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ABSTRACT. Zeckendorf’s theorem states that every positive integer can be written uniquely as a sum
of non-consecutive Fibonacci numbers Fn, with initial terms F1 = 1, F2 = 2. Previous work proved
that as n → ∞ the distribution of the number of summands in the Zeckendorf decompositions of
m ∈ [Fn, Fn+1), appropriately normalized, converges to the standard normal. The proofs crucially
used the fact that all integers in [Fn, Fn+1) share the same potential summands, and hold for more
general positive linear recurrence sequences {Gn}.

We generalize these results to subintervals of [Gn, Gn+1) as n → ∞ for certain sequences. The
analysis is significantly more involved here as different integers have different sets of potential sum-
mands. Explicitly, fix an integer sequence α(n) → ∞. As n → ∞, for almost all m ∈ [Gn, Gn+1)
the distribution of the number of summands in the generalized Zeckendorf decompositions of integers
in the subintervals [m,m + Gα(n)), appropriately normalized, converges to the standard normal. The
proof follows by showing that, with probability tending to 1, m has at least one appropriately located
large gap between indices in its decomposition. We then use a correspondence between this interval
and [0, Gα(n)) to obtain the result, since the summands are known to have Gaussian behavior in the
latter interval.

1. INTRODUCTION

1.1. Background. Let {Fn} denote the Fibonacci numbers, normalized so that F1 = 1, F2 = 2, and
Fn+1 = Fn + Fn−1. One of the more interesting, equivalent definitions of the Fibonacci numbers is
that they are the unique sequence of positive integers such that every positive number has a unique
legal decomposition as a sum of non-adjacent terms.1 This equivalence is known as Zeckendorf’s
theorem [29]. Once we know a decomposition exists, a natural question to ask is how the number of
summands varies. The first result along these lines is due to Lekkerkerker [20], who proved that the
average number of summands needed in the Zeckendorf decomposition of an integerm ∈ [Fn, Fn+1)

is n
ϕ2+1

+ O(1), where ϕ = 1+
√
5

2
, the golden mean, is the largest root of the Fibonacci recurrence.

More is true, and many authors have shown that the distribution of summands of m ∈ [Fn, Fn+1)
converges to a Gaussian. These results have been extended to a variety of other sequences. There are
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1The requirement of uniqueness of decomposition forces us to start the sequence this way.
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several different methods of proof, from continued fractions to combinatorial perspectives to Markov
processes; see [4, 9, 11, 12, 13, 14, 15, 17, 21, 18, 19, 24, 25, 27, 28] for a sampling of results and
methods along these lines, [1, 6, 7, 8, 10, 11] for generalizations to other types of representations,
and [2, 5] for related questions on the distribution of gaps between summands.

The analysis in much of the previous work was carried out for m ∈ [Fn, Fn+1) (or, for more
general sequences {Gn}, for m ∈ [Gn, Gn+1)). The advantage of such a localization2 is that each
m has the same candidate set of summands and is of roughly the same size. The purpose of this
work is to explore some of the above questions on a significantly smaller scale and determine when
and how often we obtain Gaussian behavior. Note that we cannot expect such behavior to hold for
all sub-intervals of [Fn, Fn+1), even if we require the size to grow with n. To see this, consider the
interval

[F2n + Fn + Fn−2 + · · ·+ Fbn1/4c, F2n + Fn+1 + Fbn1/4c). (1.1)
The integers in the above interval that are less than F2n + Fn+1 have on the order of n/2 summands,
while those that are larger have at most on the order of n1/4 summands. Thus the behavior cannot be
Gaussian.3

In [3], we proved Gaussian behavior for the number of summands in the Zeckendorf decomposi-
tion for almost all small subintervals of [Fn, Fn+1); in this work we generalize to other sequences.
Henceforth {Gn} will denote a positive linear recurrence sequence.

Definition 1.1. A sequence {Gn}∞n=1 of positive integers is a Positive Linear Recurrence Sequence
(PLRS) if the following properties hold.

