SUMS AND DIFFERENCES OF CORRELATED RANDOM SETS
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ABSTRACT. Many questions in additive number theory (Goldbach’s eonjre, Fermat’s Last The-
orem, the Twin Primes conjecture) can be expressed in tlgudge of sum and difference sets.
As a typical pair contributes one sum and two differencesengect|A — A| > |A + A| for fi-
nite setsA. However, Martin and O’Bryant showed a positive proportidrsubsets of0, ..., n}
are sum-dominant. We generalize previous work and study surd differences of pairs abrre-
lated sets(A, B) (a € {0,...,n} is in A with probabilityp, anda goes inB with probability p;

if a € A and probabilityp, if a ¢ A). If |[A+ B| > |[(A— B)U (B — A)|, we call(4,B) a
sum-dominantp, p1, p2)-pair. We prove for any fixeg = (p, p1, p2) in (0,1)3, (A, B) is a sum-
dominant(p, p1, p2)-pair with positive probability, which approaches a linf{5). We investigate
p decaying withn, generalizing results of Hegarty-Miller on phase transisi, and find the smallest
sizes of MSTD pairs.
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1. INTRODUCTION

Given a finite setd C Z, it is natural to compare the sizes of its sumdet A and difference
setA — A, which are defined as

A+A ={a+b:abec A}, A—A = {a—b:a,be A} (1.1)
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We have two competing influences on their respective calitiega For anyu € A, a —a is always
equal to0 while a + «a is different for different values ai. On the other hand, since addition is
commutative while subtraction is not, any two different marsa, b € A generate two differences
a—>bandb—a but only one suna+b. We thus expect that most of the time the size of the diffezenc
set is at least that of the sumset; however, this is not altvey/sase. A set whose sumset has more
elements than its difference set is caltean dominantor aMore Sums Than Differenc@€ISTD)
set. One of the earliest examples is due to Conway from the’d9), 2,3,4, 7,11, 12, 14}.

We briefly review some of the key results in the field. Given aifpee integern and a real
numberp in [0, 1], we choose a subsétof

I, .= {0,1,...,n} (1.2)

such that each element éf is independently chosen té with probability p. Let pystp(p, n)

be the probabilityA is an MSTD set, themystp(1/2;n) is the probability that a uniformly
chosen random subset 6f is an MSTD set. Martin and O’Bryant [MO] in 2002 proved that
pustp(1/2;n) is greater than a positive constant foral>> 14. A similar result holds if instead
each element of, is chosen independently of the others with a fixed non-zesbatility p, and
againpyustp(p; n) > 0. This is somewhat contrary to our original intuition that M3sets should
be rare, though we will see later that this percentage, wiokdtive, is quite small. Subsequent
work by Zhao [Zh2] proved thapystp(1/2;n) converges to a limit whem — oo, and lyer,
Lazarev, Miller and Zhand [ILMZ] generalized these restitcomparisons of linear combina-
tions of a set. These proofs are probabilistic and non-cociste; see [Na, MOS, MPR, Zh1] for
explicit constructions of infinite families of MSTD sets. @t results include the work of Hegarty
and Miller [HM] on the behavior opystp (pn; n) as the probability,, of including an element in
A C I, decays withm, and Hegarty’s [He] proof that the smallest size of an MSTOs8 and the
example found by Conway is the smallest sum dominant set lipetar transformation.

All of the literature to date has looked at sums and diffeesnof a set with itself. In this
paper, we extend the theory to combinations of two subseisteders (see [DKMMWW,] for
another generalization, specifically to subset®edimensional polytopes). Given two finite sets
of integersA and B, define their sumset and difference set by

A+B = {a+b:acAbec B},
+(A-B) = (A-B)U(B—-A) = {a—bb—a:ac Abe B}. (1.3)

We investigate sums and differencegafrsof subsets A, B) C {0, 1,...,n}, which are selected
according to the dependent random process described below.

Definition 1.1. Fixa g’ = (p, p1, p2) € [0,1]3. We call(A, B) a p-correlated paiif each element
k € I, is chosen intod and B by the following rule:

P(ke A) = p; Plke Blke A) = p1; PkeBlk¢ A) = ps. (1.4)

We say a correlated paid, B) is aMore Sums Than Differenc@€lSTD) or sum dominanpair
if the size of their sumset is bigger than that of their défece set{A + B| > | £ (A — B)|. For
eachn, let P, (p) denote the probability a randomly chos@ncorrelated paif A, B) is an MSTD
pair.

If (p1,p2) = (1,0) thenB = A and thus the problem is reduced to comparing the sizes of the
sumset and the difference set afwith itself; this is the(A, A) case, and is the only one that
has been studied extensively in literature so far. If we(petps) = (0,1), then B contains all
elements that are not i and thusB is the complement ofl; we call this thg A, A¢) case. If we
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let p; = po, thenA and B are chosen independently. Finallygf= (0.5,0.5,0.5) then P, (p) is
simply the proportion of pairs of subsets{df, 1, ...,n} that are MSTD. In this case, we call the
MSTD correlated pair simply an MSTD pair.

In this paper, we address three questions regarding MSTielated pairs.

(1) For a fixed probability vectas, doesP, () converge to a positive number as— co?

(2) If we letp'decay withn, doesP, (p) converge td) asn — co?

(3) What are the minimal sizes of an MSTD pair and what are timenal MSTD pairs up to
linear transformation? We sdyn, n) is a minimal size of an MSTD pair if for any MSTD
pair (A, B) not having that size, then eithed| > m or |B| > n. It can thus happen that
there is more than one minimal size.

To address the first question, we exploit the probabilisethads of Martin and O’Bryant [MO]
and Zhaol[ZhR2]. We first construct a pair that has an M3iiilye; these are the elements near the
endpoints ofd and typically control whether or not the set is sum-domirfaeé Definition 2.5 for
details). Next we show that almost all MSTD correlated panesrich, which essentially means
that we have an MSTD fringe and that a large interval of middies are obtained; see Definition
[2.6 for details. From this we are able to answer completadyfitat question.

Theorem 1.2. For each vectorp = (p, p1,p2) € [0,1]3, the proportion of sum dominani
correlated pairs off,, converges to a limiP(p) asn — oo. Moreover,P(p) = 0if p € {0,1} or
p1 + p2 €{0,2}, and P(p) is strictly positive otherwise.

From Monte-Carlo experiments, Martin and O’Bryant [MO] geetured that thgroportion of
MSTD sets, ot”((0.5,1,0)), is approximatelyt.5 x 10~*; Zhao [Zh2] has derived algorithms sup-
porting a limit of this size. Since we expect MSTD sets to bye,reve are interested in finding the
maximum value of the functio®. The following theorem says that this search is not comlylete
hopeless.

Theorem 1.3. The functionP : [0, 1]> — [0, 1], defined in Theoref 1.2, is continuous and thus
attains its maximum at some point.

In SectioriB we investigate and conjecture that the maximum occur$@5, 0, 1).

