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ABSTRACT. The Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZ1,
CFZ2] predicts the answers to numerous questions in number theory, ranging
from n-level densities and correlations to mollifiers to moments and vanishing
at the central point. The conjecture gives a recipe to generate these answers,
which are believed to be correct up to square-root cancelation. These predictions
have been verified, for suitably restricted test functions, for the 1-level density
of orthogonal [Mil5, MilMo] and symplectic [HuyMil, Mil3, St] families of L-
functions. In this paper we verify the conjecture’s predictions for the unitary
family of all Dirichlet L-functions with prime conductor; we show square-root
agreement between prediction and number theory if the support of the Fourier
transform of the test function is in (—1, 1), and for support up to (—2, 2) we show
agreement up to a power savings in the family’s cardinality. The interesting
feature in this family (which has not surfaced in previous investigations) is
determining what is and what is not a diagonal term in the Ratios’ recipe.
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1. INTRODUCTION

As the solutions to many problems in number theory are governed by proper-
ties of L-functions, it is thus important to understand these objects. There are
numerous examples of these connections, such as the relationship between the ze-
ros of ((s) and the error term in the Prime Number Theorem (see for example
[Da, IK]), the Birch and Swinnerton-Dyer conjecture (which asserts that the rank
of the Mordell-Weil group of rational solutions of an elliptic curve E equals the
order of vanishing of the associated L-function L(s, F) at s = 1/2; see for instance
[IK]), and the order of vanishing of L-functions at the central point or the number
of normalized zeros of L-functions less than half the average spacing apart and
the growth of the class number [CI, Go, GZ], to name just a few.

Since the 1970s, the zeros and values of L-functions have been successfully mod-
eled by random matrix theory, which says that zeros behave like eigenvalues of
random matrix ensembles’, and values behave like the values of the correspond-
ing characteristic polynomials. The correspondence was first seen in the work of
Montgomery [Mon2|. Early numerical support was provided by Odlyzko’s inves-
tigations of the spacings between zeros of L-functions and eigenvalues of complex
Hermitian matrices [Od1, Od2]. For some of the history and summary of results,
see [Con, FM, KaSa2, KeSn3, MT-B]. This model has led researchers to the cor-
rect answers to many problems, and, in fact, has suggested good questions to ask!
While we have some understanding of why random matrix theory leads to the
correct answer in function fields, for number fields it is just an observed result
that these predictions are useful in guessing the correct behavior.

We cannot stress enough how important it is to have a conjectured answer
when studying a difficult problem. Random matrix theory has been a powerful
tool in providing conjectures to guide researchers; however, it does have some
drawbacks. One of the most severe problems is that random matrix theory fails to
incorporate the arithmetic of the problem, which has to be incorporated somehow
in order to obtain a correct, complete prediction. This omission is keenly felt in
studying moments of L-functions (see [CFKRS]), where the main terms of number
theory and random matrix theory differ by arithmetical factors which must be
incorporated in a somewhat ad hoc manner into the random matrix predictions.

One approach to such difficulties is the hybrid model of Gonek, Hughes and
Keating [GHK]. They replace an L-function with a product of two terms, the first
being a truncated Euler product over primes (which has the arithmetic) and the
second being a truncated Hadamard product over zeros of the L-function (which is
modeled by random matrix theory). This model has enjoyed remarkable success;
in some cases its predictions can be proved correct, and in the other cases its
predictions agree with standard conjectures.

In this paper we explore another method, the L-functions Ratios Conjecture of
Conrey, Farmer and Zirnbauer [CFZ1, CFZ2]. Frequently a problem in number
theory can be reduced to a problem about a family of L-functions. The first

IThe most useful for number theory was the Gaussian Unitary Ensemble, or GUE. This is
the N — oo scaling limit of N x N complex Hermitian matrices, where the independent entries
of the matrix are drawn from Gaussian distributions (see for instance [Meh]).
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such instance is Dirichlet’s theorem for primes in arithmetic progression, where to
count 7, () (the number of primes at most x congruent to a modulo ¢) we must
understand the properties of L(s, x) for all characters x modulo ¢q. They develop
a recipe for conjecturing the value of the quotient of products of L-functions
averaged over a family, such as

ZL(s+a1,f)-~-L(s+aK,f)L(s+ﬁl,7)~-~L(s+BL,?)
i L(s+7.f) - L(s + g, [)L(s + 61, f) - L(s + 0r. [)

(we describe their recipe in detail in §2.1). Numerous quantities in number theory
can be deduced from good estimates of sums of this form; examples include spac-
ings between zeros, n-level correlations and densities, and moments of L-functions
to name just a few. The Ratios Conjecture’s answer is expected to be accurate to
an error of the order of the square-root of the family’s cardinality. This is an in-
credibly detailed and specific conjecture; to appreciate the power of its predictions,
it is worth noting that the standard random matrix theory models cannot predict
lower order terms of size 1/log|F|, while the Ratios Conjecture is predicting all
the terms down to O(|F|~1/2F¢).

In this paper we test the predictions of the Ratios Conjecture for the 1-level
density of the family of Dirichlet characters of prime conductor ¢ — oo. The
1-level density for a family F of L-functions is

~ A ZZ¢( long)’ (12)

feFr ¢

(1.1)

Dy x(9

where ¢ is an even Schwartz test function whose Fourier transform has compact
support, % + iy, runs through the non-trivial zeros of L(s, f) (if GRH holds,
then each v, € R), and @y is the analytic conductor of f; we see in §2.4 that
the 1-level density equals a contour integral of the derivative of a sum over our
family of ratios of L-functions. As ¢ is an even Schwartz function, most of the
contribution to D; z(¢) arises from the zeros near the central point; thus this
statistic is well-suited to investigating the low-lying zeros.

