1) i+ k = j + l, or
(2) i+ k = j + l +N , or
(3) i+ k = j + l −N .

In any case, we only need to choose 3 indices out ofi, j, l, k, and then the last one is fixed. In the
following argument, without loss of generality, we choose(i, j, l) and thus fixk.

For a generalm-pattern, we writei = 4η1 + ǫ1, j = 4η2 + ǫ2, k = 4η3 + ǫ3, l = 4η4 + ǫ4, where
η1, η2, η3, η4 ∈ {0, 1, . . . , N

m
} andǫ1, ǫ2, ǫ3, ǫ4 ∈ {0, 1, . . . , m− 1}. Before we consider theǫℓ’s, we

note that there exist Diophantine constraints. For example, if i+k = j+l, given that1 ≤ i, j, l ≤ N ,
k = j + l − i also needs to satisfy1 ≤ k ≤ N . As a result, we need0 ≤ η2 + η4 − η1 ≤ N

4
.

Note that, due to theǫℓ’s, sometimes we may have0 ≤ η2 + η4 − η1 ≤ N
4
+ ε, where the error

termε ∈ (−m
2
, m

2
) and only trivially affects the number of choices of(η2, η4, η1) for a fixedm as

N → ∞.
We now explore the Diophantine constraints for each variation of the diagonal condition (B.2).

Thei+k = j+ l case is similar to that in [HM], where, in a Toeplitz matrix, the diagonal condition
only entailsi + k = j + l, and there are obstructions to the system of Diophantine equations
following the diagonal condition. However, the circulant structure that addsi+ k = j + l +N and
i + k = j + l − N to the diagonal condition fully makes up the Diophantine obstructions. This
explains why the limiting spectral distribution for ensembles of circulant matrices has the moments
of a Gaussian, while that for ensembles of Toeplitz matriceshas smaller even moments. We now
study the3 possibilities of the diagonal condition for the circulant structure.

(1) Consideri + k = j + l. We use Lemma 2.5 from [HM] to handle the obstructions to
Diophantine equations, which says:Let IN = {1, . . . , N}. Then#{x, y, z ∈ IN : 1 ≤
x+ y − z ≤ N} = 2

3
N3 + 1

3
N .

In our case, letM = N
m

. The number of possible combinations of(η2, η4, η1) that allow
0 ≤ η3 ≤ N

4
is 2

3
M3 + 1

3
M .7 For each ofη2, η4, η1, we havem free choices ofǫℓ, and thus

the number of(i, j, l) is m3(2
3
M3 + 1

3
M) = 2

3
N3 +O(N).

(2) Consideri+k = j+ l+N . Note1 ≤ k ≤ N requires0 ≤ η2+η4−η1+
N
m

≤ N
m

⇒ −N
m

≤
η2 + η4 − η1 ≤ 0. Similar to thei+ k = j + l case, we writeM = N

m
andS = η2 + η4, and

then−N
m

≤ S − η1 ≤ 0 ⇒ S ≤ η1 ≤ M + S where obviouslyS ≤ M . We haveS + 1
ways to choose(η2, η4) s.t. η2 + η4 = S, andM − S + 1 choices ofη1. The number of

7In [HM], the related lemma is proven forη2, η4, η1 ∈ N+, i.e., no cases whereη2η4η1 = 0. Thus we are supposed
to start fromS = 0; however, asN → ∞, the error from this becomes negligible.
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(i, j, l) is thus

m3
M∑

S=0

(S + 1)(M − S + 1) = m3

(
M3

6
+M2 +

5

6
M

)
=

N3

6
+O(N2). (B.2)

(3) Consideri + k = j + l − N . Now 1 ≤ k ≤ N requires0 ≤ η2 + η4 − η1 − N
m

≤
N
m

⇒ N
m

≤ η2 + η4 − η1 ≤ 2N
m

. Again, we writeM = N
m

andS = η1 + η4, and then
M ≤ S − η1 ≤ 2M ⇒ S − 2M ≤ η1 ≤ S − M where obviouslyS ≥ M . We have
2M − S + 1 ways to choose(η2, η4) s.t. η2 + η4 = S, andS −M + 1 choices ofη1. The
number of(i, j, l) is thus

m3

2M∑

S=M

(2M − S + 1)(S −M + 1) = m3

(
M3

6
+M2 +

5

6
M

)
=

N3

6
+O(N2). (B.3)

