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ABSTRACT. Many questions in additive number theory (Goldbach’s conjecture, Fermat’s Last The-
orem, the Twin Primes conjecture) can be expressed in the language of sum and difference sets.
As a typical pair contributes one sum and two differences, weexpect|A − A| > |A + A| for fi-
nite setsA. However, Martin and O’Bryant showed a positive proportionof subsets of{0, . . . , n}
are sum-dominant. We generalize previous work and study sums and differences of pairs ofcorre-
lated sets(A,B) (a ∈ {0, . . . , n} is in A with probabilityp, anda goes inB with probabilityρ1
if a ∈ A and probabilityρ2 if a 6∈ A). If |A + B| > |(A − B) ∪ (B − A)|, we call (A,B) a
sum-dominant(p, ρ1, ρ2)-pair. We prove for any fixed~ρ = (p, ρ1, ρ2) in (0, 1)3, (A,B) is a sum-
dominant(p, ρ1, ρ2)-pair with positive probability, which approaches a limitP (~ρ). We investigate
p decaying withn, generalizing results of Hegarty-Miller on phase transitions, and find the smallest
sizes of MSTD pairs.
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1. INTRODUCTION

Given a finite setA ⊂ Z, it is natural to compare the sizes of its sumsetA + A and difference
setA−A, which are defined as

A+ A = {a + b : a, b ∈ A}, A− A = {a− b : a, b ∈ A}. (1.1)
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We have two competing influences on their respective cardinalities. For anya ∈ A, a−a is always
equal to0 while a + a is different for different values ofa. On the other hand, since addition is
commutative while subtraction is not, any two different numbersa, b ∈ A generate two differences
a−b andb−a but only one suma+b. We thus expect that most of the time the size of the difference
set is at least that of the sumset; however, this is not alwaysthe case. A set whose sumset has more
elements than its difference set is calledsum dominant, or aMore Sums Than Differences(MSTD)
set. One of the earliest examples is due to Conway from the 1960’s: {0, 2, 3, 4, 7, 11, 12, 14}.

We briefly review some of the key results in the field. Given a positive integern and a real
numberp in [0, 1], we choose a subsetA of

In := {0, 1, . . . , n} (1.2)

such that each element ofIn is independently chosen toA with probability p. Let pMSTD(p, n)
be the probabilityA is an MSTD set, thenpMSTD(1/2;n) is the probability that a uniformly
chosen random subset ofIn is an MSTD set. Martin and O’Bryant [MO] in 2002 proved that
pMSTD(1/2;n) is greater than a positive constant for alln ≥ 14. A similar result holds if instead
each element ofIn is chosen independently of the others with a fixed non-zero probability p, and
againpMSTD(p;n) > 0. This is somewhat contrary to our original intuition that MSTD sets should
be rare, though we will see later that this percentage, whilepositive, is quite small. Subsequent
work by Zhao [Zh2] proved thatpMSTD(1/2;n) converges to a limit whenn → ∞, and Iyer,
Lazarev, Miller and Zhang [ILMZ] generalized these resultsto comparisons of linear combina-
tions of a set. These proofs are probabilistic and non-constructive; see [Na, MOS, MPR, Zh1] for
explicit constructions of infinite families of MSTD sets. Other results include the work of Hegarty
and Miller [HM] on the behavior ofpMSTD(pn;n) as the probabilitypn of including an element in
A ⊂ In decays withn, and Hegarty’s [He] proof that the smallest size of an MSTD set is 8 and the
example found by Conway is the smallest sum dominant set up tolinear transformation.

All of the literature to date has looked at sums and differences of a set with itself. In this
paper, we extend the theory to combinations of two subsets ofintegers (see [DKMMWW] for
another generalization, specifically to subsets ofD-dimensional polytopes). Given two finite sets
of integersA andB, define their sumset and difference set by

A+B = {a+ b : a ∈ A, b ∈ B},

±(A− B) = (A− B) ∪ (B −A) = {a− b, b− a : a ∈ A, b ∈ B}. (1.3)

We investigate sums and differences ofpairsof subsets(A,B) ⊂ {0, 1, . . . , n}, which are selected
according to the dependent random process described below.

Definition 1.1. Fix a ~ρ = (p, ρ1, ρ2) ∈ [0, 1]3. We call(A,B) a ~ρ-correlated pairif each element
k ∈ In is chosen intoA andB by the following rule:

P(k ∈ A) = p; P(k ∈ B|k ∈ A) = ρ1; P(k ∈ B|k /∈ A) = ρ2. (1.4)

We say a correlated pair(A,B) is aMore Sums Than Differences(MSTD) orsum dominantpair
if the size of their sumset is bigger than that of their difference set:|A + B| > | ± (A− B)|. For
eachn, letPn(~ρ) denote the probability a randomly chosen~ρ−correlated pair(A,B) is an MSTD
pair.

If (ρ1, ρ2) = (1, 0) thenB = A and thus the problem is reduced to comparing the sizes of the
sumset and the difference set ofA with itself; this is the(A,A) case, and is the only one that
has been studied extensively in literature so far. If we let(ρ1, ρ2) = (0, 1), thenB contains all
elements that are not inA and thusB is the complement ofA; we call this the(A,Ac) case. If we
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let ρ1 = ρ2, thenA andB are chosen independently. Finally, if~ρ = (0.5, 0.5, 0.5) thenPn(~ρ) is
simply the proportion of pairs of subsets of{0, 1, . . . , n} that are MSTD. In this case, we call the
MSTD correlated pair simply an MSTD pair.

In this paper, we address three questions regarding MSTD correlated pairs.

(1) For a fixed probability vector~ρ, doesPn(~ρ) converge to a positive number asn → ∞?
(2) If we let ~ρ decay withn, doesPn(~ρ) converge to0 asn → ∞?
(3) What are the minimal sizes of an MSTD pair and what are the minimal MSTD pairs up to

linear transformation? We say(m,n) is a minimal size of an MSTD pair if for any MSTD
pair (A,B) not having that size, then either|A| > m or |B| > n. It can thus happen that
there is more than one minimal size.

To address the first question, we exploit the probabilistic methods of Martin and O’Bryant [MO]
and Zhao [Zh2]. We first construct a pair that has an MSTDfringe; these are the elements near the
endpoints ofA and typically control whether or not the set is sum-dominant(see Definition 2.5 for
details). Next we show that almost all MSTD correlated pairsare rich, which essentially means
that we have an MSTD fringe and that a large interval of middlesums are obtained; see Definition
2.6 for details. From this we are able to answer completely the first question.

Theorem 1.2. For each vector~ρ = (p, ρ1, ρ2) ∈ [0, 1]3, the proportion of sum dominant~ρ-
correlated pairs ofIn converges to a limitP (~ρ) asn → ∞. Moreover,P (~ρ) = 0 if p ∈ {0, 1} or
ρ1 + ρ2 ∈ {0, 2}, andP (~ρ) is strictly positive otherwise.

From Monte-Carlo experiments, Martin and O’Bryant [MO] conjectured that theproportionof
MSTD sets, orP ((0.5, 1, 0)), is approximately4.5×10−4; Zhao [Zh2] has derived algorithms sup-
porting a limit of this size. Since we expect MSTD sets to be rare, we are interested in finding the
maximum value of the functionP . The following theorem says that this search is not completely
hopeless.

Theorem 1.3. The functionP : [0, 1]3 → [0, 1], defined in Theorem 1.2, is continuous and thus
attains its maximum at some point.

In Section 3 we investigateP and conjecture that the maximum occurs at(0.5, 0, 1).
The second question for the(A,A) case was first conjectured by Martin and O’Bryant [MO] and

solved there by Hegarty and Miller [HM]. The question is interesting because if(p, ρ1, ρ2) is fixed
with p > 0 and0 < ρ1 + ρ2 < 2, then the expected sizes ofA andB are proportional ton and it
is reasonable to expect a positive probability of having MSTD correlated pairs. If instead we let
eitherp → 0 or ρ1+ ρ2 → 0 or 2, then the expected size ofA (if p → 0) orB (if ρ1+ ρ2 → 0 or 2)
is no longer proportional ton and it is unclear whether or not we should have a positive probability
of MSTD correlated pairs.