The 1-level density has enjoyed much popularity recently. The reason is twofold.
First, of course, there are many problems where the behavior near the central
point is of great interest (such as the Birch and Swinnerton-Dyer Conjecture),
and thus we want a statistic relevant for such investigations. The second is that
for any automorphic cuspidal L-function, the n-level correlation of the zeros high
up on the critical line (and thus the spacing between adjacent normalized zeros)
is conjectured to agree with the Gaussian unitary ensemble from random matrix
theory (see [Hej, Mon2, RS] for results for suitably restricted test functions), as
well as the classical compact groups [KaSal, KaSa2]. This leads to the question of
what is the correct random matrix model for the zeros of an L-function, as different
ensembles give the same answer. This universality of behavior is broken if instead
of studying zeros high up on the critical line for a given L-function we instead
study zeros near the central point. Averaging over a family of L-functions (whose
behaviors are expected to be similar near the central point), the universality is
broken, and Katz and Sarnak conjecture that families of L-functions correspond to
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classical compact groups (and the classical compact groups (unitary, symplectic
and orthogonal) have different behavior). Specifically, for an infinite family of
L-functions let Fy be the subset whose conductors equal N (or are at most N).
They conjecture that

Jm Dury(6) = [ 600 Wor (@) (1.3)

where G(F) indicates unitary, symplectic or orthogonal (SO(even) or SO(odd))
symmetry.2

There are now many examples where the main term in 1-level density calcula-
tions in number theory agrees with the Katz-Sarnak conjectures (at least for suit-
ably restricted test functions), such as all Dirichlet characters, quadratic Dirichlet
characters, L(s,1) with 1 a character of the ideal class group of the imaginary
quadratic field Q(v/—D) (as well as other number fields), families of elliptic curves,
weight k level N cuspidal newforms, symmetric powers of GL(2) L-functions, and
certain families of GL(4) and GL(6) L-functions (see [DM1, DM2, FI, Gii, HR,
HuMil, ILS, KaSa2, Mill, MilPe, OS2, RR, Ro, Rubl, Yo2]).

Now that the main terms have been shown to agree, it is natural to look at
the lower order terms (see [FI, HKS, Mil2, Mil4, Yol]| for some examples). We
state one application of these terms. Initially the zeros of L-functions high on
the critical line were modeled by the N — oo scaling limits of N x N complex
Hermitian matrices. Keating and Snaith [KeSnl, KeSn2| showed that a better
model for zeros at height 7" is given by N x N matrices with N ~ log(7T'/2x) (this
choice makes the mean spacing between zeros and eigenvalues equal). Even better
agreement (see [BBLM)]) has been found by replacing N with Negective, Where the
first order correction terms are used to slightly adjust the size of the matrix (as
N — 0, Neﬁoctivo/N — 1)

While the main terms in the 1-level densities studied to date are independent
of the arithmetic of the family, this is not the case for the lower order terms (for
example, in [Mil4] differences are seen depending on whether or not the family
of elliptic curves has complex multiplication, or what its torsion group is, and
so on). While random matrix theory is unable to make any predictions about
these quantities, the Ratios Conjecture gives very detailed statements. These have
been verified as accurate (up to square-root agreement as predicted!) for suitably
restricted test functions for orthogonal families of cusp forms [Mil5, MilMo] and
the symplectic families of Dirichlet characters [Mil3, St] and elliptic curves twisted
by quadratic characters [HuyMil].

2We record the different densities for each family. As [ f(2)Wq () (z)dz = [ f(u)WTC;(\;) (u)du,
it suffices to state the Fourier Transforms. Letting n(u) be 1 (1/2 and 0) for |u| less than 1 (equal
to 1 and greater than 1), and §p is the standard Dirac Delta functional, we have: SO(even)
So(u) + in(u), orthogonal do(u) + 3, SO(odd) do(u) — $m(u) + 1, symplectic o(u) — 2n(u)
and unitary do(u). Note that the first three densities agree for |u| < 1 and split (ie, become
distinguishable) for |u| > 1, and for any support we can distinguish unitary, symplectic and
orthogonal symmetry.
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The purpose of this paper is to test these predictions for the unitary family of
Dirichlet characters. We review some needed properties of these L-functions in
§1.1 and then state our results in §1.2.

1.1. Review of Dirichlet L-functions. We quickly review some needed facts
about Dirichlet characters and L-functions; see [Da, IK] for details. Let x be a
non-principal Dirichlet character of prime modulus g. Let 7() be the Gauss sum

) = Y wk)e(k/a) (1.4)

which is of modulus /g; as always, throughout the paper we use

e(z) = ™=, (1.5)
Let )
L(s,x) = J](@=x@p™) (1.6)
p
be the L-function attached to y; the completed L-function is
—(sta(x))/2
(T s +a(x) 7(x) -
A(s,x) = (a) r <T) L(s,x) = m/\(l —5,%X), (1.7)
where

1 if y(=1) = —1.

We write the non-trivial zeros of A(s, x) as 3 +4v; if we assume GRH then v € R.
We have

A(s,x) _ logi N 1T (s+a(x) N L'(s,x)  A(1—s,x) (1.9)
A(S>X) B 2 2T 2 L(87X) B A(]-_SaX)’ .
which implies
L'(1-sx) _ L(s,x) g 1. (l-s+alx)\ 1. (s+alx)
- - log L4 op (—— 20NN 2p (2O (44
L(1—s,%x) L(S,X)+Og7r+2 2 +2 2 (1.10)
We study F(q), the family of non-principal characters modulo a prime ¢ (which
will tend to infinity). For each ¢, |F(q)] = ¢ — 2. The following lemma is the
starting point for the analysis of the sums in the 1-level density.

a(x) = {O x(=1) =1 (1.8)

Lemma 1.1. For g a prime,

ZX(T):—1+{q_1 if r =1 mod q (1.11)

0 otherwise.
XEF(q)

Proof. This follows immediately from the orthogonality relations of Dirichlet char-
acters. If o denotes the principal character, yo(r) = 0 if r = 0 mod ¢ and 1
otherwise; the lemma now follows from the well-know relation

Z (1) = {q—l if r =1 mod ¢ (1.12)

0 otherwise.



6 GOES, JACKSON, MILLER, MONTAGUE, NINSUWAN, PECKNER, AND PHAM
U

1.2. Results. Our first result (Theorem 1.2) is the Ratios Conjecture’s prediction
for the sum over F(q) of the quotient of L-functions. The 1-level density can be
recovered by a contour integral of its derivative, which we do in Theorem 1.3. We
then compare this prediction to what can be proved in number theory (Theorem
1.4). We end the introduction by discussing how standard number theory conjec-
tures lead to extending the support in Theorem 1.4, and the extensions agree with
the Ratios’ prediction.