The second question for thid, A) case was first conjectured by Martin and O’Bryant [MO] and
solved there by Hegarty and Miller [HM]. The question is netgting because (f, p1, p2) is fixed
with p > 0 and0 < p; + p2 < 2, then the expected sizes dfand B are proportional tax and it
is reasonable to expect a positive probability of having \@Sbrrelated pairs. If instead we let
eitherp — 0 or p; + p2 — 0 or 2, then the expected size df(if p — 0) or B (if p1 + p2 — 0 0r2)
is no longer proportional ta and it is unclear whether or not we should have a positiveaisibiy
of MSTD correlated pairs.

The case studied in [HM] isp, p2) = (1,0) andp — 0 asn — oo. Before stating their main
results, we fix some notation. Leét™ be a real-valued random variable depending on some integer
parameterV, and letf (V) be a real-valued function. We writ@¢” ~ f(N) if for any €;, 2 > 0
there existsV,, ., > 0 such that for allNv.- > N, .,,

P2 ¢ [(1—e)f(N),(1+ea)f(N)]) < e (1.5)

We also use standard big-Oh, small-oh &hdhotations. We writef(z) = O(g(zx)) if there
exist constants, and C' such that for alle > =z, |f(z)| < Cg(z). If f( ) = O(g(x)) and
or g(x)

g(x) = O(f(x)) we sayf(x) = O(g(x)). Finally, we write f(x) = o(g(x)) ( > f(x)) if
lim, o f(z)/g(z) = 0. The following theorem captures the main results in

or gz
[HM].
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Theorem 1.4.[Hegarty-Miller [HM]] For p : N — (0, 1) such thatp(N) = o(1) and N=! =
o(p(N)), let eachk € Iy := {0,..., N} be independently chosen to be Anwith probability
p(N). The probability thatd C Iy is MSTD tends to 0.
Let. = |A+ A, 2 =|A - Aland.#C = 2N + 1 — ., 9° = 2N + 1 — 2 be the sizes of
their complements.
(i) If p=0o(N"12), thenZ ~ 2.7 ~ (Np)>.
(ii) If p=cN~Y2forcec (0,00), then forg(z) = 2(e™® — (1 — z))/x

CZ

S~ g (5) N and 2 ~ g(c*)N. (1.6)

(iii) If N=Y2 = o(p) then.7° ~ 29° ~ 4/p?,

This theorem identifiesV—'/2 as thethreshold functiorwhere the phase transition happens.
The ratio between sizes of the sumset and difference sevégldifferently forp with decay on
opposite sides of this threshold. Below the threshold ttie imalmost surel2 + o(1) while above
itis almost surelyl + o(1).

Building on their methods, we extend their results to ourergeneral setting.

Theorem 1.5. For fixedp;, p2 € [0,1],0 < p; + po < 2 and a functiorp : N — (0, 1) such that
p(N) = o(1) and N=! = o(p(N)), the probability that A, B) C I is an MSTD(p(N), p1, p2)-
correlated pair tends to 0.

In particular, letp = p*(2p; — p?) + 2p(1 — p)p, wherep = p(N). Let.” = |A + B| and
9 =|+(A-B)land.¥° = 2N +1 - .7, 2% = 2n — 1 — 2 be the sizes of their complements.

(i) fp=o(N"'),thenZ ~ 2.7 ~ N?p.
(ii) If p = cN~! for somec € (0,0). Letg(z) = 2(e™® — (1 — z))/x, then
C

S~ g(§>N and 2 ~ g(c¢)N. (1.7)

(iii) If N=t = o(p), thenE(.7#¢) ~ E(22°) ~ 4/p.
Finally, we are able to answer the first part of the third goest

Theorem 1.6. The minimal sizes of MSTD pairs af&, 5) and (4,4). Examples of MSTD pairs
with such sizes are

A = {0,1,4,6,7}, B = {2,3,5}

A = {0,1,4,6}, B = {0,2,5,6}. (1.8)

We attack these three questions in their listed order. Ini@ec&2 and (83 we address the first
question by proving Theorem 1.2 and Theotem 1.3. We nexstigate the decay of in 4 and
prove the result about minimal MSTD pairs in Sectioh 85. Weobade with a list of questions for
future research.

2. POSITIVE PERCENTAGE OAMSTD CORRELATED PAIRS

In this section we generalize the arguments_of [MO] and [Zb2he case ofp, p1, p2)-pairs
(A, B). Let [, := {0, ...,n}; we also writg0, n] for this interval. Additionallyn — A ={n—a:
a € A}; we frequently enclose it in parentheses when performingnsor intersections to clearly
identity the sets. We first prove an easy yet very helpfulltesu

Proposition 2.1.1f p € {0,1} or p; + po € {0, 2} then there is ng'—correlated MSTD pair ir,,.
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Proof. It is easy to see that if = 0 or 1, the setA is, respectively, the empty set éx. In
the first case|A + B| = |A — B| = 0 for any setB. In the latter case, it and s are the
largest and smallest elements Bf(0 < s < [ < n), thenA+ B = {s,s+ 1,...,n + [}
and+(A - B) = {—-d,—(d —1),...,d — 1,d} whered = max{n — s,l}. Hence|A + B| =
m+l)—s+1l=(mn—-s)+1+1<2d+1=|+(A— B)|. Ineither case, there is no MSTD
correlated pair (for any). Similarly, if p; + p, € {0,2} or equivalently(p,, p2) € {(0,0); (1,1)},
B =0 orI,, and there is no MSTD pair either. O

Therefore fromnow on we assume 0 < p <1 and 0 < p; +p < 2 unl ess
st at ed ot herw se.

We now establish two useful lemmas which are analogous tanhasv and 11 in [MO]. Their
proofs follow from Bayes'’s formula, and for completenessgiven in AppendiX A.

Lemma 2.2.Let(A, B) be a(p, p1, p2)-correlated pair. For any: € [0, 2n], the probabilityk does
not belong to the sumsdt+ B is

min{%,—%“;*l} it L dd
if kiso
P(k¢ A+ B) = P min{k 2n=ky (2.1)
paps 22 if kis even,

where
ps = (1=p1)*p* +2(1 = p2)p(1 —p) + (1 —p)* and py = (1—p)p+(1—p). (2.2)
Lemma 2.3. Let (A, B) be a(p, p1, p2)-correlated pair. For anyk € [—n, n],

Pk ¢ (A—B)U(B—A)) < {p§/3 if 1 <k<n/2

2.3
pg_k if n/2 <k <n, (2:3)

whereps is defined in Lemma 2.2.

Remark 2.4. It is easy to check that whep,, p») = (1,0), p3 = 1 — p* andps = 1 — p; note this
is consistent with the results [MO] and[Zh2].

We next give definitions of MSTD fringe tuples and rich MSTDOrpaanalogous to Definitions
2.1 and 2.4 in[[Zh2]. As we will see, these definitions charaee the behavior of almost all
MSTD pairs in the limit.