The case studied in [HM] is(ρ1, ρ2) = (1, 0) andp → 0 asn → ∞. Before stating their main
results, we fix some notation. LetX be a real-valued random variable depending on some integer
parameterN , and letf(N) be a real-valued function. We writeX ∼ f(N) if for any ǫ1, ǫ2 > 0
there existsNǫ1,ǫ2 > 0 such that for allN > Nǫ1,ǫ2,

P(X /∈ [(1− ǫ1)f(N), (1 + ǫ1)f(N)]) < ǫ2. (1.5)

We also use standard big-Oh, small-oh andΘ notations. We writef(x) = O(g(x)) if there
exist constantsx0 andC such that for allx ≥ x0, |f(x)| ≤ Cg(x). If f(x) = O(g(x)) and
g(x) = O(f(x)) we sayf(x) = Θ(g(x)). Finally, we writef(x) = o(g(x)) (or g(x) ≫ f(x)) if
limx→∞ f(x)/g(x) = 0. The following theorem captures the main results in [HM].
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Theorem 1.4. [Hegarty-Miller [HM] ] For p : N → (0, 1) such thatp(N) = o(1) andN−1 =
o(p(N)), let eachk ∈ IN := {0, . . . , N} be independently chosen to be inA with probability
p(N). The probability thatA ⊂ IN is MSTD tends to 0.

Let S = |A + A|, D = |A− A| andS C = 2N + 1 − S ,DC = 2N + 1 − D be the sizes of
their complements.

(i) If p = o(N−1/2), thenD ∼ 2S ∼ (Np)2.
(ii) If p = cN−1/2 for c ∈ (0,∞), then forg(x) = 2(e−x − (1− x))/x

S ∼ g

(

c2

2

)

N and D ∼ g(c2)N. (1.6)

(iii) If N−1/2 = o(p) thenS c ∼ 2Dc ∼ 4/p2.

This theorem identifiesN−1/2 as thethreshold functionwhere the phase transition happens.
The ratio between sizes of the sumset and difference set behaves differently forp with decay on
opposite sides of this threshold. Below the threshold the ratio is almost surely2+o(1) while above
it is almost surely1 + o(1).

Building on their methods, we extend their results to our more general setting.

Theorem 1.5. For fixedρ1, ρ2 ∈ [0, 1], 0 < ρ1 + ρ2 < 2 and a functionp : N → (0, 1) such that
p(N) = o(1) andN−1 = o(p(N)), the probability that(A,B) ⊂ IN is an MSTD(p(N), ρ1, ρ2)-
correlated pair tends to 0.

In particular, let p̂ = p2(2ρ1 − ρ21) + 2p(1 − p)ρ2 wherep = p(N). Let S = |A + B| and
D = | ± (A−B)| andS C = 2N + 1−S ,DC = 2n− 1−D be the sizes of their complements.

(i) If p̂ = o(N−1), thenD ∼ 2S ∼ N2p̂.
(ii) If p̂ = cN−1 for somec ∈ (0,∞). Letg(x) = 2(e−x − (1− x))/x, then

S ∼ g
( c

2

)

N and D ∼ g(c)N. (1.7)

(iii) If N−1 = o(p̂), thenE(S c) ∼ E(2Dc) ∼ 4/p̂.

Finally, we are able to answer the first part of the third question.

Theorem 1.6. The minimal sizes of MSTD pairs are(3, 5) and (4, 4). Examples of MSTD pairs
with such sizes are

A = {0, 1, 4, 6, 7}, B = {2, 3, 5}

A = {0, 1, 4, 6}, B = {0, 2, 5, 6}. (1.8)

We attack these three questions in their listed order. In Sections §2 and §3 we address the first
question by proving Theorem 1.2 and Theorem 1.3. We next investigate the decay ofp in §4 and
prove the result about minimal MSTD pairs in Section §5. We conclude with a list of questions for
future research.

2. POSITIVE PERCENTAGE OFMSTD CORRELATED PAIRS

In this section we generalize the arguments of [MO] and [Zh2]to the case of(p, ρ1, ρ2)-pairs
(A,B). Let In := {0, . . . , n}; we also write[0, n] for this interval. Additionally,n−A = {n− a :
a ∈ A}; we frequently enclose it in parentheses when performing unions or intersections to clearly
identity the sets. We first prove an easy yet very helpful result.

Proposition 2.1. If p ∈ {0, 1} or ρ1 + ρ2 ∈ {0, 2} then there is no~ρ−correlated MSTD pair inIn.
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Proof. It is easy to see that ifp = 0 or 1, the setA is, respectively, the empty set orIn. In
the first case,|A + B| = |A − B| = 0 for any setB. In the latter case, ifl and s are the
largest and smallest elements ofB (0 ≤ s ≤ l ≤ n), thenA + B = {s, s + 1, . . . , n + l}
and±(A − B) = {−d,−(d − 1), . . . , d − 1, d} whered = max{n − s, l}. Hence|A + B| =
(n + l) − s + 1 = (n − s) + l + 1 ≤ 2d + 1 = | ± (A − B)|. In either case, there is no MSTD
correlated pair (for anyn). Similarly, if ρ1 + ρ2 ∈ {0, 2} or equivalently(ρ1, ρ2) ∈ {(0, 0); (1, 1)},
B = ∅ or In, and there is no MSTD pair either. �

Therefore from now on we assume 0 < p < 1 and 0 < ρ1 + ρ2 < 2 unless
stated otherwise.

We now establish two useful lemmas which are analogous to Lemmas 7 and 11 in [MO]. Their
proofs follow from Bayes’s formula, and for completeness are given in Appendix A.

Lemma 2.2. Let(A,B) be a(p, ρ1, ρ2)-correlated pair. For anyk ∈ [0, 2n], the probabilityk does
not belong to the sumsetA +B is

P(k /∈ A+B) =

{

ρ
min{k+1

2
, 2n−k+1

2
}

3 if k is odd

ρ4ρ
min{k

2
, 2n−k

2
}

3 if k is even,
(2.1)

where

ρ3 = (1− ρ1)
2p2 + 2(1− ρ2)p(1− p) + (1− p)2 and ρ4 = (1− ρ1)p+ (1− p). (2.2)

Lemma 2.3. Let (A,B) be a(p, ρ1, ρ2)-correlated pair. For anyk ∈ [−n, n],

P(k /∈ (A− B) ∪ (B − A)) ≤

{

ρ
n/3
3 if 1 ≤ k ≤ n/2

ρn−k
3 if n/2 < k ≤ n,

(2.3)

whereρ3 is defined in Lemma 2.2.

Remark 2.4. It is easy to check that when(ρ1, ρ2) = (1, 0), ρ3 = 1− p2 andρ4 = 1− p; note this
is consistent with the results in[MO] and[Zh2].

We next give definitions of MSTD fringe tuples and rich MSTD pairs, analogous to Definitions
2.1 and 2.4 in [Zh2]. As we will see, these definitions characterize the behavior of almost all
MSTD pairs in the limit.

Definition 2.5 (MSTD fringe tuple). For k < n/2 and subsetsL, L′, R, R′ of [0, k], we say
(L, L′, R, R′; k) is anMSTD fringe tupleif

|(L+ L′) ∩ [0, k]|+ |(R +R′) ∩ [0, k]| > 2|((L+ R′) ∩ [0, k]) ∪ ((L′ +R) ∩ [0, k])|. (2.4)

Definition 2.6 (Rich MSTD pair). We call a pair of subsets(A,B) ⊂ S a rich MSTD pair with
fringe tuple(L, L′, R, R′; k) if

(i) A ∩ [0, k] = L, B ∩ [0, k] = L′,
(ii) (n− A) ∩ [0, k] = R, (n− B) ∩ [0, k] = R′,

(iii) [k + 1, 2n− k − 1] ⊆ A +B.