Theorem 1.2. Let

_ L(1/2+ a,X)
frolen) = 2 T
_ (rG-=%) TG-3)
Gi(a) = <Z_F o) + - 0 %)) . (1.13)

The Ratios prediction for Ry (o, ) is

Rrglan) = (q-1) |1+ SU0 S0

)
1 1 1
(3ta) G@(z-a) G ()¢(3-9)
(1 ) 2q1/2+a C ( ) 2q1/2+a C (% + ’7)

+ 0 (¢"%), (1.14)
where the bracketed term is present or not depending on how we interpret the part
of the Ratios’ recipe that says keep only the ‘diagonal’ or ‘main’ term from the
family sum. This distinction is immaterial for our purposes, as the 1-level density

involves the derivative, and in all cases these contribute O(q~Y**€) after we divide
by the cardinality of the family (which is ¢ — 2).

o

Theorem 1.3 (Ratios’ Prediction). Denote the 1-level density for F(q) (the family
of non-principal Dirichlet characters modulo a prime q) by

D@ = 75 Y X o(nE). 0

XGJ’ q)

L(1/2+'L'\/X x)=0

with ¢ an even Schwartz function whose Fourier transform has compact support.
The Ratios Conjecture’s prediction for the 1-level density of the family of non-
principal Dirichlet characters modulo q is

Prral®) = (g(OH q—2 log £ T 2 / [ <_+¥+1:§%>]Ch

XEF(q
+ O (g1 (1.16)

Theorem 1.4 (Number Theory Results). Notation as in Theorem 1.3, let F(q)
denote the family of non-principal characters to a prime modulus (|F(q)| = q—2)
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~

and ¢ an even Schwartz functions such that supp(¢) C (—o,0) for any o < 2.

Then
I /(1 alx) mir
Z) [F <1 - 2 - log £

XEF(q

~

1 o
Dy rg(¢) = ¢(0)+m/_oo o(7) dr

+ O (q271). (1.17)

We note that we have agreement up to square-root cancelation in the family’s
cardinality in Theorems 1.3 and 1.4, provided that supp(¢) C (—1,1); if instead
the support is contained in (—2,2) then we have agreement up to a power savings.
Unlike previous tests of the Ratios Conjecture, in this case the Ratios prediction
does not have a lower order term given by an Euler product. This is not surprising,
as we expect the 1-level density to essentially be just ¢(0) (the integral term that
we find arises in a natural way from the Gamma factors in the functional equation;
if we were to slightly modify our normalization of the zeros then we could remove
this term). One of the most important consequences of the Ratios Conjecture
is that it predicts this should be the answer for arbitrary support, though we
can only prove it (up to larger error terms) for support in (—2,2). It is possible
to extend the support in the number theory results up to (—4,4) or even any
arbitrarily large support if we assume standard conjectures about how the error
terms of primes in arithmetic progression depend on the modulus. Thus the Ratios
Conjecture’s prediction becomes another way to test the reasonableness of some
standard number theory conjectures.

For example, consider the error term in Dirichlet’s theorem for primes in arith-
metic progression. Let m,,(x) denote the number of primes at most = that are
congruent to a modulo ¢. Dirichlet’s theorem says that, to first order, m;q(x) ~
m(x)/o(q). We set E(x;q,a) equal to the difference between the observed and
predicted number of primes:

1q,a) = |Tya(x —@
E(z;q,a) = |mga(2) oIk (1.18)
We have
E(z;q,a) = O(«'(gx)) (1.19)

under GRH. We expect the error term to have some ¢g-dependence; the philosophy
of square-root cancelation suggests (x/¢)'/?(gz)¢. Montgomery [Mon1] conjectured
bounds of this nature. Explicitly, assume

Conjecture 1.5. There is a 6 € |0, %) such that for q prime

E(z;q,0) < ¢ ,/ﬁ - (2q)". (1.20)

Combining the number theory calculations of Miller in [Mil6] (which assume
Conjecture 1.5)% with the Ratios Conjecture calculations in this paper, we find
number theory and the Ratios’ prediction agree for arbitrary finite support with
a power savings.

3We only need this conjecture in the special case of a = 1.
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Alternatively, consider the following conjecture:

Conjecture 1.6. There exists an n € [0,1) such that for prime q,

1 m
E(r;q,1)* < ¢"-= Y E(z;q,0). (1.21)

q a=1

(a,q)=1
Again combining the results of Miller [Mil6] with this work, we find agreement
between number theory and the Ratios’ prediction, though this time only for test
functions with supp(¢) C (—4 + 21,4 — 2n). Thus the Ratios Conjecture may be
interpreted as providing additional evidence for these conjectures.

Remark 1.7. These two conjectures are quite reasonable. The bound in the first
is true when # = 1/2 by GRH. The bound in the second is trivially true when
n = 1, as the error on the left side is then contained in the sum on the right. We
expect the first to hold for § = 0 and the second for n = e.

Remark 1.8. Similar to [HR], for convenience we assume ¢ is prime; however, with
a little additional work one can readily remove this restriction (see [Mil6]). Our
purpose in this paper is to describe the Ratios’ recipe and show agreement between
its prediction and number theory, highlighting the new features that arise in this
test of the Ratios Conjecture which have not surfaced in other investigations. We
therefore assume ¢ is prime for ease of exposition, as it simplifies some of the
arguments.

The paper is organized as follows. We describe the Ratios Conjecture’s recipe in
§2 and prove Theorems 1.2 and 1.3. We then prove Theorem 1.4 in the following
section. There are obviously similarities between the computations in this paper
and those in [Mil3], where the family of quadratic Dirichlet characters was studied.
The computations there, at times, were deliberately done in greater generality than
needed, and thus we refer the reader to [Mil3] for details at times (such as the
proof of the explicit formula).

2. RATIOS CONJECTURE

2.1. Recipe. We follow the recipe of the Ratios Conjecture and state its pre-
diction for the 1-level density of the family of non-principal, primitive Dirichlet
characters of prime modulus ¢ — co. We denote this family by F(¢), and note

[Fa)l =q—2.
The Ratios Conjecture concerns estimates for
1 L(1/2+ o, x) X)
R = 2.1

the convention is not to divide by the family ’s cardinality. The conjectured formu-
las are believed to hold up to errors of size O(|F(q)|'/27¢). We briefly summarize
how to use the Ratios conjecture to predict answers; for more details see [Mil3] or

[CS].
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(1) Use the approximate functional equation to expand the numerator into two
sums plus a remainder. The first sum is over m up to = and the second
over n up to y, where zy is of the same size as the analytic conductor
(typically one takes  ~ y ~ ,/q). We ignore the remainder term.

(2) Expand the denominator by using the generalized Mobius function.