Definition 2.5 (MSTD fringe tuple) For & < n/2 and subsetd,, L', R, R’ of [0, k], we say
(L,L', R, R'; k) is anMSTD fringe tupleif

[(L+L)N[0,k]|+|(R+ R)N[0,k]] > 2|((L+R)N0,k)U((L'+R)N[0,k])|. (2.4)
Definition 2.6 (Rich MSTD pair) We call a pair of subset§A, B) C S arich MSTD pair with
fringe tuple(L, L', R, R'; k) if

(i) ANn[0,k] =L, Bn[0,k] =L,

(i) (n—A)N[0,kl=R, (n—B)N[0,k] =R,

@iy k+1,2n—k—-1C A+ B.
The smallest such is called the order of this rich pair.
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Any pair (A, B) satisfying (i) and (ii) is said to haviinge profile given by(L, L', R, R'; k).
These two conditions and Definition 2.5 imply that+ B has more “extreme” elements than
+(A — B) (here “extreme” refers to the smalldselements and the largestelements off + 7
and/ — I). If condition (iii) is also satisfied (i.e., the pairl, B) is rich) thenA + B has all the
“ (A — B)|. This intuition is formalized
in the proof of the following lemma, and justifies our nomextate.

Lemma 2.7. A rich MSTD pair is an MSTD pair.

Proof. The proof is similar to the proof of Lemma 2.5 in [Zh2]. We waAt+ B| > |+ (A — B)|.
It suffices to show the following two inequalities:

(A+B)N([0,K]U[2n —k,2n])] > |+ (A= B)N([~n, —n+kUn—kn])| (2.5)

(A+B)N[k+1,2n—k—1]| > |[£(A-B)N[-n+k+1ln—k—1). (2.6

Notice (2.5) is saying that the sumset beats the differeeersthe fringes, whilé (21.6) says that
the difference set does not win in the middle, and so the iakitgun (2.6) follows immediately
from the richness criterion. To prove(2.5), note that

(A+B)n[0,k] = (L+L)NJ0,k
(A+B)Nni2n—k,2n] = (n—R)+(n—R))N[2n—k,2n] = 2n— ((R+ R") N[0, k])
(A—=B)Nn[-n,—n+k] = (L—-(n—-R)N[-n,—n+kl = (L+R)N[0,k]) —
(B-A)N[-n,—n+k] = (L'=@n-R)N[-n—n+ k] (L"+ R)N0,k]) —
( B) n—kn] = (L-—(n—R))N[n—Fkn] =n—((L+R)N[0,k])
(B-—A)nNmnh—-—kn] = (I'-(n—-R)Nh—*kn] =n—((L+R)NI0,E]. (2.7)
Hence

|+ (A= B)N([—n,—n+kUn—kan))| = 2/(L+R)N[0,k) UL +R)N[0,K)|, (2.8)

((A+ B)N([0,k]U[2n —k,2n])| = |(L+ L) N[0,k]| +|(R+ R')NI0, k]| (2.9)
The desired inequality then follows from the definition j205an MSTD fringe tuple. O

Much like in [Zh2], we will see in the proof of Propositibn 2] thatalmost all MSTD pairs are
rich. Following [Zh2] we define a partial order on fringe tuplesdve which allows us to count
fringe tuples without redundancy.

Definition 2.8 (Partial ordering of fringe tuples\We say(L, L', R, R'; k) > (M, M',T,T";j) if
k> jand

M = Ln[o,j], M =1'n[0j, T =Rn[,j, T = RN[0,j]
lj,k] € L+L, [j,k] € R+R. (2.10)

The arguments i [Zh2] also show that minimal fringe tuplesd given rich pain A, B) are
unique, and they are minimal in the partial order of all fertgples. This allows us to count rich
MSTD pairs by their minimal fringe tuples.

Fix anyk > 0. Forn > 2k, let P,[E] denote the probability that, out of &b, p1, p2) = ¢
correlated pairs of subsetd, B) of [0, n], A and B satisfy the conditions prescribed by the event
E.
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Let P.(p)(L, L', R, R'; k) be the probability that the pait4, B) € I, is a rich MSTD p-pair
with fringe profile(L, L', R, R'; k); thatis P, (p)(L, L', R, R'; k) equals
P,[(A, B) has fringe profil§ L, L', R, R'; k) and[k + 1,2n — k — 1] C A+ B]. (2.11)
We write this more compactly as
P.(p)(L,L'.R,R:k) := P,[(L,L',R, R k), [k+1,2n—k —1] C A+ B). (2.12)
Lemma 2.9. For any fringe profile(L, L', R, R'; k) and anyp = (p, p1, p2), the following limit

exists:
P(p)(L,L',R,R'; k) := ILm P,(p)(L,L' R, R"; k). (2.13)

Proof. Following the example in_[ZF2], we break up the evBnt- 1,2n — k — 1] ¢ A+ B into
the disjoint events
k+1,j—1 € A+ B, j¢A+B (2.14)
for eachk < j < 2n — k. Thus
P,[(L,L',R,R;k), [k+1,2n—k—1] C A+ B]
2n—k
= P[(L,L',R.Rk)— Y P,J(L.L R R:k)[k+1,j—1€A+B; j¢ A+ B]
>k
2n—k
= ]P)Zk[(L7 le R7 R,a k)] - Z Pj-i-k[(Lv le R7 R,7 k)v [k + 17] - 1] € A + B’ ] ¢ A + B]?
>k
(2.15)
where in the final line we have replaced thesubscripts with smaller ones, which we can do
because these events only involve at mis{resp. j + k) elements, and the probabilities do not
change when we allow for more middle elements to belong (ohetong) toA and B. Thus
everything except the upper limit on the sum is independent &Ve send. to infinity and find

P(P)(L,L',R, R k) := lim P,(p)(L, L', R, R: k)
n—oo

= ]P)2k[(La Lla Rv R/; k)] - Z]P)j-i-k[([’a Lla Ra R/; k)v [k + 17] - 1] €A+ Ba ] ¢ A+ B]
>k
(2.16)
Since each term in the sum is non-negative and the total sbhouisded above by 1 (as the partial
sums represent legitimate probabilities), the monotomve&gence theorem says the sum con-
verges, and thus the limiting probability exists. U

The next definition isolates our key object of study; we prthat it exists and give a formula
for it in the proposition that follows.

Definition 2.10(P(p)). For g’ € [0, 1]3, set

P(p) := lim P,[(A, B)is an MSTD(p, p1, p2)-correlated pair]. (2.17)
n—oo
Proposition 2.11. The limit P(p) exists and is given by
> P(@)(L.L R Rk, (2.18)
(L,L',R,R’;k)

where the sum is taken over all minimal fringe tuplésZ’, R, R'; k).



8 DO, KULKARNI, MILLER, MOON, AND WELLENS

Proof. As assumed) < p < 1 and0 < p; + p2 < 2. Fix a positive integef and letn be large
enough.

