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ABSTRACT. We explore the effect of zeros at the central point on nearby zeros of el-
liptic curve L-functions, especially for one-parameter families of rarmver Q. By the

Birch and Swinnerton Dyer Conjecture and Silverman’s Specialization Theoretrsdér
ficiently large theL-function of each curvés; in the family has- zeros (called the family
zeros) at the central point. We observe experimentally a repulsion of the zeros near the
central point, and the repulsion increases witfThere is greater repulsion in the subset of
curves of rank: + 2 than in the subset of curves of rankn a rankr family. For curves

with comparable conductors, the behavior of ra@rdurves in a rank one-parameter fam-

ily over Q is statistically different from that of ran curves from a rank family. Unlike

excess rank calculations, the repulsion decreases markedly as the conductors increase, and
we conjecture that the family zeros do not repel in the limit. Finally, the differences
between adjacent normalized zeros near the central point are statistically independent of
the repulsion, family rank and rank of the curves in the subset. Specifically, the differences
between adjacent normalized zeros are statistically equal for all curves investigated with
rank0, 2 or 4 and comparable conductors from one-parameter families ofrank over

Q.

1. INTRODUCTION

Random matrix theory has successfully modeled the behavior of the zeros and values
of many L-functions; see for example the excellent surveys [KeSn2, Far]. The corre-
spondence first appeared in Montgomery’s analysis of the pair corrélafitime zeros of
the Riemann zeta function as the zeros tend to infinity [Mon]. Dyson noticed that Mont-
gomery’s answer, though limited to test functions satisfying certain support restrictions,
agrees with the pair correlation of the eigenvalues from the Gaussian Unitary Ensemble
(GUE). Montgomery conjectured that his result holds for all correlations and all support.
Again with suitable restrictions and in the limit as the zeros tend to infinity, Hejhal [Hej]
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One may replace the boxes with smooth test functions; see [RuSa] for details.
2The GUE is theN — oo scaling limit of N x N complex Hermitian matrices with entries independently
chosen from Gaussians; see [Meh] for details.
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showed the triple correlation of zeros of the Riemann zeta function agree with the GUE,
and, more generally, Rudnick and Sarnak [RuSa] showead desel correlations of the
zeros of any principaL-function (theL-function attached to a cuspidal automorphic rep-
resentation ofzL,, overQ) also agree with the GUE.

In this paper we explore another connection betwEedunnctions and random matrix
theory, the effect of multiple zeros at the central point on nearby zerosiffanction and
the effect of multiple eigenvalues &bn nearby eigenvalues in a classical compact group.
Particularly interesting cases are families of elliptic cub4unctions. It is conjectured
that zeros of primitivel.-functions are simple, except potentially at the central point for
arithmetic reasons. For an elliptic cur¥g the Birch and Swinnerton-Dyer Conjecture
[BS-D1, BS-D2] states that the rank of the Mordell-Weil graiffQ) equals the order of
vanishing of thel.-function L(E, s) at the central poirits = 3. Let€ be a one-parameter
family of elliptic curves overQ with (Mordell-Weil) rank r:

y? = 2® + A(T)z + B(T), A(T),B(T) € Z[T). (1.1)

For all¢ sufficiently large each curvE, in the family£ has rank at least, by Silverman'’s
specialization theorem [Si2]. Thus we expect each curliefanction to have at least
zeros at the central point. We call theonjectured zeros from the Birch and Swinnerton-
Dyer Conjecture théamily zeros Thus, at least conjecturally, these families of elliptic
curves offer an exciting and accessible laboratory where we can explore the effect of mul-
tiple zeros on nearby zeros.

The main tool for studying zeros near the central point [phelying zerogin a family
is then-level density. Letp(z) = [[;_, ¢:(x;) where thep; are even Schwartz functions

~

whose Fourier transformg; are compactly supported. Following Iwaniec-Luo-Sarnak
[ILS], we define then-level density for the zeros of alrfunction L(s, f) by

log C log C
Dy y(¢) = Z 1 <'Yf,j10§ﬂ_f>...¢n <W7jn°§7rf); (1.2)

J1seees Jin
JpFEie

Cy is the analytic conductor ok (s, f), whose non-trivial zeros arg + iy ;. Under
GRH, the non-trivial zeros all lie on the critical lifé(s) = 1, and thusy;; € R. As
¢; is Schwartz, note that most of the contribution is from zeros near the central point.
The analytic conductor of ah-function normalizes the non-trivial zeros of thefunction
so that, near the central point, the average spacing between normalized zerdtsiss
determined by analyzing tiefactors in the functional equation of tliefunction (see for
example [ILS]). For elliptic curves the analytic conductor is the conductor of the elliptic
curve (the level of the corresponding weighttuspidal newform from the Modularity
Theorem of [Wi, TaWi, BCDT]).

We order a familyF of L-functions by analytic conductors. L&ty = {f € F : Cy <
N}. Then-level density for the familyF with test functiong is

Dn,}_((b) = J\;iinochfN((b)’ (13)
where .
Dpry = —— Dy 5 (9). (1.4)
x| f;f:N

SWe normalize allL-functions to have functional equatien— 1 — s, and thus central point is at= %
“The group of rational function solutioris:(T"), y(T')) € Q(T)2 toy> = 23 + A(T)z + B(T) is isomor-
phic toZ” & T, whereT is the torsion part and is the rank.
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We can of course investigate other subsets. Other common choicdy areC; €
[N,2N]}, or, for a one-parameter famil§ of elliptic curves overQ, {E; € £ : t €
[N,2N]}.

LetU(V) be the ensemble af x N unitary matrices with Haar measure. The classical
compact groups are sub-ensemhf&sV) of U(NNV); the most frequently encountered ones
areUSp(2M), SO(2N) andSO(2N + 1). Katz and Sarnak’s Density Conjecture [KaSa1l,
KaSa?2] states that as the conductors tend to infinity, the behavior of the normalized zeros
near the central point equals the — oo scaling limit of the normalized eigenvalues near
1 of a classical compact group; see (1.7) for an exact statement. In the function field case,
the corresponding classical compact group can be identified from the monodromy group;
in the number field case, however, the reason behind the identification is often a mystery
(see [DMY]). As the eigenvalues of a unitary matrix are of the feffnwe often talk about
the eigenangles instead of the eigenvalue4’, and the eigenangl@é corresponds to the
eigenvaludl.

Using the explicit formula we replace the sums over zeros in (1.2) with sums over the
Fourier coefficients at prime powers. For exampldif 2> = 23 + Az + B is an elliptic
curve, assuming GRH the non-trivial zeros of the associatéghction

s) = Z/\E(n)n_s (1.5)
n=1

(normalized to have functional equatiem— 1 — s) are$ + iv, v € R. If ¢ is a Schwartz
test function, then the explicit formula fdr(E, s) is

logCe\ - B logp ~( logp \ Ae(p)
§:¢( ) = 6(0)+9(0) 2%;ng§¢Q%Cb) 75
logp ~(2logp\ A} (p)
2;10gCE¢<logCE> p

40 loglog Cg ; (1.6)
log Cg

see for example [Mes, Mill]. By using appropriate averaging formulas and combinatorics,
the resulting prime power sums in thelevel densities can be evaluated fgrof suitably
restricted support. The Density Conjecture is that to each family-fofnctionsF, for any
Schwartz test functios : R — R",

Dy #(6 /¢ /¢ w)du. 17)

The density kernelV,, ¢(z) is determined from theV — oo scaling limit of the asso-
ciated classical compact grodp( NV ); the last equality follows by Plancherel. The most
frequently occurring answers are the scaling limits of Unitary, Symplectic and Orthogonal
ensembles. Fat = 1 we have

ELU(U) = 1)
Wi, usp(u)

|
>,

|
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2
W1,50(even) (1) 31(u) (1.8)
W1.50(0da) (w) = 0(u)—3I(u)+1
Wi.o(u) = 6(u)+1,
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wherel(u) is the characteristic function ¢f1,1]. For arbitrarily small support, unitary
and symplectic are distinguishable from each other and the orthogonal groups; however,
for test functionsp supported i(—1, 1), the three orthogonal groups agree:

J o)W1 u(w)du ¢(u)

J o)W usp(u)du = ¢(u) = 36(0)

J oW1 s0(eveny (W)du = (u) + 56(0) 1.9)
J oW1 soda (w)du = ¢(u) + 36(0)

J ¢(u)Wi,0(u)du = ¢(u) + 50(0).

Similar results hold for the:-level densities, but below we only need tihédevel; see
[Con, KaSal] for the derivations of the genenalevel densities, and Appendix A for the
1-level density for the orthogonal groups.

For one-parameter families of elliptic curves, the results suggest that the correct models
are orthogonal groups (if all functional equations are even then the ansf@i(ésen),
while if all are odd the answer BO(odd)). Often instead of normalizing each curve’s ze-
ros by the logarithm of its conductor (the local rescaling), one instead uses the average log-
conductor (the global rescaling). If we are only interested in the average rank, it suffices to
study just thel-level density from the global rescaling. This is because we only care about
the imaginary parts of the zeros at the central point, and both scalings of the imaginary
part of the central point are zero; see for example [Br, Go2, H-B, Mic, Si3, Yo2]. To date
all results have support if+1, 1), where (1.9) shows that the behavior@f SO(even)
andSO(odd) are indistinguishable. If we want to specify a unique corresponding classical
compact group we study thelevel density as well, which for arbitrarily small support
suffices to distinguish the three orthogonal candidates. Using the global rescaling removes
many complications in thé-level sums but not in the-level sums. In fact, for the-
level investigations the global rescaling is as difficult as the local rescaling; see [Mil2] for
details.

Our research was motivated by investigations on the distribution of rank in families of
elliptic curves as the conductors grow. As we see below, for the ranges of conductors stud-
ied there is poor agreement between elliptic curve rank data and theoo scaling limits
of random matrix theory. The purpose of this research is to show that another statistic, the
distribution of the first few zeros above the central point, converges more rapidly.

We briefly review the excess rank phenomenon. A generic one-parameter family of
elliptic curves overQ has half of its functional equations even and half odd (see [He] for
the precise conditions for a family to be generic). Consider such a one-parameter family of
elliptic curves over), of rankr, and assume the Birch and Swinnerton-Dyer Conjecture.