The smallest suchk is called the order of this rich pair.
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Any pair (A,B) satisfying (i) and (ii) is said to havefringe profile given by(L, L′, R, R′; k).
These two conditions and Definition 2.5 imply thatA + B has more “extreme” elements than
±(A − B) (here “extreme” refers to the smallestk elements and the largestk elements ofI + I
andI − I). If condition (iii) is also satisfied (i.e., the pair(A,B) is rich) thenA + B has all the
“non-extreme” elements ofI + I, and thus|A + B| > | ± (A − B)|. This intuition is formalized
in the proof of the following lemma, and justifies our nomenclature.

Lemma 2.7. A rich MSTD pair is an MSTD pair.

Proof. The proof is similar to the proof of Lemma 2.5 in [Zh2]. We want|A+B| > | ± (A−B)|.
It suffices to show the following two inequalities:

|(A+B) ∩ ([0, k] ∪ [2n− k, 2n])| > | ± (A− B) ∩ ([−n,−n + k] ∪ [n− k, n])| (2.5)

|(A+B) ∩ [k + 1, 2n− k − 1]| ≥ | ± (A− B) ∩ [−n + k + 1, n− k − 1]|. (2.6)

Notice (2.5) is saying that the sumset beats the difference set on the fringes, while (2.6) says that
the difference set does not win in the middle, and so the inequality in (2.6) follows immediately
from the richness criterion. To prove (2.5), note that

(A +B) ∩ [0, k] = (L+ L′) ∩ [0, k]

(A +B) ∩ [2n− k, 2n] = ((n− R) + (n− R′)) ∩ [2n− k, 2n] = 2n− ((R +R′) ∩ [0, k])

(A− B) ∩ [−n,−n + k] = (L− (n− R′)) ∩ [−n,−n + k] = ((L+R′) ∩ [0, k])− n

(B − A) ∩ [−n,−n + k] = (L′ − (n−R)) ∩ [−n,−n + k] = ((L′ +R) ∩ [0, k])− n

(A−B) ∩ [n− k, n] = (L− (n− R′)) ∩ [n− k, n] = n− ((L+R′) ∩ [0, k])

(B −A) ∩ [n− k, n] = (L′ − (n−R)) ∩ [n− k, n] = n− ((L′ +R) ∩ [0, k]). (2.7)

Hence

| ± (A−B)∩ ([−n,−n+ k]∪ [n− k, n])| = 2|((L+R′) ∩ [0, k])∪ ((L′ +R)∩ [0, k])|, (2.8)

while

|(A+B) ∩ ([0, k] ∪ [2n− k, 2n])| = |(L+ L′) ∩ [0, k]|+ |(R+R′) ∩ [0, k]|. (2.9)

The desired inequality then follows from the definition (2.5) of an MSTD fringe tuple. �

Much like in [Zh2], we will see in the proof of Proposition 2.11 thatalmost all MSTD pairs are
rich. Following [Zh2] we define a partial order on fringe tuples below, which allows us to count
fringe tuples without redundancy.

Definition 2.8 (Partial ordering of fringe tuples). We say(L, L′, R, R′; k) > (M,M ′, T, T ′; j) if
k > j and

M = L ∩ [0, j], M ′ = L′ ∩ [0, j], T = R ∩ [0, j], T ′ = R′ ∩ [0, j]

[j, k] ⊆ L+ L′, [j, k] ⊆ R +R′. (2.10)

The arguments in [Zh2] also show that minimal fringe tuples for a given rich pair(A,B) are
unique, and they are minimal in the partial order of all fringe tuples. This allows us to count rich
MSTD pairs by their minimal fringe tuples.

Fix any k > 0. For n > 2k, let Pn[E] denote the probability that, out of all(p, ρ1, ρ2) = ~ρ
correlated pairs of subsets(A,B) of [0, n], A andB satisfy the conditions prescribed by the event
E.
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Let Pn(~ρ)(L, L
′, R, R′; k) be the probability that the pair(A,B) ∈ In is a rich MSTD~ρ-pair

with fringe profile(L, L′, R, R′; k); that isPn(~ρ)(L, L
′, R, R′; k) equals

Pn[(A,B) has fringe profile(L, L′, R, R′; k) and[k + 1, 2n− k − 1] ⊆ A +B]. (2.11)

We write this more compactly as

Pn(~ρ)(L, L
′, R, R′; k) := Pn[(L, L

′, R, R′; k), [k + 1, 2n− k − 1] ⊆ A+B]. (2.12)

Lemma 2.9. For any fringe profile(L, L′, R, R′; k) and any~ρ = (p, ρ1, ρ2), the following limit
exists:

P (~ρ)(L, L′, R, R′; k) := lim
n→∞

Pn(~ρ)(L, L
′, R, R′; k). (2.13)

Proof. Following the example in [Zh2], we break up the event[k + 1, 2n − k − 1] 6∈ A + B into
the disjoint events

[k + 1, j − 1] ∈ A+B, j 6∈ A+B (2.14)
for eachk < j ≤ 2n− k. Thus

Pn [(L, L
′, R, R′; k), [k + 1, 2n− k − 1] ⊆ A +B]

= Pn[(L, L
′, R, R′; k)]−

2n−k
∑

j>k

Pn[(L, L
′, R, R′; k), [k + 1, j − 1] ∈ A+B; j 6∈ A +B]

= P2k[(L, L
′, R, R′; k)]−

2n−k
∑

j>k

Pj+k[(L, L
′, R, R′; k), [k + 1, j − 1] ∈ A+B; j 6∈ A +B],

(2.15)

where in the final line we have replaced then subscripts with smaller ones, which we can do
because these events only involve at most2k (resp.j + k) elements, and the probabilities do not
change when we allow for more middle elements to belong (or not belong) toA andB. Thus
everything except the upper limit on the sum is independent of n. We sendn to infinity and find

P (~ρ)(L, L′, R, R′; k) := lim
n→∞

Pn(~ρ)(L, L
′, R, R′; k)

= P2k[(L, L
′, R, R′; k)]−

∞
∑

j>k

Pj+k[(L, L
′, R, R′; k), [k + 1, j − 1] ∈ A +B; j 6∈ A+B].

(2.16)

Since each term in the sum is non-negative and the total sum isbounded above by 1 (as the partial
sums represent legitimate probabilities), the monotone convergence theorem says the sum con-
verges, and thus the limiting probability exists. �

The next definition isolates our key object of study; we provethat it exists and give a formula
for it in the proposition that follows.

Definition 2.10 (P (~ρ)). For ~ρ ∈ [0, 1]3, set

P (~ρ) := lim
n→∞

Pn[(A,B) is an MSTD(p, ρ1, ρ2)-correlated pair]. (2.17)

Proposition 2.11.The limitP (~ρ) exists and is given by
∑

(L,L′,R,R′;k)

P (~ρ)(L, L′, R, R′; k), (2.18)

where the sum is taken over all minimal fringe tuples(L, L′, R, R′; k).
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Proof. As assumed,0 < p < 1 and0 < ρ1 + ρ2 < 2. Fix a positive integerK and letn be large
enough.

Suppose(A,B) is an MSTD pair ofIn. LetL, L′ be intersections ofA,B with [0, K] andR,R′

be intersections ofA,B with [n − K, n]. We will prove that asn grows large, the MSTD pair
(A,B) is a rich MSTD pair with probability approaching 1. Indeed, suppose(A,B) is not a rich
MSTD pair of order at mostK. This means either(A,B) is not rich, or it is rich with order greater
thanK.

