
ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OFARBITRARY LEVELOWEN BARRETT, PAULA BURKHARDT, JONATHAN DEWITT, ROBERT DORWARD,AND STEVEN J. MILLERAbstra
t. In 2000 Iwanie
, Luo, and Sarnak proved for 
ertain families of L-fun
tionsasso
iated to holomorphi
 newforms of square-free level that, under the Generalized Rie-mann Hypothesis, as the 
ondu
tors tend to in�nity the one-level density of their zerosmat
hes the one-level density of eigenvalues of large random matri
es from 
ertain 
lassi-
al 
ompa
t groups in the appropriate s
aling limit. We remove the square-free restri
tionby obtaining a tra
e formula for arbitrary level by using a basis developed by Blomer andMili¢evi¢, whi
h is of use for other problems as well.1. Introdu
tionMontgomery [Mo℄ 
onje
tured that the pair 
orrelation of 
riti
al zeros up to height T ofthe Riemann zeta fun
tion ζ(s) 
oin
ides with the pair 
orrelation of eigenvalues of randomunitary matri
es of dimension N in the appropriate limit as T,N → ∞. This remarkable
onne
tion initiated a new bran
h of number theory 
on
erned with relating the statisti
s ofzeros of ζ(s), and of L-fun
tions more generally, to those of eigenvalues of random matri
es.While additional support for this agreement was obtained by the work of Hejhal [Hej℄ on thetriple 
orrelation of ζ(s), Rudni
k and Sarnak [RS℄ on the n-level 
orrelation for 
uspidalautomorphi
 forms, and Odlyzko [Od1, Od2℄ on the spa
ings between adja
ent zeros of
ζ(s), the story 
annot end here as these statisti
s are insensitive to the behavior of �nitelymany zeros. As the zeros at and near the 
entral point play an important role in a varietyof problems, this led Katz and Sarnak [KS1, KS2℄ to develop a new statisti
 whi
h 
apturesthis behavior.De�nition 1.1. Let L(s, f) be an L-fun
tion with zeros in the 
riti
al strip ρf = 1/2+ iγf(note γf ∈ R if and only if the Generalized Riemann Hypothesis holds for f ), and let φ bean even S
hwartz fun
tion whose Fourier transform has 
ompa
t support. The one-levelDate: April 1, 2016.2010 Mathemati
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ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 2density is
D1(f ;φ) :=

∑

ρf

φ
( γf
2π

log cf

)
, (1.1)where cf is the analyti
 
ondu
tor.Their density 
onje
ture [KS1, KS2℄ states that the s
aling limits of eigenvalues of 
las-si
al 
ompa
t groups near 1 
orre
tly model the behavior of these zeros in families of

L-fun
tions as the 
ondu
tors tend to in�nity. Spe
i�
ally, if the symmetry group is G,then we expe
t
D1(F ;φ) =

∫ ∞

−∞
φ(x)W1(G)(x)dx =

∫ ∞

−∞
φ̂(t)Ŵ1(G)(t)dt, (1.2)where K(y) = sinπy

πy , Kǫ(x, y) = K(x− y) + ǫK(x+ y) for ǫ = 0,±1, and
W1(SO(even))(x) = K1(x, x)

W1(SO(odd))(x) = K−1(x, x) + δ0(x)

W1(O)(x) =
1

2
W1(SO(even))(x) +

1

2
W1(SO(odd))(x)

W1(U)(x) = K0(x, x)

W1(Sp)(x) = K−1(x, x). (1.3)While the Fourier transforms of the densities of the orthogonal groups all equal δ0(y)+1/2in (−1, 1), they are mutually distinguishable for larger support (and are distinguishable fromthe unitary and symple
ti
 
ases for any support). There is now an enormous body of workshowing the 1-level densities of many families (su
h as Diri
hlet L-fun
tions, ellipti
 
urves,
uspidal newforms, Maass forms, number �eld L-fun
tions, and symmetri
 powers of GL2automorphi
 representations) agree with the s
aling limits of a random matrix ensemble;see [AAILMZ, AM, DM1, FiMi, FI, Gao, GK, Gü, HM, HR, ILS, KS1, KS2, Mil, MilPe,OS1, OS2, RR, Ro, Rub1, Rub2, ShTe, Ya, Yo℄ for some examples, and [DM1, DM2, ShTe℄for dis
ussions on how to determine the underlying symmetry. For additional readingson 
onne
tions between random matrix theory, nu
lear physi
s and number theory see[BFMT-B, Con, CFKRS, FM, For, KeSn1, KeSn2, KeSn3, Meh℄We 
on
entrate on extending the results of Iwanie
, Luo, and Sarnak in [ILS℄. Oneof their key results is a formula for unweighted sums of Fourier 
oe�
ients of holomorphi
newforms over all newforms of a given weight and level. This formula writes the unweightedsums in terms of weighted sums to whi
h one 
an apply the Petersson tra
e formula; itis instrumental in performing any averaging over holomorphi
 newforms, sin
e one 
aninter
hange summation and repla
e the average of Fourier 
oe�
ients with Kloostermansums and Bessel fun
tions, whi
h are amenable to analysis.A drawba
k of their formula is that it may only be applied to averages of newforms ofsquare-free level. One reason is that the development of su
h a formula depends essentiallyon the 
onstru
tion of an expli
it orthonormal basis for the spa
e of 
usp forms of a givenweight and level, whi
h they only 
omputed in the 
ase of square-free level. In 2011,Rouymi [R℄ 
omplemented the square-free 
al
ulations of Iwanie
, Luo, and Sarnak, �nding