It is believed that the behavior of the non-family zeros is modeled byw\the oo scaling

limit of orthogonal matrices. Thus if the Density Conjecture is correct, then at the central
point in the limit as the conductors tend to infinity thefunctions have exactly zeros

50% of the time, and exactly + 1 zeross0% of the time. Thus in the limit half the curves
have rank- and half have rank + 1. In a variety of families, however, one observtsat

5Actually, this is not quite true. The analytic rank is estimated by the location of the first non-zero term in the
series expansion df(F, s) at the central point (see [Cr] for the algorithms). For example, if the zeroth through
third coefficients are smaller thaih—5 and the fourth is.701, then we say the curve has analytic rahleven
though it is possible (though unlikely) that one of the first four coefficients is really non-zero. It is difficult to
prove an elliptic curve.-function vanishes to order two or greater. Goldfeld [Gol] and Gross-Zagier [GZ] give
an effective lower bound for the class number of imaginary quadratic fields by an analysis of an elliptic curve
L-function which is proven to have three zeros at the central point.
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30% to 40% have rankr, about48% have rank- + 1, 10% to 20% have rank- + 2, and
about2% have rank- + 3; see for example [BM, Fel, Fe2, ZK].

We give a representative family below; see in particular [Fe2] for more examples. Con-
sider the one-parameter fami)y = x> + 16T« + 32 of rank0 overQ. Each range below
has2000 curves:

T-range rank 0 rank1 rank?2 rank3 runtime (hours)

[—1000, 1000) 39.4% 47.8% 12.3% 0.6% <1
[1000, 3000) 38.4% 47.3% 13.6% 0.6% <1
[4000, 6000) 37.4% 47.8% 13.7% 1.1% 1
[8000, 10000) 37.3% 48.8% 12.9% 1.0% 2.5
24000, 26000) 35.1% 50.1% 13.9% 0.8% 6.8
[50000,52000) 36.7% 48.3% 13.8%  1.2% 51.8

The relative stability of the percentage of curves in a family with raakove the family
rankr naturally leads to the question as to whether or not this persists in the limit; it cannot
persist if the Density Conjecture (with orthogonal groups) is true for all supfecently
Watkins [Wat] investigated the family®+y3 = m for varyingm, and unlike other families
his range ofn was large enough to see the percentage with ranR markedly decrease,
providing support for the Density Conjecture (with orthogonal groups).

In our example above, as well as the other families investigated, the logarithms of the
conductors are quite small. Even in our last set the log-conductors aredinder analy-
sis of the error terms in the explicit formula suggests the rate of convergence of quantities
related to zeros of elliptic curves is like the logarithm of the conductors. It is quite sat-
isfying when we study the first few normalized zeros above the central point that, unlike
excess rank, we see a dramatic decrease in repulsion with modest increases in conductor.

In 82 we study two random matrix ensembles which are natural candidates to model
families of elliptic curves with positive rank. Many natural questions concerning the nor-
malized eigenvalues for these models for finkdead to quantities that are expressed in
terms of eigenvalues of integral equations. Our hope is that showing the possible connec-
tions between these models and number theory will spur interest in studying these models
and analyzing these integral equations. We assume the Birch and Swinnerton-Dyer Con-
jecture, as well as GRH. We calculate some properties of these ensembles in Appendix
A.

In 83 we summarize the theoretical results of previous investigations, which state:

e For one-parameter families of ranloverQ and suitably restricted test functions,
as the conductors tend to infinity thdevel densities imply that in this restricted
range, ther family zeros at the central point are independent of the remaining
zeros.

If this were to hold for all test functions, then as the conductors tend to infinity the
distribution of the first few normalized zeros above the central point would be independent
of ther family zeros.

In 84 we numerically investigate the first few normalized zeros above the central point
for elliptic curves from many families of different rank. Our main observations are:

e The first few normalized zeros are repelled from the central point. The repulsion
increases with the number of zeros at the central point, and even in the case when

GEpricitIy, if the large-conductor limit of the elliptic curve-functions agree with th& — oo scaling limits
of orthogonal groups.
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there are no zeros at the central point there is repulsion from the large-conductor
limit theoretical prediction. This is observed for the family of all elliptic curves,
and for one-parameter families of rankverQ@Q.

e There isgreaterrepulsion in the first normalized zero above the central point for
subsets of curves of rark from one-parameter families of rartkover Q than
for subsets of curves of rarikfrom one-parameter families of rarkover Q. It
is conjectured that as the conductors tend to infinity, 0% of curves in a family of
rankr have rank- + 2 or greater. If this is true, we are comparing a subset of zero
relative measure to one of positive measure. As the first set is (conjecturally) so
small, it is not surprising that to date there is no known theoretical agreement with
any random matrix model for this case.

e Unlike most excess rank investigations, as the conductors increase the repulsion
of the first few normalized zeros markedly decreases. This supports the conjecture
that, in the limit as the conductors tend to infinity, the family zeros are indepen-
dent of the remaining normalized zeros (i.e., the repulsion from the family zeros
vanishes in the limit).

e The repulsion from additional zeros at the central point cannot entirely be ex-
plained by collapsing some zeros to the central point and leaving all the other
zeros alone. See in particular Remark 4.5.

e While the first few normalized zeros are repelled from the central poindiffes-
encedetween normalized zeros near the central point are statistically independent
of the repulsion, as well as the method of construction. Specifically, the differences
between adjacent zeros near the central point from curves ofirahkr 4 with
comparable conductors from one-parameter families of 8aoi over@Q are sta-
tistically equal. Thus the data suggests that the effect of the repulsion is simply to
shift all zeros by approximately the same amount.

The numerical data is similar to excess rank investigations. While both seem to con-
tradict the Density Conjecture, the Density Conjecture describes the limiting behavior as
the conductors tend to infinity. The rate of convergence is expected to be on the order of
the logarithms of the conductors, which is underfor our curves. Thus our experimental
results are likely misleading as to the limiting behavior. It is quite interesting that, unlike
most excess rank investigations, we can easily go far enough to see conductor dependent
behavior.

Thus our theoretical and numerical results, as well as the Birch and Swinnerton-Dyer
and Density Conjectures, lead us to

Conjecture 1.1. Consider one-parameter families of elliptic curves of randverQ and

their sub-families of curves with rank exactly k for k € {0,1,2,...}. For each sub-
family there arer family zeros at the central point, and these zeros repel the nearby nor-
malized zeros. The repulsion increases witind decreases to zero as the conductors tend

to infinity, implying that in the limit the: family zeros are independent of the remaining
zeros. Ifk > 2 these additional non-family zeros at the central point may influence nearby
zeros, even in the limit as the conductors tend to infinity. The spacings between adjacent
normalized zeros above the central point are independent of the repulsion; in particular, it
does not depend anor k, but only on the conductors.

2. RANDOM MATRIX MODELS FORFAMILIES OF ELLIPTIC CURVES

We want a random matrix model for the behavior of zeros from families of elliptic
curve L-functions with a prescribed number of zeros at the central point. We concentrate
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on models for either one or two-parameter families dgeand refer the reader to [Far] for
more on random matrix models. Both of these families are expected to have orthogonal
symmetries. Many people (see for example [DFK, Go2, GM, Mai, RuSi, Rub2, ST]) have
studied families constructed by twisting a fixed elliptic curve by characters. The general
belief is that such twisting should lead to unitary or symplectic families, depending on the
orders of the characters.

There are two natural models for the corresponding situation in random matrix theory
of a prescribed number of eigenvalueslah sub-ensembles of orthogonal groups. For
ease of presentation we consider the case of an even number of eigenvadluée atdd
case is handled similarly.

Consider a matrix ir8O(2N). It has2N eigenvalues in pairs*%, with ¢, € [0, 7].

The joint probability measure 0@ = (0y,...,0x) € [0, 7]V is

dep(®) = cn H (cos Oy, — cos ;)? H do;, (2.1)

1<j<k<N 1<j<N

wherecy is a normalization constant so th&d,(©) integrates tal. From (2.1) we can
derive all quantities of interest on the random matrix side; in particuldevel densities,
distribution of first normalized eigenvalue abavéor eigenangle abov@, and so forth.

We now consider two models for sub-ensembleS©{2/N) with 2r eigenvalues at 1,
and theN — oo scaling limit of each.

Independent Model: The sub-ensemble 80 (2NV) with the upper left block &r x 2r
identity matrix. The joint probability density of the remainidg— r pairs is given by

de2r indep(©) = Car.Indep,N H (cos O, — cosf;)? H db;. (2.2)
1<j<k<N-—r 1<j<N-r

Thus the ensemble is matrices of the form
{(IQTXQT g> : g € SO(2N — 21")} ; (2.3)

the probabilities are equivalent to choosipgvith respect to Haar measure 80 (2N —
2r). We call this the Independent Model as the forced eigenvalues at 1 frof,the.
block do not interact with the eigenvalues @f In particular, the distribution of the re-
maining N — r pairs of eigenvalues is exactly that®® (2N — 2r); this block'sN — oo
scaling limit is justSO(even). See [Con, KaSal] as well as Appendix A.

Interaction Model: The sub-ensemble SO(2N) with 2r of the 2N eigenvalues
equalingl:

deor Inter (©) = Cor Inter,N H (cos Oy — cos Hj)2 H (1 —cos H‘j)QTde.
1<j<k<N—r 1<j<N-r
(2.4)
We call this the Interaction Model as the forced eigenvaluesdat dffect the behavior of
the other eigenvalues near 1. Note here we condition d§(¥[2V') matrices with at least
2r eigenvalues equal tb. The(1 — cos 6;)?" factor results in the forced eigenvaluesi at
repelling the nearby eigenvalues.

Remark 2.1. As the calculations for the local statistics near the eigenvalueiatthe
Interaction Model has not appeared in print, in Appendix A (written by Eduardo Duefiez) is
a derivation of formula (2.4) (see especially 8A.2), as well as the relevant integral (Bessel)
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kernels dictating such statistics. See also [Sn] for the value distribution of the first non-zero
derivative of the characteristic polynomials of this ensemble.