In the first case, since(L, L′, R, R′) is not an MSTD fringe, the size of difference set is not
smaller than that of the sumset on the fringes. Hence there must be at least a middle difference,
i.e., a difference in[K − n, n − K], be missing (otherwise(A,B) cannot be sum dominant). In
the second case, since(L, L′, R, R′, K) is a fringe pair, and yet(A,B) is not a rich MSTD pair of
orderK, there must be a middle sum missing, i.e., there exists some number in[K, 2n−K] that is
not inA+B. LetE denote this event. We use the result from Lemma 2.2 to calculateP(E). Note
that sincep 6= 0, 1 and(ρ1, ρ2) 6= (0, 0), (1, 1), we have0 < ρ3 < 1. We find

P(E) = P

(

2n−K
⋃

i=K

(i /∈ A+B)

)

≤
2n−K
∑

i=K

P(i /∈ A+B) ≤ 4

n/2
∑

i=K/2

ρi3 ≤
4

1− ρ3
ρ
K/2
3 , (2.19)

which goes to zero asK → ∞, proving the claim for missing at least one middle sum; the proof
for the probability of missing at least one middle difference proceeds similarly, using Lemma 2.3.

We therefore have proved that whenn gets large, almost all MSTD pairs are rich MSTD with
fringes. Therefore, by summing over all fringes as in (2.18), we getP (~ρ). Note that each term in
(2.18) exists and their sum is less than 1, hence this sum converges. �

Proposition 2.12.We haveP (~ρ) > 0 for any~ρ with 0 < p < 1 and0 < ρ1 + ρ2 < 2.

Proof. As the argument is similar to one in [MO], we only sketch the proof here. Unlessρ1 = 0,
any MSTD fringe pair(L,R; k) for (A,A) works as a fringe tuple(L, L,R,R; k) for (A,B), and
occurs with fixed positive probability. One such fringe is given in [MO]: L = {0, 2, 3, 7, 8, 9, 10}
andR = {1, 2, 3, 6, 8, 9, 10, 11}. By additionally imposing that[12, 12+j] ⊂ A∩B, for sufficiently
largej (which depends on~ρ), we can ensure that(A,B) is rich with positive probability. Thus
P (~ρ) ≥ P (~ρ)(L, L,R,R; k) > 0.

Now we handle the case whenρ1 = 0. Sinceρ2 > 0, a fringe profile for(A,Ac) occurs with
positive probability in this case, and the same reasoning above will hold. Thus it suffices to exhibit
a single MSTD fringe profile for(A,Ac). One such fringe profile isL = R = {1, 2, 3, 5, 7, 8}. �

Proof of Theorem 1.2.The proof follows immediately from Propositions 2.1, 2.11 and 2.12. �

3. THE PROBABILITY FUNCTION P

We now investigate the behavior of the functionP : [0, 1]3 → [0, 1], which gives the limiting
probability of selecting an MSTD~ρ-correlated pair(A,B) from In asn → ∞. We prove thatP is
continuous, as stated in Theorem 1.3. Afterwards we computethe probability function forn = 8
and discuss some conjectures about the behavior ofP .

Proof of Theorem 1.3.We first prove continuity away from the zeros; i.e., at points~ρ such that
P (~ρ) 6= 0. By Proposition 2.12, we know the zeros ofP are exactly the set

Z := {(p, ρ1, ρ2) ∈ [0, 1]3 : p ∈ {0, 1} or (ρ1 + ρ2) ∈ {0, 2}}, (3.1)



SUMS AND DIFFERENCES OF CORRELATED RANDOM SETS 9

which is a closed set inR3. We first show thatP is continuous on the open setZc, and then show
that as~ρ approaches any point inZ, the value ofP (~ρ) approaches 0, so thatP is continuous on
[0, 1]3.

We first prove that for each minimal fringe profile,P (~ρ)(L, L′, R, R′; k) is a continuous function
of ~ρ away fromZ (note that these functions are also zero onZ). We start with the definition:

P (~ρ)(L, L′, R, R′; k) := P2k[(L, L
′, R, R′; k)]

−
∞
∑

j>k

Pj+k[(L, L
′, R, R′; k), [k + 1, j − 1] ∈ A+B; j 6∈ A +B].

(3.2)

The first term on the right hand side is continuous, since

P2k[(L, L
′, R, R′; k)] =

∑

(A,B) has fringe profile(L,L′,R,R′;k)

P2k[(A,B)], (3.3)

and the probability of getting(A,B) is just a polynomial inp, ρ1 andρ2, so this sum is continuous.
Similarly, each term in the second sum is continuous, as we can view each term as a sum over
suitable pairs(A,B) of the probability of picking the pair(A,B), each of which is a polynomial.

Thus to show that the infinite sum itself is continuous, it suffices to bound the tails uniformly.
We will see that this follows from

Pj+k[(L, L
′, R, R′; k), [k + 1, j − 1] ∈ A+B; j 6∈ A +B] ≤ Pj+k[j 6∈ A+B]. (3.4)

The probability on the right, as computed in Lemma 2.2, is bounded above byρj3 whereρ3
depends onp, ρ1, ρ2. For any fixed~ρ 6∈ Z, restrict to a closed ball about~ρ that lies entirely inside
Zc. We can pick~ρ∗ for which ρ3 attains its maximal valueq∗ < 1 on this closed ball. Thus the
tails are bounded by the tails of a convergent geometric series with ratioq∗, so the series converges
uniformly and thusP (~ρ)(L, L′, R, R′; k) is continuous onZc.

Since
P (~ρ) =

∑

(L,L′,R,R′;k)

P (~ρ)(L, L′, R, R′; k) (3.5)

and the summands are continuous functions of~ρ onZc, it suffices to show that the tail sums
∑

(L,L′,R,R′;k) with k>m

P (~ρ)(L, L′, R, R′; k) (3.6)

can be made uniformly small withm. This argument follows along the same lines as the proof of
Proposition 2.14 in [Zh2]. All contributions to this tail arise from sets whereA + B is missing a
middle sum, where in this case “middle” means not in the first or the lastm elements. To show that
these events are unlikely we use the union bound and the fact that we have a convergent infinite
geometric series, starting with some maximizer (over a closed ball inZc), q∗, raised to the power
m, which goes to zero asm → ∞.

Now we must show thatP (~ρ) approaches zero as~ρ approaches any point inZ. First we show
P (~ρ)(L, L′, R, R′; k) → 0 as the distance dist(~ρ, Z) tends to0. Note that

P (~ρ)(L, L′, R, R′; k) ≤ P2k(~ρ)[(L, L
′, R, R′; k)]. (3.7)

As the probability on the right is a continuous function ofρ which is zero onZ, we have

lim
dist(~ρ,Z)→0

P (~ρ)(L, L′, R, R′; k) = 0 (3.8)
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and thus the functionsP (~ρ)(L, L′, R, R′; k) are continuous on[0, 1]3. Observe that ifp > 0 and
ρ1+ρ2 > 0, but still~ρ ∈ Z, then the same argument involving missing middle sums and differences
based on Lemmas 2.2 and 2.3 works to show thatP is continuous at~ρ. So we only need to show
thatP (~ρ) → 0 asp → 0 or ρ1 + ρ2 → 0, which is true because of Theorem 1.5 (whose proof does
not depend on Theorem 1.3; see the next section). Thus we conclude thatP (~ρ) is continuous on
[0, 1]3. �

The following is an immediate consequence of the continuityof P and the compactness of
[0, 1]3.

Corollary 3.1. The functionP attains a maximum value on any compact domain. In particular, P
attains its maximum at some point in[0, 1]3. Moreover, for any(ρ1, ρ2) fixed,P as a function ofp
attains its maximum at some pointp∗. Similarly, for any fixedp, P as a function of(ρ1, ρ2) attains
maximum at some point(ρ∗1, ρ

∗
2).

As P (~ρ) is continuous on a compact set, we can conjecture where it attains its maximal values.
We start by considering the functionPn(~p) for n ≥ 1, which is the probability for a(p, ρ1, ρ2)
correlated pair(A,B) from In to be an MSTD set. Whenn → ∞ this function should converge
to our functionP . We chosen = 8 and numerically found all MSTD pairs of subsets(A,B) ∈ I8.
Letting L8 be the set of all such pairs, we found|L8| = 96. For each pair(A,B) found, we
recorded|A|, |B| and|A ∩ B|. Since each element of{0, 1, . . . , 8} is chosen independently, we
can calculate

P8(p, ρ1, ρ2) =
∑

(A,B)∈L8

p|A|(1− p)9−|A|ρ
|A∩B|
1 (1− ρ1)

|A|−|A∩B|ρ
|B|−|A∩B|
2 (1− ρ2)

9−|A|−|B|+|A∩B|.

