DISTRIBUTION OF MISSING SUMS IN SUMSETS
OLEG LAZAREV, STEVEN J. MILLER, AND KEVIN O'BRYANT

ABSTRACT. For any finite set of integerX, define its sumsek + X tobe{z +y : z,y € X}.
In a recent paper, Martin and O’Bryant investigated therithistion of |A + A| given the uniform
distribution on subsetd C {0,1,...,n — 1}. They also conjectured the existence of a limiting
distribution for|A 4+ A| and showed that the expectation df+ A| is 2n — 11+ O((3/4)™/?). Zhao
proved that the limitsn (k) := lim, o P (2n — 1 — |A 4+ A| = k) exist, and thap _, ., m(k) = 1.
We continue this program and give exponentially decayingen@and lower bounds om(k),
and sharp bounds om (k) for small k. Surprisingly, the distribution is at least bimodal; sutese
have an unexpected bias against missing exactly 7 sums. robéqgf the latter is by reduction to
questions on the distribution of related random variabléf) large scale numerical computations
a key ingredient in the analysis. We also derive an explaritiula for the variance dfA + A| in
terms of Fibonacci numbers, findingr(|A + A|) ~ 35.9658. New difficulties arise in the form
of weak dependence between events of the forne A + A}, {y € A + A}. We surmount these
obstructions by translating the problem to graph theorys @pproach also yields good bounds on
the probability forA + A missing a consecutive block of length
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1. INTRODUCTION
The central object of additive number thedry([[N, TV] is themetX + X of a setX of integers:
X+ X = {x1+2y: 21,29 € X} (1.1)

Typically, the theory is concerned with extremal behawsoich as the structure of finit€ when
| X + X|/|X| is nearly minimal (Freiman’s Theorem), or the possible d&ssof X when|X +
X/ (1) is maximized (Sidon Sets). Seel[N, R] for surveys andl [F,dgf@mples.

Here we focus otypicalbehavior: for a randomly chosen s€tof integers, what is the expected
value and variance 9X + X|? The answer of course depends on hdws chosen, and we focus
our attention on sets taken uniformly from the subsets of0,» — 1]; we denote intervals of
integers asa, b] :== {r € Z : a« <z < b} and such a random set ds In §1.3 and B7]2 we discuss
some variations on the manner of choosing a random set afatatumbers.

Other authors have considered aspects of typical behal/grmsets. When Ef and Rényi
[ER] first applied the probabilistic method to number thedingy observed that with probability
1, a uniformly random subsét of N will have C'+ C' = N\ F’ for somefinite setF', but made no
effort to exploreF’ further. The present work concerns itself with propertiethe set

F,:=10,2n—-2]\ (A+ A),
with A as above. We prove the existence of
lim E[|F,|"]

n—oo

for everyr > 1, give upper and lower bounds on
P (|Fu] = k)
for smallk, largen, and also ag — oo, and also bound
P({Cll,ag, P ,CLk} g Fn) .

Our work is usually quantitatively effective, and we repautnerical estimates throughout.

The key obstacle to finding the limiting distribution|df, | is the dependence between different
elements occurring or not occurring i+ A. For exampled ¢ A + Aand7 ¢ A + A are de-
pendent events since both are affected by whetlerd. We develop a graph theoretic framework
which makes it much easier to analyze the dependence besuebrevents and to develop bounds
that incorporate the dependence. It is possible to avogdftamework, but doing so makes both
notation and the underlying issues less clear.

Graph theory has been used in additive number theory beforeexample, Plinnecke (see the
description in[[R]) uses graph theory to estimate the size-fafld sumsets in terms gf4| and
|A + A|, Alon and Erd6s[[AE] use hypergraphs to study Sidon setsGiltert [G] on the Erds-
Turan conjecture. Our use of graph theory seems to be ditfér@m these as we investigate the
size of A + A for typical A, without reference to the size dfitself.

The next subsection of this introduction sets up our natadind states our main results. The last
two subsections provide more motivation and indicate thareaof our proofs and computations.
In §2, we develop a graph theoretic framework for handlirgdapendencies between events like
{a; € F'} and{a, € F'}. In §3, we find an explicit formula for the limit of the variamof | F'| and
prove Theorerh 115, stated below. [d 84, we prove the exp@idmiunds for Theorem 1.2. In B5,
we find the probability of missing certain configurations gmdve Theorenh 116, while inC 86 we

discuss consecutive missing elements and prove Theoreandl. Theorerh 118. We return to the
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problem of explicit bounds oft (|F},| = k) for smallk and the existence of a limiting distribution
for |F,| in §1. Finally in &8, we discuss some problems for future aesfe and how the graph
theoretic framework may be applied to such problems.

Remark 1.1. Many of the questions in this paper grew out of studying tfferéince in size between
the sumsetl + A and the difference set — A. As addition is commutative and subtraction is not,
it is natural to expect the difference set of a typicadrawn uniformly from{0, 1,...,n} to be
larger than the sumset. Though numerical exploration andis&@cs suggested that almost all sets
should give rise to more differences, Martin and O’'BryfMO] proved that a small but positive
percentage are sum-dominant. The percentage is quite sanalind4.5- 10~ [Z]. Understanding
the structure ofA + A, in particular when and what sums are missing, has motivatadh of the
theoretical and numerical work in the field. For other dinects, segHM] for results on non-
uniform models ofILMZ] for multiple comparisons and summands.

1.1. Terminology and Theorems. The main characteristic of+ A is that it is almost full. Martin
and O’Bryant[MQO] proved that

E[JA+A|]] = 2n—1-10+0 ((3/4)"?). (1.2)

Since typical sumsets are almost full, it is more naturaht@stigate the number of missing sums,
which is why we write the above @& — 1 minus 10. As noted i [MO], sumsets are almost full
because middle elements have many representations as & sumalements of0, n — 1J; each

i € [0,2n — 2] has roughlyn/4 — |n — i|/4 representations.

We set
my (k) == P (M =k),
m(k) = lim m,(k). (1.3)

A special case of Zhao's theorem| [Z] is that(k) is well-defined, strictly positive, and that
> e om(k) = 1, so that we can think ofn(k) as defining a distribution ofN. Thus, we can
speak of “the probability that a large finite sEthas a sumset that misses exactly 17 elements”
and mean something sensible. Zhao’s work is numericallyactgal and did not give reasonable
upper bounds om(k); we do thatin El7, where we also reprove Zhao’s results irgdsser setting.
See Figuréll for the experimental estimates and rigorousdsonm (k) for 0 < k£ < 32.

The result[(1.2) above implies that

lim E [M[O,n—l}] = 10.

n—oo

Equivalently, in light of Zhao’s worky ",  km(k) = 10. To this, we add the following results.
Let ¢ := (14 +/5)/2, the golden ratio.
Theorem 1.2.Letn > 5k. Then

272 <« m, (k) < (6/2)F, (1.4)
where the implied constants are independerit ahdn.

Note tha2~!/2 ~ 0.707 and¢/2 ~ 0.809, so that bounds provided by Theoreml1.2 are reason-
ably close. We suspect, based on numerical data, that tlegvfny conjecture represents the truth

of the matter, and perhaps even= /¢ — 1.
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FIGURE 1. Experimental values of.(k), with vertical bars depicting the values
allowed by our rigorous bounds. In most cases, the allowteahial is smaller than
the dot indicating the experimental value. The data conwma fyeneratin@?® sets
uniformly forced to contain O fronD, 256); see B7.R for details of the calculation.

Conjecture 1.3. There exists\ such that for any > 0,
(A —of <cm(k) < (A +e). (1.5)
From numerical data) ~ 0.78.

The exponential bounds of Theoréml1.2 already imply thatfh@oment remains bounded for
anyr > 1.

Corollary 1.4. The limit of ther™ moment of\/;, ,,_1,

lim E [Mp,, ], (1.6)
exists and is finite.
Theorem 1.5.The limit
lim Var (M[O,n—l]) (1.7)
n—o0o

exists and is abouwi’5.9658, as these are the first digits of its decimal expansion. Timg tan be
written as the following convergent series with exponéuiggay:

lim Var (M,—1j) = 4 lim Y P(iandj ¢ A+ A) — 40. (1.8)
n—oo n—oo i<j<n

Note that 9 andj ¢ A + A” is meant to be parsed agi“¢ A+ A) AND (j ¢ A+ A)".

1.2. Variance and Decay Rates of Missing SumsThe bounds in Theoreim 1.2 are due to formu-
las for probabilities of events such as

IP’(al, as, ..., andam g A‘l‘ A), (19)

by which we mean the probability that all of, a., . . . , a,, are in the complement of + A. This

represents the probability that a particular configuratgonot in A + A. As long asn > a,,,
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there is no dependence ensince this probability just depends dha,,)] N A. We therefore
can assume that C [0,a,,]. Formulas for such probabilities are also important forifigcthe

moments of\/|,,,_,;. For example, to find the expectation|af + A, [MO] find an exact formula
for P(k ¢ A+ A), which is approximately

P(k¢g A+ A) = O((3/4)"?), (1.10)
where we sayj(n) = O(f(n)) if there exist constants';, C; such that for all
Cif(n) < g(n) < Cof(n). (1.11)

Similarly, to find the variance, we can stulyi and; ¢ A + A) as seen from the series expansion
in (1.8). In Proposition 3]5, we find an exact formula for thisbability and in Corollari 316, we
show that for fixedn we have the following approximation:

P(kandk +m ¢ A+ A) = O((¢/2)"). (1.12)

The implied constants ih_(1.12) depend significantlyroand in Corollary 3.6, we also find these
constants.

Note that both[{1.10) and (1.112) are exponentiakinin fact, we prove that in general such
probabilities are approximately exponentiakin

.....