Supposé A, B) is an MSTD pair ofl,,. Let L, L’ be intersections ofi, B with [0, K] andR, R’
be intersections of\, B with [n — K, n|. We will prove that as: grows large, the MSTD pair
(A, B) is arich MSTD pair with probability approaching 1. Indeed, supp6deB) is nota rich
MSTD pair of order at mosk’. This means eith€rA4, B) is notrich, or itis rich with order greater
thank.

In the first case, sincéL, L', R, R’) is not an MSTD fringe, the size of difference set is not
smaller than that of the sumset on the fringes. Hence thest bauat least a middle difference,
i.e., a difference iK' — n,n — K|, be missing (otherwiséA, B) cannot be sum dominant). In
the second case, sin¢g, L', R, R', K) is a fringe pair, and yeatA, B) is not a rich MSTD pair of
order K, there must be a middle sum missing, i.e., there exists sember in[X, 2n — K| that is
notin A + B. Let E denote this event. We use the result from Lemima 2.2 to ca&li(d). Note
that sincep # 0,1 and(py, p2) # (0,0), (1,1), we haved < p3 < 1. We find

2n—K 2n—K n/2
, 4
Pw>=P<LJ@¢A+m>s D PUgATE) <4 A< (219)
i=K i=K i=K/2 3

which goes to zero a& — oo, proving the claim for missing at least one middle sum; theopr
for the probability of missing at least one middle differeqproceeds similarly, using Lemmal.3.
We therefore have proved that whergets large, almost all MSTD pairs are rich MSTD with
fringes. Therefore, by summing over all fringes adin (P. Y8 getP(p). Note that each term in
(2.18) exists and their sum is less than 1, hence this sunecges. O

Proposition 2.12. We haveP(p) > 0 foranygwith0 < p < 1 and0 < p; + p2 < 2.

Proof. As the argument is similar to one in [MO], we only sketch thegirhere. Unlesg; = 0,
any MSTD fringe paif(L, R; k) for (A, A) works as a fringe tupléL, L, R, R; k) for (A, B), and
occurs with fixed positive probability. One such fringe isegi in [MQ]: L = {0,2,3,7,8,9,10}
andR = {1,2,3,6,8,9,10, 11}. By additionally imposing thdi 2, 12+j] c AnB, for sufficiently
large j (which depends on), we can ensure thatd, B) is rich with positive probability. Thus
P(p) > P(§)(L,L, R, R; k) > 0.

Now we handle the case when = 0. Sincep, > 0, a fringe profile for(A, A°) occurs with
positive probability in this case, and the same reasoningeatwill hold. Thus it suffices to exhibit
a single MSTD fringe profile fofA, A°). One such fringe profileis = R = {1,2,3,5,7,8}. O

Proof of Theorerh 1]2The proof follows immediately from Propositions 2.1, 2. 1@ 12. O

3. THE PROBABILITY FUNCTION P

We now investigate the behavior of the functign: [0, 1> — [0, 1], which gives the limiting
probability of selecting an MSTIp-correlated paif A, B) from I,, asn — co. We prove thaf is
continuous, as stated in Theoreéml1.3. Afterwards we contpeterobability function fom = 8
and discuss some conjectures about the behavibr of

Proof of Theorerh_1]3We first prove continuity away from the zeros; i.e., at poigitsuch that
P(p) # 0. By Proposition 2.12, we know the zerosBfare exactly the set

Z :={(p,pr,p2) € 0,17 : p € {0,1} or (p1 + pa) € {0,2}}, (3.1)
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which is a closed set iR®. We first show tha# is continuous on the open sgt, and then show
that asp approaches any point if, the value ofP(p) approaches 0, so that is continuous on
[0, 1]3.

We first prove that for each minimal fringe profilé(5)(L, L', R, R'; k) is a continuous function
of p'away fromZ (note that these functions are also zeranWe start with the definition:

P(P)(L, L', R, Rk) = Pu[(L,L,R,R;k)

— > Pil(L. L R R:k),[k+1,j—1 € A+B; j¢ A+ B].
>k
(3.2)
The first term on the right hand side is continuous, since

Pol(L, L', R, R k)] = > Pai[(A, B)], (3.3)
(A,B) has fringe profiléL,L’,R,R’;k)

and the probability of gettingA, B) is just a polynomial irp, p; andps, so this sum is continuous.
Similarly, each term in the second sum is continuous, as weviEav each term as a sum over
suitable pairg A, B) of the probability of picking the paifA, B), each of which is a polynomial.

Thus to show that the infinite sum itself is continuous, ifisek to bound the tails uniformly.
We will see that this follows from

Pyil(L L R R k), [k+1,j 1] € A+ B; j¢ A+ B < Pli¢ A+B.  (3.4)

The probability on the right, as computed in Lemma 2.2, isrnumd above byyg where p;
depends om, py, po. FOr any fixedp' ¢ Z, restrict to a closed ball abogtthat lies entirely inside
Z°. We can pickp, for which p; attains its maximal valuge, < 1 on this closed ball. Thus the
tails are bounded by the tails of a convergent geometrieserith ratiog,, so the series converges
uniformly and thusP(p)(L, L', R, R'; k) is continuous or¥°.

Since
P() = >, P@L,L,R Rk (3.5)
(L,L',R,R/;k)
and the summands are continuous functiong oh Z¢, it suffices to show that the tail sums
> P(p)(L, L', R, R'; k) (3.6)

(L,L',R,R;k) with k>m

can be made uniformly small witte. This argument follows along the same lines as the proof of
Proposition 2.14 in [Zh2]. All contributions to this tailiae from sets wherél + B is missing a
middle sum, where in this case “middle” means not in the firshe lastn elements. To show that
these events are unlikely we use the union bound and thelfacive have a convergent infinite
geometric series, starting with some maximizer (over asddsll inZ¢), ¢., raised to the power
m, which goes to zero ag — oc.

Now we must show thaP(5) approaches zero gsapproaches any point id. First we show
P(p)(L,L', R, R'; k) — 0 as the distance digt, Z) tends ta0. Note that

P(m(Lv Lla R, R/; k) < P%(ﬁ)[(L» le R, R,; k)] (3.7)
As the probability on the right is a continuous functiorpofhich is zero on?Z, we have
lim Pp)(L,L',R,R;k)=0 (3.8)

dist(7,Z2)—0
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and thus the function®(p)(L, L, R, R'; k) are continuous off), 1]3. Observe that i) > 0 and
p1+p2 > 0, butstilly € Z, then the same argument involving missing middle sums dfeteinces
based on Lemmas 2.2 and 2.3 works to show th& continuous ap. So we only need to show
that P(5) — 0 asp — 0 or p; + po — 0, which is true because of Theorém|1.5 (whose proof does
not depend on Theoreim 1.3; see the next section). Thus wéudenihatP(p) is continuous on

[0, 1]3. O

The following is an immediate consequence of the continafty” and the compactness of
[0, 1]3.

Corollary 3.1. The functionP attains a maximum value on any compact domain. In parti¢iétar
attains its maximum at some point|in 1]*. Moreover, for any(p;, p;) fixed, P as a function of
attains its maximum at some pojpit Similarly, for any fixegh, P as a function of p, p,) attains
maximum at some poifp;, p5).