(3) Execute the sum over F(q), keeping only main (diagonal) terms; however,
before executing these sums replace any product over epsilon factors (aris-
ing from the signs of the functional equations) with the average value of the
sign of the functional equation in the family. One may weaken the Ratios
Conjecture by not discarding these terms; this is done in [Mil5, MilMo],
where as predicted it is found that these terms do not contribute. To pro-
vide a better test, we also do not drop these terms (see Remark 2.1 for a
discussion of which terms, for this family, may be ignored).

(4) Extend the m and n sums to infinity (i.e., complete the products).

(5) Differentiate with respect to the parameters, and note that the size of the
error term does not significantly change upon differentiating.*

(6) A contour integral involving %R;(q)(a, 7)’ yields the 1-level density.
a=y=s
2.2. Approximate Functional Equation and Mobius Inversion. We now
describe the steps in greater detail. The approximate functional equation (see for
example [IK]) states

L(lra) = YA A a5 ) v
2 om0 gz r(i + 2 +a<§<>> iomite
+ Error, (2.2)
where
0 if xy(-1)=1
alx) = {1 1f§2—1;:—1 (2:3)
and

) = Y xl@ela/m) (24)
x mod m
is the Gauss sum (which is of modulus /m for x non-principal). We ignore the
error term in the approximate functional equation when we expand L(1/2 + a, x)
in our analysis of Rr(y(a,7).
By Mobius Inversion we have

— (b
2.5
LG +7X) Zl 1/2” 25

(2.6)

(=1)" if h =p;---p, is the product of r distinct primes
p(h) = .
0 otherwise

“There is no error in this step, which can be justified by elementary complex analysis because
all terms under consideration are analytic. See Remark 2.2 of [Mil5] for details.
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(with the convention that p(1) =1).

We combine the above to obtain an expansion for Rz (c,7). Note that
Ry (a,7) involves evaluating the L-functions at 1/2 4 o and 1/2 + «; thus the
q"/*7% /¢"/? term is just ¢~/ when s = 1/2 + a.

Rrg(a,7)
o T (l oy a(X)> _

. Z Z p(h)x(h) x(n) + 7(x) 42 2 X(m)
- «a . N a —s

—\& hl/2+y e~ nl/2+ jabdgstep (i I % 4 %> = ml

1_a a(x) o

_ ZZ Z Z r(x) T (4 2 T ) Z Z p(h)x(h)x(m)
- (0% ~a, 1 (6% 1e% a 5—Q 1

n<z hel x&F(q nz"' hz"'“f ol gzt F(i"‘g‘i‘%) hm1mey M hat7

Remark 2.1. If we assume the standard form of the Ratios Conjecture, we may
ignore the contribution from the second piece above. This is because the signs
of the functional equations essentially average to zero, and thus according to the
recipe there is no contribution from these terms. To see this, note the sign of the

functional equation is 7()/i*™¢'/2. We have
—1 1 —-1)—1
00 = X 2)+ P 2) i (2.8)

Thus, expanding the Gauss sum, we see it suffices to show sums such as
SES|

X(£z) exp(2miz/q) i
o q_2 Z Z PDE 9 (2.9)

XEF(q) x mod m

are small. We may extend the summation to include the principal character at a
cost of O(g~*/?) (as the sum over x is —1 for the principal character). We now
have a sum over all characters, with > 4, X(£z) = ¢—1if £z =1 mod ¢ and
0 otherwise. Thus we ﬁnd

exp(£27i/q) ¢ — 1
2q'/? qg—2

C = +0(q7*?); (2.10)
as this is of size ¢~ /2, it is essentially zero and thus, according to the Ratios recipe,
it should be ignored. We choose not to ignore these terms to provide a stronger
test of the Ratios Conjecture.

2.3. Executing the sum over F(¢q) and completing the sums. Returning to
(2.7), we want to pass the summation over y through everything to the product
of the expansion of 7(x) as a character sum and the x(nh) and x(h)x(m) terms
below (note, as explained in Remark 2.1, we may drop these terms if we assume
the standard Ratios Conjecture; we desire a stronger test and thus we will partially
analyze these terms). Unfortunately the Gamma factors and the i=%X) factor in
the sign of the functional equation depend on Y. Fortunately this dependence is
weak, as a(y) =0 if y(—1) =1 and —1 otherwise. To facilitate summing over the
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characters we introduce factors X(_;)H and X=b=t
- pu(h)x(nh)

Rrgplay) = D > D Trapitr

(=) +1\ 7)) T (3-2) & w(h)x(h)x(m

(A1) 0 L= 5 st

N (3+3%) m2"“h2T7

—+<M—2—1)TWﬂWi—

below, giving

Distributing and regrouping yields

R ZZ Z n2+ah2+’y

n<z h=1 xeF(q)

ré-g) r@- %)) X(=1)(x) u(h (m)

+ ; [e] [e] 1_q
(w(%w ri+9) 2 ZZ paTe
r(2-9) P(i—%)) 7(0) = p(B)x(h)x(m)

+ ; a o 1ia 1_ 3l
(w(%w iy X§(q)2qz+ 22 i

= S +8+8;s (2.12)

(where again only the first term is present if we assume the strong form of the
Ratios Conjecture).

The proof of Theorem 1.2 follows immediately from the above expansion and
Lemmas 2.2 and 2.5.

Lemma 2.2. The Ratios Conjecture’s recipe predicts

¢(L+ ¢(3+
S = —%—i—small or (q—l)—%—i—small; (2.13)

as we only need the derivative of Sy for our 1-level density investigations, it is
immaterial for the sake of this paper which is the correct prediction.

Proof. By Lemma 1.1, we have

ZX(T’)I—l—i—{q_l ifrEl.modq (2.14)

0 otherwise.
XEF(q)

According to the Ratios Conjecture, we should only keep the ‘diagonal’ (i.e., the
‘main’) term in the family sum. Unlike the other families investigated (the sym-
plectic family of quadratic characters in [Mil3] or the orthogonal families of cus-
pidal newforms in [Mil5, MilMo]), it is not immediately clear what the Ratios
Conjecture means by ‘diagonal’. Clearly we always have a contribution of -1 in
summing over the family; however, what do we do about the factor of ¢ — 17 This
is a large factor, but it occurs rarely, specifically only when r = 1 mod ¢? For now
we keep this term and analyze the consequences of keeping it below.
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We thus find that

81 = ZZ Z Iu2+ah2+'y

n<z h=1 xeF(q)

= (-1 Y, mmhm szmhm (2.15)

nh=1(q) n<zr h=
n<x

The second sum above is readily evaluated after we complete it by sending x — oc;
it is just® ¢(1/2 4 «)/C(1/2+ 7).