(1) Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Gn+1 = c1Gn + · · ·+ cLGn+1−L, (1.2)

with L, c1 and cL positive.
(2) Initial conditions: G1 = 1, and for 1 ≤ n < L we have

Gn+1 = c1Gn + c2Gn−1 + · · ·+ cnG1 + 1. (1.3)

A decomposition
∑m

i=1 aiGm+1−i of a positive integer N (and the sequence {ai}mi=1) is legal if
a1 > 0, the other ai ≥ 0, and one of the following two conditions holds:

• Condition 1: We have m < L and ai = ci for 1 ≤ i ≤ m.
• Condition 2: There exists s ∈ {0, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (1.4)

as+1, . . . , as+` = 0 for some ` ≥ 0, and {bi}m−s−`i=1 (with bi = as+`+i) is legal.
If
∑m

i=1 aiGm+1−i is a legal decomposition of N , we define the number of summands (of this
decomposition of N ) to be a1 + · · ·+ am.

Informally, a legal decomposition is one where we cannot use the recurrence relation to replace
a linear combination of summands with another summand, and the coefficient of each summand is
appropriately bounded. For example, if Gn+1 = 2Gn+3Gn−1+Gn−2, then G5+2G4+3G3+G1 is

2As the sequence {Fn} is exponentially growing, it is easy to pass from m in this interval to m ∈ [0, Fn).
3Though in this situation it would be interesting to investigate separately the behavior on both sides.
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legal, while G5+2G4+3G3+G2 is not (we can replace 2G4+3G3+G2 withG5), nor is 7G5+2G2

(as the coefficient of G5 is too large). Note the Fibonacci numbers correspond to the special case of
L = 2 and c1 = c2 = 1.

Earlier work (see, for example, [24, 25]) proved that if {Gn} is a PLRS then we again have unique
legal decompositions and Gaussian behavior for the number of summands from m ∈ [Gn, Gn+1).

1.2. Main Result.

Fix an increasing positive integer valued function α(n) with

lim
n→∞

α(n) = lim
n→∞

(n− α(n)) = ∞. (1.5)

Our main result, given in the following theorem, extends the Gaussian behavior of the number
of summands in Zeckendorf decompositions to smaller intervals. Note that requiring m to be in
[Gn, Gn+1) is not a significant restriction because given any m, there is always an n such that this
holds.

Theorem 1.2 (Gaussianity on small intervals). Let {Gn} be a positive linear recurrence sequence
with recurrence

Gn+1 = c1Gn + c2Gn−1 + · · ·+ cLGn+1−L, (1.6)

where we additionally assume c1 ≥ c2 ≥ · · · ≥ cL ≥ 1. Choose α(n) satisfying (1.5). The
distribution of the number of summands in the decompositions of integers in the interval [m,m +
Gα(n)) converges to a Gaussian distribution when appropriately normalized for almost all m ∈
[Gn, Gn+1).

In §2 we derive some useful properties of Zeckendorf decompositions, which we use in §3 to
prove Theorem 1.2. The reason for our extra condition on the ci’s surfaces in Lemma 2.4, where
this constraint forces a truncated legal decomposition to remain legal, though we conjecture that
Theorem 1.2 holds more generally. Recently the fifth named author and some of his colleagues in
[8] developed a new method which bypasses similar technical difficulties in related problems, and
a future project is to see if those ideas would allow a lessening of some of the conditions for these
problems.

2. PRELIMINARIES

In order to prove Theorem 1.2, we establish a correspondence between the decompositions of
integers in the interval [m,m + Gα(n)) and those in [0, Gα(n)). Throughout this paper by [a, b] we
mean the integers in from a to b: {N ∈ N : a ≤ N ≤ b}. We first introduce some notation. Fix a
non-decreasing positive function q(n), taking on even values, such that

q(n) < n− α(n), q(n) = o
(√

α(n)
)
, lim

n→∞
q(n) = ∞; (2.1)

the reason for the second condition is to allow us to appeal to known convergence results for a related
system, as q(n) will be significantly less than the standard deviation in that setting.
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For m ∈ [Gn, Gn+1) with decomposition

m =
n∑
j=1

ajGj, (2.2)

define

C1(m) := (a1, a2, . . . , aα(n)),

C2(m) := (aα(n)+1, . . . , aα(n)+q(n)),

C3(m) := (aα(n)+q(n)+1, . . . , an). (2.3)