As P(p) is continuous on a compact set, we can conjecture wheraihatts maximal values.
We start by considering the functia,(p) for n > 1, which is the probability for dp, p1, p2)
correlated paif A, B) from [,, to be an MSTD set. When — oo this function should converge
to our function”. We chose: = 8 and numerically found all MSTD pairs of subséts, B) € Is.
Letting L5 be the set of all such pairs, we foufds| = 96. For each pai( A, B) found, we

recorded A|, | B| and|A N B|. Since each element ¢f), 1,...,8} is chosen independently, we
can calculate
- ANB — B|—-|ANB —|A|l—
Pi(p, p1,p2) = Z pHAI(L = p)?= 11 IANBI (1, lAI=ANB] [BISIANBI () yo-lal-|Bl+|AnB|
(A7B)€,Cs
(3.9)

We plotted P (p) and found its maximum appears to be(at2,0,1). Numerical explorations
suggest that’(1/2,0,1) = 0.03, which is significantly larger tha®(1/2,1,0) ~ 4.5 x 10~*.
These numbers, however, should be taken with a healthy elefskepticism. These problems are
computationally intense, and it is possible that the olestbehavior differs for very large. For
a related problem with a similar numerical difficulty, see Work in [DKMMWW].

We end with some observations and conjectures. If wéfix p < 1 andp; not too large,
we observe thats appears to be a strictly increasing function. If we couldverthis, we would
then know that it would attain its maximum at = 1. On the other hand, if we fiR < p < 1
and p, not too small,P; appears to be a strictly decreasing function, and thus wati&dn its
maximum atp; = 0. Finally, if we fix (p1, p2), in most cases it appears that the maximunPof
happens at some poiptclose tol/2. In the specific case whep,, p2) = (0, 1), if we assume
that P, is differentiable then we can easily prove that= 1/2 is a critical point. Indeed, let
Qn(p) = P.(p,0,1). Since in this cas®& = A, we findQ,,(p) = Q,(1 —p). Taking the derivative
of both sides yields

Qu(p) = —Q'(1—p). (3.10)

Consequentlyy)’,(1/2) = 0, orp = 1/2is a critical point of@,,, and thus of>,. This suggests the
following conjecture.

Conjecture 3.2. The maximum of the functioR in [0, 1] occurs at(1/2,0,1), and P(p) =
P(1/2,0,1) ~ 0.03.
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4. WHEN ) DECAYS WITH N

As this section is devoted to generalizing Hegarty-MigfM] work where the density de-
pends on the length of the interval, we use := {0,1,..., N} instead of],, below to be con-
sistent with their notation. By havingdecay withN we expect that there will not be a positive
probability of randomly choosing an MSTD correlated pair.

In Theoren 1R, we proved th&t(p) > 0 unlessp € {0, 1} or p; + p2 € {0,2}. Therefore it
is reasonable to consider two types of decay: either 0 or 1 while py, ps are fixed, or(p;, p2)
converges to eithef0,0) or (1,1) while p is fixed. In this paper we restrict ourselves to the
simplest case, where we fix,, p2) and letp — 0. We also assumg&/N = o(p(NN)) to guarantee
thatE[|A|] = p(N) - N does not tend t0, as otherwisel is close to the empty set and the problem
becomes trivial. Here we writg(N) to emphasize the fact thatdepends onV. Later on, we
simply write p without causing confusion.

In order to prove the first and second parts of Thedrem 1.5, seethe following definition,
which resemble$2.1) in [HM].

Definition 4.1. For any(p, p1, p2)-correlated random paif A, B) of I,y and any integek > 1, let
Ak = {{(al,bl), e (ak,bk)} CAxB: a; + bl = - = ap + bk} (41)

Thus A, is the set of all unorderekttuples of elements il x B having the same sum. While
better notation would includ®&, we choose the simpler notatiot). so that the formulas below
look like the corresponding ones in [HM].

Let X, = |Ax|, thenif (A, B) is a random pair of subsets &f;, X, is a non-negative integer
valued random variable. We first state a useful lemma, whioss pan be found in AppendixIB.

Lemma 4.2. Fix a, b € Iy. The probability that the eveate A,b € Bora € B,b € A happens
isp = p*(2p1 — p7) +2p(1 — p)ps if a # b, andpp, if a = b.

Proposition 4.3. Withp defined as in Lemnia 4.2 jif= O(N) then for eachk: > 1 we have

2 (D) ke
E[X] ~ TS (5) NFL (4.2)

Moreover, X, ~ E[X}] wheneverV—*+D/k — o(p).

Proof. As much of the proof is similar to that of Lemma 2.1 of [HM], walp give a sketch and
prove the different parts. There are two typesgdtiples: those consisting @k distinct elements
of Iy (type 1 tuples) and those in which one element is repeatax tiwione pair and the sum of
each pair is even (type 2 tuples). Lt (V) and, (V) be the total numbers déf-tuples of those
two types. As proved in [HM],

2N ming| 2], 2Nen 2 k+1
£ () — _Z% ( {kaL J}) ~ s (4.3)

and
Er(N) = O(NF). (4.4)
By Lemmal4.2, the probability for eadhtuple of type 1 to occur i$*, and that of type 2 is

P*~'pp,. SinceX;, can be written as a sum of indicator variablg one for each unorderddtuple
« of type 1 or 2, we have

E[Xk] = &u(N)-p" + &u(N) - 0 'ppr. (4.5)
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By the assumption /N = o(p),

Ex(N)P*'ppr _ O(N*pp1) 1 .
Gt OTE) OB p) + 20 pefe O
Hence )
A 2 7
BIG] ~ 6u)- 7~ Gy, (5) A (4.7)

To prove the strong concentration by the mearXpfwheneverN ~*++0/k — (), we use the
standard moment method as/in [HM]. We first set some notatien.

A=Y P(YaNYp), (4.8)
anp
where the sum is over pairs bftuples which have at least one number in common. The proof is
completed by showing
A = o(E[X]?) = o( N*+2p2k), (4.9)
Similar to the previous part, we can prove that the main douion to A comes from pairs
{a, 5} where eaclt-tuple consists otk distinct elements and has exactly one elementin common.
As shown in the proof of Lemma 2.1 in [HM], the number of suclrpas O(N?+1). For each
of the 4k — 1 elements in/y, the probability they are chosen to be in tweuples, each tuple
containing2k distinct numbers and the two tuples having exactly one cometement, ig%—2 .
P(E) where E denotes the event for three distinct integers, ¢ € I, that the pairqa,b) and
(a, c) are each chosen infatuple. We use the following lemma (see Apperidix C for a proof

Lemma 4.4. Notation as abovey?/p = O(P(E)).
Using the assumptioh/N = o(p) we get

A N2k+1 A2k—2]P> E 1
__ O R(E) = o(1), (4.10)
N 2k+2p2k N 2k+2552k O(Np)
or
A = o(N*T2p%) = o(E[X,]%) (4.11)
as we wish, completing the proof. O

Proof Theorem 115We proceed similarly to the proof of Theorémll1.4[in [HM]. Adiigh in our
case we consider sums and differences of two sets insteadepfomce we have the results in
Propositior. 4.3, the rest is the samelas [HM]. As the argusnare similar, in parts (i) and (ii)
below we analyze” first and thenz, while in part (iii) we first study¥“ and thenz°.