While both models have at leaat eigenvalues equal tb, they are very different sub-
ensembles 0o8O(2N), and they have distinct limiting behavior (see also Remark 3.1).
We can see this by computing thelevel density for each, and comparing with (1.9).
Lettlng Wl,SO(even) (respeCtivel)ﬁ//V\l,SO(even),Indep,2r andwl,SO(even),Inter,%") denote the
Fourier transform of the kernel for thielevel density ofSO(even) (respectively, of the
Independent Model for the sub-ensemblé&6f(even) with 2r eigenvalues at and of the
Interaction Model for the sub-ensembleS#h (even) with 27 eigenvalues at), we find in
Appendix A that

Wl,SO(even) (u) = d(u)+ §I(U)
— 1
Wl,SO(even),IndepQT (u) = 6(”) =+ il(u) +2
—~ 1
Wl,SO(even),Inter,2T(u) = 6(“) + gl(u) +2+ 2(|u‘ - 1)I(u) (25)

AsI(u) is positive for|u| < 1, note that the density is smaller far] < 1 in the Interaction
versus the Independent Model. We can interpret this as a repulsion of zeros, as the follow-
ing heuristic shows (though see Appendix A for proofs). We compare the 1-level density
of zeros from curves with and without repulsion, and show that for a positive decreasing
test function, the 1-level density is smaller when there is repulsion.

Consider two elliptic curvesE of rank 0 and conductoilCr and E’ of rank r and
conductorCp/. AssumeCy ~ Cp ~ C, and assume GRH for both-functions. If the
curve E' has ranl) then we expect the first zero above the central péiﬁ't,i’)’E71, to have
VE1 R @. For E,., if the » family zeros at the central point repel, it is reasonable to

posit a repulsion of sizgo”g’—'c for someb,. > 0. This is because the natural scale for the

distance between the low-lying zero%g%, so we are merely positing that the repulsion

is proportional to the distance. We assume all zeros are repelled equally; evidence for this
is provided in §4.6. Thus foE’ (the repulsion case) we assumg ; ~ vg ; + hff?

We can detect this repulsion by comparing the 1-level densitiésarfid E’. Take a non-

negative decreasing Schwartz test functign The difference between the contribution

from the ;™ zero of each is
logC logC logC b, logC
¢ ('VE’,j 2g7r ) —¢ (’Y&j ng > o} (VE,jg + ) - (WE,j = )

Q

2T 21 2T
log C b
~ ¢ —— ). = 2.
¢ <7E,] o ) 9 ( 6)

As $ is decreasing, its derivative is negative and thus the above shows the 1-level density
for the zeros fron®’ (assuming repulsion) is smaller than the 1-level density for zeros from

E. Thus the lowell -level density in the Interaction Model versus the Independent Model
can be interpreted as a repulsion; however, this repulsion can be shared among several
zeros near the central point. In fact, the observations in 84.6 suggest that the repulsion
shifts all normalized zeros near the central point approximately equally.

3. THEORETICAL RESULTS

Consider a one-parameter family of elliptic curves of rantver Q. We summarize
previous investigations of the effect of the (conjecturetgmily zeros on the other zeros
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near the central point. For convenience we state the results for the global rescaling, though
similar results hold for the local rescaling (under slightly more restrictive conditions; see
[Mil2] for details). For small support, thé and2-level densities agree with the scaling
limits of

( o O(N) ) ( o SO(2N) ) < e SO@N + 1) ) 3.1)

depending on whether or not the signs of the functional equation are equidistributed or all
the signs are even or all the signs are odd. Tland2-level densities provide evidence
towards the Katz-Sarnak Density Conjecture for test functions whose Fourier transforms
have small support (the support is computable and depends on the family). See [Mill]
for the calculations with the global rescaling, though the result forlthevel density is
implicit in [Si3]. Similar results are observed for two-parameter families of elliptic curves
in [Mil1, YoZ2].

While the above results are consistent with the Birch and Swinnerton-Dyer Conjecture
that each curve'd.-function has at least zeros at the central point, it is not a proof (even
in the limit) because our supports are finite. For families with [V, 2N] the errors are
of size O(I%}N) or O(%). Thus for largeN we cannot distinguish a family with
exactlyr zeros at the central point from a family where edchhas exactlyr zeros at
+(log Cy) ~2007,

For one-parameter families of elliptic curves o@rin the limit as the conductors tend
to infinity the family zeros (those arising from our belief in the Birch and Swinnerton-Dyer
Conjecture) appear to be independent from the other zeros. Equivalently, if we remove the
contributions from the- family zeros, for test functions with suitably restricted support
the spacing statistics of the remaining zeros agree perfectly with the standard orthogonal
groupsO, SO(even) andSO(odd), and it is conjectured that these results should hold for
all support. Thus thex-level density arguments support the Independent over the Inter-
action Model when we studall curves in a family; however, these theoretical arguments
do not apply if we study the sub-family of curves of rank- k& (kK > 2) in a rankr
one-parameter family ovép.

Remark 3.1. It is important to note that our theoretical results are for the entire one-
parameter family. Specifically, consider the subset of curves of rank from a one-
parameter family of rank over@Q. If the Density Conjecture (with orthogonal groups) is
true, then in the limit 0% of curves are in this sub-family. Thus these curves may behave
differently without contradicting the theoretical results for the entire family. Situations
where sub-ensembles behave differently than the entire ensemble are well known in ran-
dom matrix theory. For example, to any simple graph we may attach a real symmetric
matrix, its adjacency matrix, whetg; = 1 if there is an edge connecting verticeand

4, and0 otherwise. The adjacency matricesdefegular graphs are a thin sub-ensemble of
real symmetric matrices with entries independently chosen frerm 0, 1}. The density

of normalized eigenvalues in the two cases are quite different, given by Kesten's Measure
[McK] for d-regular graphs and Wigner's Semi-Circle Law [Meh] for the real symmetric
matrices.

It is an interesting question to determine the appropriate random matrix model for rank
r 4 2 curves in a rank one-parameter family ovép, both in the limit of large conductors
as well as for finite conductors. We explore this issue in greater detail in §4.3 to §4.6,
where we compare the behavior of rahkurves from rank) one-parameter families over
Q to that of rank2 curves from rank one-parameter families ovér.
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4. EXPERIMENTAL RESULTS

We investigate the first few normalized zeros above the central point. We used Michael
Rubinstein’sL-function calculator [Rub3] to determine the zeros. The program does a
contour integral to ensure that we found all the zeros in a region, which is essential in
studies of the first zero! See [Rub1l] for a description of the algorithms. The analytic
ranks were found (see Footnote 1) by determining the values di-fia@ctions and their
derivatives at the central point by the standard series expansion; see [Cr] for the algorithms.
Some of the programs and all of the data (minimal model, conductor, discriminant, sign of
the functional equation, first non-zero Taylor coefficient from the series expansion at the
central point, and the first three zeros above the central point) are available online at

http://www.math.brown.edu/ ~sjmiller/repulsion

We study several one-parameter families of elliptic curves @eAs all of our fami-
lies are rational surfacésRosen and Silverman’s result that the weighted average of fibral
Frobenius trace values determines the rank évésee [RoSi]) is applicable, and evalu-
ating simple Legendre sums suffices to determine the rank. We mostly use one-parameter
families from Fermigier’s tables [Fe2], though see [ALM] for how to use the results of
[RoSi] to construct additional one-parameter families with rank @ver

We cannot obtain a decent number of curves with approximately equal log-conductors
by considering a solitary one-parameter family. The conductors in a family typically grow
polynomially int. The number of Fourier coefficients needed to study a valug afE; )
on the critical line is of ordex/C; log C; (C; is the conductor of2;), and we must then
additionally evaluate numerous special functions. We can readily calculate the needed
quantities up to conductors of sizé'!, which usually translates to just a few curves in a
family. We first studied all elliptic curves (parametrized with more than one parameter),
found the minimal models, and then sorted by conductor. We then studied several one-
parameter families, amalgamating data from different families if the curves had the same
rank and similar log-conductor.

Remark 4.1. Amalgamating data from different one-parameter families warrants some
discussion. We expect that the behavior of zeros from curves with similar conductors and
the same number of zeros and family zeros at the central point should be approximately
equal. In other words, we hope that curves with the same rank and approximately equal
conductors from different one-parameter families of the samesraver Q behave simi-

larly, and we may regard the different one-parameter families of ranerQ as different
measurements of this universal behavior. This is similar to numerical investigations of the
spacings of energy levels of heavy nuclei; see for example [HH, HPB]. In studying the
spacings of these energy levels, there were very few (typically between 10 and 100) levels
for each nucleus. The belief is that nuclei with the same angular momentum and parity
should behave similarly. The resulting amalgamations often have thousands of spacings
and excellent agreement with random matrix predictions.

Similar to the excess rank phenomenon, we found disagreement between the experi-
ments and the predicted large-conductor limit; however, we believe that this disagreement
is due to the fact that the logarithms of the conductors investigated are small. In 84.2 to
84.5 we find that for curves with zeros at the central point, the first normalized zero above

An elliptic surfacey? = x3 + A(T)x + B(T), A(T), B(T) € Z[T), is a rational surface if and only
if one of the following is true:(1) 0 < max{3degA, 2degB} < 12; (2) 3degA = 2degB = 12 and
Ol’dj‘:()TIQA(Til) =0.
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the central points repelled, and the more zeros at the central point, the greater the re-
pulsion. However, the repulsion decreases as the conductors increase. Thus the repulsion
is probably due to the small conductors, and in the limit the Independent Model (which
agrees with the function field analogue and the theoretical results of §3) should correctly
describe the first normalized zero above the central point in curves of-riarflamilies of

rankr overQ. It is not known what the correct model is for curves of rank 2 in a fam-

ily of rank r over@Q, though it is reasonable to conjecture it is the Interaction model with
the sizes of the matrices related to the logarithms of the conductors. Keating and Snaith
[KeSn1, KeSn2] showed that to study zeros at heigfitis better to look atV x N matri-

ces, withN = log T', than to look at theV — oo scaling limit. A fascinating question is

to determine the correct finite conductor analogue for the two different cases here. Inter-
estingly, we see in 8§4.6 that the spacings between adjacent normalized zeros is statistically
independent of the repulsion, which implies that the effect of the zeros at the central point
(for finite conductors) is to shiill the nearby zeros approximately equally.