P(k+ a1,k +as,..., andk +a, ¢ A+ A) = O(AL, . ), (1.13)
where the implied constants dependan. . . , a,, but notk.

The fact thalP(k + a1, k + ao, . .., andk +a,, ¢ A+ A) is approximately exponential supports
Conjecturé 113 that the distribution of missing sums is apipnately exponential.

For the particular configuratiom, = 1,a, = 2,...,a,, = m, the case of consecutive missing
elements, we can approximatg . ., well as seen in the following theorem.

.....

Theorem 1.7.For anyk, m

1\ (etm)/2 (k+m)/2
(5) < Pk+1,k+2,...,andk+mg A+ A) < (5) (1+e0)", (1.14)

with ¢,, — 0 asm — oo. To be more precise, the exact form of upper bour(d i) k+m)/22k/m.

This implies that
1\ /2
A01,2,m — (5) (1.15)

asm — o0.

As we will see in the proof of Theorem 1.2, the lower bound2)+m™/2 is essentially the
probability of missing the first + m elements inA + A. By Theoreni_1]7, we have that for large
m,P(k+1,k+2,..., andk +m ¢ A+ A) is also approximatelyl /2)*+™)/2_ This means that
for largem, essentially the only way to miss consecutive elements ith + A starting atk + 1 is
through the trivial way - namely missing all of the fiést- m elements ofd + A.

Theoreni 1F7 is in fact a special case of the following ineigyal

Theorem 1.8.For \,,

-----

,,,,, o SP(A,BC0, lam/2]] | a1, .. am & A+ B)anr2. (1.16)

whereA, B are two independently chosen sets.
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1.3. Other types of random sets and the divot.Figure[1 shows a surprising phenomenon: ex-
perimentally,

m(7) < m(6) < m(8).
That is, a random subset ¥ 10'°] is more likely to have a sumset missing 6 (or 8) elements than
one missing 7 elements. That is, the distributiomdf ,,_,; appears to be bimodal for large
We have made a massive computation (detail$in §7), loopieg2d® sets and using only 64-bit
integer arithmetic, that lead to the following bounds:

0.07177 < m(6) < 0.07202, 0.07138 < m(7) < 0.7170, 0.07243 < m(8) < 0.07282.
We note that our bounds are actually in the form

107418021089142422011644549535908507304608994344051

1496577676626844588240573268701473812127674924007424 <m(6)
6) < 620778536995376440633741122321102716502820362028980739
m 8620287417370624828265702027720489157855407562282762240
we hope the reader will excuse our preference for reportipgvalent decimals, rounded in the
proper directions to maintain truth.
Closer inspection of Figuig 1 also reveals an apparentypeffect:

m(2k) +m(2k + 2) > 2m(2k + 1).

Here are two plausible explanations for this. The first i$ g ,,_,; is essentially the sum of two
iidrvs: the number of missing sums j0,n — 1] and in[n,2n — 2]. For any two iidrvsX;, X,
taking integer valuesP (X; + X, ever) > P (X; + X, odd), as the calculation comes down to
22 + 9% > 2zy. Another parity effect is observed on the ends: as sodngsi, then both) and1
are notinA + A. Thus, on the ends] + A always misses an even number of sums.

To compensate for these observations, it is necessary sidasrihe connections between differ-
ent ways of selecting a random set. We consider uniformiycsielg subsets db, n — 1], subsets
of [0, n] with diametem, subsets oN, and subsets df that contain 0. We lay out our notation as
follows:

(1.17)

set setting condition missing sums P(missingk sums)
B [0, n] {0, n} CB M[O,n]|{0,n} =2n+1— ‘B + B‘ wn(k:)
C N 0 My := N\ (C + C)| y(k)
D N 0eD MNHO} = ‘N \ (D + D)| Z(/{J)

Additionally, we setn (k) := lim,,_,o, m, (k) andw(k) := lim,,_,o, w, (k).
Ouir first parity-effect observation essentially boils dawn

ma (k) — Z y(@)y(k — i), (1.18)

a rigorous exposition of this can be found lih [I] and is skettin §7.2. The second observation
and Bayes’ Theorem leads us to

00 lk/2] 4
y(k) =Y P(minC = )P (|[2i,00) \ (C+ C)| =k —2i) = Y 27"z (k — 2i).
=0

=0

(1.19)
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FIGURE 2. Experimental values ofi(k), w(k), y(k), z(k), with vertical bars de-
picting the values allowed by our rigorous bounds. $ée §ddtuils.

Similarly to (1.18), one can prove that

k
wo(k) =Y 2(i)z(k — ). (1.20)
=0
Thus, all four distributions can be understood in terms(@f). Experiments and our bounds (see
Figure[2 for small values o) indicate that)My oy has an approximately geometric distribution,
and exhibits no obvious parity effect. Computationally, fweus on bounding and then allow
this to determine bounds on, w andy.

We bound: by conditioning on/ := D0, 44), and loop over al2*? possible values of (a pri-
ori, 0 € I). Foreach/ C [0,44), we explicitly know(D + D) N0, 44), we have much information
concerning D+ D)N[44, 88), and theoretically D+ D)N[88, o) is [88, co) with high probability.
This allows us to give reasonable upper and lower boundIé(d\rINHo} =k|DNI0,44) = ]) for
eachl.

If we suppose thab/y (o) is exactly geometric with parametar(i.e., setz(k) = (1 — A\)\)
and definey(k) andm(k) using [1.18) and(1.19), we find that the distributiondf; ;,; would
be bimodal with a divot ak = 7 only for the narrow parameter ran@ers6 < A < 0.771.
The best-squares fit fok is 0.765. If we suppose thal/y;oy has a Poisson distribution, i.e.,
2(k) = Xfe2/K!, we find that there are nd whatsoever that give a bimodal distribution with
divot atk = 7.

This implies that the divot’s existence relies not only oe #ibove observations but also on the

specific values ot;, for small values. We note that in particular is larger than the geometric
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model predicts; more than half of the least-squares erriooms z,. The rigorous bounds we give
also show this bias towards 4, though we currently have nenstahding as to why this is the
situation.

Theorem 1.9. The limits definingn(k) and w(k) are well-defined, positive, angl,  ,m(k) =
> reow(k) = 1. Rigorous bounds om(k), w(k), y(k) and z(k) for 0 < k < 32 are given in
AppendiX A. In particulann(7) < m(6) < m(8).

2. GRAPH-THEORETIC FRAMEWORK

We first develop a graph-theoretic framework to study depetichndom variables and calculate
probabilities likeP(a4, ..., anda,, ¢ A+ A). Note that for odd

{ig A+ A} = {(0€ Aorig A)and---and((i —1)/2¢ Aor(i+1)/2¢ A)}, (2.1)
and for even
{igA+A} = {(0¢Aori¢g A)and---and (i/2—1¢ Aori/2+1¢ A) andi/2 ¢ A}.

(2.2)
Therefore for distinct the event]i ¢ A + A} are dependent as both depend on conditiond on
like {0 & A}.
For example, the conditions ohnecessary fof3 and7 ¢ A + A} are
1=3: 0or3g A j=T7: 0or7¢ A
andlor2¢ A andlor6 ¢ A 2.3)
and2or5¢ A '
and3or4 ¢ A.

Since the two lists have integers in common, there is deperedeetween the evenf8 ¢ A + A}
and{7 ¢ A+ A}.

We construct a graph to represent the dependencies betiveesmidom variables. We call this
graph thecondition graphfor the probability. We construct the condition graph fgr,, . . ., and
am £ A+ A),whereaq; < --- < a,, in the following way:

(1) For every integer if0, a,,], add a vertex labeled with that integer.
(2) Add an edge between two vertices labeled wiimd; if i + j = a, for somel < k < m.

See Figurél3 for the condition graph B3 and7 ¢ A + A).

0
7 1
\
6 2
5 3
4

FIGURE 3. Condition Graph foP(3 and7 ¢ A + A).

By construction, we have a one-to-one correspondence batedges and conditions and ver-
tices and integersiif, a,,,|. For example, the edge between vertices labeled Watid6 represents

the condition that or 6 ¢ A, which is one of the conditions necessaryfar A+ A in (2.3). For
8



each condition, we need to pick at least one element to exdtach A. Therefore in the condition
graph, for each edge we need to pick at least one of its vertiCieat is, we need to pick a vertex
cover (recall a vertex cover of a graph is a set of verticeh that each edge is incident to at least
one vertex in the set). Using this method, we get the follgieamma.

Lemma 2.1. P(ay, ..., anda,, € A+ A) equals the probability that we chose a vertex cover for
the condition graph.

Note that when we pick vertices in the condition graph for wentex cover, we are picking to
exclude those vertices from. For example, note that the verticed), 4 and6, 2 form a vertex
cover for the condition graph d#(3 and7 ¢ A + A) in Figure[3. Then if7,0,4,6,2 ¢ A, then
3and7 ¢ A+ A since all conditions iH (213) are met.

Finally, note that when we calculate the probability of dhgsa vertex cover for the condition
graph, we no longer need to consider a labeled graph. Thexcause vertices represent elements of
A, and since each element.dfis equally likely to be chosen (atis chosen uniformly randomly),
we do not need to differentiate between different elements.