Proof of Part (i): Inthisregimep = o(1/N). Sincepi, p, are fixed,p?> = O(p) and
henceN~2 = o(p). Thus by [AR)E[X;] ~ 1pN? > 1. Similarly E[X,] ~ L N3p? if N=3/2 =
o(p) and isO(1) otherwise. Sincg = o(1/N), N3p* = o(N?p). Thus in both caseE[X,| =
o(E[X4]). Similarly, E[X;] = o(E[X;]) for anyk > 2. In other words, asV — oo all but a
vanishing portion of pairs of elements(iAd, B) have distinct sums. It follows that

1
S ~ E[X;] ~ §pN2. (4.12)

To prove the result foZ, we define for eack > 1
A;C = {{(al,bl),...,(ak,bk)} CAxBUB XAICLl—bl = ---:ak—bk %0}, (413)
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and proceed in a completely analogous manner to the progf.of

Proof of Part (ii): Inthisregime = c/N. Thusforanyk > 1, N-*+D/k = o(N~1) =
o(p). It follows from (4.2) that

2 (eNTN' 24 (c/2)
Xk~ (k+1)!< > ) N = oY (4.14)
Let & be the partition oM, from the relation
(a1,b01) ~ (ag,by) if andonlyif a; +b; = ag + bo. (4.15)
Let 7; denote the number of parts of sizeor eachi > 0. Then” = 3.~ 7,. As proved in[HM],
00 oo (_1)k—1 (E)k
S~ Y (-DFIXG ~ 2 ZTD'Q N = g(¢c/2)N. (4.16)
k=1 k=1 ’

whereg(z) = 2(e™* — (1 — z))/x as mentioned in theorem1.5.
The proof for the difference set again proceeds similading (4.13).

Proof of Part (iii): WeuselLemmads?2.2 andP.3. Note

2N IN/2) A
E.] = Y Pli¢ A+B) ~ 4> ph ~ = (4.17)
=0 =0

Notice thatl — p3 = p sinceps andp are the probabilities of two complementary events (alterna
tively, we can check it directly from their formulas). 807¢] ~ 4/p. SimilarlyE[2¢] ~ 2/p. O

Remark 4.5. The phase transition happens whgr= ©(N~1). If we let(p;, p2) = (1,0) then

p = p? and our result is consistent with the result[ldM] (see Theorem 1.4). If we 1&t;, p;) =
(0,1) thenp = 2p(1 — p) = ©(p). However, sincé /N = o(p) = o(p), the phase transition never
happens. In thigA, A°) case, the size of the difference set is always almost suellyle the size
of the sumset, which somewhat supports our conjecture tBat/pairs are most abundant in the
(A, A°) case.

5. MINIMAL MSTD PAIRS

In this section we prove that the minimal MSTD pair of sets$ias (3,5) or (4,4).

Lemma 5.1. If A, B C I, is an MSTD pair, then there must exist < a;, < a3 € A and
b1 < by < bs 6BSUChthahl—Fbg:a2+b2:&3—|—bl.

Proof. Assume there do not exist suegh b;. Consider

I = {{(a,b),(c,d)} CAXxB:a+b=c+d}

J = {{(a,b),(c,d)} CAxB:a—b=c—d}. (5.1)
Notice thata + b = ¢+ d if and only if a — d = ¢ — b. Hence we have a bijection betweéand

J. In particular, this implies!/| = |.J| as they are finite sets.
For eachs € [0,2n] andd € [—n, n|, define

Xs = {(g,b)e AxB:a+b=s}
Yo = {(a,b) e AxB:a—b=d}. (5.2)
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It is easy to see that
Z\Xl = ZIYd Al - B (5.3)

and

=Y ('?'); =3 ('?'). (5.4)

51| Xs|>2 d:|Yq|>2
We therefore find

[£(A-B) = [A-Bl= Y 1= Y [[Yal—(Yal-1)

deA—-B deA—-B
v
> S m- X () = s 55)
deA-B &Yy >2

Note that this inequality always holds regardless of ouugion. We have a similar inequality
for the difference set:

[A+Bl = Y 1= > [IX|-(X|-1)

s€A+B s€A+B
X
> S owi- X () = mem-m 56)
s€A+B 1 X o[ >2

However, in this case the equality happens becaise— 1 = (I%°) as|X,| < 2 for all s by our
assumption that there do not exist three pairs of the sameldance +(A—B)| > |A||B|—|J| =
|A||B| — |I| = |A + Bj, contradicting the assumption that, B) is an MSTD pair. O

The intuition behind this lemma is that if there do not existtsa;, b;, sincea +b = ¢+ d if and
only if a — d = ¢ — b, eachcollapsedsum generates ommllapseddifference and thus the sumset
cannot win. Incidentally, this connects our two observatian the introduction: the property
that the difference of any number with itself is equal to Odsigalent with the commutativity of
addition because — a = b — b(= 0) impliesa + b = b+ a for anya, b € A. The difference set
has the advantage becauss a bigcollapseddifference. To see this explicitly, we write

A+ Al = |AP -~ |1|+ZK|X|) (1] }—f‘“Z (%] = (X4 -2
A—A| = AP - |J|+ZK‘ d') |Y|—1)] - M+Y (1Yal = 1)(JYa| — 2) 5.7)

2 )
whereM = |A|*>—|I| = |A|*—|J|. This implies the larger the sizes K }sca+5 (0r {Yi}aca_a)
are, the larger the size of + A (or A — A) is. HenceY, = |A|, the biggest size &; or X, can
obtain, will give the difference set a huge advantage. Tigament also somewhat supports our
conjecture that A, A°) MSTD pairs are most abundant, becalsie no longer a big collapsed
difference.

This purely combinatorial observation can be applied to$imahe necessary conditions for a set,
or a pair of sets to be sum-dominant in any setting (humbeisipin a plane, MSTD sets in two
or higher dimension and so on). For example, an MSTD sét afust not have only two elements
because if s0X;| < 2 and hencéA + A| = M < |A — A|. Likewise, if A = {a,b,c} where
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0<a<b<c<nisMSTD,thenone ok, mustbe 3, which meanstc = b+b = c+a = k for
some integek. This forcesA to be a symmetric set, and therefore not sum-dominant|(s€j)[M

Going back to the proof of theordm 1.6, from Lemimd 5.1 we imiatet} obtain the following
corollary, as we saw abové& must have at least three elements.

Corollary 5.2. There does not exist an MSTD pa#, B) of size(2, k) or (k,2) foranyk > 2.
Theorenm_1.6 follows directly from the above corollary and tiwo following propositions.
Proposition 5.3. There does not exist MSTD pdi#, B) of size(3, 3).