4.1. Theoretical Predictions: Independent Model. In Figuresl and2 we plot the first
normalized eigenangle abovéor SO(2N) (i.e.,SO(even)) andSO(2N+1) (i.e.,SO(odd))
matrices. The eigenvalues occur in pait$®, 0, € [0, 7]; by normalized eigenangles for
SO(even) or SO(odd) we meand; . We chose2N < 6 and2N + 1 = 7 for our
simulations, and chose our matrices with respect to the appropriate Haar rieasare
thank Michael Rubinstein for sharing hi§ — oo scaling limit plots forSO(2N) and
SO(2N +1).

8Note that forSO(odd) matrices there is always an eigenvaluelatThe N — oo scaling limit of the
distribution of the second eigenangle #0(odd) matrices equals th®& — oo scaling limit of the distribution
of the first eigenangle foISp (Unitary Symplectic) matrices; see pages 10-11 and 411-416 of [KaSal] and
page 10 of [KaSa2].
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Figure 1a: First normalized eigenangle abov@3,040 SO(4) matrices
Mean= .357, Standard Deviation about the Mean.302, Median= .357
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Figure 1b: First normalized eigenangle abov@3,040 SO(6) matrices

Mean= .325, Standard Deviation about the Mean.284, Median= .325
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Figure 1c: First normalized eigenangle above
N — oo scaling limit of SO2N): Mean = .321.
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0.5 1 1.5 2 2.5

Figure 2a: First normalized eigenangle abdv822,560 SO(7) matrices
Mean= .879, Standard Deviation about the Mean.361, Median= .879
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Figure 2b: First normalized eigenangle abave
N — oo scaling limit of SO2N + 1): Mean = .782.

For theSO(2N) matrices, note the mean decreasegdsincreases. A similar result
holds forSO(2N + 1) matrices; as we primarily study even rank below, we concentrate on
SO(2N) here. AsN — oo, Katz and Sarnak (pages 412-415 of [KaSaZ2]) prove that the
mean of the first normalized eigenangle abéve 0 (corresponding to the eigenvall
for SO(even) is approximately0.321, while for SO(odd) it is approximately0.782.

We study the first normalized zero above the central point for elliptic clirfienctions
in §4.2 to §4.5. We rescale each zetg;, 1 — Vg, 1 logff. The mean of the first normal-
ized eigenangle abow&for SO(2N) matrices decreases a8/ increases, and similarly
we see that the first normalized zero above the central point in families of elliptic curves
decreases as the conductor increases. This suggests that a good finite conductor model for
families of elliptic curves with even functional equation and conductors ofSizeuld

beSO(2N), with N some function ofog C.
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4.2. All Curves.

4.2.1. Rank0 Curves.We study the first normalized zero above the central point for
1500 ranko elliptic curves, 750 withog(cond) € [3.2,12.6] in Figure3 and 750 with
log(cond) € [12.6,14.9] in Figure4. These curves were obtained as follows: an elliptic
curve can be written in Weierstrass form as

v+ a1y + asy = x° + asx® + asx + as, a; € Z. (4.2)

We often denote the curve By, as, as, ay, ag]. We leta; range from0 to 10 (as without
loss of generality we may assume > 0) and the other,; range from—10 to 10. We
kept only non-singular curves. We took minimal Weierstrass models for the ones left, and
pruned the list to ensure that all the remaining curves were distinct. We then analyzed the
first few zeros above the central point for 1500 of these curves (due to the length of time it
takes to compute zeros for the curves, it was impossible to analyze the entire set).
Figures3 and4 suggest that as the conductor increases the repulsion decreases. For the
larger conductors in Figurg the results are closer to the predictions of Katz-Sarnak, and
the shape of the distribution with larger conductors is closer to the random matrix theory
plots of Figurel. Though both plots in Figurg and4 differ from the random matrix the-
ory plots, the plot in Figure is more peaked, the peak occurs earlier, and the decay in the
tail is faster. Standard statistical tests show the two means (1.04 for the smaller conduc-
tors and 0.88 for the larger) are significantly different. Two possible tests are the Pooled
Two-Samplet-Procedurg (where we assume the data are independently drawn from two
normal distributions with the same mean and variance) and the Unpooled Two-Sample
t-Procedur® (where we assume the data are independently drawn from two normal distri-
butions with the same mean and no assumption is made on the variance). See for example
[CaBe], pages 409-410. Both tests givstatistics around0.5 with over1400 degrees of
freedom. As the number of degrees of freedom is so large, we may use the Central Limit
Theorem and replace thestatistic with az-statistic. As for the standard normal the proba-
bility of being at least 0.5 standard deviations from zero is less tliahx 10~'2 percent,
we obtain strong evidence against the null hypothesis that the two means are equal (i.e.,
we obtain evidence that the repulsion decreases as the conductor increases).

%The Pooled Two-SampleProcedure is
s
- - 1 1
t = (X17X2) Sp — + —, 4.2)
s ng

whereX; is the sample mean of; observations of population s; is the sample standard deviation and
s

N (n1 —1)s2 + (ng — 1)s32 @3)
P ny + no — 2 '

is the pooled variance;has at-distribution withn; + ng — 2 degrees of freedom.
10Notation as in Footnote 9, the Unpooled Two-Santpirocedure is

s
-2 2
t = (X1 — X2) n—l + TTQ; (4.4)

this is approximately & distribution with

(n1 — 1) (n2 — 1) (n2s? + nys2)?

- 4.5
(n2 — 1)n2st + (n1 — 1)n2sj (4.5)

degrees of freedom
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0.5 1 1.5 2

Figure 3: First normalized zero above the central point:
750 rank O curves fromy? + a1 xy + asy = =3 + asx? + asx + ag,
log(cond) € [3.2,12.6], median= 1.00, mean= 1.04,
standard deviation about the mean32
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Figure 4: First normalized zero above the central point:
750 rank O curves fromy? + ayzy + azy = x° + az2? + asx + ag,
log(cond) € [12.6,14.9], median= .85, mean= .88,
standard deviation about the mean27

4.2.2. Rank 2 CurvesWe study the first normalized zero above the central point for 1330
rank 2 elliptic curves, 665 withlog(cond) € [10,10.3125] in Figure 5 and 665 with
log(cond) € [16,16.5] in Figure 6. These curves were obtained from the same proce-
dure which generated this00 curves in §84.2.1, except now we chol80 curves with

what we believe is analytic rank exacfly We did this by showing thé-function has even

sign, the value at the central point is zero to at least 5 digits, and the second derivative at
the central point is non-zero; see also Footnote 1. In §4.3 and 84.4 we study other families
of curves of rank (rank2 curves from rank) and rank2 one-parameter families ovél).

The results are very noticeable. The first normalized zero is significantly higher here
than for the rank curves. This supports the belief that, for small conductors, the repulsion
of the first normalized zero increases with the number of zeros at the central point.

We again split the data into two sets (Figures 5 and 6) based on the size of the conductor.
As the conductors increase the mean (and hence the repulsion) significantly decreases,
from 2.30 to 1.82.

We are investigating rank curves from the family of all elliptic curves (which is a
many parameter rank family). In the limit we believe half of the curves are rafland
half are rankl. The natural question is to determine the appropriate model for this subset
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of curves. As in the limit we believe a curve has ranfor more) with probability zero,
this is a question about conditional probabilities.

1.2

1

8
6
4
2

© o © ©

1.5 2 2.5 3 3.5
Figure 5: First normalized zero above the central point:
665 rank2 curves fromy? + ayxy + asy = 23 + asx? + ayx + ag.
log(cond) € [10,10.3125], median= 2.29, mean= 2.30

1.5 2 2.5 3 3.5
Figure 6: First normalized zero above the central point:
665 rank2 curves fromy? + a1 zy + asy = x> + asx? + a4z + ag.
log(cond) € [16,16.5], median= 1.81, mean= 1.82
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4.3. One-Parameter Families of Rank0 Over Q.

4.3.1. Ranko Curves. We analyzed 4 one-parameter families of rafkoverQ; we chose

these families from [Fe2]. We want to study rablcurves in a solitary one-parameter
family; however, the conductors grow rapidly and we can only analyze the first few zeros
from a small number of curves in a family. For our conductor ranges it takes several hours
of computer time to find the first few zeros for all the curves in a family. In Figures 7 and

8 and Tabled and2 we study the first normalized zero above the central pointfarne-
parameter families of elliptic curves of rafiloverQ. Even though we have few data points

in each family, we note the medians and means are always higher for the smaller conductors
than the larger ones. Thus the “repulsion” is decreasing with increasing conductor, though
perhaps repulsion is the wrong word here as there is no zero at the central point! We
studied the median as well as the mean because, for small data sets, one or two outliers can
significantly affect the mean; the median is more robust.

For both the Pooled and Unpooled Two-Sampkrocedure the-statistic exceed20
with over 200 degrees of freedom. The Central Limit Theorem is an excellent approxi-
mation and yields a-statistic exceeding0, which strongly argues for rejecting the null
hypothesis that the two means are equal (i.e., providing evidence that the repulsion de-
creases with increasing conductors). Note the first normalized zero above the central point
is significantly larger than th&” — oo scaling limit of SO(2NV) matrices, which is about
0.321.

Some justification is required for regarding the data fromithfamilies as independent
samples from the same distribution. It is possible that there are family-specific lower order
terms to then-level densities (see [Mill, Mil3, Yo2]). Our amalgamation of the data is
similar to physicists combining the energy level data from different heavy nuclei with
similar quantum numbers. The hope is that the systems are similar enough to justify such
averaging as it is impractical to obtain sufficient data for just one nucleus (or one family of
elliptic curves, as we see in 84.4). See also Remark 4.1.