Let s(m) be the number of summands in the decomposition of m. That is, let

s(m) :=
n∑
j=1

aj. (2.4)

Similarly, let s1(m), s2(m), and s3(m) be the number of summands contributed by C1(m), C2(m),
and C3(m) respectively.

Lemma 2.1. Let x ∈ [m,m+Gα(n)). If there are at least 3L consecutive 0’s in C2(m), then C3(x)
is constant, and hence s3(x) is constant as well.

Proof. Assume there are at least 3L consecutive 0’s inC2(m). Then for some k ∈ [α(n)+3L, α(n)+
q(n)), we have ak−3L+1 = ak−3L+2 = · · · = ak = 0. Letm′ denote the integer obtained by truncating
the decomposition of m at ak−3LGk−3L. Then m′ < Gk−3L+1. Since Gα(n) ≤ Gk−3L, it follows that
for any h < Gα(n) we have

m′ + h < Gk−3L+1 +Gk−3L

≤ c1Gk−3L+1 + c2Gk−3L + · · ·+ cLGk−2L+2 = Gk−3L+2, (2.5)

and thus the decomposition of m′ + h has largest summand no greater than Gk−3L+2. Then since
3L − 2 ≥ L, the Zeckendorf decomposition of m + h is obtained simply by concatenating the
decompositions for m−m′ and m′ + h. Hence C3(m+ h) = C3(m−m′) = C3(m). �

With this lemma, we see that the distribution of the number of summands involved in the decom-
position of x ∈ [m,m + Gα(n)) depends (up to a shift) only on what happens in C1(x) and C2(x),
provided that there is a gap between summands of length at least 3L somewhere in C2(m). In light
of this stipulation, we will show the following items in order to prove our main theorem.

• With high probability, m is of the desired form (i.e., there is a gap between summands of
length at least 3L in C2(m)).
• When m is of the desired form, the distribution of the number of summands involved in
C1(x) for x ∈ [m,m+Gα(n)) converges to Gaussian when appropriately normalized.
• The summands involved in C2(x) produce a negligible error term (i.e., there are significantly

fewer summands from C2(x) than there are from C1(m)).
We address the first point with the following lemma.

Lemma 2.2. As n→∞, with probability 1 + o(1) there are at least 3L consecutive 0’s in C2(m) if
m is chosen uniformly at random from the integers in [Gn, Gn+1).
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In [5], Bower, Insoft, Li, Miller and Tosteson analyze the largest gap between summands in legal
decompositions, assuming only that the ci’s are non-negative (a less restrictive condition than we
have). They prove that for m ∈ [Gn, Gn+1) as n → ∞ with probability 1 + o(1) there is a gap of
length C log n for some constant C > 0. This almost proves what we need, the only difficulty is
we need the gap to be in C2(m). Instead of modifying their technical approach, in Appendix A we
derive a difference equation which proves as n → ∞ with probability 1 we have a gap of any fixed
finite size; while we prove that such a gap exists somewhere, the argument there is trivially modified
to apply to just C2(m) (as if we have no summands in that region then the result is trivially true!),
and completes the proof of the above lemma.

Until this point we have not used the condition that c1 ≥ c2 ≥ · · · ≥ cL. The following lemma
illustrates the necessity of this condition.

Lemma 2.3. If c1 ≥ c2 ≥ · · · ≥ cL, then
n∑
j=1

ajGn+1−j is legal ⇒
n∑
j=2

ajGn+1−j is legal. (2.6)

Proof. If the first sum is legal, then for some s we have a1 = c1, a2 = c2, · · · , as < cs. Then we
necessarily have a2 ≤ c1, a3 ≤ c2, · · · a′s < cs′−1 for some s′ ≤ s. We can repeat this process,
noting that a block ends at as. Therefore, the decomposition is legal. �

Corollary 2.4. If c1 ≥ c2 ≥ · · · ≥ cL, then legal decompositions are chosen by the greedy algorithm.