Therefore, with the additional diagonal conditionsi+k = j+ l+N andi+k = j+ l−N induced
by the circulant structure, the number of(i, j, l) is of the order(2

3
+ 1

6
+ 1

6
)N3 = N3, i.e. the

circulant structure makes up the obstructions to Diophantine equations in the Toeplitz case. Since
theηℓ’s do not matter for the modulo condition, to make a non-trivial configuration, we may choose
threeηℓ’s freely, each withN

m
choices, and then choose someǫℓ’s that satisfy the modulo condition,

which we will study below.
For the modulo condition, it is necessary to figure out which zones the four entries are located in.

Recall that the diagonal condition will always ensure that two paired entries are located in different
areas. For the4th moment, each of the3 variations of the diagonal condition is sufficient to ensure
that any pair of entries involved are located in the right zones. We may check this rigorously by
enumerating all possibilities of the zone-wise locations of the 4 entries, e.g. ifi + k = j + l +N ,
if aij ∈ zone 1, thenakl ∈ zone 2.8 As a result, for a pair of matrix elements in the diagonal
matching, sayaij = akl, if i determines the slot in anm-pattern foraij and thus matters for the
modulo condition, thenl determines forakl; if j determines foraij , thenk determines forakl, and
vice versa.

With the zone-wise issues settled, we study how to obtain a non-trivial configuration for the4th

moment. Recall the modulo condition for the diagonal matching: iRl or jRk, jRi or kRl. This
entails22 = 4 sets of equivalence relations,

iRlRj; iRlRk, jRkRi, jRkRl (B.4)

Each set of equivalence relations appears with a certain probability, depending on the zone-wise
locations of the4 entries. For example,iRlRj follows from iRl andjRi, which requires bothaij
andajk ∈ Area I. Regardless of the probability with which each set occurs, we choose one free
index withN choices, and then another two indices such that these3 indices are related to each
other underR. The number of choices of the two indices after the free one isdetermined solely by
the number of occurrences of the elements in anm-pattern.

We give a specific example of making a non-trivial configuration for the4th for two simple pat-
terns{a, b, a, b} and{a, a, b, b}. Under the conditioni+ k = j + l, if aij ∈ zone 1 andajk ∈ zone
3, thenakl ∈ zone 4 andali ∈ zone 2. We first selectη1, η2, η4 such thati, j, l andk = j + l − i

8This enumeration is complicated since the zone where an entry aij is located imposes restrictions on the choice of
i, j, e.g. whenai,j ∈ zone 2, we havei ≥ N

2 andj ≤ N
2 .
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k abab (theory) abab (observed) aabb (observed) abba (observed) N(0, 1)
2 1.0000 1.0016 1.0014 0.9972 1
4 2.2500 2.2583 2.2541 2.2405 3
6 7.5000 7.5577 7.3212 7.2938 15
8 32.8125 33.2506 30.4822 30.5631 105

10 177.1880 180.8270 153.9530 155.6930 945
TABLE 1. Comparison of moments for various patterns involvinga andb. The first
column are the theoretical values for the moments of the patterna, b, and the final are
the moments of the standard normal. The middle three columnsare 200 simulations
of 4000× 4000 matrices.

satisfy the zone-wise locations.9 In this case, based on pairing conditions (B.1), pairingaij = akl
andajk = ali will require ǫ1Rǫ4 andǫ2Rǫ1, or equivalentlyǫ1Rǫ2Rǫ4. Without loss of generality,
we can start with a freeǫ1 with 4 choices, then there are2 free choices for each ofǫ2 andǫ4, and
then we have a non-trivial configuration. We have similar stories under the other two variations of
the diagonal condition and with other zone-wise locations of aij andakl. Therefore, we can choose
three out of fourηℓ’s freely, each withN

4
choices, then oneǫℓ with 4 choices, then another two

ǫℓ’s each with2 choices, and finally the last index is determined under the diagonal condition. As
discussed before, such a choice of indices will always satisfy the zone-wise requirements and thus
the ǫ-based pairing conditions. Thus there are(N

4
)3 · 4 · 2 · 2 = N3

4
choices of(i, j, k, l) that will

produce a non-trivial configuration. It follows that the contribution from the diagonal matching to
the4th moment is 1

N3 (
2
3
+ 1

6
+ 1

6
)N

3

4
= 1

4
.