Remark 4.2. The families are not independent: there atecurves that occur twice and

one that occurs three times in the small conductor s@R6fcurves, and 33 repeats in

the large conductor set 806 curves. In our amalgamations of the families, we present
the results when we double count these curves as well as when we keep only one curve in
each repeated set. In both cases the repeats account for a sizeable percentage of the total
number of observations; however, there is no significant difference between the two sets.
Any curve can be placed in infinitely many one-parameter families; given polynomials of
sufficiently high degree we can force any number of curves to lie in two distinct families.
Thus it is not surprising that we run into such problems when we amalgamate. When
we remove the repeated curves, the Pooled and Unpooled Two-SaPpleedures still

give t-statistics exceeding0 with over200 degrees of freedom, indicating the two means
significantly differ and supporting the claim that the repulsion decreases with increasing
conductor.
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Figure 7: First normalized zero above the central point.
209 rank O curves from 14 rartkone-parameter families,
log(cond) € [3.26,9.98], median= 1.35, mean= 1.36
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Figure 8: First normalized zero above the central point.
996 rank 0 curves from 14 rartkone-parameter families,
log(cond) € [15.00, 16.00], median= .81, mean= .86.



INVESTIGATIONS OF ZEROS NEAR THE CENTRAL POINT OF ELLIPTIC CURVE-FUNCTIONS

TABLE 1. First normalized zero above the central point fdr one-

parameter families of elliptic curves of rafkover Q (smaller conduc-

tors)
| Family [ Median i [ Mean . | StDevo,, | log(conductor) | Number |
1. [0,1,1,1,T] 1.28 1.33 0.26 [3.93, 9.66] 7
2:[1,0,0,1,T] 1.39 1.40 0.29 [4.66, 9.94] 11
3:[1,0,0,2,T] 1.40 1.41 0.33 [5.37, 9.97] 11
4:[1,0,0,-1,T] 1.50 1.42 0.37 [4.70, 9.98] 20
5:[1,0,0,-2,T] 1.40 1.48 0.32 [4.95, 9.85] 11
6: [1,0,0,T,0] 1.35 1.37 0.30 [4.74, 9.97] 44
7:[1,0,1,-2,T] 1.25 1.34 0.42 [4.04, 9.46] 10
8: [1,0,2,1,T] 1.40 1.41 0.33 [5.37, 9.97] 11
9:[1,0,-1,1,T] 1.39 1.32 0.25 [7.45, 9.96] 9
10: [1,0,-2,1,T] 1.34 1.34 0.42 [3.26, 9.56] 9
11: [1,1,-2,1,T] | 1.21 1.19 0.41 [5.73, 9.92] 6
12: [1,1,-3,1,T] 1.32 1.32 0.32 [5.04, 9.98] 11
13: [1,-2,0,T,0] 1.31 1.29 0.37 [4.73, 9.91] 39
14: [-1,1,-3,1,T]|  1.45 1.45 0.31 [5.76, 9.92] 10
All Curves 1.35 1.36 0.33 [3.26, 9.98] 209
Distinct Curves 1.35 1.36 0.33 [3.26, 9.98] 196

TABLE 2. First normalized zero above the central point fa@r one-

parameter families of elliptic curves of rafiloverQ (larger conductors)

| Family | Median /& [ Mean . | StDevo,, | log(conductor) | Number |
1. [0,1,1,1,T] 0.80 0.86 0.23 | [15.02, 15.97] 49
2:[1,0,0,1,T] 0.91 0.93 0.29 | [15.00, 15.99] 58
3:[1,0,0,2,T] 0.90 0.94 0.30 | [15.00, 16.00] 55
4:[1,0,0,-1,T] 0.80 0.90 0.29 [15.02, 16.00] 59
5:11,0,0,-2,T] 0.75 0.77 0.25 [15.04, 15.98] 53
6:[1,0,0,T,0] 0.75 0.82 0.27 [15.00, 16.00] 130
7:[1,0,1,-2,T] 0.84 0.84 0.25 | [15.04, 15.99] 63
8: [1,0,2,1,T] 0.90 0.94 0.30 | [15.00, 16.00] 55
9:[1,0,-1,1,T] 0.86 0.89 0.27 [15.02, 15.98] 57
10: [1,0,-2,1,T] | 0.86 0.91 0.30 | [15.03, 15.97] 59
11:[1,1,-2,1,T] 0.73 0.79 0.27 [15.00, 16.00] 124
12:1,1,-3,1,T] 0.98 0.99 0.36 [15.01, 16.00] 66
13: [1,-2,0,T,0] 0.72 0.76 0.27 [15.00, 16.00] 120
14: [-1,1,-3,1,T]||  0.90 0.91 0.24 | [15.00, 15.99] 48
All Curves 0.81 0.86 0.29 [15.00,16.00] 996
Distinct Curves 0.81 0.86 0.28 [15.00,16.00] 863

19
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4.3.2. Rank 2 CurvesThe previous results were for well-separated ranges of conductors.
As the first set often has very small log-conductors, it is possible those values are anom-
alous. We therefore study two sets of curves where the log-conductors, while different, are
close in value. The goal is to see if we can detect the effect of slight differences in the
log-conductors on the repulsions.

Table3 provides the data from an analysidfrank0 one-parameter families of elliptic
curves over). The families are from [Fe2]. In each famityanges from-1000 to 1000.
We searched for ranR curves with log-conductor inl5,16]. While we study rank2
curves from families of rank overQ in 84.4, there the conductors are so large that we
can only analyze a few curves in each family. In particular, there are not enough curves
in one family with conductors approximately equal to detect how slight differences in the
log-conductors effect the repulsions.

TaBLE 3. Firstnormalized zero above the central point for ramkirves
from one-parameter families of raitkover Q. The first set are curves
with log(cond) € [15,15.5); the second set are curves witlg(cond) €
[15.5,16]. Median =z, Mean =g, Standard Deviation (about the Mean)

=0y

| Family [ & [ » [ ou [Number[ 7 [ p [ o, [ Number |
1:[0,1,3,1,T] 1.59| 1.83| 0.49 8| 1.71]1.81|0.40 19
2:1,0,0,1,T] 1.84| 1.99]| 0.44 111 1.81| 1.83| 0.43 14
3:1,0,0,2,T] 2.05| 2.03| 0.26 16| 2.08| 1.94| 0.48 19
4:[1,0,0,-1,T] || 2.02| 1.98| 0.47 13 1.87| 1.94| 0.32 10
5:[1,0,0,T,0] 2.05|2.02| 0.31 231 1.85|1.99| 0.46 23
6:1,0,1,1,T] 1.74| 1.85| 0.37 151 1.69| 1.77| 0.38 23
7:11,0,1,2,T] 1.92| 1.95| 0.37 16 1.82| 1.81| 0.33 14
8:[1,0,1,-1,T] || 1.86| 1.88| 0.34 151 1.79| 1.87| 0.39 22
9:[1,0,1,-2,T] || 1.74| 1.74| 0.43 14 1.82| 1.90| 0.40 14
10:[1,0,-1,1,T] || 2.00| 2.00| 0.32 221 1.81|1.94| 0.42 18
11:[1,0,-2,1,T] || 1.97| 1.99| 0.39 14| 2.17| 2.14| 0.40 18
12:[1,0,-3,1,T] || 1.86| 1.88| 0.34 151 1.79| 1.87| 0.39 22
13:[1,1,0,T,0] 1.89| 1.88| 0.31 201 1.82| 1.88| 0.39 26
14:[1,1,1,1,T] 2.31|2.21| 041 16| 1.75| 1.86| 0.44 15
15:[1,1,-1,1,T] || 2.02| 2.01| 0.30 111 1.87| 1.91| 0.32 19
16:[1,1,-2,1,T] || 1.95| 1.91| 0.33 26| 1.98| 1.97| 0.26 18
17:[1,1,-3,1,T] || 1.79| 1.78| 0.25 13 2.00| 2.06| 0.44 16
18:[1,-2,0,T,0] || 1.97| 2.05| 0.33 241 1.91|1.92| 0.44 24
19:[-1,1,0,1,T] || 2.11| 2.12| 0.40 211 1.71|1.88| 0.43 17
20:[-1,1,-2,1,T]|| 1.86| 1.92| 0.28 231 1.95|1.90| 0.36 18
21:[-1,1,-3,1,T]|| 2.07| 2.12| 0.57 141 1.81|1.81| 0.41 19
All Curves 1.95| 1.97| 0.37 3501 1.85| 1.90| 0.40 388
Distinct Curves || 1.95| 1.97| 0.37 335 1.85] 1.91| 0.40 366

We split these ranR curves from the1 one-parameter families of rarikover Q into
two sets, those curves with log-conductofif, 15.5) and in[15.5, 16]. We compared the
two sets to see if we could detect the decrease in repulsion for such small changes of the
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conductor. We havel families, with350 curves in the small conductor set a3&8 in the
large conductor set.

Remark 4.3. The families are not independent: there Bseurves that occur twice in the

small conductor set, ari? in the larger. In our amalgamations of the families we consider
both the case where we do not remove these curves, as well as the case where we do. There
is no significant difference in the results (the only noticeable change in the table is for the
mean for the larger conductors, which increases ftdii34 to 1.9052 and thus is rounded
differently). See also Remark 4.2.

The medians and means of the small conductor set are greater than those from the large
conductor set. For all curves the Pooled and Unpooled Two-Satyiplecedures give-
statistics of2.5 with over600 degrees of freedom; for distinct curves the Poalsthtistic
is 2.16 (respectively, the Unpooletdstatistic is2.17) with over 600 degrees of freedom.

As the degrees of freedom is so large, we may use the Central Limit Theorem. As there is
about a3% chance of observing astatistic 0f2.16 or greater, the results provide evidence
against the null hypothesis (that the means are equal) ab3heonfidence level, though

not at the.01 confidence level.

While the data suggests the repulsion decreases with increasing conductor, it is not as
clear as our earlier investigations (where we haehlues greater thah0). This is, of
course, due to the closeness of the two ranges of conductors. We apply non-parametric
tests to further support our claim that the repulsion decreases with increasing conductors.
For each family in Tablg, write a plus sign if the small conductor set has a greater mean
and a minus sign if not. There are four minus signs and seventeen plus signs. The null
hypothesis is that each mean is equally likely to be larger. Under the null hypothesis, the
number of minus signs is a random variable from a binomial distribution Witk 21 and
6 = 5. The probability of observing four or fewer minus signs is at®at, supporting
the claim of decreasing repulsion with increasing conductor. For the medians there are
seven minus signs out of twenty-one; the probability of seven or fewer minus signs is
about9.4%. Every time the smaller conductor set had the lesser mean, it also had the
lesser median; the mean and median tests are not independent.
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4.4. One-Parameter Families of Rank2 Over Q.

