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Abstract. We investigate a one-parameter family of probability densities (related to the

Pareto distribution, which describes many natural phenomena) where the Cramér-Rao In-

equality provides no information.

1. Cramér-Rao Inequality

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parame-

ter θ. Let X1, . . . , Xn be independent random variables with density f(x; θ), and let Θ̂(X1, . . . , Xn)

be an unbiased estimator of θ. Assume that f(x; θ) satisfies two conditions:

(1) we have

∂

∂θ

[∫
· · ·

∫
Θ̂(x1, . . . , xn)

n∏

i=1

f(xi; θ)dxi

]
=

∫
· · ·

∫
Θ̂(x1, . . . , xn)

∂
∏n

i=1 f(xi; θ)
∂θ

dx1 · · · dxn;

(1.1)

(2) for each θ, the variance of Θ̂(X1, . . . , Xn) is finite.

Then

var(Θ̂) ≥
1

nE
[(

∂ log f(x;θ)
∂θ

)2
], (1.2)

where E denotes the expected value with respect to the probability density function f(x; θ).

For a proof, see for example [CaBe]. The expected value in (1.2) is called the information

number or the Fisher information of the sample.
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As variances are non-negative, the Cramér-Rao inequality (equation (1.2)) provides no useful

bounds on the variance of an unbiased estimator if the information is infinite, as in this case we

obtain the trivial bound that the variance is greater than or equal to zero. We find a simple

one-parameter family of probability density functions (related to the Pareto distribution) that

satisfy the conditions of the Cramér-Rao inequality, but the expectation (i.e., the information)

is infinite. Explicitly, our main result is

Theorem: Let

f(x; θ) =





aθ
1

xθ log3 x
if x ≥ e

0 otherwise,

(1.3)

where aθ is chosen so that f(x; θ) is a probability density function. The information is infinite

when θ = 1. Equivalently, the Cramér-Rao inequality yields the trivial (and useless) bound that

Var(Θ̂) ≥ 0 for any unbiased estimator Θ̂ of θ when θ = 1.

In §2 we analyze the density in our theorem in great detail, deriving needed results about aθ

and its derivatives as well as discussing how f(x; θ) is related to important distributions used to

model many natural phenomena. We show the information is infinite when θ = 1 in §3, which

proves our theorem.

2. An Almost Pareto Density

Consider

f(x; θ) =





aθ
1

xθ log3 x
if x ≥ e

0 otherwise,

(2.1)

where aθ is chosen so that f(x; θ) is a probability density function. Thus

∫ ∞

e

aθ
dx

xθ log3 x
= 1. (2.2)
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We chose to have log3 x in the denominator to ensure that the above integral converges, as does

log x times the integrand; however, the expected value (in the expectation in (1.2)) will not

converge.

For example, 1/x log x diverges (its integral looks like log log x) but 1/x log2 x converges (its

integral looks like 1/ log x); see pages 62–63 of [Rud] for more on close sequences where one

converges but the other does not. This distribution is close to the Pareto distribution (or a

power law). Pareto distributions are very useful in describing many natural phenomena; see for

example [DM, Ne, NM]. The inclusion of the factor of log−3 x allows us to have the exponent

of x in the density function equal 1 and have the density function defined for arbitrarily large

x; it is also needed in order to apply the Dominated Convergence Theorem to justify some

of the arguments below. If we remove the logarithmic factors, then we obtain a probability

distribution only if the density vanishes for large x. As log3 x is a very slowly varying function,

our distribution f(x; θ) may be of use in modeling data from an unbounded distribution where

one wants to allow a power law with exponent 1, but cannot as the resulting probability integral

would diverge. Such a situation occurs frequently in the Benford Law literature; see [Hi, Rai]

for more details.

We study the variance bounds for unbiased estimators Θ̂ of θ, and in particular we show that

when θ = 1 then the Cramér-Rao inequality yields a useless bound.

Note that it is not uncommon for the variance of an unbiased estimator to depend on the value

of the parameter being estimated. For example, consider the uniform distribution on [0, θ]. Let

X denote the sample mean of n independent observations, and Yn = max1≤i≤n Xi be the largest

observation. The expected value of 2X and n+1
n Yn are both θ (implying each is an unbiased

estimator for θ); however, Var(2X) = θ2/3n and Var(n+1
n Yn) = θ2/n(n + 1) both depend on θ,

the parameter being estimated (see, for example, page 324 of [MM] for these calculations).

Lemma 2.1. As a function of θ ∈ [1,∞), aθ is a strictly increasing function and a1 = 2. It has

a one-sided derivative at θ = 1, and daθ

dθ ∈ (0,∞).
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Proof. We have

aθ

∫ ∞

e

dx

xθ log3 x
= 1. (2.3)

When θ = 1 we have

a1 =
[∫ ∞

e

dx

x log3 x

]−1

, (2.4)

which is clearly positive and finite. In fact, a1 = 2 because the integral is

∫ ∞

e

dx

x log3 x
=

∫ ∞

e

log−3 x
d log x

dx
=

−1
2 log2 x

∣∣∣
∞

e
=

1
2
; (2.5)

though all we need below is that a1 is finite and non-zero, we have chosen to start integrating

at e to make a1 easy to compute.

It is clear that aθ is strictly increasing with θ, as the integral in (2.4) is strictly decreasing

with increasing θ (because the integrand is decreasing with increasing θ).