Proof. Suppose not, so that
∑n

j=1 ajGn+1−j is a legal decomposition with
∑n

j=k+1 ajGn+1−j ≥
Gn+1−k. By an iterated application of the previous lemma, the above sum is a legal decomposition,
and it is known that legal decompositions of integers in [Gn, Gn+1) all have largest term Gn, which
gives a contradiction. �

Assuming m is of the desired form (meaning there is a gap of length at least 3L in its decomposi-
tion), we now consider the distribution of s(x) for x ∈ [m,m+Gα(n)).

Lemma 2.5. If m has at least 3L consecutive 0’s in C2(m), then for all x ∈ [m,m+Gα(n)), we have

0 ≤ s(x)− s3(m)− s(t(x)) < Kq(n), (2.7)

where K := maxj cj , and t(x) denotes the bijection

t : [m,m+Gα(n))→ [0, Gα(n)) (2.8)

given by

t(m+ h) :=

{
m0 + h, if m0 + h < Gα(n),

m0 + h−Gα(n), if m0 + h ≥ Gα(n),
(2.9)

where m0 is the sum of the terms in the decomposition of m truncated at aα(n)−1Gα(n)−1.

Proof. First, note that the number of summands in the decomposition of x with indices i ∈ [α(n),
α(n) + q(n)) must be less than Kq(n). Next, we verify that t from above in fact is a bijection, for
which it suffices to show that it is an injection. Note that if t(m + h1) = t(m + h2), then since
|h1 − h2| < Gα(n), we must have m0 + h1 = m0 + h2, so we may conclude that t is injective, hence
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bijective since the domain and codomain are finite. For any x ∈ [m,m+Gα(n)), the decompositions
of t(x) and x agree for the terms with index less than α(n) by virtue of Corollary 2.4. Furthermore,
the decompositions of x and m agree for terms with index greater than α(n) + q(n). Therefore, the
number of summands in the decomposition of x with indices i ∈ [α(n), α(n) + q(n)) is equal to
s(x)− s3(m)− s(t(x)). Combining this with our initial observation, the lemma now follows. �

As a result of this lemma, the distribution of s(x) over the integers in [m,m + Gα) is a shift of
its distribution over [0, Gα(n)), up to an error bounded by q(n). With this fact, we are now ready to
prove the main theorem.

3. PROOF OF THEOREM 1.2

We now prove our main result. We assume below that {Gn} is a PLRS with c1 ≥ c2 ≥ · · · ≥ cL ≥
1, that α(n) obeys (1.5), and that q(n) obeys (2.1).

Proof of Theorem 1.2. For a fixed m ∈ [Gn, Gn+1) with at least 3L consecutive 0’s somewhere in
C2(m) (which is true for almost all m as n→∞), we define random variables Xn and Yn by

Xn := s(H1), Yn := s(H2), (3.1)

where H1 is chosen uniformly at random from [m,m+Gα(n)) and H2 = H1−m (and thus is chosen
uniformly at random from [0, Gα(n))). Let

X ′n :=
1

σx(n)
(Xn − E[Xn]), (3.2)

and

Y ′n :=
1

σy(n)
(Yn − E[Yn]), (3.3)

where σx(n) and σy(n) are the standard deviations of Xn and Yn, respectively, so that Xn and Yn
are normalized with mean 0 and variance 1. It is known that Y ′n converges to a Gaussian distribution
with mean and variance of order α(n) (see, for example, [24]), and we claim that X ′n converges to a
Gaussian distribution as well.