(3.9)
We plottedP8(~ρ) and found its maximum appears to be at(1/2, 0, 1). Numerical explorations
suggest thatP (1/2, 0, 1) ≈ 0.03, which is significantly larger thanP (1/2, 1, 0) ≈ 4.5 × 10−4.
These numbers, however, should be taken with a healthy degree of skepticism. These problems are
computationally intense, and it is possible that the observed behavior differs for very largen. For
a related problem with a similar numerical difficulty, see the work in [DKMMWW].

We end with some observations and conjectures. If we fix0 < p < 1 andρ1 not too large,
we observe thatP8 appears to be a strictly increasing function. If we could prove this, we would
then know that it would attain its maximum atρ2 = 1. On the other hand, if we fix0 < p < 1
andρ2 not too small,P8 appears to be a strictly decreasing function, and thus wouldattain its
maximum atρ1 = 0. Finally, if we fix (ρ1, ρ2), in most cases it appears that the maximum ofP8

happens at some pointp close to1/2. In the specific case when(ρ1, ρ2) = (0, 1), if we assume
that Pn is differentiable then we can easily prove thatp = 1/2 is a critical point. Indeed, let
Qn(p) = Pn(p, 0, 1). Since in this caseB = Ac, we findQn(p) = Qn(1−p). Taking the derivative
of both sides yields

Q′
n(p) = −Q′(1− p). (3.10)

Consequently,Q′
n(1/2) = 0, or p = 1/2 is a critical point ofQn, and thus ofPn. This suggests the

following conjecture.

Conjecture 3.2. The maximum of the functionP in [0, 1]3 occurs at(1/2, 0, 1), and P (~ρ) =
P (1/2, 0, 1) ≈ 0.03.
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4. WHEN ~p DECAYS WITH N

As this section is devoted to generalizing Hegarty-Miller’s [HM] work where the density de-
pends on the length of the interval, we useIN := {0, 1, . . . , N} instead ofIn below to be con-
sistent with their notation. By having~p decay withN we expect that there will not be a positive
probability of randomly choosing an MSTD correlated pair.

In Theorem 1.2, we proved thatP (~ρ) > 0 unlessp ∈ {0, 1} or ρ1 + ρ2 ∈ {0, 2}. Therefore it
is reasonable to consider two types of decay: eitherp → 0 or 1 while ρ1, ρ2 are fixed, or(ρ1, ρ2)
converges to either(0, 0) or (1, 1) while p is fixed. In this paper we restrict ourselves to the
simplest case, where we fix(ρ1, ρ2) and letp → 0. We also assume1/N = o(p(N)) to guarantee
thatE[|A|] = p(N) ·N does not tend to0, as otherwiseA is close to the empty set and the problem
becomes trivial. Here we writep(N) to emphasize the fact thatp depends onN . Later on, we
simply writep without causing confusion.

In order to prove the first and second parts of Theorem 1.5, we use the following definition,
which resembles(2.1) in [HM].

Definition 4.1. For any(p, ρ1, ρ2)-correlated random pair(A,B) of IN and any integerk ≥ 1, let

Ak = {{(a1, b1), . . . , (ak, bk)} ⊂ A×B : a1 + b1 = · · · = ak + bk}. (4.1)

ThusAk is the set of all unorderedk-tuples of elements inA × B having the same sum. While
better notation would includeB, we choose the simpler notationAk so that the formulas below
look like the corresponding ones in [HM].

Let Xk = |Ak|, then if (A,B) is a random pair of subsets ofIN , Xk is a non-negative integer
valued random variable. We first state a useful lemma, whose proof can be found in Appendix B.

Lemma 4.2. Fix a, b ∈ IN . The probability that the eventa ∈ A, b ∈ B or a ∈ B, b ∈ A happens
is p̂ = p2(2ρ1 − ρ21) + 2p(1− p)ρ2 if a 6= b, andpρ1 if a = b.

Proposition 4.3. With p̂ defined as in Lemma 4.2, ifp̂ = O(N) then for eachk ≥ 1 we have

E[Xk] ∼
2

(k + 1)!

(

p̂

2

)k

Nk+1. (4.2)

Moreover,Xk ∼ E[Xk] wheneverN−(k+1)/k = o(p̂).

Proof. As much of the proof is similar to that of Lemma 2.1 of [HM], we only give a sketch and
prove the different parts. There are two types ofk-tuples: those consisting of2k distinct elements
of IN (type 1 tuples) and those in which one element is repeated twice in one pair and the sum of
each pair is even (type 2 tuples). Letξ1,k(N) andξ2,k(N) be the total numbers ofk-tuples of those
two types. As proved in [HM],

ξ1,k(N) =

2N−2k
∑

n=2k

(

min{⌊n
2
⌋, ⌊2N−n

2
⌋}

k

)

∼
2

2k(k + 1)!
Nk+1 (4.3)

and
ξ2,k(N) = O(Nk). (4.4)

By Lemma 4.2, the probability for eachk-tuple of type 1 to occur iŝpk, and that of type 2 is
p̂k−1pρ1. SinceXk can be written as a sum of indicator variableYα, one for each unorderedk-tuple
α of type 1 or 2, we have

E[Xk] = ξ1,k(N) · p̂k + ξ2,k(N) · p̂k−1pρ1. (4.5)
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By the assumption1/N = o(p),

ξ2,k(N)p̂k−1pρ1
ξ1,kp̂k

=
O(Nkpρ1)

O(Nk+1p̂)
=

1

O(N [p(2− ρ1) + 2(1− p)ρ2/ρ1])
= o(1). (4.6)

Hence

E[Xn] ∼ ξ1,k(N) · p̂k ∼
2

(k + 1)!

(

p̂

2

)k

Nk+1. (4.7)

To prove the strong concentration by the mean ofXk wheneverN−(k+1)/k = o(p̂), we use the
standard moment method as in [HM]. We first set some notation.Let

∆ :=
∑

α∼β

P(Yα ∩ Yβ), (4.8)

where the sum is over pairs ofk-tuples which have at least one number in common. The proof is
completed by showing

∆ = o(E[Xk]
2) = o(N2k+2p̂2k). (4.9)

Similar to the previous part, we can prove that the main contribution to∆ comes from pairs
{α, β}where eachk-tuple consists of2k distinct elements and has exactly one element in common.
As shown in the proof of Lemma 2.1 in [HM], the number of such pairs isO(N2k+1). For each
of the 4k − 1 elements inIN , the probability they are chosen to be in twok-tuples, each tuple
containing2k distinct numbers and the two tuples having exactly one common element, iŝp2k−2 ·
P(E) whereE denotes the event for three distinct integersa, b, c ∈ In that the pairs(a, b) and
(a, c) are each chosen in ak-tuple. We use the following lemma (see Appendix C for a proof).

Lemma 4.4. Notation as above,̂p2/p = O(P(E)).

Using the assumption1/N = o(p) we get

∆

N2k+2p̂2k
=

O(N2k+1)p̂2k−2
P(E)

N2k+2p̂2k
=

1

O(Np)
= o(1), (4.10)

or
∆ = o(N2k+2p̂2k) = o(E[Xk]

2) (4.11)

as we wish, completing the proof. �

Proof Theorem 1.5.We proceed similarly to the proof of Theorem 1.4 in [HM]. Although in our
case we consider sums and differences of two sets instead of one, once we have the results in
Proposition 4.3, the rest is the same as [HM]. As the arguments are similar, in parts (i) and (ii)
below we analyzeS first and thenD , while in part (iii) we first studyS c and thenDc.