We must now analyze the first sum. While it is multiplied by the large factor
q — 1, it also has the condition nh = 1 mod ¢. This congruence greatly lessens the
contribution as we have n’s and h’s in arithmetic progression. Further, we haven’t
divided by the cardinality of the family (which is of size ¢). Finally, we have the
Mobius factor u(h) in the numerator. Thus it is reasonable to expect that the
part that depends on « and v will be small; in other words, the sum should be
well-approximated by the n = h = 1 term, which gives ¢ — 1. While this factor is
large (it leads to a term of size 1 when we divide by the cardinality of the family),
there is no dependence on « or y. As it is the derivative of Rz(y (a, ) that arises
in our computation of the 1-level density, this large term is actually harmless.

The Ratios Conjecture recipe states that, when executing the summation over
the family, only the ‘diagonal’ (i.e., the ‘main’) term should be kept. We can think
of two ways to interpret this: (1) the nh = 1 mod ¢ is not a ‘diagonal’ term, or
(2) the nh =1 mod ¢ terms contribute (¢ — 1) 4+ small. While these two interpre-
tations yield different values for Rz (o, ), they give the same contribution for
the derivative, which is all we care about. See also Remark 2.4 for more reasons
why the first sum may safely be ignored. O

Remark 2.3. The important point to note in evaluating S; is that, for the pur-
poses of differentiating, we have a factor of {(1/2 + «)/((1/2+ 7). There is no
g-dependence here; as we get to divide by the cardinality of the family, this term
contributes O(1/q) to the 1-level density.

Remark 2.4. Returning to the analysis of the first piece of Sy, note that n < x ~
/4 means that in each congruence restriction nh =1 mod g, there is at most one
n that works. In the special case of h = 1 mod ¢, this means n = 1. If n = 2 then
h > (¢+1)/2, and thus the first term in this h-arithmetic progression is large. In
particular, asn < x ~ /g we have h > ,/q for n > 2. All these arguments strongly
imply that this sum should be negligible (except perhaps for the n = h =1 term,
which is constant).

5We are of course completely ignoring convergence issues; however, under the Riemann Hy-
pothesis the h-sum converges for () > 0. The n-sum is initially finite, and should be replaced
with a finite Euler product approximation to the Riemann zeta function; letting z — oo gives
¢(1/2 + a).
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Before analyzing the remaining pieces of (2.12) (which are not present if we
assume the strong form of the Ratios Conjecture), it is convenient to set

r¢-9¢)  r
o = (Tl eny

2) ) (2.16)
+ %))
Lemma 2.5. We have

(¢ - 1)Gi(a)e(=1/q)  Gi(a) C(5—0)

W = s =

Sy, = 2q1/2+e N 2q1/2+a ¢ (% n 7) + small
_ (g=1)G (a)e(l/g) G (a) C(5—2)
S = 2q1/2ta N 2q1/2+e ¢ (% n 7) + small, (2.17)

where, stmilar to Lemma 2.2, depending on how we interpret the Ratios’ recipe
of keeping only the ‘main’ terms the first term in the expansion for Sy and Ss
above may or may not be present (for our purposes, this won’t matter as both are
O(q'/%%€) after differentiation and division by the cardinality of the family).

Proof. Essentially the only difference between the analysis of S and Sj is that Ss
has (effectively) x(—h) instead of x(h). We therefore just remark on the minor
changes needed to evaluate S, after evaluating Ss.

Let e(z) = exp(2miz). Using the expansion for the Gauss sum 7(y) (when we
expand it below we start the sum at a = 1 and not a = 0 as x(0) = 0) we find

COp(r)x(h)x(m)

§ O‘hz""yq%"'o‘

S3 =

m<Y h=1 xyeF(q)

G () & L x(ah)x(m)u(h)e (2)

= 2 Z Z ZZ q%-i—ocm%—och%—i-’y

_ a (h q—1 h)
- zqq%faG—(a) . qu):ﬂ 2q2+aZZZe<th

ah=m(q) h=1 m<Y a=1 m2
- K+ K. (2.18)
We analyze K first. The sum over a gives -1 (if we had a sum over all a modulo

q the exponential sum would vanish). As in the proof of Lemma 2.2, the m-sum
gives® ((1/2 — a) and the h-sum gives 1/¢((1/2+ ). Thus

G () (2 —a
Ky = — l(+a) (i ) . (2.19)

2¢2+ ¢ (3 +)
In analyzing K, we find ourselves in a similar situation as the one we encoun-
tered in Lemma 2.2. There is only a contribution when ah = m mod ¢, in which

case we find ( )
. q-— 1 € % ,U(h)
Kl - %%ﬁG_(a) Z m. (220)

ah=m(q)

6As always, we ignore all convergence issues in replacing a sum with an Euler product.
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For similar reasons, we expect this piece to be small. We have enormous oscillation
in the numerator, we have a congruence ah = m mod g which drastically reduces
the number of summands, and the piece is multiplied by a factor of the order ¢*/>=,
which when divided by the family’s cardinality and differentiated will give a piece
on the order of ¢~/?*¢. We thus don’t expect a contribution to the derivative of
Rr(g(a,y) from this piece. However, if we do want to attempt to analyze this
term’s contributions, arguing in a similar manner as in Lemma 2.2 and Remark
2.4 gives that the ‘main’ component of this sum is probably froma =m =h =1,
which gives 2(]‘{/;21“1 G_(a)e(1/q).

For S,, having x(—h) instead of x(h) now leads to a = —1 and h = m = 1 for
the main term, giving

~ (g 1DGi(a)e(=1/q)  Gi(@) ¢(3—q)
Sy = 2q1/2+a 2q1/2+a ¢ (% + 7) : (2.21)
0

2.4. Differentiation and the contour integral. We follow [CS, Mil5] to deter-
mine the Ratios Conjecture’s prediction for the 1-level density. The first step is
to compute the derivative of Rz (a, 7).

Lemma 2.6. Let Gi(«) be as in (2.16). We have

ORF ()
[oJe! e
_ 0= 1[GL0)0 Gl GV G ()
- 4 [ - (~1/q) + o (1/g)
_ 1 (G +G() (5 —7) +(G+(N +G-(r) ¢ (5 —7) ¢
2qC (3 +7) g
(G +G_(r)C(3—r)d !
q2r
{5+ 1/24e
Ctr) + 0 (¢"*), (2.22)

where the bracketed quantities are present or not depending on how we interpret
what is a ‘main’ term; as the contribution from these terms will be O(q~Y/2%€), it
1s immaterial whether or not we include them.