Note that Xn = Yn + C + e(n), where C is a constant and e(n) is an error term with |e(n)| <
Kq(n). From the assumption that q(n) = o

(√
α(n)

)
we have q(n)/σy(n) → 0. Therefore, we

have

Var[Xn] = Var[Yn] + Var[e(n)] + 2Cov[Yn, e(n)]

≤ Var[Yn] + 4K2q(n)2 + 2E[(Yn − E[Yn])(e(n)− E[e(n)])]
≤ Var[Yn] + 4K2q(n)2 + 2E[|Yn − E[Yn]| · |e(n)− E[e(n)]|]
≤ Var[Yn] + 4K2q(n)2 + 4Kq(n)E[|Yn − E[Yn]|]
≤ Var[Yn] + 4K2q(n)2 + 4Kq(n)E[(Yn − E[Yn])2]1/2

= Var[Yn] + 4K2q(n)2 + 4Kq(n) + 4Kq(n)σy(n)

= Var[Yn](1 + o(1)). (3.4)
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Hence σx(n) = σy(n)(1 + o(1)). Note that |Xn − Yn − C| < Kq(n), so |X ′nσx(n) − Y ′nσy(n)| =
O(q(n)), and thus

|X ′n − Y ′n| =
∣∣∣∣X ′nσx(n)σy(n)

− Y ′n
∣∣∣∣ (1 + o(1)) = O

(
q(n)

σy(n)

)
= o(1). (3.5)

Let An and Bn be the cumulative distribution functions for X ′n and Y ′n, respectively. By Lemma
2.5 combined with the above bound on |X ′n − Y ′n|, we have

Bn(x− o(1)) ≤ An(x) ≤ Bn(1 + o(1)). (3.6)

Since {Bn}n converges pointwise to the cumulative distribution function for a Gaussian distribu-
tion, say B(x), and it is easy to show that if βn → 0, then Bn(x+βn)→ B(x) since B is continuous
and Bn is monotone non-decreasing, it follows that {An}n also converges pointwise to B(x). This
completes the proof. �

4. CONCLUSION AND FUTURE WORK

By finding a correspondence between generalized Zeckendorf decompositions in the interval
[m,m+Gα(n)) and in the interval [0, Gα(n)), we are able to prove convergence to Gaussian behavior
on many sub-intervals. The key step is to show that almost surely an integer m chosen uniformly
at random from [Gn, Gn+1) permits the construction of a bijection onto the interval [0, Gα(n)). Our
results then follow from previous work on the Gaussian behavior of the number of generalized Zeck-
endorf summands in this interval.

In the future, we plan to extend our results to more general sequences. The first natural candidate
is to remove the assumption on the ci’s among the positive linear recurrence sequences we study.
Other interesting topics include the signed decompositions (or far difference representations) where
both positive and negative summands are allowed (see [1, 11]), the f -decompositions of [10], and
some other recurrences where the leading coefficient is zero (which in some cases leads to a loss of
unique decompositions), such as [6, 7, 8].

APPENDIX A. ELEMENTARY PROOF OF MODERATE GAPS

A crucial ingredient in our proof is that almost surely the Zeckendorf decomposition of an m ∈
[Gn, Gn+1) has a gap of length Z or more for some fixed Z > 3L. This follows immediately from the
work of Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson [2] (see also [4]), who showed that
almost surely the longest gap is of the order log n. It is possible to elementarily prove this result by
deriving a recurrence relation for these probabilities and analyzing its growth rate directly, which we
do below both in the hopes that it might be of use in related problems, and also to keep the argument
elementary.

Theorem A.1. Let {Gn} be a PLRS with recurrence relation with positive integer coefficients:

Gn+1 = c1Gn + · · ·+ cLGn−L+1, ci, L ≥ 1. (A.1)
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Fix an integer Z > L and let Hn+1 be the number of integers m ∈ [0, Gn+1) such that m’s legal de-
composition does not have a gap between summands of length Z or greater.4 ThenHn/Gn converges
to zero exponentially fast.

