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ABSTRACT. We derive closed form expressions for the continued fractions of powers of certain qua-
dratic surds. Specifically, consider the recurrence relation Gn+1 = mGn + `Gn−1 with G0 = 0,
G1 = 1, m a positive integer and ` = ±1 (note m = ` = 1 gives the Fibonacci numbers). Let
ϕm,` = limn→∞Gn/Gn−1. We find simple closed form continued fraction expansions for ϕk

m,` for
any integer k by exploiting elementary properties of the recurrence relation and continued fractions.

This paper is dedicated to the memory of Alf van der Poorten.

1. INTRODUCTION

In [vdP4], Alf van der Poorten wrote: The elementary nature and simplicity of the theory of
continued fractions is mostly well disguised in the literature. This makes one reluctant to quote
sources when making a remark on the subject and seems to necessitate redeveloping the theory ab
initio. As our work is an outgrowth of [vdP4], we happily refer the reader to that paper for some
basic background information on continued fractions, and to the books [HW, MT-B] for proofs.
Briefly, every real number α has a continued fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

. . .

, (1.1)

where each ai is an integer (and a positive integer unless i = 0). The ai’s are called the partial
quotients. For brevity we often write

α = [a0, a1, a2, . . . ]. (1.2)

If we truncate the expansion at an, we obtain the nth partial quotient
pn
qn

= [a0, a1, a2, . . . , an]. (1.3)

The pn’s and qn’s satisfy the very important relation

pnqn−1 − pn−1qn = (−1)n−1. (1.4)

Continued fractions encode much useful information about the algebraic structure of a number, and
frequently arise in approximation theory and dynamical systems. Clearly α is rational if and only
if its continued fraction is finite, and a beautiful theorem of Lagrange states that α is a quadratic
irrational if and only if the continued fraction expansion is periodic.
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In this paper we explore the continued fraction expansions of powers of quadratic surds. Recall
a quadratic surd is an irrational number of the form (P ±

√
D)/Q where P,Q ∈ Z and D is a

non-square integer. By Lagrange’s theorem we know these numbers and their powers have periodic
continued fractions, which suggests many questions, such as what is the length of the period as well
as what are the entries. Some special cases were done by van der Poorten in [vdP4]. He studied
solutions to Pell’s Equation X2 − DY 2 = ±1 (D a non-square integer). Using the solution, he
derived expansions for the continued fraction of

√
D and 1+

√
D

2
(with D ≡ 1 mod 4), and then for

the expansions of some simple functions of these numbers as well as numbers related to Diophantine
equations similar to Pell’s equation.

Another technique that shows promise in manipulating continued fractions comes from an unfin-
ished paper of Bill Gosper [BG]. He develops a set of algorithms for finding closed form expres-
sions of simple functions of a given quadratic irrational, as well as for more complicated functions
combining quadratic irrationals. His paper addresses the need for finding a nice way of adding and
multiplying the continued fractions of quadratic surds. The basic technique employed is an analog
of Euclid’s algorithm. This operation is carried out using two-dimensional arrays in the simple
cases, and then requires added dimensions when considering functions of two or more quadratic
irrationals. Unfortunately these algorithms, while useful for many applications, do not reveal the
nature of the underlying structure in a closed form in an accessible manner.

The purpose of this paper is to continue these investigations for additional families. We derive
closed form expressions for the continued fractions of powers of certain quadratic surds.

As the Fibonacci case is perhaps the most interesting, and some generalizations can be reduced
to this case, we state the results there first. Let fk denote the kth Fibonacci number, and Fn denote
the nth Fibonacci number. The reason for using both upper and lower case letters for the Fibonacci
numbers is to make the algebra in §2 visually easier to read by using upper case for the Fibonacci
numbers whose subscript is variable. Set ϕ = limn→∞ Fn/Fn−1, which is the golden mean; note
ϕk = limn→∞ Fn/Fn−k.

Theorem 1.1. We have

Fn

Fn−k
=

{
[fk+1 + fk−1,

Fn−k

Fn−2k
] if k is even

[fk+1 + fk−1 − 1, 1, Fn−k

Fn−2k
− 1] if k is odd,

(1.5)

which yields

ϕk =

{
[fk+1 + fk−1] if k is odd
[fk+1 + fk−1 − 1, 1, fk+1 + fk−1 − 2] if k is even.