Proof of Part (i): In this regimep̂ = o(1/N). Sinceρ1, ρ2 are fixed,p2 = O(p̂) and
henceN−2 = o(p̂). Thus by (4.2),E[X1] ∼

1
2
p̂N2 ≫ 1. SimilarlyE[X2] ∼

1
12
N3p̂2 if N−3/2 =

o(p̂) and isO(1) otherwise. Sincêp = o(1/N), N3p̂2 = o(N2p̂). Thus in both casesE[X2] =
o(E[X1]). Similarly, E[Xk] = o(E[X1]) for any k ≥ 2. In other words, asN → ∞ all but a
vanishing portion of pairs of elements in(A,B) have distinct sums. It follows that

S ∼ E[X1] ∼
1

2
p̂N2. (4.12)

To prove the result forD , we define for eachk ≥ 1

A′
k := {{(a1, b1), . . . , (ak, bk)} ⊂ A×B ∪B × A : a1 − b1 = · · · = ak − bk 6= 0}, (4.13)
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and proceed in a completely analogous manner to the proof ofS .

Proof of Part (ii): In this regimêp = c/N . Thus for anyk ≥ 1, N−(k+1)/k = o(N−1) =
o(p̂). It follows from (4.2) that

Xk ∼
2

(k + 1)!

(

cN−1

2

)k

Nk+1 =
2 · (c/2)k

(k + 1)!
N. (4.14)

Let P be the partition onA1 from the relation

(a1, b1) ∼ (a2, b2) if and only if a1 + b1 = a2 + b2. (4.15)

Let τi denote the number of parts of sizei for eachi > 0. ThenS =
∑∞

i=0 τi. As proved in [HM],

S ∼
∞
∑

k=1

(−1)k−1Xk ∼ 2

(

∞
∑

k=1

(−1)k−1
(

c
2

)k

(k + 1)!

)

·N = g(c/2)N. (4.16)

whereg(x) = 2(e−x − (1− x))/x as mentioned in theorem 1.5.
The proof for the difference set again proceeds similarly, using (4.13).

Proof of Part (iii): We use Lemmas 2.2 and 2.3. Note

E[S c] =

2N
∑

i=0

P(i /∈ A+B) ∼ 4

⌊N/2⌋
∑

i=0

ρi3 ∼
4

1− ρ3
. (4.17)

Notice that1 − ρ3 = p̂ sinceρ3 andp̂ are the probabilities of two complementary events (alterna-
tively, we can check it directly from their formulas). SoE[S c] ∼ 4/p̂. SimilarlyE[Dc] ∼ 2/p̂. �

Remark 4.5. The phase transition happens whenp̂ = Θ(N−1). If we let (ρ1, ρ2) = (1, 0) then
p̂ = p2 and our result is consistent with the result in[HM] (see Theorem 1.4). If we let(ρ1, ρ2) =
(0, 1) thenp̂ = 2p(1− p) = Θ(p). However, since1/N = o(p) = o(p̂), the phase transition never
happens. In this(A,Ac) case, the size of the difference set is always almost surely double the size
of the sumset, which somewhat supports our conjecture that MSTD pairs are most abundant in the
(A,Ac) case.

5. MINIMAL MSTD PAIRS

In this section we prove that the minimal MSTD pair of sets hassize (3,5) or (4,4).

Lemma 5.1. If A,B ⊂ In is an MSTD pair, then there must exista1 < a2 < a3 ∈ A and
b1 < b2 < b3 ∈ B such thata1 + b3 = a2 + b2 = a3 + b1.

Proof. Assume there do not exist suchai, bi. Consider

I = {{(a, b), (c, d)} ⊂ A× B : a + b = c + d}

J = {{(a, b), (c, d)} ⊂ A× B : a− b = c− d}. (5.1)

Notice thata + b = c + d if and only if a− d = c − b. Hence we have a bijection betweenI and
J . In particular, this implies|I| = |J | as they are finite sets.

For eachs ∈ [0, 2n] andd ∈ [−n, n], define

Xs = {(a, b) ∈ A× B : a + b = s}

Yd = {(a, b) ∈ A× B : a− b = d}. (5.2)
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It is easy to see that
∑

s

|Xs| =
∑

d

|Yd| = |A| · |B| (5.3)

and

|I| =
∑

s:|Xs|≥2

(

|Xs|

2

)

; |J | =
∑

d:|Yd|≥2

(

|Yd|

2

)

. (5.4)

We therefore find

| ± (A− B)| ≥ |A− B| =
∑

d∈A−B

1 =
∑

d∈A−B

[|Yd| − (|Yd| − 1)]

≥
∑

d∈A−B

|Yd| −
∑

d:|Yd|≥2

(

|Yd|

2

)

= |A| · |B| − |J |. (5.5)

Note that this inequality always holds regardless of our assumption. We have a similar inequality
for the difference set:

|A+B| =
∑

s∈A+B

1 =
∑

s∈A+B

[|Xs| − (|Xs| − 1)]

≥
∑

s∈A+B

|Xs| −
∑

s:|Xs|≥2

(

|Xs|

2

)

= |A| · |B| − |I|. (5.6)

However, in this case the equality happens because|Xs| − 1 =
(

|Xs|
2

)

as|Xs| ≤ 2 for all s by our
assumption that there do not exist three pairs of the same sum. Hence|±(A−B)| ≥ |A||B|−|J | =
|A||B| − |I| = |A+B|, contradicting the assumption that(A,B) is an MSTD pair. �

The intuition behind this lemma is that if there do not exist suchai, bi, sincea+ b = c+ d if and
only if a− d = c− b, eachcollapsedsum generates onecollapseddifference and thus the sumset
cannot win. Incidentally, this connects our two observations in the introduction: the property
that the difference of any number with itself is equal to 0 is equivalent with the commutativity of
addition becausea − a = b − b(= 0) impliesa + b = b + a for anya, b ∈ A. The difference set
has the advantage because0 is a bigcollapseddifference. To see this explicitly, we write

|A+ A| = |A|2 − |I|+
∑

[(

|Xs|

2

)

− (|Xs| − 1)

]

= M +
∑ (|Xs| − 1)(|Xs| − 2)

2

|A− A| = |A|2 − |J |+
∑

[(

|Yd|

2

)

− (|Yd| − 1)

]

= M +
∑ (|Yd| − 1)(|Yd| − 2)

2
, (5.7)

whereM = |A|2−|I| = |A|2−|J |. This implies the larger the sizes of{Xs}s∈A+B (or {Yd}d∈A−A)
are, the larger the size ofA + A (or A − A) is. HenceY0 = |A|, the biggest size aYd or Xs can
obtain, will give the difference set a huge advantage. This argument also somewhat supports our
conjecture that(A,Ac) MSTD pairs are most abundant, because0 is no longer a big collapsed
difference.

This purely combinatorial observation can be applied to findsome necessary conditions for a set,
or a pair of sets to be sum-dominant in any setting (numbers, points in a plane, MSTD sets in two
or higher dimension and so on). For example, an MSTD set ofIn must not have only two elements
because if so|Xs| ≤ 2 and hence|A + A| = M ≤ |A − A|. Likewise, if A = {a, b, c} where
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0 ≤ a < b < c ≤ n is MSTD, then one ofXs must be 3, which meansa+c = b+b = c+a = k for
some integerk. This forcesA to be a symmetric set, and therefore not sum-dominant (see [MO]).

Going back to the proof of theorem 1.6, from Lemma 5.1 we immediately obtain the following
corollary, as we saw aboveA must have at least three elements.

Corollary 5.2. There does not exist an MSTD pair(A,B) of size(2, k) or (k, 2) for anyk ≥ 2.

Theorem 1.6 follows directly from the above corollary and the two following propositions.

Proposition 5.3. There does not exist MSTD pair(A,B) of size(3, 3).

Proof. Our starting point is Lemma 5.1, which gives the existence ofa triple inA and a triple in
B; as each of these sets has cardinality 3, we see these sets equal these special triples. Thus,
if such an MSTD pair existed, we would haveA = {a1, a2, a3} andB = {b1, b2, b3}, with
|A + B| > |(A − B) ∪ (B − A)|, a1 < a2 < a3 andb1 < b2 < b3. Lemma 5.1 then implies
a1 + b3 = a2 + b2 = a3 + b1, which gives|A + B| ≤ 9 − 2 = 7 because we have at least two
collapsedsums. Without loss of generality we may assumea1 ≤ b1 anda1 = 0.