The computation of the4th moment for the simple patterns{a, b, a, b} and{a, a, b, b} can be
immediately generalized to the4th moment for other patterns. As emphasized before, both adjacent
matchings contribute fully to the4th moment regardless of them-pattern. For diagonal matching,
the system of Diophantine equations induced by the diagonalcondition are also independent of the
m-pattern in question, and the way we count possible configurations can be easily generalized to an
arbitrarym-pattern. We have thus proved Lemma B.1.

Note that Lemma B.1 implies that the4th moment for any pattern depends solely on the fre-
quency at which each element appears in anm-period. Besides the{a, a, b, b} pattern that we have
studied in depth, we may easily test two extreme cases. One case wheren = m, i.e. each ran-
dom variable appears only once, represents them-block circulant matrices from Theorem 1.4 for
which the4th moment is2 + 1

m2 (andm = 1 represents the circulant matrices for which the4th mo-
ment is3). Numerical simulations for numerous patterns including{a, a, b}, {a, b, b}, {a, b, b, a},
{a, b, c, a, b, c}, {a, b, c, d, e, e, d, c, b, a} et cetera support Lemma B.1 as well; we present results of
some simulations in Tables 1 to 3.

9It is noteworthy that the specific location of an element still depends on theǫℓ’s, but asN → ∞, the probability
that theηℓ’s alone determine the zone-wise locations of elements approaches1, i.e. the probability that adding theǫℓ’s
changes the zone-wise location of an element approaches0.
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k ababab aaabbb aaaabbbb aaaaabbbbb aababb
2 1.0000 1.0008 1.0001 0.9984 0.9996
4 2.2500 2.2541 2.2441 2.2449 2.2502
6 7.5000 7.3011 7.2098 7.2551 7.2319
8 32.8125 30.3744 29.5004 30.0127 29.5378

10 177.1880 155.0380 145.8240 150.7220 145.4910
TABLE 2. Comparison of moments for various patterns involvinga andb. The first
column are the theoretical values for the moments of the patterna, b. The remaining
columns are 200 simulations of3600× 3600 matrices.

k abcabc abccba aabbcc abbcca aabcbc
2 1.0000 1.0005 1.0006 0.9983 1.0013
4 2.1111 2.1122 2.1153 2.1047 2.1161
6 6.1111 6.0248 6.0540 6.0083 6.0235
8 22.0370 20.9398 21.2004 20.9908 20.8411

10 94.6296 85.0241 87.0857 85.9902 84.2097
TABLE 3. Comparison of moments for various patterns involvinga and b. The
first column are the theoretical values for the moments of thepatterna, b, c. The
remaining columns are 200 simulations of3600× 3600 matrices.

B.3. Existence and Convergence of High Moments.Although it is impractical to find every mo-
ment for a generalm-block circulant pattern using brute-force computation, we are still able to
prove that, for anym-block circulant pattern, every moment exists, is finite (and satisfies certain
bounds), and that there exists a limiting spectral distribution. In addition, the empirical spectral
measure of a typical real symmetricm-block circulant matrix converge to this limiting measure,
and we have convergence in probability and almost sure convergence.

We have shown that all the odd moments vanish asN → ∞, and thus we focus on the even
moments. We need to prove the following theorem.

Theorem B.2. For any patternedm-block circulant matrix ensemble,limN→∞M2k(N) exists and
is finite.

Proof. It is trivial that M2k(N) is finite. As discussed before, it is bounded below by the2kth

moment for the ensemble ofm-block circulant matrices where, in them-pattern, each element is
distinct, and more importantly it is bounded above by the2kth moment for the ensemble of circulant
matrices, and we know that the limiting spectral distribution for this matrix ensemble is a Gaussian.