4.4.1. Familyy? = 23 — T?2 + T2. We study the first normalized zero above the central
point for 69 rank 2 elliptic curves from the one-parameter family = =3 — T2z + T

of rank 2 over Q. There are35 curves withlog(cond) € [7.8,16.1] in Figure9 and 34

with log(cond) € [16.2,23.3] in Figure10. Unlike the previous examples where we chose
many curves of the same rank from different families, here we have just one family. As the
conductors grow rapidly, we have far fewer data points, and the range of the log-conductors
is much greater. However, even for such a small sample, the repulsion decreases with in-
creasing conductors, and the shape begins to approach the conjectured distribution. The
Pooled and Unpooled Two-Samptd’rocedures giveé-statistics oveb with over 60 de-

grees of freedom, and we may use the Central Limit Theorem. As the probability of a
z-value of5 or more is less thah0~* percent, the data does not support the null hypoth-
esis (i.e., the data supports our conjecture that the repulsion decreases as the conductors
increase).

0.8
0.6

0.4

0.5 1 15 2 2.5 3 3.5

Figure9: First normalized zero above the central point
from rank2 curves in the family? = 23 — T2z 4 T2.
35 curveslog(cond) € [7.8,16.1], median= 1.85, mean= 1.92,
standard deviation about the mean41

0.5 1 15 2 2.5 3 3.5

Figure10: First normalized zero above the central point
from rank2 curves in the family? = 23 — T2z 4+ T2.
34 curveslog(cond) € [16.2,23.3], median= 1.37, mean= 1.47,
standard deviation about the mean34
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4.4.2. Rank 2 CurvesWe consider1 one-parameter families of rarkover Q, and in-
vestigate curves of rarkkin these families. The families are from [Fe2]. We again amal-
gamated the different families, and summarize the results in Table 4.

The difference between these experiments and those of §4.3.2 is that, while both deal
with one-parameter families ov&), here we study curves of rarkfrom families of rank
2 overQ; earlier we studied curves of ragkkrom families of rank) over@Q. If the Density
Conjecture (with orthogonal groups) is correct for the entire one-parameter family, in the
limit 0% of the curves in a family of rank have rank- + 2 or greater. Thus our previous
investigations of curves of rarikin a family of rank0 overQ were a study of a measure
zero subset. Unlike curves of ragkin families of rank2 over@Q, we have no theoretical
evidence supporting a proposed random matrix model for curves of2ramkamilies of
rank0. We compare the results from ralcurves in rank families overQ to the rank2
curves from rank families overQ in 84.5.

TABLE 4. First normalized zero above the central point for 21 one-
parameter families of ranR over Q with log(cond) € [15,16] and
t € [0,120]. The median of the first normalized zero of the 64 curves is

1.64.

Family Mean | Standard Deviation | log(conductor) | Number
1:[1,7,0,-3-2T,1] | 1.91 0.25 [15.74,16.00] 2
2:[1,T,-19,-T-1,0]|| 1.57 0.36 [15.17,15.63] 4
3:[1,T,2,-T-1,0] 1.29 [15.47,15.47] 1
4:[1,T,-16,-T-1,0]|| 1.75 0.19 [15.07,15.86] 4
5:[1,T,13,-T-1,0] | 1.53 0.25 [15.08,15.91] 3
6: [1,T,-14,-T-1,0]|| 1.69 0.32 [15.06,15.22] 3
7:[1,T,10,-T-1,0] || 1.62 0.28 [15.70,15.89] 3
8:[0,T,11,-T-1,0] || 1.98 [15.87,15.87] 1
9: [1,T,-11,-T-1,0]

10: [0,T,7,-T-1,0] 1.54 0.17 [15.08,15.90] 7

11:[1,T,-8,-T-1,0] || 1.58 0.18 [15.23,25.95] 6

12:[1,T,19,-T-1,0]

13:[0,T,3,-T-1,0] 1.96 0.25 [15.23, 15.66] 3

14:[0,T,19,-T-1,0]

15:[1,T,17,-T-1,0] | 1.64 0.23 [15.09, 15.98] 4

16: [0,T,9,-T-1,0] 1.59 0.29 [15.01, 15.85] 5

17:[0,T,1,-T-1,0] 151 [15.99, 15.99] 1

18:[1,T,-7,-T-1,0] || 1.45 0.23 [15.14, 15.43] 4

19: [1,T,8,-T-1,0] 1.53 0.24 [15.02, 15.89] 10

20: [1,T,-2,-T-1,0] | 1.60 [15.98, 15.98] 1

21:[0,T,13,-T-1,0] | 1.67 0.01 [15.01, 15.92] 2

\AII Curves H 1.61 \ 0.25 \ [15.01, 16.00]\ 64 \

Remark 4.4. There are3 rank4 curves in the 21 one-parameter families of r@&nbver

Q with log-conductors irf15, 16] andt € [0, 120]. For the first normalized zero above the
central point, the median is 3.03, the mean is 3.05, and the standard deviation about the
mean is 0.30.
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4.5. Comparison Between One-Parameter Families of Different RanklIn Table 5 we
investigate how the first normalized zero above the central point ofZankves depends
on how the curves are obtained. The first family is ramkirves from the 21 one-parameter
families of rank0 over Q from Table 3, while the second is rarkcurves from the 21
one-parameter families of rarkkover Q from Table 4; in both sets the log-conductors
are in[15,16]. A t-Test on the two means givestatatistic of 6.60, indicating the two
means differ. Thus the mean of the first normalized zero above the central point of rank
2 curves in a one-parameter family ov@r(for conductors in this range) dependsww
we choose the curves. For the range of conductors studied,2rankves from rank)
one-parameter families ov€r do not behave the same as ra2kurves from rank one-
parameter families oved.

TABLE 5. First normalized zero above the central point. The first family
is the 701 rank curves from the21 one-parameter families of rartk
overQ from Table 3 withlog(cond) € [15, 16]; the second family is the
64 rank2 curves from the21 one-parameter families of rarkkover Q
from Table4 with log(cond) € [15, 16].

| Family Median | Mean | Std. Dev. | Number |
Rank 2 Curves, Families Rank O ovgr|| 1.926 | 1.936| 0.388 701
Rank 2 Curves, Families Rank 2 ov@r|| 1.642 | 1.610| 0.247 64
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4.6. Spacings between normalized zerod-or finite conductors, even when there are no
zeros at the central point, the first normalized zero above the central point is repelled from
the predictedV — oo scaling limits. The repulsion increases with the number of zeros
at the central point and decreases with increasing conductor. For an elliptic Eutee
21, 22, 23, . . . denote the imaginary parts of the normalized zeros above the central point.
We investigate whether or nej; — z; depends on the repulsion from the central point.

We consider the following two sets of curves in Table 6:

o the863 distinct rankd curves withlog(cond) € [15, 16] from thel4 one-parameter
families of rank0 overQ from Table2;

e the701 distinct rank2 curves withlog(cond) € [15, 16] from the21 one-parameter
families of rank0 overQ from Table3.

In Table6 we calculate the median and mean for— z1, z3 — 2o andzs — 27. The last
statistic involves the sum of differences between two adjacent normalized zeros, and allows
the possibility of some effects being averaged out. While the normalized zeros are repelled
from the central point (and by different amounts for the two sets)diffierencedetween
the normalized zeros are statistically independent of this repulsion. We perfortyieesa
on the means in the three cases. For each casedtagistic was less tha®, strongly
supporting the null hypothesis that the differences are independent of the repulsion.

TABLE 6. Spacings between normalized zeros. All curves have
log(cond) € [15,16], andz; is the imaginary part of thg" normal-
ized zero above the central point. T&&3 rank O curves are from the
14 one-parameter families of rartkover Q from Table2; the 701 rank

2 curves are from th@1 one-parameter families of rarikover Q from

Table3.

863 Rank(0 Curves | 701 Rank2 Curves || t-Statistic
Median z5 — 21 1.28 1.30
Mean zo— 2z 1.30 1.34 -1.60
StDev  z5 — 21 0.49 0.51
Median z3 — 25 1.22 1.19
Mean 23 — 2 1.24 1.22 0.80
StDev  z3 — 2o 0.52 0.47
Median z3 — z; 2.54 2.56
Mean 2z3— 2 2.55 2.56 -0.38
StDev  z3 — 21 0.52 0.52

We have consistently observed that the more zeros at the central point, the greater the
repulsion. One possible explanation is as follows: for ranéurves in a rank) one-
parameter family ove@, the first zero above the central point collapses down to the central
point, and the other zeros are left alone. As the zeros are symmetric about the central point,
the effect of one zero above the central point collapsing is to increase the number of zeros
at the central point bg.

For our14 one-parameter families of elliptic curves of rahkverQ and log-conductors
in [15, 16], we studied the second and third normalized zero above the central point. The
mean of the second normalized zer@i$6 with a standard deviation o889, while the
third normalized zero has a mean®41 and a standard deviation ofl. These numbers
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statistically diffet! from the first and second normalized zeros of the rackirves from

our 21 one-parameter families of rarikover Q with log-conductor in15, 16], where the
means were respectivelyd3 (with a standard deviation 089) and3.27 (with a standard
deviation of.39). Thus while for a given range of log-conductors the average second
normalized zero of a rank curve is close to the average first normalized zero of a fank
curve, they are not equal and the additional repulsion from extra zeros at the central point
cannot be entirely explained lynly collapsing the first zero to the central point while
leaving the other zeros alone.