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 3an orthonormal basis for the spa
e of 
usp forms of prime power level, and applying thisexpli
it basis towards the development of a similar sum of Fourier 
oe�
ients over allnewforms with level equal to a �xed prime power.In 2015, Blomer and Mili¢evi¢ [BM℄ extended the results of Iwanie
, Luo, and Sarnakand Rouymi by writing down an expli
it orthonormal basis for the spa
e of 
usp forms(holomorphi
 or Maass) of a �xed weight and, novelly, arbitrary level.The purpose of this arti
le is, �rst, to leverage the basis of Blomer and Mili¢evi¢ toprove an exa
t formula for sums of Fourier 
oe�
ients of holomorphi
 newforms over allnewforms of a given weight and level, where now the level is permitted to be arbitrary(see below, as well as Proposition 5.2 for a detailed expansion). The basis of Blomer andMili¢evi¢ requires one to split over the square-free and square-full parts of the level; thissplitting 
ombined with the loss of several simplifying assumptions for He
ke eigenvaluesand arithmeti
 fun
tions makes the 
ase where the level is not square-free is mu
h more
omplex. As an appli
ation, we use this formula to show the 1-level density agrees onlywith orthogonal symmetry.1.1. Harmoni
 averaging. Throughout we assume that k,N > 1 with k even. To stateour formula for sums of Fourier 
oe�
ients, we let H⋆
k(N) denote the set of holomorphi

usp forms of weight k and level N whi
h are new of level N in the sense of Atkin andLehner, and let λf (n) denote its nth Fourier 
oe�
ient (see the next se
tion for moredetails).For any 
usp form f , we introdu
e the normalized Fourier 
oe�
ients

Ψf (n) :=

(
Γ(k − 1)

(4π)k−1

)1/2

||f ||−1λf (n), (1.4)where ‖f‖2 = 〈f, f〉. We then de�ne
∆k,N(m,n) :=

∑

g∈Bk(N)

Ψg(m)Ψg(n), (1.5)where Bk(N) is an orthonormal basis for the spa
e of 
usp forms of weight k and level N .The importan
e of ∆k,N(m,n) is 
lari�ed by the introdu
tion of the Petersson formula inthe next se
tion.Using the orthonormal basis Bk(N) of Mili¢evi¢ and Blomer, we then prove the following(un
onditional) formula.Theorem 1.2. Suppose that (n,N) = 1. Then
∑

f∈H⋆
k
(N)

λf (n) =
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1

m−1∆k,M(m2, n). (1.6)This formula may be immediately applied to variety of appli
ations involving holomorphi

usp form Fourier 
oe�
ients and L-fun
tions. Rouymi uses his basis and formula to studythe non-vanishing at the 
entral point of L-fun
tions atta
hed to primitive 
usp forms;we ele
t to apply our formula to generalize [ILS, Theorem 1.1℄ on the one-level density of
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 newform L-fun
tions by removing the 
ondition that N must passto in�nity through the square-free integers.1.2. The Density Conje
ture. Before stating our results, we introdu
e the L-fun
tion
L(s, f) asso
iated to a f ∈ H⋆

k(N) as the Diri
hlet series
L(s, f) =

∞∑

1

λf (n)n
−s. (1.7)See Se
tion 3 of [ILS℄ for the Euler produ
t, analyti
 
ontinuation, and fun
tional equationof L(s, f) (or its symmetri
 square); L(s, f) may be analyti
ally 
ontinued to an entirefun
tion on C with a fun
tional equation relating s to 1−s. We now assume the GeneralizedRiemann Hypothesis for L(s, f), and, for te
hni
al reasons, L(s, sym2 f) as well as for allDiri
hlet L-fun
tions (see Remark 1.5). Then we may write all nontrivial zeros of L(s, f)as

̺f =
1

2
+ iγf . (1.8)For any f ∈ H⋆

k(N), we denote by cf its analyti
 
ondu
tor; for our family
cf = k2N. (1.9)Towards the de�nition of the one-level density, we �rst de�ne for a �xed form f