(1.6)

The techniques used to prove the above theorem can be extended to certain recurrence relations.
We let gk = Gk for the same reason as before.

Theorem 1.2. Consider the recurrence relation Gn+1 = mGn + `Gn−1 with G0 = 0, G1 = 1, m a
positive integer and ` = ±1, again letting gk = Gk. Let

ϕm,` = lim
n→∞

Gn

Gn−1
=

m±
√
m2 + 4`

2
. (1.7)

Then for any positive integer k, if ` = 1 we have

ϕk
m,1 =

{
[gk+1 + gk−1] if k is odd
[gk+1 + gk−1 − 1, 1, gk+1 + gk−1 − 2] if k is even,

(1.8)



CLOSED FORM CONTINUED FRACTION EXPANSIONS 3

while if ` = −1 we have

ϕk
m,−1 = [gk+1 − gk−1 − 1, 1, (gk+1 − gk−1 − 2)]. (1.9)

The numerical data that led us to these results, as well as some additional experimental obser-
vations which, as of now, we have not been able to isolate into general theorems, are available at
[Fi].

On a personal note, this paper is an outgrowth of two undergraduate research classes taken by
the first named author under the instruction of the second named author (and others) at Princeton
University in 2002 and 2003. One of the topics covered was continued fractions, where many of
Alf van der Poorten’s papers [BvdP, BvdPR, BvdP, vdP1, vdP2, vdP3, vdP4, vdP5, vdP6, vdPS1,
vdPS2] were read and enjoyed. These types of questions are ideally suited to introduce students
to research. The results here, while later discovered to have been proved through other techniques
(see for example [LMW]), were originally found through numerical exploration, which suggested
the proof strategy.

The second named author had the fortune of being at Brown University with Alf a few years
later, and remembers fondly numerous conversations on continued fractions and other topics in
general, and the expansions in this paper in particular. Alf’s constant enthusiasm, knowledge of
the field and helpful comments greatly improved the exposition of continued fractions in [MT-B], a
textbook developed from the Princeton course.

2. CONTINUED FRACTIONS OF POWERS OF THE GOLDEN MEAN

As we’ll see later that the proof of Theorem 1.2 reduces to the special case of the Fibonacci
numbers, we study this case first. For notational convenience, we write Fn for the nth Fibonacci
number when n varies, and write fk for the kth Fibonacci number when k is a fixed input. This
notation helps us visually parse the equations that follow.

The following lemma collects some well known properties of the Fibonacci numbers which will
be useful below. The proofs are standard (see for instance [Kos], especially Chapter 5).

Lemma 2.1. The Fibonacci numbers satisfy the following properties:
(1) Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.
(2) ϕ = limn→∞

Fn

Fn−1
= 1+

√
5

2
.

(3) Binet’s Formula:

Fn =
1√
5

[(1 +√5
2

)n
−
(1 +√5

2

)n]
.

(4) Fn−2Fn − (Fn−1)
2 = (−1)n−1.

(5) Fn = fk+1Fn−k + fkFn−k−1.

The relations discussed below were initially found by numerically exploring the finite continued
fraction expansions of Fn/Fn−k. Note that for the golden mean ϕ = limn→∞ Fn/Fn−1, we have

ϕ =
1 +
√
5

2
= [1, 1, 1, 1, 1, . . . ], (2.1)

and

lim
n→∞

Fn

Fn−k
= lim

n→∞

Fn

Fn−1

Fn−1

Fn−2
· · ·

Fn−(k−1)

Fn−k
= ϕk. (2.2)
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For k = 2, it’s trivial to find the continued fraction of ϕ2 since Fn = Fn−1 + Fn−2 implies
Fn

Fn−2
= 1 +

Fn−1

Fn−2
. (2.3)

Taking the limit as n→∞, we find

ϕ2 = lim
n→∞

Fn

Fn−2
= 1 + ϕ = [2, 1, 1, 1, 1, . . . ]. (2.4)

With k = 3, however, the result is not as obvious. From Lemma 2.1(5) we note that Fn = f3Fn−2
+ f2Fn−3 = 2Fn−2 + Fn−3, which implies