3. VARIANCE OF MISSING SUMS

We now use the graph-theoretic framework from the previegien to prove Theorem 1.5 and
find the variance.
We first note that the result af [MO] in_(1.2) is really that

E [Mpn-1(A4)] = Z P(i ¢ A+ A) =10+ O((3/4)"/?). (3.1)
Since .
Var (Mpu-11(4)) = E [Mpu-1(A)*] — (E [Mion-n(A4)])” (3.2)

and we knovE [ My ,_1)(A4)] from (3.1), to find the variance we just need to deterniifé/jy ,_1)(4)?],
which equals the following:

E [Mjpn-1(4)?°] = 1 > |{missing sums ind + A}/

n
AC[0,n—1]

=5 X >

AC[0,n—1] 0<4,j<2n—2
1,j€A+A

-5 > Y

0<i,j<2n—2 AC[0,n—1]

1,JEA+A
= > PAC,n—1]]iandj & A+ A)
0<14,j<2n—2
= 2 ) Plandjg€A+A)+ Y PigA+A). (33)
0<i<j<2n—2 0<i<2n—2

Combining [(3.2),[(311), and_(3.3), we get
Var (Mjp—y(4)) =2 ) Pliandj g A+ A)—90+0((3/4"?).  (3.4)

0<i<j<2n—2
9



We first simplify the sum ovet, j. Note that ifi, j < n, then

PGiandj ¢ A+ A) = P2n—2—iand2n—2—j & A+ A), (3.5)
and so
Y PliandjgA+A) = ) Pliandjg A+ A). (3.6)
0<i<j<n n<i<j<2n—2

Also, note that ifi < n/2 andj > 3n/2, then{i ¢ A+ A} and{; ¢ A + A} are independent.
This is becausd: ¢ A + A} depends only on0,i] N A and{j ¢ A + A} depends only on
j—n+1,n—1]NnAandifi < n/2andj > 3n/2, these sets are disjoint. Therefore for such
we have

Piiandj g A+ A) = Pig A+ AP(j € A+ A). (3.7)
Finally note that ifn/2 < i < norn < j < 3n/2, then
P(iandj ¢ A+ A) = O((3/4)"*) (3.8)

by (1.10). Therefore
> P(iandj ¢ A+ A)

<n, n<j

_ S Pliandj ¢ A+ A)+ > P(iandj ¢ A+ A)

i<n/2 and 3n/2<j n/2<i<n or n<j<3n/2

= Y PGandj ¢ A+ A)+O0(n(3/4)")

i<n/2, 3n/2<j

— (Z P(i ¢A+A)) : ( Y. B €A+A)) +0(n*(3/4)")

i<n/2 3n/2<j<2n—2
= (5+0((3/4)™") - (54 0((3/4)™*) + O(n*(3/4)"*)
=25+ O(n?(3/4)V4), (3.9)
where we usd (3l1) and (3.5) to get the second to last equ@bitybining [3.6) and(319), we have

> P(iandj ¢ A+ A)

0<i<j<2n—2
= > PlandjgA+A)+ > PliandjgA+A)+ > Pliandj ¢ A+ A)
0<i<j<n n<i<j<2n—2 <n, n<j
=2 Y P(iandj ¢ A+ A)+ 25+ O(n?(3/4)"%), (3.10)
0<i<j<n—1
and so by[(34)
Var (Mjp—y(4)) =4 > Plandj g A+ A)— 40+ O(n*(3/4)"*). (3.11)

0<i<j<n—1

Therefore to find the variance, we just need to stifyand; ¢ A + A) fori < j < n.
Since the other cases are handled similarly, we only pretbendletails for the case wherand

j are both oddBy Lemmd 2.1, we just need to study the condition grapiPferand; ¢ A + A).
10



Recall that we already found the condition graph #g8 and7 ¢ A + A) in Figure[3. After
untangling this graph, we see that it really consists of tasmponents, as seen in Figlte 4.

7 0 3 4 6 1 2 5

FIGURE 4. Untangled condition graph f@(3 and7 ¢ A + A).

Also note that each component isegment grapha graph that consists of a sequence of vertices
such that each vertex is connected only to the vertices imitsediate left and right. A similar
situation holds in general, as seen by the following prajpwsi

Proposition 3.1. The condition graph foP(i andj ¢ A + A) has components that are segment
graphs.

Proof. The condition graph foP(: andj ¢ A + A) has vertices with degree less than or equal to
2; if the vertex is labeled witl, it can only be connected to vertices labeled? or j — ¢ (if such
vertices exist).

Furthermore, there are no cycles in the condition graphp8sgpthere is a cycle in the condition
graph. Consider the vertex in the cycle with the maximumllélaed consider the vertices around
this vertex. Each of these vertices must have exactly twghteirs and so we have the following
situation as seen in Figulre 5.

j-f — M ——  § ——— i —————— 04—

FIGURE 5. Vertices around a labeled vertéx

Notice that!/ + j — ¢ > ¢ sincej > i. Therefore,/ is not the maximum label, which is a
contradiction and proves that we cannot have a cycle. THusoalponents are trees with all
vertices having degree less than or equd, tionplying that all are segment graphs. O

Since labels in different components are distinct and thezeno edges between different com-
ponents, each component is independent. That is, the ghibpabgetting a vertex cover for the
entire graph is the product of the probability of gettingtegrcovers for each component. In this
way, we just need to find the probability of getting a vertexesdor each component. To do this,
we find the number of vertex covers for an arbitrary segmeaglgrwhich we do in the following
proposition.

Proposition 3.2. The number of vertex coveggn) for a segment graph with vertices satisfies
g(n) = F,.2, whereF}, is thek™ Fibonacci number.

Proof. There are two cases: the first vertex of the segment graphhe ivertex cover, or it is not.

If the first vertex is in the cover, then the first edge alreaaty dne of its vertices picked. Therefore
we just need a vertex cover for the subgraph with 1 vertices that follows the first edge, and
by definition there arg(n — 1) such covers. If the first vertex is not in the cover, then tfoosd
vertex must be the cover since the first edge must have one\@ritices chosen. Since the second
vertex is now in the cover, then the second edge automaticati one of its vertices in the cover.

Therefore we just need a vertex cover for the subgraphmiti vertices that follows the second
11



edge, and by definition there agén — 2) such vertex covers. Therefore, we have the Fibonacci
recursive relationship(n) = g(n — 1) + g(n — 2). Asg(2) = 3 = Fy andg(3) = 5 = Fj, these
initial conditions and the recurrence impjyn) = F, », completing the proof. O

Therefore, we have

e FE,
P(chose a vertex cover for a segment graph witrertices = 2:2. (3.12)
Returning to our example witB and 7, we note that since the condition graph in this case
consists of two segment graph components each of lehgtle have
Py Fi 1
P3and7 ¢ A+ A) = o TR (3.13)
where we can multiply the probabilities by the independerfdbe components.
In general, as the condition graph may have many componenitswst find how many segment
graph components there are in the entire grapfPfoand; ¢ A + A).

Proposition 3.3. There are(j — i)/2 segment graph components for the grapliPafand; ¢
A+ A).

Proof. Note that in totalj + 1 vertices are used in the graphRifi andj ¢ A+ A); since{: and; ¢
A+ A} depends just orl N [0, j], the graph uses exactly the integergiinj]. Also note that each
component must end with a vertex labeled by an integer grdeda:. If a component ends with a
vertex labeled by < i, then it can be connected to two other vertices/ and; — ¢. Remember
that we are assumingand; are odd (the other cases are similar). As they are bdd # ¢ and
j—t#landsa — ¢, j — ¢, /¢ are all distinct. Sincé is connected to two other vertices, it cannot
be an end vertex. Therefore, each end vertex is labeled bg Bdeger in + 1, j]. Also note that
each of these integers must be end vertex since it cannoedetasdd up ta. Therefore, the set
[i+ 1, j] coincides with the set of end vertices and since each conmpbias two end vertices with
distinct labels, there arg — i) /2 components. O

We also need to find the length of each component. Fortundbtedye are only two possible
component lengths for the graph®fi andj ¢ A + A), as seen by the following lemma.

Proposition 3.4. The length of each segment graph component for the grapfi@indj ¢ A+ A)

is always either

41 41

p Pf W or 2 Pf W +o. (3.14)
7 —1 7 —1

Proof. First note that the difference between a given vertex anthenwertex that is two edges
away isj — i. This is because the sum of the vertices that share an edgeats betweenand

7, so that we have segments of the form given in Figure 6. Therdifice between— x andi — x
isj — i as needed.

i—g— T ——j—«&

FIGURE 6. Difference between every other vertex.
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Now note that these differences can be used to determinézthefseach component. Suppose
the end vertex of a segment graphvis Since we decrease by i for every two vertices and since
we only use non-negative integers, there can only be

L”_WLZJ 1= Wjﬂ (3.15)

decreases. Since we decrease once for every two verticelsaweethat the length is twice the
number of decreases. Therefore the length is

2 {mﬂw (3.16)
J—1

From Propositior_313, we also know that the end vertexf each segment graph satisfies
i < m < j. Therefore, the length of each segment graph is always

2[”1} orQF, 1W+2, (3.17)

J—1 J—1
as desired. O

For simplicity, we denote the first of the two values(in (3.b¢); and the second by + 2. We
must find the number of components with sizendq + 2. Suppose there arecomponents of size
g andr’ components of size+ 2. Then conditions on the number of components from Projwsiti
[3.3 and the length of each component from Propositioh 3.dsgis the following two equations:

qr+(¢g+2)r = j+1

r+r = It (3.18)

2
Solving these equations forr’ in terms ofg gives

S NV ol )
S

Therefore, again by independence of components, we haweltbr, j that

N —

!

. . 1 T T
]P)(Z and] € A + A) = ﬁFq+2Fq+4 (320)

with ¢, r, 7’ as given in[(3.17) and (3.119). Arguing similarly leads tonioitas for the other three
cases, which we state below.