Proof. Our starting point is Lemma_3.1, which gives the existenca tfple in A and a triple in
B; as each of these sets has cardinality 3, we see these selstleege special triples. Thus,
if such an MSTD pair existed, we would have = {a;,as,a3} and B = {by, by, b3}, with
|A+ B| > |(A—B)U(B—A)|, a1 < ay < az andb; < by < bs. Lemmals.1l then implies
a; + by = az + by = az + by, which gives|A + B| < 9 — 2 = 7 because we have at least two
collapsedsums. Without loss of generality we may assume< b; anda; = 0.

Case 1: b, =a;: Asb; = a; we haveas = bs. If ay = by thenA = B. This cannot be sum-
dominant because the smallest sum-dominant set has sipe8 /Sb-, and there are at least 3 pos-
itive differencesis, b, az in (A—B)U(B—A). Sinced € A—B, |(A-B)U(B—A)| > 7 > |A+B|,

a contradiction.

Case 2: by > ay: Inthis case < by < bs are 3 positive distinct numbers id — A. Thus
|(A—B)U(B—A)| > 6. Since|A+ B| < Twe musthavéA— B)U(B—A)| = {£by, £by, £b3}.
AS —bs < by —asz < by —as < by, it must happen thdtl — a3z = —by andb1 — a9 = —by, Or
as = 2b; andas = 2b; + by. The difference, — ay = by — 2b; is bigger than-b; but less than
by, and the only number ig-(A — B) between those two numbersbhis henceb, — 2b; = by, or
by = 3b;. Lettingb = b,, we can rewrite the paitA, B) asA = {0, 2b,4b} andB = {b, 3b, 5b}. It
is easy to check that this is not an MSTD pair. O

Proposition 5.4. There does not exist an MSTD pait, B) of size(3,4).

The proof of this proposition is similar to that of Propoait5.3, except there are many more
cases. Details can be found in Appendix D. This completepitbef of Theoreni 116. O

6. CONCLUSION AND FUTURE WORK

We extended the results of [He, HM, MO, Zh2] of MSTD sets to NDSJorrelated pairs. In par-
ticular, we proved that for eagh= (p, p1, p2) € [0, 1] the limiting probability” () of picking an
MSTD p-correlated pair exists and is positive unlgss {0, 1} or p; + p2 € {0, 2}. Furthermore,
the functionP () is continuous and thus attains its maximum at some pointGhwve conjecture
is(1/2,0,1). We characterize the phase transition when we d¢cay withn. Finally, we found
the minimal size of an MSTD pait4, B).

We end with some of the more interesting and important opestipns.

(1) Prove or disprove Conjecture B.2.

(2) Find an efficient algorithm to calculate valuesi(fp), and investigate further the analytic
properties ofP.

(3) Prove the strong concentrationgf andZ¢ in the case of slow decay (i.e., whair!/? =
o(p)). Do similar results hold for other types of decay, namely» 1 or (p1,p2) —
(0,0),(1,1)?
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(4) Are the examples of the MSTD pairs of sige 4) and(3, 5) found in Theorem 116 unique
up to linear transformation?
(5) Generalize the results from [[LMZ] to linear combinatsoof correlated sets.

APPENDIX A. PROOF OFLEMMAS [2.2AND [2.3

Proof of Lemma 2]2Let £, , denote the eventi(c A andb € B) or (a € B andb € A). For each
k € I, kisnotin A 4 B if and only if for every pair(a, b) in [0, n] with £ = a + b, the event&,;,
does not happen. Léf® be short forE; - the complement of/, .

If a # bthen by Bayes’ formula

P(E°) = P(Elac Abe A)P(ac A, be A)+P(Elac A,b¢ A)P(ac Ab¢ A)
+P(Elag A be A)P(a¢g A,be A)+P(Ela ¢ A,b¢ A)P(ac A b ¢ A)
= (L—p1)’p" +2(1 = pa)p(1 = p) + (1 = p)* = ps. (A.1)

If @ = b, then similarly we find
P(E) = P(E‘ja € A)P(a € A)+ P(Ela ¢ A)P(ag A)=(1—p)p+(1—p)=pi. (A2)

Assume there ar@” ways to writek as sum of two elements = a; + b; = -+ = aw + by .
Since no element is repeated in two different pairs (becduse- b = a + ¢ = k thenb = ¢),
the event each pair does not appeardins independent with each othet , and £, are
independent for all # j. Therefore

w w
P(k¢ A+B) =P (ﬂ Eb> = TIP (&) (A.3)

It remains to count how many wayscan be written as sum of two elementdjn First assume
k is odd. In this cas@ (L, , ) = ps for all i becausé: cannot be twice a number. 0f < k < n,

there are(‘“‘;—1 ways to writek as sum of two numbers:
k—1 k+1

B= 04k =14(k-1) = = ——+— (A.4)
If n < k < 2n there are2®=F+1 such ways:
kE+1 k-1
k:n+(k—n):(n—1)+(k—n+1):-~-:%+7. (A.5)

Hence

min{ &+l 2n—k
P(k¢ A+B) = py 272 (A.6)
Now for evenk, P(Eghbi) is ps whena; = b; = k/2 and isp; otherwise. Similar to before, there
are% ways to writek as sum of twdlifferentnumbers ifd < & < n and there aré%-* such ways
if £ > n. As a consequence

min{ % , 72"27]“ }

P(k ¢ A+ B) = pipy , (A7)
which completes the proof of lemrhaR.2 O

Proof of Lemma& 2]3We write k as differences of two elementsip: k = k-0 = (k+ 1) —
1 =---.If k> n/2, no element is repeated in two pairs, thus similar to Lerhri@an& have
P(k ¢ +(A— B)) = o "
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If & <n/2, we use the same method used in Lemma 10 of [MO]. Define the set

J:{j:0<j<n—k; EJ iseven}. (A.8)

In other words,/ contains the first integers starting at, then omits the next integers, and so
on. Itis easy to see thaf| > n/3andj + k ¢ Jif j € J. Therefore, if we writé: = a; — b; for

b; € J, we are guaranteed that theandb; are all distinct. We then have the same independence
as before, hence

P(k ¢ £(A— B)) < P(Us—ppes(aibs) ¢ (Ax BYU(Bx A)) = pi' <py®. (A.9)
]
APPENDIX B. PROOF OFLEMMA [4.2

Proof of Lemma 4]2Denote the event in the lemma i We break the analysis into two cases,
depending on whether or netequalsh.