Remark 4.5. As the second (resp., third) normalized zero for rank O curves in rank 0
families overQ is 2.16 (resp., 3.41) while the first (resp., second) normalized zero for rank

2 curves in rank 0 families oveD is 1.93 (resp., 3.27), one can interpret the effect of the
additional zeros at the central point as a&traction Specifically, for curves of rank 2

in a rank O family overQ, by symmetry two zeros collapse to the central point, and the
remaining zeros are then attracted to the central point, being closer than the corresponding
zeros from rank O curves. As remarked in 83.5 of [Far], the term “lowest zero” is not well
defined when there are multiple zeros at the central point. We can either mean the first zero
above the central point, or one of the many zeros at the central point. In all cases, for finite
conductors there is repulsion from thé — oo scaling limits of random matrix theory;
however, “attraction” might be a better term for the effect of additional zeros at the central
point, though the current terminology is to talk about repulsion of zeros at the central point.

We now study the differences between normalized zeros coming from one-parameter
families of rank2 overQ. Table7 shows that while the normalized zeros are repelled from
the central point, thdifferencedetween the normalized zeros are statistically independent
of the repulsion. We performed:alest for the means in the three cases studied. For two of
the three cases thestatistic was less thah(and in the third it was onl®.05), supporting
the null hypothesis that the differences are independent of the repulsion.

TABLE 7. Spacings between normalized zeros. All curves have
log(cond) € [15,16], andz; is the imaginary part of thg" normal-
ized zero above the central point. Th&rank2 curves are thél one-
parameter families of rank over Q from Table4; the 23 rank4 curves

are the21 one-parameter families of rarzkover@Q from Table4.

64 Rank2 Curves | 23 Rank4 Curves || t-Statistic
Median z5 — 21 1.26 1.27
Mean 2z — z; 1.36 1.29 0.59
StDev  z9 — 21 0.50 0.42
Median z3 — 29 1.22 1.08
Mean 23 — 29 1.29 1.14 1.35
StDev  z3 — 29 0.49 0.35
Median z3 — 21 2.66 2.46
Mean z3—2z; 2.65 2.43 2.05
StDev 23 — 23 0.44 0.42

We performed one last experiment on the differences between normalized zeros. In
Table8 we compare two sets of rarkcurves: the first are thgl one-parameter families

11The Pooled and Unpoolggstatistics in both experiments are greater thgoroviding evidence against the
null hypothesis that the two means are equal.
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TABLE 8. Spacings between normalized zeros. All curves have
log(cond) € [15,16], andz; is the imaginary part of thg" normal-
ized zero above the central point. The 701 rank 2 curves arlthe
one-parameter families of ratkoverQ from Table3, and the 64 rank
curves are the1l one-parameter families of rarzkoverQ from Table4.

701 Rank2 Curves | 64 Rank?2 Curves || t-Statistic
Median z9 — 21 1.30 1.26
Mean 2z — z; 1.34 1.36 0.69
StDev  z — 21 0.51 0.50
Median z3 — 2o 1.19 1.22
Mean z3 — 29 1.22 1.29 1.39
StDev  z3 — 29 0.47 0.49
Median z3 — 21 2.56 2.66
Mean 2z3— 21 2.56 2.65 1.93
StDev z3 — 21 0.52 0.44

of rank0 overQ from Table3, while the second are tf¥d one-parameter families of razk

overQ from Table4. While the first normalized zero is repelled differently in the two cases,
the differences are statistically independent from the nature of the zeros at the central point,
as indicated by ali-statistics being less thah This suggests that thepacingsbetween
adjacent normalized zeros above the central point is independent of the repulsion at the
central point; in particular, this quantity does not depend on how we construct our family
of rank2 curves.

5. SUMMARY AND FUTURE WORK

As the conductors tend to infinity, theoretical results support the validity afthe oo
scaling limit of the Independent Model for all curves in one-parameter families of ellip-
tic curves of rankr over Q; however, it is unknown what the correct model is for the
sub-family of curves of rank + 2. The experimental evidence suggests that the first
normalized zero, for small and finite conductors, is repelled by zeros at the central point.
Further, the more zeros at the central point, the greater the repulsion; however, the repul-
sion decreases as the conductors increase, and the difference between adjacent normalized
zeros is statistically independent of the repulsion and the rank of the curves.

At present we can calculate the first normalized zero for log-conductors 2hoihile
we can use more powerful computers to study larger conductors, it is unlikely these con-
ductors will be large enough to see the predicted limiting behavior. It is interesting that,
unlike the excess rank investigations, we see noticeable convergence to the limiting theo-
retical results as we increase the conductors.

An interesting project is to determine a theoretical model to explain the behavior for
finite conductors. In the large-conductor limit, analogies with the function field and cal-
culations with the explicit formula lead us to the Independent Model for curves ofrrank
from families of rank- overQ, and theoretical results in the number field case support this.

It is not unreasonable to posit that in the finite-conductor analogues the size of the matrices
should be a function of the log-conductors. Unfortunately the statistics for the finitév

random matrix ensembles are expressed in terms of eigenvalues of integral equations, and
are usually only plotted in th& — oo scaling limit. This makes comparison with the
experimental data difficult, and a future project is to analyze the fiNiteases by using
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the finite N kernels. Such an analysis will facilitate comparing the fiditdimits of the
Independent and Interaction Models for curves of rank2 from families of rank- over

Q.
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In this appendix we derive the conditional (interaction) eigenvalue probability mea-
sure (2.4) and illustrate how it affects eigenvalue statistics near the central poirgar-
ticular through repulsion (observed via théevel density). We also explain the relation to
the classical Bessel kernels of random matrix theory, and to other central-point statistics.

A.1. Full Orthogonal Ensembles. In view of our intended application we will be con-
cerned exclusively with random matrix ensembles of orthogonal matrices in what follows.
If we write the eigenvalues (in no particular order) of a spétiatthogonal matrix of
size2N (resp.2N + 1) as{£e® }V (resp.,{+1} U {£e? }) with 0 < ¢; < 7 then

the N-tuple© = (64, ..., 60x) parametrizes the eigenvalues. In terms of the artijlethe
probability measure of the eigenvalues induced from normalized Haar measurei)SO(
(resp., on SAXN + 1) upon discarding one forced eigenvaluetdf) can be identified with

a measure ofo, 7",

deo(©) =CY  [[ (costr —cost;)? ] do; (A1)
1<j<k<N 1<j<N

der(©) =CY  [[  (costr —cos;)? ] sin*(%)do; (A2)
1<j<k<N 1<j<N

in the2N and2N + 1 cases, respectively, as shown in [Con, KaSal]; the normalization
constants‘f](\,m) ensure that the measures on the right-hand sides are probability measures.
Note that formulas (A.1) and (A.2) are symmetric upon permutingiseso issues related
to a choice of a particular ordering of the eigenvalues of the matrix are irrelevant. More
importantly, observe the quadratic exponent of the differences of the cosines.

The statistical behavior of the eigenvalues nedris closely related to the order of
vanishing of the measures abové at 0. We change variables and replace the eigenvalues
et by the levels

x = cosb (A.3)
so the measures above become measurés bn-1]7:

N

deo(X) = O I @r—2)? [ =) 20 +2)"%dz;  (A4)
1<j<k<N j=1

(1—1‘]‘) (1—|—l‘j)_%dl‘j, (A.5)

I
=
—
B

|
b&?
5
=

[N

d&l(X)

12That is, of determinant one.
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whereX = (z1,...,2n) andC’](\}”) are suitable normalization constants. Here we observe
the appearance of the weight functionsfer, 1]

—1/2 for SO@QN)

+1/2 for SO@N + 1). (A.6)

w(z)=(1-2)*(1+2)"%, a= {

By the Gaudin-Mehta theory (see for example [Meh]), and in view of the quadratic expo-
nent of the differences of the “levels’;, the study of eigenvalue statistics using classical
methods is intimately related to the sequence of orthogonal polynomials with respect to
the weightw(z).13

In classical random matrix theory terminology (especially in the context of the Laguerre
and Jacobi ensembles) the endpoints +1 are called the “hard edges” of the spectrum
because the probability measure, considere®8nvanishes outside-1, +1]~. We will
keep callingg = 0, 7 the “central points” (endpoints of the diameter with respect to which
the spectrum is symmetric). Phenomena about central points and hard edges are equivalent
in view of the change of variables (A.3). Perhaps not surprisingly, the parametich
dictates the order of vanishing of the weight functiof:) at the hard edge-1, suffices
to characterize the mutually different statistics near the central point in each of SO(even)
and SO(odd). However, the importance of this parameter is best understood in the context
of certain sub-ensembles of SO as described below.

A.2. Conditional (“Harder”) Orthogonal Ensembles. The conditional eigenvalue mea-
sure for the sub-ensemb$O(?") (2NV) of SO(2N) consisting of matrices for which some
2r of the2 NV eigenvalues are equal tel can easily be obtained from (A.4). Let

fran) =0y I @r—2)* J] wi) (A7)

1<j<k<N 1<j<N

be the normalized probability density function of the levels $6?(2V), wherew(x) is
as in (A.6) witha = —1/2 andm = 0. Now letty,...,t,. be chosen sé < t; < 1, let
K =[[;[1 —t;,1]andl = J x K for some box/ C [-1,1]¥=". This means we are
constrainingr pairs of levels to lie in a neighborhood of= 1 (or equivalently that we
are construing pairs of eigenvalues to lie in circular sectors about the pbort the unit
circle). Thus, the conditional probability that the remaini¥ig- r pairs of eigenvalues lie
in J is given by

|t
F(T;J) = IxK , (A.8)
/ J(@)da
[—1,1]N T x K
whereT = (t,...,t.). The conditional probability measure of the eigenvalues for the

sub-ensembleg O (2N) is the limit as allt;, — 0+ of F(¢;.J), as a function of the

box J, call it G(J). Applying L'Hdpital’s rule r times to the quotient (A.8) (once on each

variablet) and using the fundamental theorem of calculus we get
J;(Van(X))*(M (X, T))*w(X)dX - (Van(T))*w(T)

G(J) = Tlijg+ f[o,l]Nfr(Van(X))Q(M(X’ T))2w(X)dX - (Van(T))2w(T) (A.9)

L3The inner product beingf, g) = Rol f(@)g(z)w(x)dx.
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whereX = (z1,...,2n—_.), and
Van(X)= ] (& —) Van(T) = [[ & —t))
1<j<k<N-r 1<j<k<r
w(X) = w(z;) w(T) = [ wd-t)
1<j<N-—-r 1<k<r
M(X,T) = (1 -ty — ;)
SELT

Naturally, the factors oVan(7') andw(T") cancel in equation (A.9). Sinc&(X,T)
is bounded, the integrands in equation (A.9) are uniformly dominated by an integrable
function, ensuring that we can let ajl — 0 in the integrands of (A.9) to obtain

G(J) = J;(Van(X))?(M (X, 0))*w(X)dX

B f[o,uN—r(V-‘?JLH(X))2(M(X7 0)2w(X)dX (A.10)

Now observe thatM (X, 0))?w(X) = [I,<j<,w(z;) wherew(z) is given by equa-
tion (A.6) with a replaced bya = a + 2r, so the probability measure of the eigenvalues
for SO (2N) is obtained from that o8O(2(N — m)) simply by changing the weight
functionw — w. Explicitly, the probability measure of the eigenvalues of the ensemble
SO (2N) is given by

dem(X) = O T (e — ) T = 2p)™ 2 (1 + 25) Y2 [ [ day. (A1D)
j<k J J

wherem = 2r, X = (x1,...,2x_,), the indicesj, k range froml to N — r, andC](V”i)m
are suitable normalization constants (equal to the reciprocal of the denominator of the
right-hand side of equation (A.10).)