Case 1: b1 = a1: As b1 = a1 we havea3 = b3. If a2 = b2 thenA = B. This cannot be sum-
dominant because the smallest sum-dominant set has size 8. Soa2 6= b2, and there are at least 3 pos-
itive differencesa2, b2, a3 in (A−B)∪(B−A). Since0 ∈ A−B, |(A−B)∪(B−A)| ≥ 7 ≥ |A+B|,
a contradiction.

Case 2: b1 > a1: In this caseb1 < b2 < b3 are 3 positive distinct numbers inB − A. Thus
|(A−B)∪(B−A)| ≥ 6. Since|A+B| ≤ 7 we must have(A−B)∪(B−A)| = {±b1,±b2,±b3}.
As −b3 < b1 − a3 < b1 − a2 < b1, it must happen thatb1 − a3 = −b2 andb1 − a2 = −b1, or
a2 = 2b1 anda3 = 2b1 + b2. The differenceb2 − a2 = b2 − 2b1 is bigger than−b1 but less than
b2, and the only number in±(A − B) between those two numbers isb1, henceb2 − 2b1 = b1, or
b2 = 3b1. Lettingb = b1, we can rewrite the pair(A,B) asA = {0, 2b, 4b} andB = {b, 3b, 5b}. It
is easy to check that this is not an MSTD pair. �

Proposition 5.4. There does not exist an MSTD pair(A,B) of size(3, 4).

The proof of this proposition is similar to that of Proposition 5.3, except there are many more
cases. Details can be found in Appendix D. This completes theproof of Theorem 1.6. 2

6. CONCLUSION AND FUTURE WORK

We extended the results of [He, HM, MO, Zh2] of MSTD sets to MSTD correlated pairs. In par-
ticular, we proved that for each~ρ = (p, ρ1, ρ2) ∈ [0, 1]3 the limiting probabilityP (~ρ) of picking an
MSTD ~ρ-correlated pair exists and is positive unlessp ∈ {0, 1} or ρ1 + ρ2 ∈ {0, 2}. Furthermore,
the functionP (~ρ) is continuous and thus attains its maximum at some point, which we conjecture
is (1/2, 0, 1). We characterize the phase transition when we let~ρ decay withn. Finally, we found
the minimal size of an MSTD pair(A,B).

We end with some of the more interesting and important open questions.
(1) Prove or disprove Conjecture 3.2.
(2) Find an efficient algorithm to calculate values ofP (~ρ), and investigate further the analytic

properties ofP .
(3) Prove the strong concentration ofS c andDc in the case of slow decay (i.e., whenN−1/2 =

o(p̂)). Do similar results hold for other types of decay, namelyp → 1 or (ρ1, ρ2) →
(0, 0), (1, 1)?
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(4) Are the examples of the MSTD pairs of size(4, 4) and(3, 5) found in Theorem 1.6 unique
up to linear transformation?

(5) Generalize the results from [ILMZ] to linear combinations of correlated sets.

APPENDIX A. PROOF OFLEMMAS 2.2 AND 2.3

Proof of Lemma 2.2.LetEa,b denote the event (a ∈ A andb ∈ B) or (a ∈ B andb ∈ A). For each
k ∈ In, k is not inA+B if and only if for every pair(a, b) in [0, n] with k = a+ b, the eventEa,b

does not happen. LetEc be short forEc
a,b- the complement ofEa,b.

If a 6= b then by Bayes’ formula

P(Ec) = P(Ec|a ∈ A, b ∈ A)P(a ∈ A, b ∈ A) + P(Ec|a ∈ A, b /∈ A)P(a ∈ A, b /∈ A)

+ P(Ec|a /∈ A, b ∈ A)P(a /∈ A, b ∈ A) + P(Ec|a /∈ A, b /∈ A)P(a ∈ A, b /∈ A)

= (1− ρ1)
2p2 + 2(1− ρ2)p(1− p) + (1− p)2 = ρ3. (A.1)

If a = b, then similarly we find

P(Ec) = P(Ec|a ∈ A)P(a ∈ A) + P (Ec|a /∈ A)P (a /∈ A) = (1− ρ1)p+ (1− p) = ρ4. (A.2)

Assume there areW ways to writek as sum of two elementsk = a1 + b1 = · · · = aW + bW .
Since no element is repeated in two different pairs (becauseif a + b = a + c = k thenb = c),
the event each pair does not appear inA is independent with each other:Ec

ai,bi
andEc

aj ,bj
are

independent for alli 6= j. Therefore

P(k /∈ A+B) = P

(

W
⋂

i=1

Ec
ai,bi

)

=
W
∏

i=1

P
(

Ec
ai,bi

)

. (A.3)

It remains to count how many waysk can be written as sum of two elements inIn. First assume
k is odd. In this caseP(Ec

ai,bi
) = ρ3 for all i becausek cannot be twice a number. If0 ≤ k ≤ n,

there arek+1
2

ways to writek as sum of two numbers:

k = 0 + k = 1 + (k − 1) = · · · =
k − 1

2
+

k + 1

2
. (A.4)

If n < k ≤ 2n there are2n−k+1
2

such ways:

k = n+ (k − n) = (n− 1) + (k − n + 1) = · · · =
k + 1

2
+

k − 1

2
. (A.5)

Hence

P(k /∈ A+B) = ρ
min{k+1

2
, 2n−k

2
}

3 (A.6)

Now for evenk, P(Ec
ai,bi

) is ρ4 whenai = bi = k/2 and isρ3 otherwise. Similar to before, there
are k

2
ways to writek as sum of twodifferentnumbers if0 ≤ k ≤ n and there are2n−k

2
such ways

if k > n. As a consequence

P(k /∈ A+B) = ρ4ρ
min{k

2
, 2n−k

2
}

3 , (A.7)

which completes the proof of lemma 2.2 �

Proof of Lemma 2.3.We writek as differences of two elements inIn: k = k − 0 = (k + 1) −
1 = · · · . If k > n/2, no element is repeated in two pairs, thus similar to Lemma 2.2 we have
P(k /∈ ±(A− B)) = ρn−k

3 .
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If k ≤ n/2, we use the same method used in Lemma 10 of [MO]. Define the set

J =

{

j : 0 < j < n− k;

⌊

j

k

⌋

is even

}

. (A.8)

In other words,J contains the firstk integers starting ata, then omits the nextk integers, and so
on. It is easy to see that|J | ≥ n/3 andj + k /∈ J if j ∈ J . Therefore, if we writek = ai − bi for
bi ∈ J , we are guaranteed that theai andbi are all distinct. We then have the same independence
as before, hence

P(k /∈ ±(A− B)) ≤ P(∪ai−bi=k,bi∈J(ai, bi) /∈ (A× B) ∪ (B × A)) = ρ
|J |
3 ≤ ρ

n/3
3 . (A.9)

�

APPENDIX B. PROOF OFLEMMA 4.2

Proof of Lemma 4.2.Denote the event in the lemma byE. We break the analysis into two cases,
depending on whether or nota equalsb.

Case I: a 6= b: We apply Bayes’ formula toE. Our partition is the four disjoint events on
whether or nota or b is inA.