Proof. We first find a recurrence relation for {Hn}. Consider n much larger than L + Z, and let
m ∈ [0, Gn+1) be arbitrary. We count how many m have a legal decomposition with no gap between
summands of length Z or more by looking at the possible beginning strings of m’s decomposition.
Specifically, we look at how often Gn, Gn−1, . . . , Gn−L+1 occur. As the analysis is trivial when
L = 1 we assume L ≥ 2 below.

• Case n: At most c1 − 1 summands of Gn: We may have 0, 1, . . . , c1 − 1 or c1 occurrences
of Gn. If we have zero Gn’s, then the number of possible completions of the decomposition
such that all gaps are less than Z is, by definition, Hn. If we have 1, . . . , c1 − 1 summands
of Gn then the number of completions is Hn −Hn−Z (we must subtract Hn−Z as we have a
summand, and we cannot have Z or more non-chosen summands now). Thus the contribution
from this case to Hn+1 is

Hn + (c1 − 1)(Hn −Hn−Z) = c1(Hn −Hn−Z) +Hn−Z . (A.2)

• Case n−1: At most c2−1 summands ofGn−1: To be in this case, we first have c1 summands
of Gn. If we have no Gn−1 terms in our decomposition, then we have Hn−1−Hn−1−(Z−1) =
Hn−1−Hn−Z ways to complete the decomposition (as we have zero summands, we must be
careful and avoid not taking any of the next Z−1 summands). If we have 1, . . . , c2−1 copies
ofGn−1 then there areHn−1−Hn−1−Z ways to complete the decomposition as desired. Thus
this case contributes to Hn+1

(Hn−1 −Hn−Z) + (c2 − 1)(Hn−1 −Hn−1−Z)

= c2(Hn−1 −Hn−1−Z) + (Hn−1−Z −Hn−Z). (A.3)

• Case n−`: At most c`−1 summands ofGn−`+1: Similar to the earlier cases, if we have zero
copies of Gn−`+1 then there are Hn−` −Hn−`−(Z−1) = Hn−` −Hn−`+1−Z ways to complete
the decomposition, while if there are 1, . . . , c`−1 copies ofGn−`+1 there areHn−`−Hn−`−Z
possibilities. Thus the total contribution to Hn+1 is

(Hn−` −Hn−`+1−Z) + (c` − 1)(Hn−` −Hn−`−Z)

= c`(Hn−` −Hn−`−Z) + (Hn−`−Z −Hn−`+1−Z). (A.4)

If ` < L we continue to the next case with now c` copies of Gn−`+1, while if ` = L then the
process terminates, as the recurrence relation and our definition of legality means we would
replace this beginning string with c1Gn + · · ·+ cLGn−L+1 with Gn+1, contradicting both the
fact that we have a legal decomposition and that our number is less than Gn+1.

Combining the above, we obtain the recurrence for {Hn} (notice that we have a telescoping sum)

Hn+1 = c1(Hn −Hn−Z) + · · ·+ cL(Hn−L+1 −Hn−L+1−Z) +Hn−L+1−Z . (A.5)

4Note that we only care about a gap of length at least Z between adjacent summands; thus our decomposition may
miss many elements before the first chosen summand. It is also easier to first count in [0, Gn+1) and later shift to
[Gn, Gn+1) by subtraction.
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Setting H̃n+1 = Hn+1−Hn, we see H̃n+1 counts the number of integers in [Gn, Gn+1) with no gaps
of length Z or more, and using (A.5) with n and n−1 gives us (A.5) with each Hk replaced with H̃k.
As {H̃n} is a strictly increasing sequence, the largest eigenvalue of its recurrence must be greater
than 1. From the Generalized Binet Formula expansion for Hn (see, for example, Theorem A.1 of
[2]), there is some constant α ∈ (0, 1) such that Hn−`−Z ≥ αHn−`. Letting

c̃` =

{
c`(1− α) if 1 ≤ ` < L

cL if ` = L,
(A.6)

we find

H̃n+1 < c̃1H̃1 + · · ·+ c̃LH̃n−L+1. (A.7)

Notice this is almost the same recurrence as that of Gn, the only difference being that at least one
of the coefficients c̃` is smaller than c`. To prove {H̃n} grows exponentially slower than {Gn}, we
instead study the sequence {Ĥn} which satisfies the recurrence