We now show thatlimN→∞M2k(N) exists. To calculateM2k(N), we match2k elements from
the matrix,{ai1i2 , ai2i3, . . . , ai2ki1}, in k pairs, whereiℓ ∈ {1, 2, . . . , N} and this will give(2k−1)!!
matchings. For each matching, there are a certain number of configurations, and most of such
configurations do not contribute to the moments asN → ∞.

For them-block circulant pattern, the equivalence relationR implies thatǫsRǫt+1 ⇔ ǫs = ǫt+1,
and sincem|(ǫs − ǫs+1 + ǫt − ǫt+1), we haveǫs+1 = ǫt as well (see (B.1)).10 Thusηs − ηs+1 + ηt −

10This explains why, for anm-pattern without repeated elements, the zone-wise locations of matrix entries do not
matter in making a non-trivial configuration.
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ηt+1 = 0 or ± N
m

, three equations that have(N
m
)3 + O((N

m
)2) solutions in total, as we have shown

in the4th moment computation.
However, if there are repeated elements in anm-period, thenǫsRǫt+1 no longer necessitates

ǫs = ǫt+1, and it is possible that(ǫs − ǫs+1 + ǫt − ǫt+1) = ±m. Thus, the zone-wise locations of
elements matter in making non-trivial configurations. Recall that the zone-wise location (see (B.1))
of an elementaisis+1 is determined by(is+1 − is): if aisis+1 is in zone 1 or 3 (Area I),ǫs determines
the slot ofaisis+1 in anm-period; if aisis+1 is in zone 2 or 4 (Area II),ǫs+1 determines the slot of
aisis+1 in anm-period. In addition, the diagonal condition will always ensure that two paired entries
aisis+1 andaitit+1 are located in different areas.

Recall that for any matchingM, thek pairs of matrix elements, each pair in the form ofaisis+1 =
aitit+1, are fixed. For anyM, to make a non-trivial configuration, we first choose anǫ vector of
length2k. If we choose all theǫℓ’s freely, there arem2k possible choices for anǫ vector, most of
which do not meet the modulo condition, and trivially,m2k is an upper bound for the number of
valid ǫ vectors. It is noteworthy that out of the2k ǫℓ’s of anǫ vector, only some of theǫℓ’s will matter
for the modulo condition. Whichǫℓ’s in fact matter depends on how we pair the2k matrix entries
aisis+1 ’s and the zone-wise locations of the pairedaisis+1 ’s, which we cannot determine without
fixing theηℓ’s (and thus theiℓ’s).

However, for any matching, the way we pair the2k matrix entries intok pairs is fixed, and for
each fixed pairaisis+1 = aitit+1, two ǫℓ’s will matter for the modulo condition: eitherǫsRǫt+1 or
ǫs+1Rǫt. Thus there are2k ways to choosek pairs of ǫℓ’s for each matching. For each way of
fixing thek pairs ofǫℓ’s, we examine eachǫ pair, say(ǫℓ1 , ǫℓ2), and there are a certain number of
choices of(ǫℓ1 , ǫℓ2) such thatǫℓ1Rǫℓ2 . Continuing in this way, for eachǫ pair, we choose twoǫℓ’s
that satisfy the equivalence relationR. Note that anǫℓ may matter twice, once, or never for the
modulo condition depending on the zone-wise locations of the aisis+1 ’s. We then choose the other
ǫℓ’s that do not matter for the modulo condition such that for each pair ofaisis+1 = aitit+1, we have
ǫs−ǫs+1+ ǫt−ǫt+1 = 0 or ±m, and finally we have a validǫ vector. The number of validǫ vectors
will be determined bym, k, and the pattern of anm-period, but will be independent ofN since the
system ofk equivalence relations for the modulo condition does not involveN .