Proposition 3.5. Consideri, j such that < j.
For i, j both odd:

P(iandj ¢ A+ A) = LFT Er (3.21)

27+1 q+27 g+4
13



where

-]

= 3ol o)

Y= %(j+1—(j—i) Btﬂ) (3.22)
For i even,j odd:

P(iandj ¢ A+ A) = LFOF;HF;;l (3.23)

27+1

where

1 , 1+ 1
ro= 5((]—1—1)&_@_1—(1—%1)4—0)
L i+ 1
ro= 2(] (j—i—1) [j—i—‘ 0). (3.24)
For i odd,;j even:
. . 1 r r!
IP)(Z and] g A ‘l— A) - ﬁFOI+2Fq+2Fq+4 (325)
where
g - 2{]/‘2+-1—‘_2
Jj—i
¢ = 2{?“}
J—1
1 1
ro= —((j—z—l)[z+,-‘—(+1)+o')
2 —1
/ . 1 . . . Z+1 Vi
o= 2(] (j—1 1)%_;‘ 0). (3.26)
For i, j both even:
. . 1 r r
P(Z and] ¢ A + A) == ﬁFoFO’Fq+2Fq+4 (327)

14



where

o = 2 Z/‘2+' —‘_1
] —1
o = o|2F w —9
J—1
qg = 2 Z.+ 1}
7 —1
1 o t+1 : /
ro= 3 ((3—1—2) [j—i—‘ —(Z+1)+0+0)
N i+
r o= 2(] 1—(j—1 2){],_2,—‘ ) 0). (3.28)
We conclude this section with some boundsftghand;j ¢ A + A). We have (Binet’s formula)
1
F, = —(¢" — (=1/p)"), 3.29
ﬁ(sﬁ (=1/9)") (3.29)
whereg = (1 ++/5)/2 is the golden ratio. Therefore, for everwe have
1
F, < —¢"™. 3.30
\/5¢ (3.30)
Sinceq + 2 andq + 4 are always even, then for any; both odd, we have
. . 1 r r’
P(Z and] €A+A) = %Fq+2Fq+4

gt+2\ T ara\ "
< L (Y (e
= 21\ 5 V5
1 @lortlat2)r)+@r+2)
2j+1 5(r+r")/2
1 ¢j+1+j—z’
2741 F(j—i)/4
¢2j+1 5i/4

= A g (3:31)

where the second to last equality comes from (3.18). In faetcan use Proposition 3.5 to show
that (3.31) holds for all, j (slightly better constants hold for the othey).

If i = k andj = k + m, wherem is fixed andk goes to infinity, a lower bound similar to (3131)
also holds. First note that for even

1 ,
F = g (@ =07
| .
— qunr (1 _ ¢ 2 )
= o (- (3.32)

15



for somec such that) < ¢ < 1/¢*" by Taylor expansion. Therefore for oddj, we have

. . 1 r r’
IP)(Z and] ¢ A+ A) = ﬁFq+2Fq+4
1 1
2j+1 5(q+2)/2
Yt B —2(g+2) ) —2(q+4)
= Wﬁ(l—w A =TT Y)
@2t1 5/
2i+15i/4 i
GUtL 5/t e
> g (- U= 00707, (3.33)

and similar formulas hold for the other parity cases;/lif — 1 not too slowly, then the remainder
term on the right-hand-side df (3133) goesltoFor example, i = k andj = k + m, then we
have the following corollary by combining(3.131) and (3.33)

. _ 1 o _
P12 (1—r¢ 2(q+2))w¢(q+4) (1—1"¢ 2(q+4))

v

(1= (r+1)gp~2@?)

Corollary 3.6. For any fixedmn,
¢2(k+m)+1 5k/4 ¢k+1 ¢2m
QUktm)+15(ktm)/2 gk = Qkt1 gmym/4’

P(kandk+m g A+ A) ~ (3.34)

ask goes to infinity withk, £ + m are both odd. Similar asympotics hold for genetak + m. If
we ignore the constants relatedita we have

P(kandk +m ¢ A+ A) = 0((¢/2)") (3.35)
ask goes to infinity with any, k£ + m.

Note that sincé?(i andj ¢ A + A) has exponential decay inj as seen in(3.31), then (3]11)
converges as — oo; that is

lim Var (Mp,-1j(4)) =4) P(iandj ¢ A+ A) — 40 (3.36)
n—00 i<y

exists and is finite. In particular, we know that the limit isiafinite sum of Fibonacci products.

However, we could not find a closed form for this sum. Nonetbgl because of the exponential

decay in the terms in the sum, we can approximate the variaetie In particular, note that the

tail of the sum has exponential decay:

. A b » \? /514 ‘
Y Pliandjg A+A) < ) §<2_51/4> <¢)

n<i<j n<i<j

(S 65)) (505)

n<i

2
_ ¢ 1 1 ¢? \" [/5Y\"
< 3 (=g (=) (5m) (%)

7 (g)n < 87(0.81)". (3.37)

16
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Here we use that (3.81) holds for allj. Using Mathematica to sum the fird0 terms of [3.36),
whose exact form is given in Proposition13.5, we get the faihg approximation for the variance:
lim Var (Mjy,—1j(A)) = 35.9658 + E, (3.38)

n— o0

where|E| < 10~%. The error termk comes mostly from truncating the computation of the 300-
term series given by Mathematica. By (3.37), the error taomftruncating the series at= 300

is less thar87(0.81)3% ~ 3. 1072, which is much less than the Mathematica error term. This
proves Theorem 11.5.

4. EXPONENTIAL BOUNDS
We now prove Theorein 1.2 and find exponential bounds for tteilolition of M) ,,_1)(A).

Proof of Theorerh 112For the lower bound, we construct marysuch thatA + A is missingk
elements. First suppose thats even. Let the firsk/2 non-negative integers not be ih Then
let the rest of the elements df be any subset’ that fills in (soA’ + A’ has no missing elements
between its largest and smallest elements); thatjs,»(A’) = 0. By [MO| Proposition 8], we
can show that

P(Mp,—1(4") = 0) > 1/2" (4.1)
independent ofi. If L C [0,¢ — 1] andU C [n — u,n — 1] are fixed, then their proposition says
that

P([20—1,2n—2u—1) C A+ A" | AN[0,(—1] = L, AN[n—u,n—1] = U) > 1-6(271H 4271V,
(4.2)
independent of.. Therefore,

P(20—1,2n—2u— 1] C A+ AandA' N[0, —1]=L,ANn—un—1]=U)

> (1—6(27H 42717272, (4.3)
By letting L = [0,¢ — 1], U = [n — u, n — 1] so the ends fill in, we get that
P(A + A =[0,2n—2]) > (1-6(27"+27%))27%2 (4.4)
Letting/ = u = 4 so that the first term in the product is positive, we get that
P(A + A =[0,2n—2]) > (1—-6(27*+271))27127* = 1/2'° (4.5)

independent of., which gives us[(4]1).

AsA=k/2+ A',wehaved+ A =k + A"+ A" = [k, 2n — 2] and soM),,_1)(A) = k as seen
by FigureT.

Therefore we have

P(Mjpn1(A) =k) > P(A=k/2+ A andM,_;;»(A’) = 0)

_ <%)m P(M,_2(A") = 0)

1\ /2
> <§) > (0.70)", (4.6)
where the implied constants are independentloy (4.1). This proves the lower bound in Theorem

1.2 whenk is even.
17



L..T..J L - ]

k/2 any set that fills in
A+A:{ T T T T T PP T PP VPV FTTT
k completely filled in

FIGURE 7. AandA + A for lower bound.

If k£ is odd, thenwe canlet = [0,/ —1]\{2,3} andU = [n—u, n— 1] so that only the element
3 is missing fromA’ + A’. Then we get a bound fdP(M,,—11(A") = 1) as in [4.1). Letting
A= (k—-1)/2+ A, we get the desired lower bound in Theorlen 1.2 for whénodd.

For the upper bound, we can use bounds like
3\ /2
P(kg A+ A) < (Z) (4.7)

from [MQ]. Again, first suppose thdtis even. Note that ifl + A is missingk elements, then one
of these missing elements must be at lég@telements away from the ends[0f 2n — 2]. That s,

we have the following situation (see Figliie 8).

I¢-Irl_': ITI | ILI_II'_IJI
k/2 k/2

missing sum more than k/2 from ends

FIGURE 8. Upper bound foP(M,_1j(A) = k)

Therefore
P(Mj-1)(A4) = k) < P(A+ Amissing element at leasy2 away from edges
= PEA+AE[k/2,2n—k/2])

3 J/2
< 2 —
< 23 (3)

J>k/2

3\ #/4
< (1) ~ (0.93). (4.8)
Note that this bound does not use the fact that there may l&@ngislements on both ends at

the same time. By focusing on one particular side, we can gebager result. For example, we
18



have the following inequality for the probability of misgik elements irf0, n/2]:

P([0,n/2\ (A+ A)|=k) < PGEA+A €[kn/2)

< 2 3"
< 2% (3)
37 k/2
< (1> ~ (0.87)F (4.9)

and similarly forP(|[3n/2,2n] \ (A + A)| = k). Furthermore [(7.27) from Sectigih 7 connects the
probability of missing: elements to the probability of missing elementf)im /2] and[3n/2, 2n]:

n/4
P(Mjon-1(A) = k) = Z P(][0,n/2]\(A4+A)| = i)P(|[3n/2, 2n]\(A+A)| = j)+O ((Z) ) ,
o (4.10)
Combining [(4.9) and (4.10), we get

B(Mio,u1)(A) = &)

n/4
= Y P([0,n/2]\ (A+ A)| = i)P(|[3n/2,2n] \ (A + A)| = j) + O <<§> )

~ 4
i+j=k

3\ /2 73\ /2 3\ /4
<2 () G +0)
i+j=k
3 k/2 3 n/4
< k(i) +(1) . (4.11)
Therefore ifk /2 < n/4, then we get the desired bound

3 k/2
P(M,—1(A) = k) < k <1) ~ (0.87)F. (4.12)