Proof. The proof follows from a straightforward differentiation of (1.14). O

Remark 2.7. Note there is no g-dependence in G4 («), and thus its derivatives
are independent of q.

We now prove Theorem 1.3. Recall it was
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Theorem 1.3. Denote the 1-level density for F(q) (the family of non-principal
Dirichlet characters modulo a pm’me q) by

Dirlé) == —5 3 > o(nms). e

XEF(q)

L(1/2+1’yX x)=0

with ¢ an even Schwartz function whose Fourier transform has compact support.
The Ratios Conjecture’s prediction for the 1-level density of the family of non-

principal Dirichlet characters modulo q is
LA |
2 log £
Xef(q T

+ 0 (q_1/2+6) : (2.24)

Dl,F(q) (¢)

Proof. As the argument is essentially the same as in [CS, Mil5], we merely highlight
the proof. We first compute the unscaled 1-level density with g an even Schwartz

function:
Sirg(9) = q_2 > Z g (%) - (2.25)
XEF(q) L(1/2+1~,X,X):o
Let c € ( + logq’ 4) thus
1 1
ot~ 3 5 ) )
! q— 2 XEF(q 21 (¢) 1—c) S, X 2
= Sl,c;]—'(q)( ) + 5171_0;]:((1) (g) (226)

We argue as in §3 of [CS] or §3 of [Mil5]. We first analyze the integral on the line
R(s) = ¢. By GRH and the rapid decay of g, for large ¢ the integrand is small.
We use the Ratios Conjecture (Lemma 2.6 with r = ¢ — 1 + it) to replace the
> L'(s,x)/L(s, x) term when ¢ is small. We may then extend the integral to
all of ¢ because of the rapid decay of g. As the integrand is regular at r = 0 we
can move the path of integration to ¢ = 1/2. The contribution from the integral
on the c-line is now readily bounded, as ORr(q)/0a is just the contribution
a=vy=r
from ¢'(1/2 + 7r)/C(1/2 + ) + O(q"/**). As we divide by ¢ — 2, the big-Oh
term is negligible. Note that the ¢’/( term is independent of ¢, and thus gives a
contribution of size O(1/q) when we divide by the family’s cardinality.
We now study Si1-c,7(g)(9):

Sl,l—c;]:(q) (g)

_ qi—2 2__7T1Z /OO_OO g((ll:((ccig));:;g (—i (% - c) - t) (—idt). (2.27)

XEF(q)

We use (1.10), a consequence of the functional equation, with s = ¢+ it. We get
another > L'(c +it, x)/L(c + it, x), which does not contribute by Lemma 2.6.
We again shift contours to ¢ = 1/2. We are left with the integral against log(q/m)
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and the two Gamma factors, which may be combined as ¢ is even when ¢ = 1/2.
We are left with

q 1 alx)  mir Core
SLl—c;]—'(fI) = _/ [ —+ = (Z + N + log%)} g(t)dt + O (q 1/2+ ) )
(2.28)

In investigating zeros near the central point, it is convenient to renormalize
them by the logarithm of the analytic conductor. Let g(t) = ¢ (“Og(q/ T ) A

o(2mE/ log Z). The (scaled)

straightforward computation shows that g(§) = log(q 75

1-level density for the family F(q) is therefore

1
Dirgir(9) = — Z Z ¢<%< 02g7T ) = Surgle)  (2:29)

XE]:( ) L1 2 iy 0=0

(where g(t) = ¢ (%%) as before). We replace g(t) with ¢(tlog(q/m)/27), and
then change variables by letting 7 = tlog(q/m) /27 and we find

1 o0 g I [/1 a(yx T
Dl,]—'(q);R(¢) = log q Z / ¢(7) |}Og ; + F (Z T % + log g):| dr
T xeF(q) Y T "
+ O( ‘1/2“)
_ + a(x) n T dr
2 log £
XE]—' T
L0 (q_1/2+e) ‘ (2.30)

U

3. NUMBER THEORY

We prove Theorem 1.4. The first step is the explicit formula for F(q), the family
of non-principal, primitive characters to a prime modulus ¢ (remember there are
q — 2 such characters). The calculations below are similar to those in [HR, Mil6],
the primary difference being that here we are interested in computing the error
terms down to square-root cancelation, whereas in these papers the purpose was
to compute just the main term.

Let ¢ be an even Schwartz function whose Fourier transform has compact sup-
port in (—o,0). The explicit formula (see [Mil3, RS]) gives the following for the
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1-level density for the family:
log £
1 X Yo

xe]" 2
g I'(1 alx) mit
log=4+—=|-+—+—]| d
log / a4 [OgW+F<4+ 2 +log% !

XE]—'

k1 1 k
e Y Y e g ey, B.1)

xeF(q ) k=1 p

where

a(x) = {0 Pt (3.2)

( log £ )
Xe]—' Y
o~ /1 a(x) mir
- 30+ g [ 00 2[5 (305 )]

1 1 k
log 59 Z w k/fgp (ff)ggp ) (3:3)

p k=1xeF(q

This simplifies to

As the integral against the IV /T" piece directly matches with the prediction from
the Ratios Conjecture, to prove Theorem 1.4 it suffices to study the triple sum
piece. We do this in the following lemma.

Lemma 3.1. Let supp(¢) C (—0,0) C (—2,2). For any € > 0 we have

x(p 10gp logp"\ _ ) e ihe
log ZZZ o (bg%)—()(q ) (34

p k=1xeF(q

In particular, these terms do not contribute for o < 2, and contribute at most at
the level of square-root cancelation for o < 1.

Proof. Let

51;k(P) =

{1 if p* =1 mod ¢ (3.5)

0 otherwise.