We are left with determining the one-sided derivative of aθ at θ = 1, as the derivative at any

other point is handled similarly (but with easier convergence arguments). It is technically easier

to study the derivative of 1/aθ, as

d
dθ

1
aθ

= − 1
a2

θ

daθ

dθ
(2.6)

and

1
aθ

=
∫ ∞

e

dx

xθ log3 x
. (2.7)

The reason we consider the derivative of 1/aθ is that this avoids having to take the derivative

of the reciprocals of integrals. As a1 is finite and non-zero, it is easy to pass to daθ

dθ |θ=1. Thus

we have

d
dθ

1
aθ

∣∣∣
θ=1

= lim
h→0+

1
h

[∫ ∞

e

dx

x1+h log3 x
−

∫ ∞

e

dx

x log3 x

]

= lim
h→0+

∫ ∞

e

1− xh

h

1
xh

dx

x log3 x
. (2.8)
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We want to interchange the integration with respect to x and the limit with respect to h above.

This interchange is permissible by the Dominated Convergence Theorem (see Appendix A for

details of the justification).

Note

lim
h→0+

1− xh

h

1
xh

= − log x; (2.9)

one way to see this is to use the limit of a product is the product of the limits, and then use

L’Hospital’s rule, writing xh as eh log x. Therefore

d
dθ

1
aθ

∣∣∣
θ=1

= −
∫ ∞

e

dx

x log2 x
; (2.10)

as this is finite and non-zero, this completes the proof and shows daθ

dθ |θ=1 ∈ (0,∞). ¤

Remark 2.2. We see now why we chose f(x; θ) = aθ/xθ log3 x instead of f(x; θ) = aθ/xθ log2 x.

If we only had two factors of log x in the denominator, then the one-sided derivative of aθ at

θ = 1 would be infinite.

Remark 2.3. Though the actual value of daθ

dθ |θ=1 does not matter, we can compute it quite

easily. By (2.10) we have

d
dθ

1
aθ

∣∣∣
θ=1

= −
∫ ∞

e

dx

x log2 x

= −
∫ ∞

e

log−2 x
d log x

dx

=
1

log x

∣∣∣
∞

e
= −1. (2.11)

Thus by (2.6), and the fact that a1 = 2 (Lemma 2.1), we have

daθ

dθ

∣∣∣
θ=1

= −a2
1 ·

d
dθ

1
aθ

∣∣∣
θ=1

= 4. (2.12)
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3. Computing the Information

We now compute the expected value, E
[(

∂ log f(x;θ)
∂θ

)2
]
; showing it is infinite when θ = 1

completes the proof of our main result. Note

log f(x; θ) = log aθ − θ log x + log log−3 x

∂ log f(x; θ)
∂θ

=
1
aθ

daθ

dθ
− log x. (3.1)

By Lemma 2.1 we know that daθ

dθ is finite for each θ ≥ 1. Thus

E

[(
∂ log f(x; θ)

∂θ

)2
]

= E

[(
1
aθ

daθ

dθ
− log x

)2
]

=
∫ ∞

e

(
1
aθ

daθ

dθ
− log x

)2

· aθ
dx

xθ log3 x
. (3.2)

If θ > 1 then the expectation is finite and non-zero. We are left with the interesting case when

θ = 1. As daθ

dθ |θ=1 is finite and non-zero, for x sufficiently large (say x ≥ x1 for some x1, though

by Remark 2.3 we see that we may take any x1 ≥ e4) we have

∣∣∣∣
1
a1

daθ

dθ

∣∣∣
θ=1

∣∣∣∣ ≤
log x

2
. (3.3)

As a1 = 2, we have

E

[(
∂ log f(x; θ)

∂θ

)2
] ∣∣∣∣∣

θ=1

≥
∫ ∞

x1

(
log x

2

)2

a1
dx

x log3 x

=
∫ ∞

x1

dx

2x log x

=
1
2

∫ ∞

x1

log−1 x
d log x

dx

=
1
2

log log x
∣∣∣
∞

x1

= ∞. (3.4)

Thus the expectation is infinite. Let Θ̂ be any unbiased estimator of θ. If θ = 1 then the

Cramér-Rao Inequality gives

var(Θ̂) ≥ 0, (3.5)
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which provides no information as variances are always non-negative.

Appendix A. Applying the Dominated Convergence Theorem

We justify applying the Dominated Convergence Theorem in the proof of Lemma 2.1. See,

for example, [SS] for the conditions and a proof of the Dominated Convergence Theorem.

Lemma A.1. For each fixed h > 0 and any x ≥ e, we have

∣∣∣∣
1− xh

h

1
xh

∣∣∣∣ ≤ e log x, (A.1)

and e log x
x log3 x

is positive and integrable, and dominates each 1−xh

h
1

xh
1

x log3 x
.

Proof. We first prove (A.1). As x ≥ e and h > 0, note xh ≥ 1. Consider the case of 1/h ≤ log x.

Since |1− xh| < 1 + xh ≤ 2xh, we have

|1− xh|
hxh

<
2xh

hxh
≤ 2

h
≤ 2 log x. (A.2)

We are left with the case of 1/h > log x, or h log x < 1. We have

|1− xh| = |1− eh log x|

=

∣∣∣∣∣1−
∞∑

n=0

(h log x)n

n!

∣∣∣∣∣

= h log x

∞∑
n=1

(h log x)n−1

n!

< h log x

∞∑
n=1

(h log x)n−1

(n− 1)!
= h log x · eh log x. (A.3)

This, combined with h log x < 1 and xh ≥ 1 yields

|1− xh|
hxh

<
eh log x

h
= e log x. (A.4)

It is clear that log x
x log3 x

is positive and integrable, and by L’Hospital’s rule (see (2.9)) we have

that

lim
h→0+

1− xh

h

1
xh

1
x log3 x

= − 1
x log2 x

. (A.5)
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Thus the Dominated Convergence Theorem implies that

lim
h→0+

∫ ∞

e

1− xh

h

1
xh

dx

x log3 x
= −

∫ ∞

e

dx

x log2 x
= −1 (A.6)

(the last equality is derived in Remark 2.3). ¤
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