Note that the bound in(4.12) for the distribution is exadtlg same as the bound In_(4.9) for
missing elements on a single side. Since all our bounds grenextial and[(4.10) multiplies
P(|[0,n/2] \ (A + A)| = i) with P(|[3n/2,2n] \ (A + A)| = j), we can always use this approach
to transform bounds on the probability of missing elemem{sii+ A) N [0, »/2] to equally good
bounds on number of missing elements in alllof- A. So it is sufficient to just develop bounds

on missing elements on one sidedf A. In particular, we can use this approach to transform the
19



bounds in Corollary 316 to improve the bounds[in (4.12). Bydllary[3.6, we have

P(|[0,n/2]\ (A+ A)|=k) < P(A+ Amisses 2 elements greater than 3)
= P(ij g A+ Aijelk—3,n/2)
= > P(iandj ¢ A+ A)

k—3<i<j
¢2j+1 5i/4
< 2 g g
k—3<i<j
L 5R/A & k ~ .
Then using the previous approach, we get a similar boundetothl number of missing sums:
¢ k
P(Mjn-1(A) = k) < (5) ~ (0.81)". (4.14)

Note that as in[{4.10), we always have an ex@at)™* term. To make this term negligible,
we need to haveé3/4)"/* < (0.81)F, which means: > k - 41og(0.81)/log(3/4) ~ 2.92k or that
k < 0.34n. This condition is sufficient in this case where we have thenod¢/2)*. However in
general, we know that we have a lower boundigf2)*/2 for the distribution. Therefore, to make
the (3/4)"/* term always negligible, we can ha(&/4)"/* < (1/2)%/2, which means
n > k-2log(1/2)/log(3/4) ~ 5k, as in the statement of Theorém]|1.2. Note that then the ichplie
constants are independentrofCombining [(4.6) and_(4.14), we get Theorem 1.2. O

5. APPROXIMATING P(k + a1,k +as,..., AND k+a,, € A+ A)

In this section, we prove Theorem 1.6 which says that for axgdfi.,, ..., a,,, there exists
Aay....ar, SUCH that

P(k+ a1, k+ag,..., andk +a, ¢ A+A) = O(A\L, ), (5.1)

where the implied constants dependan. . ., a,, but notk. Therefore, the probability is approx-
imately exponential.

To prove this theorem, we use a version of Fekete’s Lemmashways that sub-additive se-
guences are approximately linear. From [S] we have theuiatig version in which the sequence
is both sub-additive and super-additive.

.....

Lemmab5.1. If b, is a sequence such that

bp+bn—1 < by < b, +0b,+1 (5.2)
for all n, m, then\ = inf b, /n exists and for alk,
1
b _ )\‘ < - (5.3)
n n

Remark 5.2. The proof of this Lemma can be easily modified to get that if

b+ by — ¢ < bpsm < b+ b+ c (5.4)
20



for some constant > 0, then

b—"—)\‘ < & (5.5)

n n

Suppose that, is approximately multiplicative rather than approximgtatiditive so that for
some constant > 1

ey < Gpgn < C Ay, (5.6)

for all m,n. Asb, = loga, satisfies the properties of Lemmal5.1, for= inf 2% we have

log a,, _)\‘ _ log ¢ (5.7)
n n
for all n. That is,
I\ < a, < e\t (5.8)
for all n, implying
a, = O(A\"). (5.9)

Therefore we just need to reldf¢k + a1, k + as, ..., andk + a,, ¢ A+ A) as a function ok to
some approximately multiplicative function satisfyihgd@p

For example, considé®(18, 19, and21 ¢ A + A), whose condition graph is in Figuré 9. Note
that this graph has a loop from vertex 9 to itself sifce 9 = 18. We can symmetrize this graph
by removing this loop and also removing the edge betweercesft and10 and the edge between
vertices9 and10, resulting in the modified condition graph in Figlre 10.

P

0 1 2 3 4 5 6 7 8 9 —10

21 20 19 18 17 16 15 14 13 12 11

FIGURE 9. Condition graph foP(18,19,21 ¢ A+ A).

21 20 19 18 17 16 15 14 13 12 11

FIGURE 10. Modified condition graph faP(18,19,21 ¢ A+ A).

Denote the probability of getting a vertex cover for grapke the one in Figure 10 of length

by f(n); so the probability of getting a vertex cover in Figlre 1G'{g1).
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Note thatf(11) is an upper bound for the probability in the original cormtitgraph in Figurél9
since we have removed some edges. On the other hand, we lededldiving lower bound:

P(18,19, and21 ¢ A + A)

> P(18,19,21 ¢ A+ Aand9,10,11,12 ¢ A)

— P(18,19,21 ¢ A+ A |9,10,11,12 & A)P(9,10,11,12 & A). (5.10)
Note that the condition graph f@(18,19,21 ¢ A+ A | 9,10,11,12 ¢ A) is the original condition

graph in Figur€9 with all edges incident on verti®e$0, 11 or 12 removed, as depicted in Figure
[11.

21 20 19 18 17 16 15 14 13

FIGURE 11. Condition graph foP (18,19, and21 ¢ A+ A|9,10,11,12 ¢ A).

Note that in Figuré 11 we have removed vertiée), 11 and12 completely since there are no
longer any conditions on them #(18,19, and21 ¢ A+ A | 9,10,11,12 ¢ A). Finally, note that
the probability of getting a vertex cover in the graph in Failld is justf(9). Therefore, by{(5.10),
we have

(1/2)*£(9) < P(18,19, and21 € A+ A) < f(11), (5.11)
where we use tha@(9,10,11,12 ¢ A) = (1/2)*.
Since the condition graph fdt(k, k£ + 1, andk + 3 ¢ A + A) is just a longer version of the

condition graph fofP(18,19, and21 ¢ A + A), we can apply the same method as before to get
that

(1/2)*f(k/2) < P(k,k+1,andk+3&€ A+ A) < f((k+4)/2) (5.12)

for evenk, with a similar formula holding for odé. Therefore we are reduced to studyifig:),
which is easier to investigate since the condition graphdsensymmetric. We will show that(n)
satisfies[(5.6), implying it is approximately exponential.

For example, to see thdt(11) < f(4)f(7), we can separate the graph in Figlré 10 at4fhe
vertex and remove edges that cross this gap, resulting igréph in Figuré 12.

0 1 2 3 4 5 6 7 8 9 10

21 20 19 18 17 16 15 14 13 12 11

FIGURE 12. Upper Bound forf(11).

Since the components are independent smaller copies ofitfieal, the probability of getting

a vertex cover for the graph in Figure]12/i¢4) f(7). We can do this for any integer less than
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11, defining f (n) for small integers by truncating at thd' vertex. Since we have removed some
edges to get the graph in Figlre 12, we have

f1) < f4)£(7) (5.13)
as desired.
To get a lower bound fof (11), we use that
f(11) > f(111]4,5,6,15,16,17 chosenP(4,5, 6, 15,16, 17 chosen, (5.14)

where f(11 | 4,5,6,15,16, 17 chosen denotes the probability of getting a vertex cover for the
graph in Figuré_12 given that the verticéss, 6, 15,16, 17 are chosen. The graph fgi(11 |
4,5,6,15,16,17 chosen) is depicted in Figure_13. The probability of getting vertexers for the

0 1 2 3 4 5 6 7 8 9 10

21 20 19 18 17 16 15 14 13 12 11
FIGURE 13. Lower Bound forf(11).

two independent componentsfi§4) f(4). Therefore from[(5.14), we get that

fA1) > (1/2)°f(f(4) = (1/2)°F(4)£(7), (5.15)
with the last inequality sincg(n) is decreasing. Therefore, in general we have
(1/2)°f(m)f(n) < f(m+n) < f(m)f(n), (5.16)
and sof (n) satisfies the conditions df (5.6). By the modified versioneiféte’s Lemma, we have
f(n) = ©(X") (5.17)
for some\. Therefore by[(5.12), we have
P(k,k+1, andk+3 & A+ A) = O(\/2), (5.18)

which proves Theoreimn 1.6 for the cage= 0,a, = 1, a3z = 3.

The general situation follows in exactly the same way: by finaking the configuration graph
of P(k+ay,..., andk+a,, ¢ A+ A) look more symmetric and then using the modified Fekete’s
Lemma.

6. CONSECUTIVE MISSING SUMS

In this section, we prove Theorédm11.7 and its generalizatioeoreni 1.8. We begin by proving
Theoren 1.7, which says that

1\ ktm)/2 1\ (k+m)/2
(5) <Pk+1,...,andk+mg A+ A) < (5) (1+em)". (6.1)



The lower bound comes from the construction in Fidure 7 tinigthe first| (k+m)/2| elements
of A be missing, which forces the first+ m elements ofd + A to be missing as well. That is,

P0,1,....,k+m—1, andk+m & A+ A)

= P(0,1,..., and|(k+m)/2| € A)

_ (1/2)L(k+m)/2j+1. (62)
Therefore, we only need to prove the upper bound.

Before giving the proof, we consider an example with conditgraphs which illustrates the
idea. ConsideP(16,17,18,19,20 ¢ A + A). The condition graph here is given in Figlre 14.

// SR KA A A AL KK
20 19 18 17 16 15 14 13 12 11 \10; 9

FIGURE 14. Condition graph foP(16,17,18,19,20 ¢ A 4+ A).

We need to find the probability of getting a vertex cover fas thraph. If we remove some
edges, the probability of getting a vertex cover for the ltesyigraph is an upper bound for the

probability of getting a vertex cover for the original grapife can remove some edges to get the
graph of Figuré15.

20 19 18 17 16 15 14 13 12 11 10 9
FIGURE 15. Graph after removing some edges.