The same argument shows that the sub-enses®Ié"+") (2N + 1) of SO(2N + 1)
consisting of matrices for whickr+-1 eigenvalues are equal{el has the same eigenvalue
measure (A.11) withn = 2r 4 1. Because the density of the measure vanishes to a higher
order near the edge1 the largern is, we will say that the edge becomes harder when
is larger (whence the title of this section), and eallts hardness.

A.3. Independent Model. It is important to observe that the presence ofithenultiple
eigenvalues at the central point in these harder sub-ensembles of orthogonal matrices has
a strong repelling effect due to the extra factor— «)™ multiplied by the weight1 —

x)*% (1+ m)*% of SO(even). For comparison purposes consider the following situation,
first in the SO(even) case. The number of eigenvalues equal @f any SO(2N) matrix

is always an even number, and one may consider the sub-enseroblg o, of SO(2N),

Aonor = {(12”2’” g) 19 € SO(2N — 2r)} ; (A.12)

which is justSO(2N — 2r) in disguise. This is certainly a sub-ensembleSgd(2V)
consisting of matrices with at lea®t eigenvalues equal t¢ 1, albeit quite a different one
from the2r-hard sub-ensemble 6fO(2N) described before. For example, the eigenvalue
measure (apart from the point masses at the2lasigenvalues) forsy o, is

deo(z1, .., TN—r), (A.13)
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and notdes,.(z1, .. .,zN—,). The same observation applies in € (2N + 1) case: with
the obvious notation, the eigenvalue measurefeg , ; o, is**

der (04, ..., 0n_0), (A.14)
and notdeg, 11 (61, ...,0N—_r).

A.4. 1-Level Density: Full Orthogonal. Before dealing with the harder sub-ensembles,
we make some comments about the hard edges of the full SO(even) and SO(odd). The
local statistics near the pointl are dictated by the ever-’ (resp., odd =) Sine Kernels

S+(&,m) = S(&m) £ 5(&—n) (A.15)

in the case of SO(even) (resp., SO(odd)); see [KaSal, KaSaz2]. igrare rescaled
variables centered about the valyeamely related to the original variables'by
™

T = cos (Nf) (A.16)
andS(z,y) = sin(rz)/(mz) is the Sine Kernel, which has the universal property of de-
scribing the local statistics any bulk point of any ensemble with local quadratic local
level repulsion [DKMcVZ]. However, it is not the Sine Kernel but its even (resp., odd)
counterparts that dictate the local statistics near the central point. For example, the central
one-level density is given by the diagonal values at y of the respective kernel:

polz) =1+ S“; 2me. for SO(even), (A.17)
T
p_(z) =1+ Smjzm +o(x), for SO(odd). (A.18)

(In the SO(odd) case the Dirac delta reflects the fact that any such matrix has an eigenvalue
at the central point.) Observe that vanishes to second order, whergasdoes not vanish
at the central point = 0.16

A.5. 1-Level Density: Harder Orthogonal. We return to the more general casernof
hard ensembles of orthogonal matrices. Because the classical Jacobi polyr{d?;&ﬂﬁ?ég"
are orthogonal with respect to the weightz) = (1 — x)*(1 + x)® on [-1, 1], the local
statistics near the central point= +1 are derived from the asymptotic behavior of these
polynomials at the right edge of the interyall, +1].1” More specifically, the relevant ker-
nel which takes the place of the (even or odd) Sine Kernel is the “edge limi{” as oo of

the Christoffel-Darboux/Szégprojection kerneKJ(\?’b) (z,y) onto polynomials of degree
less thanV in L2([—1,1], (1 — 2)%(1 + x)"dx) (via the change of variables (A.16)). For
the edget1, the limit depends only on the parameteaind is equal to the Bessel kerffel

BOE1) = G L s (R () — T (), (A1)

B (€,8) = Z(mE)JZ(RE) = Juor (7€) Jua (mE)], (A.20)

14opserve that a matrix Ao N +1,2- has2r 41 eigenvalues equal t¢1 and N — r other pairs eigenvalues.

LoThis is justified by the faciV/x is the average (angulagsymptoticdensity of the eigen-angles; of a
random orthogonal matrix, hence asymptotic equidistribution holds —away from the central points!

18 the central point were not atypical, then the local density would be dictated by the diagonal values
S(z,x) = 1 of the Sine Kernel.

1™ This “edge limit” and the ensuing Bessel Kernels are also observed in the somewhat simpler context of the
so-called (unitary) Laguerre ensemble.

18 fact, the even Sine Kernél, = B(=3) whereas the odd Sine Kernsl. = B(3).
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FIGURE 1. The centrall-level densitiesp,. (dotted) andp_ (dash-

dotted) versus the “bulk1-level densityp = 1 observed away from
the central points.

whereJ, stands for the Bessel function of the first kind [NW, D].
It is a little more natural for our purposes to use the hardnessther tham = m —
as the parameter, so we define

1
27

K™ (z,y) = B™ %) (z,y), (A.21)
1

K (2,y) = —K (z/m,y/7). (A.22)
iy

Using the recursion formula for Bessel functions we obtain an alternate formula to (A.20)
for the diagonal values of the kernel:

m xr
k( )(1'71') = E[Jm—&-%(m)Q_‘_‘]m—%(z)Q] - (m_ %)Jm—&-%(z)‘]m—%('x) (A23)
Except form times a point mass at = 0, the centrain-hard1-level density is given by

pm(z) = K™ (2, x). (A.24)

A.6. Spacing Measures.In this section we state some well-known formulas giving the
spacing measures or “gap probabilities” at the central point. Their derivation is stan-
dard and depends only on knowledge of the edge limiting ketiét® (see for instance
[KaSal, Meh, TW]). LetE("™) (k; s) be the limit, asN — oo, of the probability that ex-
actly k of the¢;’s lie on the interval(0, s), where¢; is related tar; via equation (A.16).
Also let p(™) (k; s)ds be the conditional probability that thé + 1)-st of the¢;'s, to the
right of ¢ = 0, lies in the intervals, s + ds), in the limit N — oc.

Abusing notation, lef{ (™)|, denote the integral operator @ ([0, s], dz) with kernel
K (z,y):

meﬂ»zéﬂwmmwﬂw@. (A.25)
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FIGURE 2. Them-hardl-level edge densities fon = 0,1,...,5.

If I denotes the identity operator, then the following formulas hold:

EM) (k;s) = o Wdet(uTK( o) _ (A.26)
™ (k;s) = ——ZE(’”) i s) (A.27)

On the right-hand side of (A.26), ‘det is the Fredholm determinant: for an operator with
kernel/C,

detI—f—lC—l—i—Z / /dxet (z;,21)) da, . . . d;. (A.28)

Rn
Identical formulas hold even for finit&/ provided that the Iimiting kernek (™) is re-

placed by the Christoffel- Darboux/Szegro;ectlon kerneJK( 2’ z) associated to the
weightw(z) of (A.6) with a = m — 1, acting onL?([—1,1],w ( )dx). In this case, the
corresponding operator is of finite rank, the Fredholm determinant agrees with the usual
determinant, and the series (A.28) is finite.

A.7. Explicit Kernels. In view of the relation between Bessel Functions of the first kind
of half-integral parameter and trigonometric functions, it is possible to write the kernels
K (™) in terms of elementary functions.

A.7.1. m = 0: The Even Sine Kernel.
sinm(z — vy sinm(x +y
Kolw,y) = S (a,y) = S2rE—y) , snmlw £ )

w@—y) | w@ty) (A-29)

The one-level density is

sin 27x (A.30)

pi(@) = Syla,@) =1+

The Fourier transform of the one-level density is

i) = 8u) + 3 1(u), (A.31)

2mx
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whereI(u) is the characteristic function of the interyall, 1].

A.7.2. m = 1: The Odd Sine Kernel.
sinm(z —y) sinw(x+y)

Ki(z,y)=S_(z,y) = — . A.32
1(z,y) (z,y) o pe— @) (A.32)
The one-level density is
sin 27w
_(x)=5_ = - == .
p-(a) = S_(a,2) = 8(a) + 1 — —— (A.33)
The Fourier transform of the one-level density is
1
p—(u) =48(u)+1— Ql(u) (A.34)
A.7.3. m = 2: The “Doubly Hard” Kernel.
Ko (.y) = sinw(z —y) N sinw(z +y) 2sin 7T sin Ty (A35)
m(z —y) m(z +y) T my
The one-level density is
in?2 . 2
pa(z) = 26(2) + 1+ oL 9 (Sm ”) . (A.36)
2w T

The Fourier transform of the one-level density is
pa(u) = 6(u) + 2 + (2Ju| — %)I(u). (A.37)
A.7.4. m = 3: The “Triply Hard” Kernel.

18 5
K3(xay) = Kl(fl),y) + ’/szy (1 + 7T21'y> KO(J},y)

6 <cos mTx cosmy  sinmx sin ﬂy)

(A.38)

w1y | (na)? (my)?
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