By the orthogonality relations for Dirichlet characters (Lemma 1.1), we have

o oxp)f = -1+ > x0) = 1+ (g—Dow(p). (3.6)

XEF(q) x mod ¢q



18 GOES, JACKSON, MILLER, MONTAGUE, NINSUWAN, PECKNER, AND PHAM

Thus

. X(p)* logp~ (log p"
S = e Y 3 Mg (e
P k=1 x€F(q) &

- S0 (1) & o

—2) 1 1
(9= 2)logg 8%/ eFla)

o log(q/7)
q°
~ Togp

33 1",55 S

< 1
10845 o x(a)
olog(q/m)
" logp
< —Z 2 7 ZX
p 2
olog(q/m)
logp
= —Z Z k/g ~1+ (¢ = 1)dux(p)|
p 2 =
o log(g/m) o log(q/m)
1 log 2 log 2
S 0BT S o
kzlmodq
= Sl—|—52, (37)

where in the above sums we increased their values by increasing the upper bounds
of the k-sums.
We bound S; first. We have

St < _ZZ k/2

p2k1

—1/2

= ‘27_1/2

o

1< 1
ke
1 /7 1 1 .
SO 1/20[1' < —-q2. (3.8)
q.Ja2 q

Thus S; < ¢%~!, which is negligible for supp(a) C (—2,2), and gives an error of

size one over the square-root of the family’s cardinality for support up to (—1,1).”
The analysis of S, depends crucially on when p* = 1 mod ¢q. We find

7As we made numerous approximations above, it is worth noting that S7 will be at least of
this size due to the contribution from the £ = 1 piece. To obtain better results would require us
to exploit oscillation, which we cannot do as we are taking the absolute value of the character
sums.
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o log(a/) .
log 2 q 1
S2 = Z kT2
k=1 p=2
pkzl mod q
q° e Ulig(q2/7r) “
1 1 = 1
< ) e > o e
p=2 p=2 k=3 p=2
p=1 mod g p2£1 mod q
= Bl + BQ + Bg. (39)

For the first sum above, note that since p is a prime congruent to 1 modulo ¢,

~

we may write p = £q+ 1 for £ > 1, and supp(¢) C (—0,0) restricts us to £ < ¢° L.
Thus the first sum in (3.9) is bounded by

o—1

q
1
Bl < ) v
~ (gt +1)"
o—1
1 ‘— 1
< Elan
/=1
1 o—1 a_
< W@Z < gz (3.10)

The second sum, By, is handled similarly. As p? = 1 mod ¢ and $ is supported
in (—o,0), this means either p = fqg — 1 or g+ 1 for £ > 1. We find

1
B, <« Y - <« 24, (3.11)

note this term is negligible for any finite support.

The proof is completed by bounding Bs. Note for each k, p* = 1 mod ¢ is the
union of at most k arithmetic progressions (with k£ < logq), and the smallest p
can be is ¢*/* (as anything smaller has its £ power less than ¢).> We may replace
the prime sum with a sum over £ > 0 of 1/(¢q + ¢'/*)*/? (as in the previous cases,

8The actual smallest p can be significantly larger, as happened in the k = 2 case where the
smallest p could be is ¢ — 1, much larger than ,/q.
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it is a finite sum due to the compact support of 5) Thus

Ultig(qz/ﬂ) _
og
log q
By < Z Z 1/kYk/2
k=3 (bg +q [CEXEORE
20 log q lOg q q° ! 1
< Z 2 T Z 1/k\k/2
= | g7 = (lg+ g R
log? ¢ log q log2 q
< q1/2 PR Z gs/z g2 (3.12)
which again is negligible for all support. U

Remark 3.2. We can improve the error term arising from B3 beyond square-root
cancelation by assuming more about ¢. For example, if ¢ and (¢ —1)/2 are primes
((g — 1)/2 is called a Sophie Germain prime), then there are no primes p with
p¥ = 1 mod ¢ that contribute with our support restrictions for k& > 3. We do
not pursue such an analysis here for two reasons: (1) we don’t expect to be able
to get errors better than square-root cancelation elsewhere; (2) while standard
conjectures imply the infinitude of Germain primes, there are no unconditional
proofs of the existence of infinitely many such ¢, though the Circle Method predicts
there should be about 2Cyx/log” Sophie Germain primes at most z, where Cy ~
.66016 is the twin prime constant; see [MT-B] for the calculation.

Remark 3.3. As mentioned in the introduction, assuming Conjectures 1.5 or
1.6 allow us to extend the support in the number theory computations beyond
(—2,2). This is done in [Mil6], and the results agree with the Ratios Conjecture’s
prediction.

REFERENCES

[BBLM] E. Bogomolny, O. Bohigas, P. Leboeuf and A. G. Monastra, On the spacing distribu-
tion of the Riemann zeros: corrections to the asymptotic result, Journal of Physics
A: Mathematical and General 39 (2006), no. 34, 10743-10754.

[Con] J. B. Conrey, L-Functions and random matrices. Pages 331-352 in Mathematics
unlimited — 2001 and Beyond, Springer-Verlag, Berlin, 2001.

[CFKRS] B. Conrey, D. Farmer, P. Keating, M. Rubinstein and N. Snaith, Integral moments
of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33-104.

[CFZ1] J. B. Conrey, D. W. Farmer and M. R. Zirnbauer, Autocorrelation of ratios of L-
functions, Commun. Number Theory Phys. 2 (2008), no. 3, 593—-636.

[CFZ2] J. B. Conrey, D. W. Farmer and M. R. Zirnbauer, Howe pairs, supersymmetry,
and ratios of random characteristic polynomials for the classical compact groups,
preprint. http://arxiv.org/abs/math-ph/0511024

[CT) J. B. Conrey and H. Iwaniec, Spacing of Zeros of Hecke L-Functions and the Class
Number Problem, Acta Arith. 103 (2002) no. 3, 259-312.

[CS] J. B. Conrey and N. C. Snaith, Applications of the L-functions Ratios Conjecture,
Proc. Lon. Math. Soc. 93 (2007), no 3, 594-646.

[Da] H. Davenport, Multiplicative Number Theory, 2nd edition, Graduate Texts in Math-

ematics 74, Springer-Verlag, New York, 1980, revised by H. Montgomery.



[DM1]

[DM2]

[Gao]
[Go

[GHK]

A UNITARY TEST OF THE RATIOS CONJECTURE 21

E. Duenez and S. J. Miller, The low lying zeros of a GL(4) and a GL(6) family of
L-functions, Compositio Mathematica 142 (2006), no. 6, 1403-1425.

E. Duenez and S. J. Miller, The effect of convolving families of L-functions on
the underlying group symmetries, Proceedings of the London Mathematical Society
(2009); doi: 10.1112/plms/pdp018.