D1(f ;φ) :=
∑

γf

φ
( γf
2π

log cf

) (1.10)where the ordinates γf are 
ounted with their 
orresponding multipli
ities, and φ(x) is aneven fun
tion of S
hwartz 
lass su
h that its Fourier transform
φ̂(y) =

∫ ∞

−∞
φ(x)e−2πixydx (1.11)has 
ompa
t support so that φ(x) extends to an entire fun
tion.Our family F(N) is H⋆

k(N), where the level N is our asymptoti
 parameter (and F =

∪N>1F(N)). It is worth mentioning that |H⋆
k(N)| N→∞−−−−→ ∞; pre
ise asymptoti
s are givenin Appendix C. Then the one-level density is the expe
tation of D1(f ;φ) averaged over ourfamily:

D1(H
∗
k(N);φ) :=

1

|H∗
k(N)|

∑

f∈H∗

k
(N)

D1(f ;φ). (1.12)Iwanie
, Luo, and Sarnak [ILS℄ prove prove the Density Conje
ture with the support of
φ̂ in (−2, 2) and as N runs over square-free numbers. We prove the following theorem withno 
onditions on how N → ∞.



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 5Theorem 1.3. Fix any φ ∈ S(R) with supp φ̂ ⊂ (−2, 2). Then, assuming the GeneralizedRiemann Hypothesis for L(s, f) and L(s, sym2 f) for f ∈ H∗
k(N) and for all Diri
hlet L-fun
tions,

lim
N→∞

1∣∣H⋆
k(N)

∣∣
∑

f∈H⋆
k
(N)

D1(f ;φ) =

∫ ∞

−∞
φ(x)W1(O)(x) dx (1.13)where W1(O)(x) = 1+ 1

2δ0(x); thus the 1-level density agrees only with orthogonal symmetry.Remark 1.4. While they are also able to split the family by the sign of the fun
tionalequation, we are unable to do so. The reason is that for square-free level N the sign of thefun
tional equation, ǫf , is given by
ǫf = ikµ(N)λf (N)N1/2 (1.14)(see equation (3.5) of [ILS℄). By multiplying by 1

2(1 ± ǫf ) we 
an restri
t to just the evenor odd forms, at the 
ost of having an additional λf (N) fa
tor in the Petersson formula.This leads to involved 
al
ulations of Bessel-Kloosterman terms, but these sums 
an beevaluated well enough to obtain support in (−2, 2). Unfortunately there is no analogue oftheir equation (3.5) for general level (on
e the level has a p2 or larger fa
tor, then the leveldoes not determine the lo
al representation and so doesn't determine the root number).Remark 1.5. We brie�y 
omment on the use of the various Generalized Riemann Hypothe-ses. First, assuming GRH for L(s, f) yields a ni
e spe
tral interpretation of the 1-leveldensity, as the zeros now lie on a line and it makes sense to order them; note, however,that this statisti
 is well-de�ned even if GRH fails. Se
ond, GRH for L(s, sym2 f) is usedto bound 
ertain sums whi
h arise as lower order terms; in [ILS℄ (page 80 and espe
iallypage 88) the authors remark how this may be repla
ed by additional appli
ations of thePetersson formula (assuming GRH allows us to trivially estimate 
ontributions from ea
hform, but a bound on average su�
es). Finally, GRH for Diri
hlet L-fun
tions is neededwhen we follow [ILS℄ and expand the Kloosterman sums in the Petersson formula withDiri
hlet 
hara
ters; if we do not assume GRH here we are still able to prove the 1-leveldensity agrees with orthogonal symmetry, but in a more restri
ted range than (−2, 2).The stru
ture of the paper is as follows. Our main goal is to prove the formula for sumsof He
ke eigenvalues and then use this to 
ompute the one-level density. We begin in �2with a short introdu
tion of the theory of primitive holomorphi
 
usp forms, as well as thePetersson tra
e formula and the basis of Blomer and Mili¢evi¢. In �3 we �nd a formula for
∆k,N(m,n), whi
h we leverage in �4 to �nd a formula for ∆⋆

k,N(n) (Theorem 1.2). Using ourformula, we �nd bounds for ∆⋆
k,N(n) in �5, 
ulminating in the 
omputation of the one-leveldensity in �6 (Theorem 1.3). 2. PreliminariesIn this se
tion we introdu
e some notation and results to be used throughout, mu
h ofwhi
h 
an be found in [IK℄.