The resulting graph ha% ~ 20/6 components that are all complete bipartite graphs with
vertices. These are easier to handle since the only way ta gettex cover for such graphs is to
have all vertices on one side be chosen. So the probabilggttihg a vertex cover for one of these

complete bipartite components is less tfiarR)3 + (1/2)3 = 2/23. Since the components are also
independent, we have

2\3 1 20/6
P(16,17,18,19,20 ¢ A+ A) < (?) ~ <Z) : (6.3)
and in general we get that
9 \ (k+4)/6 o1/3 (b+9)/2
Plk,k+1,k+2k+3k+4¢ A+ A) < (5) = (7) . (6.4)
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We use this approach in the general proof. Notice that as ~o, the size of the complete bipar-
tite graphs grows, and so we will be taking out relatively éewand fewer constraints. Therefore,
this approach gets us closer to the correct answer.

Now we give a formal proof of Theoreim 1.7 that does not relyfendondition graphs.

Proof. We first do the proof foP(k,k + 1,..., andk +2m — 1 ¢ A + A) with 2m — 1 instead
of m. Note that since the probability depends only[0rk + 2m — 1] N A, we can assume that
A C [0,k + 2m — 1]. We will also assume that dividesk and that

k= qm (6.5)

with ¢ even.

We begin by writingA as the following disjoint union:
A:A(]UAlU"‘UAqUAq_H, (66)
where

A, = Anfym, (j+1)m —1]. (6.7)
Thenif[k,k+2m—1]N(A+ A) =0, then[k, k +2m — 1] N (A; + A,—;) = 0 for all j. Note that
Aj + Aq_j - []{7, k+2m — 2] (68)

Therefore[k, k +2m — 1] N (A; + A,—;) = 0 impliesA; + A,_; = 0. If ¢ is even, we have
Pk,k+1,...,andk+2m —1¢ A+ A) < P(k,k+2m|N(A4; +A,—;) =0forallj <q/2)
= P(A;+ A, =0forall j <gq/2)
= P(A;=0orA,_;=0forall j <q/2). (6.9)
For differenty, the pairs of setsl;, A,_; are disjoint. Therefore, we have independence:

q/2-1
]P)(AJ = @ or Aq—j = @ for a”] S (J/Q) = ]P)(Aq/g = @) H ]P)(AJ = @ OrAq_j = @) (610)
i=0

Finally, note that
P(AJ - @ or Aq_j - @) S P(AJ - @) + P(Aq_j - (Z)) == 2% (611)
Combining [(6.9),[(6.10), and (6.1.1), we find

q/2—-1

1 2
Pk, kE+1,... 2m—1g¢ A+ A4) < — —
(kk+1,...,andk+2m —1¢ A+ A) 2’”][[02”1

1 q/2+1
— 94/2
(=)

1\ (E+2m)/2
_ gk/2m <§) _ (6.12)

This inequality is true for alin, k such that; = k/m is an even integer.

Changingn to m/2, we get that
1 (k+m)/2
Pk,k+1,...,andk+m—1¢ A+ A) §2’“/m<§) (6.13)
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for evenm andq = k/m still an even integer. Note thdf (6]13) is similar to the bdbure get in
(6.4) using the condition graph approach.
For oddm, we just need to usé (6.113), noting that

P(k,k+1,...,k+m—1, andk+m ¢ A+A) < P(k,k+1,..., andk+m—1 ¢ A+A). (6.14)

For oddg, we need to partitio such that there is a block in the very middleAf This ensures
that this middle block is matched with itself (just likk, » was matched with itself wheqpwas
even). This gives us the exttg2™ that is needed in order to achieve the bound. For non-integer
g, we need to repartitiord in a similar way. Therefore the bound [n_(6.13) holds in gahearm to
a constant.

Finally, note that ag» — oo, we have2’/™ — 1. Writing 2//™ = 1 + ¢,,,, we have

(k+m)/2
Pk,...,andk+m —1¢ A+ A) < (5) (1+en)", (6.15)
wheree,, — 0 asm — oo. By raising2'/™ = 1 + ¢,, to them™ power, we see that
1
€Em < —. (6.16)
m

Therefore a weakened version of the inequality says that
1 (k+m)/2 1 (k+m)/2
(5) < Plk+1,...,andk+ mg A+ A) < (5) (14 €e,)F, (6.17)

where the implied constants are independent@ndk.

This bound is interesting since it means that the trivialdowound is almost the right answer
for the exact bound. The trivial lower bound makes us missfdl), £ + m| in A 4+ A as seen in
(6.2) but we only neefk + 1, k + m| to be missing. In this sense, we see that essentially the only
way to missm consecutive elements at+ 1 for largem is to miss all the previous elements as
well.

Also, note that[(6.17) implies that

1\ /2
)\071 ..... m — (-) (618)

.....

Now we will prove Theorerh 118, which says that
,,,,, an < P(A,BC0, an/2]] | ar,...,am & A+ B)Y(@nt2), (6.19)

Note that Theorem 1.7 is indeed a special case of this thesireza we have the following upper
bound

Mt.m < PABCI0,[m/2]]]0,...,m¢g A+ B)Y/m+2
P(A, B C[0,|m/2]]| A= 0orB = )"/m+?)

1\ bm/2l 4 1/(m+2)
< (2 (5) ) : (6.20)
which converges tq/1/2.

The proof of Theorerm 118 will be almost exactly the same apthef of Theoreni 117.
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Proof. We will first show that fol0 < a; < --- < a,,
P(ACI[0,k+an|| k+ay,....k+a, & A+ A)
< P(A,BC[0,a1/2] | a1,...,am & A+ B)F/(@nt2) (6.21)

for all £, a,,, such that,, is even and:,, + 2 dividesk. Similar results hold in the other cases of
k, m. Furthermore, we first assume that = 2r — 2. Note that since the probability depends only
on[0,k + 2r — 2| N A, we can taked C [0, k + 2r — 2]. Again, we first assume thatdividesk
and thatt = ¢r. Then as before,

P(k+ay,..., andk +a, € A+ A)
< P(k+ay,..., andk+a, &€ A;+ A, forall j < [¢/2])
lg/2]
= [[Pk+ai,.... andk + ay & A; + Ayy). (6.22)
j=0

The key factis that ifi # ¢ — j, the sets4;, A,_; are independent and
P(k+ay,..., andk +an € Aj+ Ayj) = P(A,BC[0,7r—1] | ay,...,a, &€ A+ B) (6.23)
for all j. Therefore, ifg is odd
P(k+ay,..., andk +a, € A+ A)
< P(A,BC[0,r—1]|ay,... am & A+ B)la/2H
= P(A,BC[0,r—1]|ay,...,an & A+ B)F/¥+1/2 (6.24)
and ifq is even,
P(k+aq,..., andk + a,, € A+ A)
< PAC0,r—1]|ay,...,am & A+ A)
XxP(A,BC[0,r—1]|ay,...,am & A+ B)¥?. (6.25)
If we drop the terms that do not depend/agrwe have for all even,, and allk divisible bya,,, + 2
P(AC[0,k+an|k+al,....k+a, & A+ A)
< P(A,BC[0,am/2] | a1,...,am & A+ B)F/(@nt2), (6.26)
which is (6.21). Note that it is not divisible bya,, + 2 or if a,, is not even, we have
P(AC[0,k+an | k+al,....k+a, & A+ A)
< P(A,BC0, lam/2]] | a1,...,am & A+ B)F/(@nt2)] (6.27)
which proves tha{(6.19).

7. BOUNDs oNm(k), w(k), y(k), AND z(k) FORk < 32

As mentioned in[81]3 and covered in more detailin B7.2, fices to bound (k). Our strategy
is this: if D + D (whereD is a uniformly chosen subset Bfthat contains 0) is missing exactly 7
elements, then it is very likely that those 7 missing sums#ramnaller than 88 and typically even
all smaller than 44. If we loop over alt® possibilities3 for DN [0, 44), for each possibility we can
compute( D+ D)NJ0,44) = (5+)N[0,44) and a subset dfD+ D)N[44, 48) D (5+5)N[44, 88).
From this (with a little theory to handle the tail of the sum)sge can bound the likelihood of
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missing exactly 7 sums, gived N [0, 44). By combining these estimates, we acquire bounds on
2(7).

Letn > 2 be a natural number parameter (the computations reportedusen = 44, although
n = 43 is already enough to show(7) < m(6) < m(8)), and set

2(k|B) == P(IN\(D+D)|=k|DN[0,n)=5). (7.1)
We have
2k) = Y zk[BP(DN0,n) =8) =27V 3" (k| p), (7.2)
0esC[o,n) 0eBClo,n)

so that it suffices to boundk | 5) above and below for all < £ < 32 (our arbitrary notion of
“small " is 0 < k < 32)and allo € g C [0, n).
Further, set

= DNJ0,n)

— [0,m)\ (3+5)

= [n,2n) \ (B + 5)

= min L

= [2n, 00)

= E[[[n,00)\ (D+ D) | B=f]

= 27 lenom=nl| (7.3)

If we condition onB = j, then the elements dP are Definitely missing fromD + D, the
elements ofL are Likely but not certain to be missing, and the element§ otthe 7ail of the
natural numbers, are very likely to be missing. Note that- 1 € £, soL is nonempty anan is
well-defined.

Lemma 7.1. For all k£ < |D|, we have:(k | 5) = 0.
Proof. Conditioning on8 = /3, we haveD C N\ (D + D). Infact,D = [0,n) \ (D + D). O

s 339>
.