F. W. K. Firk and S. J. Miller, Nuclei, Primes and the Random Matrixz Connection,
preprint.

E. Fouvry and H. Iwaniec, Low-lying zeros of dihedral L-functions, Duke Math. J.
116 (2003), no. 2, 189-217.

P. Gao, N-level density of the low-lying zeros of quadratic Dirichlet L-functions,
Ph. D thesis, University of Michigan, 2005.

D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and
Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663.

S. M. Gonek, C. P. Hughes and J. P. Keating, A Hybrid Euler-Hadamard product
formula for the Riemann zeta function, Duke Math. J. 136 (2007) 507-549.

B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math
84 (1986), 225-320.

A. Giiloglu, Low-Lying Zeros of Symmetric Power L-Functions, Internat. Math. Res.
Notices 2005, no. 9, 517-550.

D. Hejhal, On the triple correlation of zeros of the zeta function, Internat. Math.
Res. Notices 1994, no. 7, 294-302.

C. Hughes and S. J. Miller, Low-lying zeros of L-functions with orthogonal symmtry,
Duke Math. J., 136 (2007), no. 1, 115-172.

C. Hughes and Z. Rudnick, Linear Statistics of Low-Lying Zeros of L-functions,
Quart. J. Math. Oxford 54 (2003), 309-333.

D. K. Huynh, J. P. Keating and N. C. Snaith, Lower order terms for the one-level
density of elliptic curve L-functions, to appear in the Journal of Number Theory.
D. K. Huynh and S. J. Miller, An elliptic curve family test of the Ratios Conjecture,
preprint.

H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publica-
tions, Vol. textbf53, AMS, Providence, RI, 2004.

H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of L-functions, Inst.
Hautes tudes Sci. Publ. Math. 91, 2000, 55-131.

N. Katz and P. Sarnak, Random Matrices, Frobenius Figenvalues and Monodromy,
AMS Colloquium Publications 45, AMS, Providence, 1999.

N. Katz and P. Sarnak, Zeros of zeta functions and symmetries, Bull. AMS 36, 1999,
1—26.

J. P. Keating and N. C. Snaith, Random matriz theory and ((1/2 + it), Comm.
Math. Phys. 214 (2000), no. 1, 57-89.

J. P. Keating and N. C. Snaith, Random matriz theory and L-functions at s = 1/2,
Comm. Math. Phys. 214 (2000), no. 1, 91-110.

J. P. Keating and N. C. Snaith, Random matrices and L-functions, Random matrix
theory, J. Phys. A 36 (2003), no. 12, 2859-288]1.

M. Mehta, Random Matrices, 2nd edition, Academic Press, Boston, 1991.

S. J. Miller, 1- and 2-level densities for families of elliptic curves: evidence for the
underlying group symmetries, Compositio Mathematica 104 (2004), 952-992.

S. J. Miller, Variation in the number of points on elliptic curves and applications to
excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111-120.

S. J. Miller, A symplectic test of the L-Functions Ratios Conjecture, Int Math Res
Notices (2008) Vol. 2008, article ID rnm146, 36 pages, doi:10.1093/imrn/rnm146.
S. J. Miller, Lower order terms in the 1-level density for families of holomorphic
cuspidal newforms, Acta Arithmetica 137 (2009), 51-98.



22 GOES, JACKSON, MILLER, MONTAGUE, NINSUWAN, PECKNER, AND PHAM

[Mil5]

[Mil6]
[MilMo]

[MilPe]
[MT-B]

[Mon1]

[Mon2]

(0d1]

(0d2]

[Yol]

[Yo2]

S. J. Miller, An orthogonal test of the L-Functions Ratios Conjecture, Proceedings
of the London Mathematical Society 2009, doi:10.1112/plms/pdp009.

S. J. Miller, Extending the support for families of Dirichlet characters, preprint.

S. J. Miller and D. Montague, An Orthogonal Test of the L-functions Ratios Con-
jecture, II, preprint.

S. J. Miller and R. Peckner, Low-lying zeros of number field L-functions, preprint.
S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory, Prince-
ton University Press, Princeton, NJ, 2006..

H. Montgomery, Prime’s in arithmetic progression, Michigan Math. J. 17 (1970),
33-39.

H. Montgomery, The pair correlation of zeros of the zeta function, Analytic Number
Theory, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, 1973, 181 —
193.

A. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math.
Comp. 48 (1987), no. 177, 273-308.

A. Odlyzko, The 10%?-nd zero of the Riemann zeta function, Proc. Conference
on Dynamical, Spectral and Arithmetic Zeta-Functions, M. van Frankenhuysen
and M. L. Lapidus, eds., Amer. Math. Soc., Contemporary Math. series, 2001,
http://www.research.att.com/~amo/doc/zeta.html.

A. E. Ozliik and C. Snyder, Small zeros of quadratic L-functions, Bull. Austral.
Math. Soc. 47 (1993), no. 2, 307-319.

A. E. Ozliik and C. Snyder, On the distribution of the nontrivial zeros of quadratic
L-functions close to the real azis, Acta Arith. 91 (1999), no. 3, 209-228.

G. Ricotta and E. Royer, Statistics for low-lying zeros of symmetric power L-
functions in the level aspect, preprint. http://arxiv.org/abs/math/0703760

E. Royer, Petits zéros de fonctions L de formes modulaires, Acta Arith. 99 (2001),
no. 2, 147-172.

M. Rubinstein, Low-lying zeros of L—functions and random matrixz theory, Duke
Math. J. 109, (2001), 147-181.

M. Rubinstein, Computational methods and experiments in analytic number the-
ory. Pages 407-483 in Recent Perspectives in Random Matrix Theory and Number
Theory, ed. F. Mezzadri and N. C. Snaith editors, 2005.

Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matriz theory,
Duke Math. J. 81, 1996, 269 — 322.

J. Stopple, The quadratic character experiment, to appear in Experimental Mathe-
matics.

M. Young, Lower-order terms of the 1-level density of families of elliptic curves,
Internat. Math. Res. Notices 2005, no. 10, 587-633.

M. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19
(2006), no. 1, 205-250.

E-mail address: johnwgoes@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL

60607

FE-mail address: Steven.R.Jackson@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN,

MA 01267

F-mail address: Steven.J.Miller@williams.edu



A UNITARY TEST OF THE RATIOS CONJECTURE 23

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN,
MA 01267

E-mail address: davmont@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109
E-mail address: Kesinee Ninsuwan@brown.edu

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RI 02912
E-mail address: rpeckner@berkeley.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720
E-mail address: tvpl@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN,
MA 01267