P(E) = P(E|a ∈ A, b ∈ A) · P(a ∈ A, b ∈ A) + P(E|a ∈ A, b /∈ A) · P(a ∈ A, b /∈ A)

+ P(E|a /∈ A, b ∈ A) · P(a /∈ A, b ∈ A) + P(E|a /∈ A, b /∈ A) · P(a /∈ A, b /∈ A)

= (1− (1− ρ1)
2) · p2 + ρ2 · p(1− p) + ρ2 · p(1− p) + 0

= p2(2ρ1 − ρ21) + 2p(1− p)ρ2. (B.1)

Case II: a = b: We proceed similarly, and find

P(E) = P(E|a ∈ A) · P(a ∈ A) + P(E|a /∈ A) · P(a /∈ A) = ρ1 · p. (B.2)

�

APPENDIX C. PROOF OFLEMMA 4.4

Proof of Lemma 4.4.Let E be the event from the lemma, and consider the eventsE1 = (a ∈
A, b ∈ B) and(a ∈ B, b ∈ A), andE2 = (a ∈ A, c ∈ B) and(a ∈ B, c ∈ A). It immediately
follows thatE = E1∩E2. We again use Bayes’ formula, with our partition the four distinct events
arising from whether or nota andb are inA andB. We find

P(E) = P(E|a ∈ A, a ∈ B) · P(a ∈ A, a ∈ B) + P(E|a ∈ A, a /∈ B) · P(a ∈ A, a /∈ B)

+ P(E|a /∈ A, a ∈ B) · P(a /∈ A, a ∈ B) + P(E|a /∈ A, a /∈ B) · P(a /∈ A, a /∈ B)

= [p2 + 2p(1− p)ρ2 + (1− p)2ρ22] · pρ1

+ [p2ρ21 + 2p(1− p)ρ1ρ2 + (1− p)2ρ22] · p(1− ρ1) + p2 · (1− p)ρ2 + 0

= p(1− p)2ρ22 + 2p2(1− p)ρ1ρ2(2− ρ1) + p3ρ1(1 + ρ1 − ρ21) + p2(1− p)ρ2. (C.1)

Note that we also use Bayes’ formula to calculateP(E|a ∈ A, a ∈ B) and so on by dividing
into four cases depending on whether or not eachb, c is in A or not. Thus

p̂2 =
[

p2ρ1(2− ρ1) + 2p(1− p)ρ2
]2

= p4ρ21(2− ρ1)
2 + 4p3(1− p)ρ1ρ2(2− ρ1) + 4p2(1− p)2ρ22. (C.2)
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Sincep → 0 andρ1, ρ2 are fixed, bothpP(E) andp̂2 have formAp2+o(p2) for someA > 0; hence
p̂2 = O(pP(E)) as desired. �

APPENDIX D. PROOF OFPROPOSITION5.4

Proof of Proposition 5.4.AssumeA = {a1, a2, a3} andB = {b1, b2, b3, b4} be an MSTD pair in
In where0 ≤ a1 < a2 < a3 ≤ n and0 ≤ b1 < b2 < b3 < b4 ≤ n.

Lemma D.1. We haved ∈ A− B if and only if−d ∈ A− B.

Proof. By Lemma 5.1, there must exist a numbers such that|Xs| = 3, or a1 + bi = a2 + bj =
a3 + bk = s for some1 ≤ k < j < i ≤ 4. There are four possibilities for(k, j, i), which are
(1, 2, 3), (1, 2, 4), (1, 3, 4) and(2, 3, 4).

It is easy to see that there is not such that|Xt| ≥ 4. If there exists another numbers′ 6= s
such that|Xs| = |Xs′| = 3, equivalently there exists(i′, j′, k′) such thata1 + bi′ = a2 + bj′ =
a3 + bk′ = s′. Sinces 6= s′, i 6= i′, j 6= j′ andk 6= k′. The only possibility is(k, j, i) = (1, 2, 3)
and(k′, j′, i′) = (2, 3, 4) or vice versa. In either case,

a1 + b3 = a2 + b2 = a3 + b1 (D.1)

a1 + b4 = a2 + b3 = a3 + b2. (D.2)

Subtracting those two chains of equalities givesb4 − b3 = b3 − b2 = b2 − b1; let this common
difference bed. From (D.1),a2 − a1 = b3 − b2 = d anda3 − a2 = b2 − b1 = d, which means
(ai) and(bi) are two arithmetic sequences with same distance. It is easy to check that in this case
(A,B) is not an MSTD pair.

This implies there exists exactly ones ∈ A + B such that|Xs| = 3. From the proof of Lemma
5.1, we see that in order for|A +B| > | ± (A− B)|, it must happen|Yd| ≤ 2 for all d ∈ A− B,
and| ± (A− B)| = |A− B|, which means ifd ∈ A−B, so is−d and vice versa. �

From Lemma D.1, we see that the smallest and largest numbers inA−B, which area1− b4 and
a3 − b1 respectively, must be inverses of each other. So

a3 − b1 = b4 − a1 (D.3)

Case 1: a1 + b4 6= a3 + b1 : so(k, j, i) = (1, 2, 3) or (2, 3, 4). It is easy to see that if(A,B)
is an MSTD pair, so is(n − A, n − B) wheren − X = {n − x : x ∈ X}. Therefore without
loss of generality we can assume(k, j, i) = (2, 3, 4), or a1 + b4 = a2 + b3 = a3 + b2. Since we
can translate the set by a number, assumeb1 = 0 (nowai, bi are not necessary inIn). From (D.3),
a1 = b4 − a3 = b2 − a1, or b2 = 2a1. As b1 < b2, 0 < 2a1, or a1 > 0. We can rewritebi by ai as
follows: b1 = 0; b2 = 2a1; b4 = a3 − b1 + a1 = a1 + a3; b2 = a1 + b4 − a2 = 2a1 + a3 − a2. So

A = {a1, a2, a3}; B = {0, 2a1, 2a1 + a3 − a2, a3}. (D.4)

We can now write down all elements (might be repeated) ofA−B which are{±a1,±a3, a2, a2−
a1 − a3, a2 − 2a1, 2a2 − 2a1 − a3, a3 − 2a1}. By Lemma D.1,a2 ∈ A−B ⇒ −a2 ∈ A−B, thus
one of 4 numbers{a2 − a1 − a3, a2 − 2a1, 2a2 − 2a1 − a3, a3 − 2a1} must be equal to−a2.

Case 1.1: a2 − 2a1 = −a2 or a1 = a2, a contradiction.
Case 1.2: a3 − 2a1 = −a2, or a3 = 2a1 − a2 < a1, a contradiction.
Case 1.3: a2 − a1 − a3 = −a2 or a1 + a3 = 2a2. Let a2 − a1 = a3 − a2 = d, then
A = {a1, a1+ d, a1+2d} andB = {0, 2a1, 2a1+ d, 2a1+2d. We can directly check that this pair
is not sum-dominant.



SUMS AND DIFFERENCES OF CORRELATED RANDOM SETS 19

Case 1.4: 2a2 − 2a1 − a3 = −a2, or 2a1 + a3 = 3a2. Let a2 − a1 = d, thena3 − a2 =
2a2 − 2a1 = 2d. ThenA = {a1, a1 + d, a1 + 3d} andB = {0, 2a1, 2a1 + 2d, 2a1 + 3d. Again it is
straightforward to check that this pair is not MSTD.

Case 2: a1 + b4 = a3 + b1: two pairs(a1, b4) and(a3, b1) have same sums and differences,
hencea1 = b1 anda3 = b4. Without loss of generality, assumea1 = b1 = 0 (as we can translate
everything by−a1) anda2 + b2 = a3. Rewrite

A = {0, a2, a3}, B = {0, a3 − a2, b3, a3}. (D.5)

A−B consists of at most 9 elements{0, a2,±a3, a2−a3, 2a2−a3,−b3, a2−b3, a3−b3}. By Lemma
D.1,−b3 ∈ A− B ⇒ −b3 ∈ A− B. Since0 < b3 < a3, one of{a2, 2a2 − a3, a2 − b3, a3 − b3}
must be equal tob3.

Case 2.1: a2 = b3.
Case 2.2: 2a2 − a3 = b3.
Case 2.3: a2 − b3 = b3.
Case 2.4: a3 − b3 = b3.

In the first case,|Y0| = 3 because0 = a1 − b1 = a2 − b3 = a3 − b4, which contradicts our
observation before that|Yd| ≤ 2 for all d ∈ A−B. In any of the other three latter cases, we reduce
our sets to two variablesa2 anda3. Continuing our argument based on Lemma D.1, we can find a
relation betweena2 anda3 and check again to see that there is no such MSTD pair. This completes
the proof of Proposition 5.4. �
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