Ĥn+1 = c̃1Ĥn + · · ·+ c̃LĤn−L+1, (A.8)

as H̃n ≤ Ĥn.
We use many standard properties of the Generalized Binet Formula expansions below; see Theo-

rem A.1 of [2] for statements and proofs. The solution to a linear recurrence of fixed, finite length is
of the form

β1,r1n
r1λn1 + · · ·+ β1,0λ

n
1 + · · ·+ βk,rkn

rkλnk + · · ·+ βk,0λ
n
k . (A.9)

As the ci’s are positive, there is a unique positive root λ > 1 for {Gn}, and all other roots are less
than 1 in absolute value. Thus Gn = βλn + O(|nrλ2|n) for some 0 < |λ2| < λ (if β = 0 then Gn is
exponentially decaying). As all the coefficients of the recurrence for {Ĥn} are positive, there is also
a unique root of largest absolute value.

We claim ω < λ. Clearly ω ≤ λ as this sequence grows slower; if they were equal then ω would
be a root of both characteristic polynomials, and we would find

ωL = c̃1ω
L−1 + · · ·+ c̃L < c1ω

L−1 + · · ·+ cL = ωL, (A.10)

a contradiction. Thus Ĥn grows exponentially slower than Gn, which completes the proof. �
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[21] M. Koloğlu, G. Kopp, S. J. Miller and Y. Wang, On the number of summands in Zeckendorf decompositions,
Fibonacci Quarterly 49 (2011), no. 2, 116–130.

[22] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[23] S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory, Princeton University Press, Princeton,

NJ, 2006.
[24] S. J. Miller and Y. Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of Combinatorial

Theory, Series A 119 (2012), no. 7, 1398–1413.
[25] S. J. Miller and Y. Wang, Gaussian Behavior in Generalized Zeckendorf Decompositions, Combinatorial and Addi-

tive Number Theory, CANT 2011 and 2012 (Melvyn B. Nathanson, editor), Springer Proceedings in Mathematics
& Statistics (2014), 159–173.

[26] M. Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Springer-Verlag,
New York, 1996.

[27] W. Steiner, Parry expansions of polynomial sequences, Integers 2 (2002), Paper A14.
[28] W. Steiner, The Joint Distribution of Greedy and Lazy Fibonacci Expansions, Fibonacci Quarterly 43 (2005), 60–

69.
[29] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de

Lucas, Bulletin de la Société Royale des Sciences de Liége 41 (1972), pages 179–182.



GAUSSIAN DISTRIBUTION IN GENERALIZED ZECKENDORF DECOMPOSITIONS IN SMALL INTERVALS 11

E-mail address: best.221@osu.edu

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OH 43210

E-mail address: pdynes@clemson.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, CLEMSON, SC 29634

E-mail address: xe1@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: bmcdon11@u.rochester.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627

E-mail address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: ktor.student@manhattan.edu

DEPARTMENT OF MATHEMATICS, MANHATTAN COLLEGE, RIVERDALE, NY 10471

E-mail address: cturnagebutterbaugh@gmail.com

DEPARTMENT OF MATHEMATICS, NORTH DAKOTA STATE UNIVERSITY, FARGO, ND 58102

E-mail address: mweinstein@g.hmc.edu

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CA 91711

mailto:ajb5@williams.edu)
mailto:pdynes@clemson.edu)
mailto:xe1@williams.edu
mailto:bmcdon11@u.rochester.edu
mailto:sjm1@williams.edu
Steven.Miller.MC.96@aya.yale.edu
mailto:ktor.student@manhattan.edu
mailto:cturnagebutterbaugh@gmail.com
mailto:mweinstein@g.hmc.edu

	1. Introduction
	1.1. Background
	1.2. Main Result

	2. Preliminaries
	3. Proof of Theorem 1.2
	4. Conclusion and Future Work
	Appendix A. Elementary Proof of Moderate Gaps
	References