With a validǫ vector, we have fixed the zone-wise locations of the2k matrix elements by fixing
theǫℓ’s that matter for the modulo condition. We now turn to the diagonal condition and study the
ηℓ’s. With k equations in the form of

m(ηs − ηs+1 + ηt − ηt+1) + (ǫs − ǫs+1 + ǫt − ǫt+1) = 0 or ±N, (B.5)

and(ǫs− ǫs+1+ ǫt− ǫt+1) known in each of thek equations, we in fact havek equations in the form
of

ηs − ηs+1 + ηt − ηt+1 = γ, (B.6)

whereγ ∈ {0,±1, N
m
, N
m
± 1,−N

m
,−N

m
± 1}. This gives usk + 1 degrees of freedom in choosing

theηℓ’s, and trivially, we can have at most(N
m
)k+1 vectors ofηℓ’s. Since theǫ vector is fixed, for

one equationηs − ηs+1 + ηt − ηt+1 = γ, there are only3 choices ofγ. With k equations in this
form, we have at most3k systems ofη equations. Note that not all of theη vectors satisfying an
η equation system derived from the diagonal condition will help make a non-trivial configuration,
since theηℓ’s need to be chosen such that the resultedaisis+1 ’s will satisfy the zone-wise locations
in order to be coherent with the pre-determinedǫ vector. For example, if in a pair of matrix entries
aisis+1 = aitit+1 whereǫsRǫt+1, even though theηℓ’s are chosen such thatηs−ηs+1+ηt−ηt+1 = γ,



34 MURAT KOLOĞLU, GENE S. KOPP, AND STEVEN J. MILLER

it is possible thataisis+1, aitit+1 are located in certain zones such that we needǫs+1Rǫt to ensure a
non-trivial configuration.

The following steps mirror those in [HM]. Denote anη equation system byS. For anyS we
havek equations withη1, η2, . . . , η2k ∈ {1, 2, . . . , N

m
}. Let zℓ =

ηℓ
N/m

∈ {m
N
, 2m

N
, . . . , 1}. Without

the zone-wise concerns discussed before, the system ofk equations would havek + 1 degrees of
freedom and determine a nice region in the(k + 1)-dimensional unit cube. Taking into account
the zone-wise concerns, however, we will still havek + 1 degrees of freedom. For example, for
a pair of matrix elementsaisis+1 = aitit+1, the systemS requiresηs − ηs+1 + ηt − ηt+1 = γ. If
we needǫsRǫt+1 to make a non-trivial configuration, sayaisis+1 ∈ zone 1, then we will obtain
an additional equation0 ≤ is+1 − is ≤ N

2
− 1 ⇒ 0 ≤ (ηs+1 − ηs) + ǫs+1 − ǫs ≤ N

2
− 1 with

(ǫs+1 − ǫs) ∈ {−m + 1,−m + 2, . . . , 0, 1, . . . , m − 2, m − 1}. Based on the region determined
by ηs − ηs+1 + ηt − ηt+1 = γ, this additional zone-related restriction will only allowa slice of the
region for us to choose validηℓ’s. With k zone-wise restrictions, only a proportion of the original
region in the unit cube will be preserved for the choice of theη vector. Nevertheless, the “width” of
each slice is of orderN

2
, and we still havek + 1 degrees of freedom.

Therefore, withm fixed and asN → ∞, we obtain to first order the volume of this region,
which is finite. Unfolding back to theηℓ’s, we obtainM2k(S)(Nm )k+1 + Ok((

N
m
)k), whereM2k(S)

is the volume associated with thisη system. Summing over allη systems, we obtain the number
of non-trivial configurations for the2kth moment from this particularǫ vector. Next, within a given
matchingM, we sum over all validǫ vectors, the number of which is independent ofN as we have
shown before. In the end, we sum over the(2k−1)!! matchings to obtainM2kN

k+1+Ok(N
k), and

the2kth moment is simplyM2kN
k+1+Ok(N

k)
Nk+1 = M2k +O( 1

N
). �

The above proves the existence of the moments. The convergence proof follows with only minor
changes to the convergence proofs from [HM, MMS].
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[ERSY] L. Erdős, J. A. Ramirez, B. Schlein, and H.-T. Yau,Bulk Universality for Wigner Matrices, preprint.
http://arxiv.org/abs/0905.4176
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