Lemma 7.2. We have) = 5- 27181 + Z 9=1BN[0,6=n]|

lel
Proof. By linearity of expectation
n = E[l[n,00)\ (D4 D)[] =E[[[n,2n)\ (D+ D)|+E[T\ (D+D)]]. (7.4)
Again using linearity of expectation, we have
E(|[n,2n)\ (D+D)]] = Y P(¢¢D+D) (7.5)
Lel
Sincel ¢ D + D is the same as (for < ¢ < 2n)
¢/2
tgD+D=/\(igDVvi—igD)
=0
= /\ (-bv¢D. (7.6)
bes
b<t—n
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Thus

P({ ¢ D+ D) = 271800l (7.7)
and so
Y P(t¢gD+D) =) 2710l (7.8)
lel LeL
That
E[|7T\(D+D)|] = 5-271 (7.9)

is essentially in[MO], but we derive it here for the readedsvenience. Using linearity of expec-
tation,

E[|T\(D+D)|]:§:P(t¢D+D) (7.10)
and =

bep

t/2
IP’(t§ZD+D)P((/\t—bg!D)/\(/\z’gD\/t—z’gD)). (7.11)

Now this has two cases leading to
27181(3 /4)t=2n+1)/2 tis odd,
27181(1/2)(3/4)¢=2)/2  tis even.
The infinite sum[{7.20) now simplifigs. 215, O
Lemma 7.3. We havenax{0,1 —n} < z(|D| | ) <1 — p.
Proof. Trivially z(|D] | ) > 0. Since

n = Eflln,00)\ (D+ D) | B= /]

[e.e]

= Y (Dl +i]p) - i

1=0

P(t¢ D+ D) = { (7.12)

oo

> Y (D] +iB)

i=1
= 1-2(D[ ] 5), (7.13)
we also have(|D| | 5) > 1 —n.
Observe that the evefl¥l \ (D + D)| > |D| contains the evertm ¢ D + D}, and so

P(N\(D+D)|=D|) < 1-P(mgD+D)=1-—p, (7.14)
concluding the proof of this lemma. O
Lemma 7.4. We havenax{0,2u —n} < 2(|D| + 1 | ) < min{1,n}.

Proof. Trivially 0 < z(|D|+ 1 | 5) < 1. We have

n =Y k-z(D|+k|B)>=(D|+1]8), (7.15)
k=0

which leaves only the bourz}, — n < z(|D| + 1 | 5) to prove.
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The idea here is that if exactlyD| + 1 sums are missing, they are very likely to be s
elements oD, andm. Formally,

{IN\(D+D)|=|D|+1} 2{m¢gD+D}n({te D+D}n({te D+ D}

Lel teT
>m

D{mg¢D+D}\ || J{t¢D+DIu| J{t¢D+D}

lel teT
>m

and so

AD|+1]8) > P(mgD+D)—Y P({¢D+D)—Y P(t¢D+D)

el teT
>m
= 2P(m¢gD+D)— Y P(i¢gD+D)
i€ LUT
= 2u—n. (7.16)

1
Lemma7.5.Fork >2,0<z(|D|+ k| B) < % min{n, 2n — 2u}.

We note that sometimes this bound is weaker th@®| + & | §) < 1. This happens for few
enoughs that, from a computational vantage point, it is not worthatieg for.

Proof. Trivially, 0 < z(|D| + k | 5). We have

Mg

i - 2(|D|+1i) > kz(|D| + k), (7.17)

=0

whencez(|D] + k) < n/k. But also,

n = ZZ 2(|D| + 1)
=0
= 2(|D|+1) +Z #(|D] + 1)
> 2u—n+kz(|D|+k), (7.18)

and soz(|D| + k) > (2n —2u) /k. O
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7.1. Making the computation feasible, reliable, and verifiable. A massive computation has
been performed, so some words are necessary as to how thasible. Set

[ max{0,2" — 2"}, k= |D|

LoweR(k | B) := ¢ max{0,2-2"u—2"n}, k=|D|+1
W otherwise
(on — oy, k= |D|

UPPERK | B) := { min{2",2"n}, k=|D|+1
0, otherwise

OVERHANG (k|3) = ming2%),2- 2" =22}, k= ‘D‘. (7.19)

0, otherwise

The lemmas above imply that that the vector
2 Hz(0),2(1), .., 2(31)) = Y 2M=(0] 8),2(1] B),...,2(31 | B)) (7.20)
0€BC[0,n)

is bounded below componentwise by

> (LoweR(0 | 8), LOWER(1| 3),...,LOWER(31 | 3)) (7.21)

0eBClo,n)

and is bounded above componentwise by

> ((UPPEF@(O | B), UPPER(1 | 3),...,UPPER(31 | 8))+

0€sC[0,n)

(OVERHANG(0 | 8), OVERHANG(1 | ),...,OVERHANG(31 | 5)) - M),

where M is the 32 x 32 matrix whose(i, j) entry (running the indices from 0 to 31) 3%_7 if
j > 1+ 2,andis 0 otherwise. This allows us to compute an upper boand®, . . ., 2(31) from

> (UPPERO | 8),UPPER1 | B),..., UPPER(L | B)) (7.22)
0€BC[0,n)
and
Z (OVERHANG(0 | 8), OVERHANG(1 | ), ..., OVERHANG(31 | 3)). (7.23)

0€6C[0,n)

Observe that bweR, UpPERand Overhang are always integral 24s and2™y are both integers;
this means that we can compute (7.21), (I7.22) and|(7.23y wsily integer arithmetic.

We need to computg + 5 and 5 N [0, k] (for variousk) for eachs. This work can be tremen-
dously reduced by using a Gray code. That is, the subsdts of can be enumerated in such
a way that each set differs from its predecessor in only oemeht (either put in or taken out).
By storing the representation function fér+ § (that is, the number of times each sum can be
written as a sum of two elements 6§, we can simply update the necessary computations instead
of re-computing.
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Unfortunately, the size of the computation requires us &Rust 1-bit integers, and this is not a
supported data type in most languagesi#or 32. The options of using C with GMP, Mathematica,
or some other route to arbitrary size integers is prohilitethe size of our computation and the
modesty of our actual needs (we add, but never multiply, amavka priori the number of bits
we will need). Therefore, we choose to represent our nundseasrays of 64-bit integers in C++
(each element of the array represents a separate digit dirthey expansion of the number, but
the digits aren’t restricted tf0, 1}). To further extend our reach, we ran the code on the parallel
computing cluster at the High Performance Computing Chagtthe City University of New York.
To facilitate parallelization, we breakinto 5, = 8N [0,n;) andfy = BN [ny,n). This makes
the algorithm “embarrassingly parallel”, and allows us tires intermediate calculations both to
recover from any system or power failings, and to allow fastsghecking of results.

To ensure correctness of the results, we have written the ioddathematica using the simplest
algorithms conceivable. Such code becomes intractably atoundn ~ 25, but this provides a
sequence of values against which we can test our progrésangge subtly written code, both in
Mathematica and in C++. Our most sophisticated code is in.C++

Finally, we have the bounds d@h(|N \ (D + D)| =k | DN [0,2') = 3,) for all 8, in a pub-
licly available file, together with our source code. We iavihe reader to spot check our imple-
mentation.

7.2. Obtaining y(k), m(k), and w(k) from z(k). While it is clear thatz(k) is defined, that
is, the event [N\ (D + D)| = k" is measurable, it is less clear thato) = 0. This, and that
y(o0) = 0, follows from the Borel-Cantelli lemma and bounds sucH a&Q)L We can defin® (a
uniformly chosen subset 6f containing 0) ag’ — min C' (whereC' is a uniformly chosen subset
of N), and so

y(k) = iP(minC:iAND IN\ (C +C)| = k)

=0

- imminC:iAND IN\ ((C =min C) + (C — min C))| = k — 2i)
2
= Y P(minC=i)B(N\ (D + D) =k - 2i)

Lk/2] 1
- Z 2i+lz(k - 2i). (7.24)

=0

To obtain the formulas

m(k) = Zy(i)y(k‘—i% w(k) = ZZ(i)Z(k—i) (7.25)
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we refer the reader t@l[1]. The gist of the argument is that

m(k) = P(|[0,2n— 2]\ (A+ A)| = k)
k
= Y P(|[0.7/2)\ (A+ A)| =i AND |(3n/2,2n — 2] \ A+ A| = k — i)

+ P (A + A misses an element n/2,3n/2])

k ”
_ ZIP’(|[O,n/2) \(A+A)|=iAND |(3n/2,2n — 2]\ A+ A =k —i) + O ((Z)
- (7.26)

SinceA+ AnN0,n/2) is only affected byA N [0,n/2) andA+ AN (3n/2,2n — 2] is only affected
by AN (n/2,n), we can use independence to write

k »
m(k) = Y P(0:1/2)\ (A+ A =1) P(I(30/2,20 = A\ A+ 4| = k= )}+0 G)

- (7.57)
so that

k
m(k) ~ Y P([0,n/2)\ (A+ A)| =) P((3n/2,2n — 2]\ A+ Al =k —i).  (7.28)

=0
Asn — oo, the sef0,n/2) \ (A + A) looks more and more lik& \ (C' + C), so that
P (1[0,7/2)\ (A+ A)| = 1) = y(9), (7.29)

and similarly (after replacing! with n — 1 — A) for P (|(3n/2,2n — 2]\ A+ A| =k — ). The
argument forw (k) is identical, but with ‘D" in place “C”.

Let Z,, Z, be independent random variables with the same distribasddy,;, and sell’ :=
Zy + Zy. ThenP (W =k) = Zf:o 2(i)z(k — 1) = w(k), whence) .2, w(i) = 1, and similarly
>icomi(i) = 1.

Sincey(k) is a linear combination of(0), .. ., z(k) with positivecoefficients, the lower bounds
on z(0), ..., z(k) immediately give a lower bound af(k), and likewise upper bounds at0),
..., z(k) yield an upper bound on(k). The situation is the same betwegandm and between
andw, even though the combination is not linear!