Case |: a # b: We apply Bayes’ formula tdZ. Our partition is the four disjoint events on
whether or not. or b is in A.
P(E) = PFlacAbeA)-PlacAbe A)+P(Flac A,b¢g A)-Plac A,b¢ A)

+P(Ela¢g Abe A) - Plagd Abe A)+P(Elag Ab¢ A)-Plag Abg¢ A)
= (1-(1=p)») P +p2-p(l—p)+po-p(l—p)+0

= P*(2p1 — p1) + 2p(1 = p)pa. (B.1)

Case |1: a=0b: We proceed similarly, and find
P(E) = P(Elac A)-Plac A)+P(Ela¢ A)-Pla¢ A) = p1-p. (B.2)
O

APPENDIX C. PROOF OFLEMMA [4.4

Proof of Lemmé& 4l4Let E be the event from the lemma, and consider the evéhts= (a €
Ab e B)and(a € B,b € A),andE, = (a € A,c € B)and(a € B,c € A). Itimmediately
follows thatE = E; N Fy. We again use Bayes’ formula, with our partition the foutidist events
arising from whether or nat andb are inA and B. We find

P(E) = P(Elac€c A,ae B)-Plae A,ae B)+P(Elac A,a¢ B)-Pla € A,a ¢ B)
+P(Ela¢ A,ae B)-Pla¢ A,ac B)+P(Ela¢ A,a ¢ B)-Pla¢ A,a ¢ B)
= [P*+2p(1—p)p2+ (1 —p)*p3] - ppr
+ [P0t + 2p(1 = p)prps + (1 = p)*p3] - p(1 = p1) +p* - (1 = p)p2 + 0
= p(1=p)%03 +20*(1 = p)p1pa(2 — p1) + P°pr (1 + p1 — p7) + P*(1 = p)p2. (C.1)

Note that we also use Bayes’ formula to calculté’|c € A,a € B) and so on by dividing
into four cases depending on whether or not dachs in A or not. Thus

A 2
P* = [P°p(2—p1) +2p(1 = p)ps]
= P12 —p)? +4P°(1 = p)pipa(2 — pr) + 4p*(1 — p)*p5. (C.2)
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Sincep — 0 andp, p, are fixed, bothP(E) andp® have formAp?® + o(p*) for someA > 0; hence
p? = O(pP(E)) as desired. 0

APPENDIXD. PROOF OFPROPOSITIONS.4

Proof of Proposition 5J4AAssumeA = {ay, as, a3} and B = {by, by, b3, by} be an MSTD pair in
I, where0 < a; < as <az <nand0 < b; < by < bz < by <n.

LemmaD.1. We havel € A — Bifandonly if—d € A — B.

Proof. By Lemma[5.1, there must exist a numbesuch that X;| = 3, ora; + b, = as + b; =
az + b, = s for somel < k < j < i < 4. There are four possibilities fdi, j,4), which are
(1,2,3),(1,2,4),(1,3,4) and(2, 3, 4).

It is easy to see that there is msuch that| X;| > 4. If there exists another number # s
such that X,| = |Xy| = 3, equivalently there exist§’, j/, k') such thatu; + by = ay + by =
as + by = . Sinces # ', 1 £ 4, j # j' andk # k. The only possibility iSk, j,i7) = (1,2, 3)
and(k', 5',4") = (2, 3,4) or vice versa. In either case,

a1+63:a2+b2:a3+bl (Dl)

a1+b4:a2+b3:a3+b2. (D2)

Subtracting those two chains of equalities gibes- b3 = b3 — by = by — by; let this common
difference bel. From [D.1),ay — a1 = by — by = d andas — ay = by, — by = d, which means
(a;) and(b;) are two arithmetic sequences with same distance. It is eadyeick that in this case
(A, B) is notan MSTD pair.

This implies there exists exactly one= A + B such that X| = 3. From the proof of Lemma
5.1, we see that in order fo + B| > | & (A — B)|, it must happeny;| < 2foralld € A — B,
and| £+ (A — B)| = |A — B|, which means it € A — B, so is—d and vice versa. O

From LemmaD.ll, we see that the smallest and largest numbdrs iB, which area; — b, and
az — by respectively, must be inverses of each other. So

as — bl = b4 — aq (D3)

Case 1. ay+0by# as+0b:so(k,j,i) =(1,2,3)0r(2,3,4). Itis easy to see that {f4, B)
is an MSTD pair, so ign — A,n — B) wheren — X = {n —z : = € X}. Therefore without
loss of generality we can assurtle j,i) = (2,3,4), ora; + by = ay + by = as + be. Since we
can translate the set by a number, asstme 0 (now a;, b; are not necessary ih). From [D.3),
ay = by —az = by — ay, Orby = 2a,. Asb; < by, 0 < 2aq, ora; > 0. We can rewrité; by a; as
follows: by = O;bg = 2(1,1;b4 =a3—b+a1 =0 +&3;bg =ay +bs —ay = 2a; + a3 — ay. SO

A = {al, ao, 0,3}; B = {0, 2(1,1, 2&1 + as — ag, 0,3}. (D4)

We can now write down all elements (might be repeated)-efB which are{+a;, +as, as, as—
ay — as, as — 2a1, 2a9 — 2a1 — as, ag — 2(1,1}. By Lemmdm.,CLQ €eA—B= —ay € A — B, thus
one of 4 number$as — a; — ag, as — 2aq, 2a9 — 2a7 — ag, az — 2a, } Must be equal te-as.

Case 1.1: as— 2a; = —ay Ora; = aq, a contradiction.

Case 1.2: as—2a; = —asy, Oras = 2a; — ay < aq, a contradiction.

Case 1. 3: as —ay — a3 = —as Or a; + a3 = 2as. Letay — a1 = a3 — as = d, then
A={ai,a1+d,a; +2d} andB = {0, 2a4, 2a, + d, 2a; + 2d. We can directly check that this pair
is not sum-dominant.
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Case 1. 4: 2a9 — 2a7 — a3 = —as, O 2a; + as = 3as. Leta; — a; = d, thena3 — A2 =
2a5 — 2a1 = 2d. ThenA = {ay, a1 + d,a; + 3d} and B = {0, 2ay, 2a; + 2d, 2a; + 3d. Again it is
straightforward to check that this pair is not MSTD.

Case 2: a3+ by = az + by two pairs(aq, by) and(as, b;) have same sums and differences,
hencea, = b; andas = by. Without loss of generality, assume = b; = 0 (as we can translate
everything by—a;) andas + b, = a3. Rewrite

A = {O,CLQ,CLg}, B = {0,&3-@2,[)3,&3}. (D5)

A—B consists of at most 9 elemedt$ as, tas, as—as, 2a2—as, —bs, as—bs, az3—bs}. By Lemma
D.J,-b; € A— B = —b3 € A— B. Since0 < b3 < ag, one of{as, 2as — asz,as — bz, az — bz}
must be equal tés.

Case 2.1: Ay = bg.
Case 2. 2: 2a9 — a3 = bs.
Case 2. 3: as — by = bs.
Case 2. 4. ag—l)g:bg.

In the first case|Yy| = 3 becausd) = a; — by = ay — by = ag — by, Which contradicts our
observation before th@t,;| < 2foralld € A— B. In any of the other three latter cases, we reduce
our sets to two variables, andas. Continuing our argument based on LenimalD.1, we can find a
relation between, andas and check again to see that there is no such MSTD pair. Thipletes

the proof of Proposition 5l4. O
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