Fn

Fn−3
= 1 + 2

Fn−2

Fn−3
. (2.5)

Unfortunately, in general there is no simple expression for the continued fraction of 2α given the
expansion of α. Numerical computations of the continued fraction expansions of Fn/Fn−3 were
found to have the form [4,4, . . . , ρ] where ρ is 3 if n ≡ 1 mod 3, 5 if n ≡ 2 mod 3, and 4 if
n ≡ 0 mod 3. This is easily proved, as after some algebra we find

Fn

Fn−3
= 4 +

1

Fn−3/Fn−6
, (2.6)

and the claim now follows from knowing the first few ratios. Further, we get the continued fraction
expansion for ϕ3 simply by taking limits.

Theorem 1.1 states that this algebra can be generalized to any k, as we now show.

Proof of Theorem 1.1. We have
Fn

Fn−k
=

fk+1Fn−k + fkFn−k−1

Fn−k

= fk+1 + fk
Fn−k−1

Fn−k

= fk+1 +
fk−1Fn−k−1 + fk−2Fn−k−1

Fn−k

= fk+1 +
(fk−1Fn−k−1 + fk−1Fn−k−2) + fk−2Fn−k−1 − fk−1Fn−k−2

Fn−k

= fk+1 +
fk−1Fn−k

Fn−k
+
fk−2Fn−k−1 − fk−1Fn−k−2

Fn−k

= (fk+1 + fk−1) +
fk−2Fn−k−1 − fk−1Fn−k−2

Fn−k
. (2.7)

As Fn−k−1 = fkFn−k−k + fk−1Fn−k−k−1 and Fn−k−2 = fk−1Fn−k−k−1 + fk−2Fn−k−k−2, (2.7)
becomes

Fn

Fn−k
= (fk+1 + fk−1)

+
fk−2(fkFn−2k + fk−1Fn−2k−1)− fk−1(fk−1Fn−2k + fk−2Fn−2k−1)

Fn−k

= (fk+1 + fk−1) +
fk−2(fkFn−2k)− fk−1(fk−1Fn−2k)

Fn−k

= (fk+1 + fk−1) +
Fn−2k[fk−2fk − (fk−1)

2]

Fn−k
. (2.8)
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From Lemma 2.1(4) we know fk−2fk − (fk−1)
2 = (−1)k−1. Using this and (2.8), (2.7) becomes

Fn

Fn−k
= (fk+1 + fk−1) +

Fn−2k(−1)k−1

Fn−k

= (fk+1 + fk−1) +
(−1)k−1

Fn−k/Fn−2k
. (2.9)

If k is odd then (−1)k−1 = 1 and so (2.9) becomes

Fn

Fn−k
= (fk+1 + fk−1) +

1

Fn−k/Fn−2k
, (2.10)

while if k is even then (−1)k−1 = −1 and so (2.9) becomes

Fn

Fn−k
= (fk+1 + fk−1) +

−1
Fn−k/Fn−2k

. (2.11)

If k is even we must manipulate further, and (2.11) becomes

Fn

Fn−k
= (fk+1 + fk−1 − 1) + 1− 1

Fn−k/Fn−2k
. (2.12)

Now

1− 1

Fn−k/Fn−2k
=

Fn−k − Fn−2k

Fn−k

=
1

Fn−k

Fn−k − Fn−2k

=
1

1 +
Fn−2k

Fn−k − Fn−2k

=
1

1 +
1

Fn−k − Fn−2k

Fn−2k

=
1

1 +
1

Fn−k

Fn−2k
− 1

. (2.13)

Taking the limit as n→∞ yields

ϕk = fk+1 + fk−1 − 1 +
1

1 +
1

ϕk − 1

, (2.14)

from which the continued fraction of ϕk easily follows. �



6 DANIEL FISHMAN AND STEVEN J. MILLER

3. THE GENERAL DIFFERENCE EQUATION

We now consider the more general difference equation

Gn = mGn−1 + `Gn−2 (3.1)

with the initial conditions G0 = 0, G1 = 1 (we need to choose initial conditions to explicitly write
down a generalized Binet’s formula). The results from Lemma 2.1 immediately generalize; we
omit the proofs (which are available in [Fi]) which are straightforward algebra, and just collect the
results below. As before, we use both Gn and gk for terms of the sequence to make the arguments
below easier to visually parse.