To experimentally estimate(k), we hypothesized thak (N \ (D + D) ¢ [0,256)) is suffi-
ciently small as to be ignored. Then, using Mathematica §everated@? pseudorandom subsets
E of [0,256), forced each to contain 0, and then computed- |[0,256) \ (F + F)| and kept a
running tally of the number of times each valuekofrose. This estimates (with an enormous
sample size)

PN\ (D+D)|=k|N\(D+D) C [0,256)) ~ z(k). (7.30)
The estimates(/k\), along with conservative 99.9% confidence intervals, avergin Table 16
and shown in Figurgl2. The implied bounds @nm, andy are given in Tables17, 18, ahd|19

respectively, and shown in Figure 2.
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8. CONJECTURES ANDFUTURE RESEARCH

We end with some conjectures that are supported by numetatal Our main conjecture re-
mains Conjecturé_11.3, which says that the distribution asinig sums is approximately expo-
nential. One possible method of studying this distribui®finding where the first present sum
in A+ A occurs, given thatl + A hask missing elements. Recall that the lower bound[ih 84
was proven by constructing such thatM,,,_1)(A) = k by letting the firstk/2 elements of4
be missing. In this case, the index of the first present surh i1 A occurs at index. But from
numerical data, the index of the first present element willred: for typical A+ A that is missing
k elements. This also suggests that this trivial constroalimes not account for the real ‘random’
way of constructingd such thatd + A is missingk elements, which is consistent with the fact that
the conjectured decay constant for the distribution is @gprately0.78 but the lower bound gives
only the decay constant approximatély0. Even though the index of the first present element is
not k£, from numerical data, the index seems to be linear.in

To be precise, let

Xn(A) = max{m :if { <mthenl{ & A+ A}

be the index of the first present sum4f+ A. Then we have the following conjecture.
Conjecture 8.1. For large k,
lim E(X,(A) | Mjg,—1(A) = k) (8.1)

n—oo

is asymptotically linear irk.

Similarly, we can investigate how far we must move to thetrighzero and to the left of the
maximum possible sumyn — 2, so that there are no missing sums4of A in this interval. Given
A € [0,n — 1] missing exactlyk sums, as: — oo each of thek missing elements ofl + A are
either near 0 or nean — 2. Thus all of the action is happening near the two fringes,vaadvant
to understand what is happening there. This suggests swidyi

max {Y,(A) — W,(A) : [W,(A),Y.(A)] C A+ A}.
Conjecture 8.2. WithV,,(A) as above
lim E(W,(A) | Mign-1)(A) = k) (8.2)

n—oo

is asymptotically linear irk.

Note a similar conjecture should hold far — 2 — Y,,(A).

Another direction is to improve the exponential boundsHQk/, ,_1)(A) = k). One approach
to do this is to find upper bounds on probabilities liR&,, ..., a,, ¢ A + A) for arbitrary
ai, as, . .., a,, aroundk.

Recall that in B4 we first usei(: ¢ A + A) to get an upper bound fdf (Mg ,,—1j(A) = k)
of © ((3/4)"/?) and then use@(i,j ¢ A+ A) to get a bound 0B ((¢/2)*), an improvement.
KnowingP(a4,...,a, ¢ A+A)would result in similarimprovement. Using the current ayguh,
this would require studying the number of vertex covers faips that have vertices with degree
m instead of2.

Finally, note that it is possible to use the graph-theoragpigroach to study higher moments of
My 1. Recall that the variance was calculated by finding exgiieinulas forP(: andj ¢ A +

A). Similarly, them™ moment can be found by finding explicit formulas R, . . ., a,, & A+A)
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for arbitrarya,, . . ., a,,, Which requires finding the number of vertex covers in cartgaphs that
have vertices with degree. Note that we again need to stuiiya,,...,a,, € A+ A), as we
do when we try to improve the bounds (M, ,,_j(A) = k); however now we need an exact
formula forP(ay, ..., a, ¢ A+ A), whereas before we just needed an upper bound.
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APPENDIX A. DATA TABLES FOR DISTRIBUTIONS

rigorous lower upper rigorous

—_

lower Cl  10°z(k) CI upper
23532 23543 23554 23566 23535
176561 17634 17644 17655 17662
13955 13941 13950 13960 13975
11074 11065 11073 11082 11101
9233 9225 9233 9241 9266
6502 6502 6509 6516 6540
5049 5055 50061 5067 5090
3700 3710 3716 3721 3745
2687 2698 2703 2708 2733
1898 1910 1914 1918 1945
10| 1384 1400 1404 1407 1433
11 958 973 976 979 1006
12 677 691 694 697 725
13 467 480 483 485 515
14 323 337 339 341 370
15 219 231 233 235 266
16 149 161 162 164 195
17 100 110 111 112 145

© 00 O UL W N+~ Ol

18 66 75 76 7 110
19 43 o1 52 53 86
20 28 35 36 37 70
21 18 23 24 25 o8
22 11 16 16 17 o1
23 7 11 11 12 45
24 4 7 8 8 42
25 2 4 3 6 39
26 1 3 4 4 37
27 0 2 2 3 36
28 0 1 2 2 35
29 0 1 1 2 35
30 0 0 1 1 34
31 0 0 1 1 34

FIGURE 16. The first and last columns give our rigorous lower and uppends
on 10°z(k). The second and fourth columns give the bounds of a conservat

—_

99.9% confidence interval fd0°z(k). The middle column gives our best guess for
the integer closest tt)°z(k), which we denotd0°z(k).
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rigorous lower upper rigorous

—_

k| lower Cl  10°y(k) CI upper
0| 11766 11771 11777 11783 11768
1 8825 8817 8822 8828 8831
2 | 12860 12856 12864 12871 12872
3 9950 9941 9948 9955 9966
4 | 11047 11041 11048 11056 11069
5) 8226 8221 8228 8235 8253
6 8048 8048 8055 8062 8079
7 5963 5966 5972 5978 5999
8 5367 0373 5379 5385 5406
9 3931 3938 3943 3948 3972

10 3376 3387 3391 3396 3419
11| 2444 2455 2459 2463 2489
12| 2026 2039 2043 2046 2072
13| 1456 1468 1471 1474 1502
14| 1174 1188 1191 1193 1221
15| 837 850 852 855 884
16 | 662 674 676 679 708
17| 468 480 482 483 514
18| 364 375 376 378 409
19| 256 265 267 268 300
20 196 205 206 207 240
21 137 144 146 147 179
22 103 110 111 112 145
23 72 77 78 79 112
24 54 59 59 60 93

25 37 41 42 43 76

26 27 31 32 32 65
27 19 21 22 23 o6
28 14 16 17 17 50
29 9 11 12 12 45
30 7 8 9 9 42
31 4 ) 6 7 40

FIGURE 17. The first and last columns give our rigorous lower and uppends
on 10°y(k). The second and fourth columns give the bounds of a conservat

—

99.9% confidence interval fd0°y (k). The middle column gives our best guess for
the integer closest tt)’y (%), which we denoté 0%y (k).
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rigorous lower upper rigorous

k| lower Cl  10°m(k) CI upper
0 1384 1385 1387 1389 1385
1 2076 2075 2078 2081 2079
2 3809 3804 3808 3813 3810
3 4611 4607 4613 4618 4619
4 6010 6005 6012 6020 6022
) 6445 6439 6447 6455 6463
6 e 7172 7181 7191 7202
7 7138 7133 7143 7153 7170
8 7243 7240 7251 7261 7282
9 6825 6824 6835 6846 6871

10| 6510 6513 6523 6534 6563
11| 5892 5897 5907 5918 5951
12| 5374 5382 5392 5402 5439
13| 4712 4724 4733 4742 4783
14| 4153 4168 4176 4185 4228
15| 3551 3567 3575 3583 3629
16| 3046 3064 3071 3079 3127
17| 2550 2569 2576 2582 2633
18| 2139 2159 2165 2172 2225
19| 1759 1780 1785 1790 1846
20| 1449 1469 1474 1479 1536
21| 1173 1193 1198 1202 1260
22 951 970 974 978 1038
23| 760 778 782 785 846
241 608 625 628 631 693
25| 480 496 498 501 564
26| 379 394 396 398 462
271 296 309 311 313 378
28| 232 243 245 247 311
29 179 189 191 193 258
30 139 148 149 150 216
31 106 114 115 117 182

FIGURE 18. The first and last columns give our rigorous lower and uppends
on 10°m(k). The second and fourth columns give the bounds of a conservat

—

99.9% confidence interval fa)®>m (k). The middle column gives our best guess
for the integer closest tt)>m (%), which we denoté0°m (k).
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rigorous lower upper rigorous

—

k| lower Cl  10°w(k) CI upper
0 5H37 5543 5548 5554 5539
1 8307 8303 8312 8321 8314
2 9684 9674 9685 9696 9698
3 10138 10127 10139 10152 10162
4 | 10202 10190 10203 10217 10236
5 9411 9401 9414 9427 9454
6 8475 8470 8483 8497 8528
7 7384 7385 7397 7410 7445
8 6273 6279 6291 6302 6342
9 5194 5204 5215 5226 5269

10| 4247 4262 4272 4282 4327
11| 3405 3424 3433 3441 3490
12| 2696 2718 2726 2733 2784
13| 2107 2130 2137 2144 2197
14| 1629 1654 1660 1666 1720
15| 1245 1270 1275 1281 1337
16| 943 968 973 977 1035
17| 708 732 736 740 800
18| 527 549 253 956 617
19 389 410 412 415 478
20 285 304 306 309 372
21 207 224 226 228 293
22 149 164 166 168 233
23 106 120 121 123 189

24 75 87 88 90 156
25 53 63 64 65 132
26 37 45 46 48 114
27 25 32 33 34 101
28 17 23 24 25 91
29 12 16 17 18 84
30 8 11 12 13 79
31 3 8 9 10 76

FIGURE 19. The first and last columns give our rigorous lower and uppends
on 10°w(k). The second and fourth columns give the bounds of a conservat

—

99.9% confidence interval far0>w (k). The middle column gives our best guess
for the integer closest to0>w(k), which we denoté 05w (k).
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