Lemma 3.1. Our sequence {Gn} satisfies the following properties:
(1) Gn = mGn−1 + `Gn−2 with G0 = 0, G1 = 1.
(2) ϕm,` = limn→∞

Gn

Gn−1
= m±

√
m2+4`
2

.
(3) Generalized Binet’s Formula:

Gn =
1√

m2 + 4`

[(
m+

√
m2 + 4`

2

)n

−

(
m−

√
m2 + 4`

2

)n]
.

(4) Gn−2Gn − (Gn−1)
2 = (−1)n−1 · `k−2.

(5) Gn = gk+1Gn−k + `gkGn−k−1.

We want to find closed form expressions for the continued fractions of the ϕk
m,` for integral k. As

the continued fraction of α is trivially related to that of 1/α, it suffices to study k > 0.
We argue as in §2. From Lemma 3.1(5) we have Gn = gk+1Gn−k + `gkGn−k−1, and thus

Gn

Gn−k
=

gk+1Gn−k + `gkGn−k−1

Gn−k

= gk+1 + `gk
Gn−k−1

Gn−k

= gk+1 + `
mgk−1Gn−k−1 + `gk−2Gn−k−1

Gn−k

= gk+1 + `
(mgk−1Gn−k−1 + `gk−1Gn−k−2) + `gk−2Gn−k−1 − `gk−1Gn−k−2

Gn−k

= gk+1 + `
gk−1Gn−k

Gn−k
+ `

`gk−2Gn−k−1 − `gk−1Gn−k−2

Gn−k

= (gk+1 + `gk−1) + `2
gk−2Gn−k−1 − gk−1Gn−k−2

Gn−k
. (3.2)

From Lemma 3.1(5) we have Gn−k−1 = gkGn−k−k+`gk−1Gn−k−k−1. AlsoGn−k−2 = gk−1Gn−k−k−1+
`gk−2Gn−k−k−2. Thus (3.2) reduces to

Gn

Gn−k
= (gk+1 + `gk−1)

+ `2
gk−2(gkGn−2k + `gk−1Gn−2k−1)− gk−1(gk−1Gn−2k + `gk−2Gn−2k−1)

Gn−k

= (gk+1 + `gk−1) + `2
gk−2gkGn−2k − gk−1gk−1Gn−2k

Gn−k

= (gk+1 + `gk−1) + `2
Gn−2k(gk−2gk − (gk−1)

2)

Gn−k
. (3.3)
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From Lemma 3.1(4) we know

gk−2gk − (gk−1)
2 = (−1)k−1`k−2, (3.4)

and thus
Gn

Gn−k
= (gk+1 + `gk−1) +

Gn−2k`
k(−1)k−1

Gn−k
. (3.5)

We now prove our main result.

Proof of Theorem 1.2.

Case 1: ` = 1: In this case, the difference equation takes the form Gn = mGn−1 + Gn−2. The
functional form of (3.5) is identical to that of (2.9); the only difference is that we have g’s and G’s
instead of f ’s and F ’s. We can thus quote our results from that case, and obtain the desired result.

Case 2: ` = −1: When ` = −1 the difference equation is of the form Gn = mGn−1 − Gn−2; we
choose the initial conditions so that no term is ever negative. Taking ` = −1 in (3.5) gives

Gn

Gn−k
= (gk+1 + gk−1) + (−1)k−1(−1)kGn−2k

Gn−k

= (gk+1 + gk−1)−
Gn−2k

Gn−k
. (3.6)

As this is of the same form as what we had in (2.11), we can argue as in §2. We’ve thus shown
that all quadratic surds of the form ϕm,−1 = m+

√
m2−4
2

, and their powers, have continued fraction
expansions of the form

ϕk
m,−1 = (gk+1 − gk−1 − 1) +

1

1 + 1
ϕk
m,−1−1

. (3.7)

This clearly determines a continued fraction with repeating block of length 2 of the form:

ϕk
m,−1 = [gk+1 − gk−1 − 1, 1, (gk+1 − gk−1 − 2)]. (3.8)

completing the proof. �
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