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 62.1. He
ke eigenvalues and the Petersson inner produ
t. Our setup is 
lassi
al.Throughout k,N are positive integers, and k is even. We 
onsider the linear spa
e Sk(N)of 
usp forms of weight k and trivial nebentypus for the He
ke 
ongruen
e group Γ0(N).Ea
h f ∈ Sk(N) admits a Fourier development
f(z) =

∑

n>1

af (n)e(nz), (2.1)where e(z) := e2πiz and the af (n) are in general 
omplex numbers, though as we only
onsider forms with trivial nebentypus, our Fourier 
oe�
ients are real.It is well known that Sk(N) is a �nite-dimensional Hilbert spa
e with respe
t to thePetersson inner produ
t
〈f, g〉 =

∫

Γ0(N)\H
f(z)g(z)yk−2dxdy, (2.2)where H denotes the upper-half plane H = {z ∈ C : ℑ(z) > 0}. Given a form on Γ0(M),it is possible to indu
e a form on Γ0(N) for M | N . We 
all su
h forms for whi
h M < N�old forms�; the ones not indu
ed from a form with M < N are 
alled the �new forms� or�primitive forms.� O

asionally we will write the inner produ
t with a subs
ript su
h as

〈f, g〉N to indi
ate we are 
onsidering f and g as forms on Γ0(N), when perhaps 〈f, g〉Mmight make sense as well.Atkin and Lehner [AL℄ showed that the spa
e Sk(N) has a 
anoni
al orthogonal de
om-position in terms of newforms. Let H⋆
k(M) be the set of newforms of weight k and level M(typi
ally we 
hoose M to be a divisor of N). Then

Sk(N) =
⊕

LM=N

⊕

f∈H⋆
k
(M)

Sk(L; f) (2.3)where Sk(L; f) is the linear spa
e spanned by the forms
f|ℓ(z) = ℓ

k
2 f(ℓz) with ℓ | L. (2.4)Though the forms f|ℓ(z) are linearly independent, they are not orthogonal.If f ∈ H⋆

k(M) then f is an eigenfun
tion of all He
ke operators TM (n), where
(TM (n)f)(z) =

1√
n

∑

ad=n
(a,M)=1

(a
d

)k/2 ∑

b (mod d)

f

(
az + b

d

)
. (2.5)For a �xed f ∈ H⋆

k(M), let λf (n) denote the eigenvalue of TM (n); i.e.,
TM (n)f = λf (n)f (2.6)for all n > 1. The He
ke eigenvalues are multipli
ative; more pre
isely, they satisfy thefollowing identity for any m,n > 1:

λf (m)λf (n) =
∑

d|(m,n)
(d,M)=1

λf (mn/d2). (2.7)



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 7We normalize so that
af (1) = 1. (2.8)Then af (n) and λf (n) are related by

af (n) = λf (n)n
(k−1)/2. (2.9)Deligne showed that the Weil 
onje
tures imply the Ramanujan-Petersson 
onje
ture forholomorphi
 
usp forms, and then proved them. As a 
onsequen
e, for f ∈ Sk(N) we havethe bound

|λf (n)| 6 τ(n), (2.10)where τ(n) is the divisor fun
tion, and if f ∈ H⋆
k(M) and p | M , then

λf (p)
2 =

{
1
p if p || N
0 if p2 | N.

(2.11)We re
all the de�nition (1.4) of the normalized Fourier 
oe�
ients Ψf (n) atta
hed toany 
usp form f :
Ψf (n) =

(
Γ(k − 1)

(4πn)k−1

)1/2

||f ||−1af (n) ≪f τ(n). (2.12)Let Bk(N) be an orthogonal basis of Sk(N). Then
|Bk(N)| = dimSk(N) ≍ ν(N)k (2.13)where

ν(N) := [Γ0(1) : Γ0(N)] = N
∏

p|N
(1 + 1

p). (2.14)From the Atkin-Lehner de
omposition, we also dedu
e
dimSk(N) =

∑

LM=N

τ(L) |H⋆
k(M)| . (2.15)Re
all De�nition (1.5) of ∆k,N(m,n):

∆k,N(m,n) :=
∑

g∈Bk(N)

Ψg(m)Ψg(n). (2.16)The importan
e of ∆k,N(m,n) is established by the Petersson tra
e formula.Proposition 2.1 (Petersson [P℄). For any m,n > 1 we have
∆k,N(m,n) = δ(m,n) + 2πik

∑

c≡0 (mod N)

c−1S(m,n; c)Jk−1

(
4π

√
mn

c

)
. (2.17)Though the quantity ∆k,N(m,n) is basis independent, we would like to 
ompute with thePetersson tra
e formula using an expli
it basis Bk(N) to average over newforms. However,as remarked, the spa
es Sk(L; f) do not have a distinguished orthogonal basis. Therefore,to produ
e a basis Bk(N), we need a basis for the spa
es Sk(L; f). Iwanie
, Luo, andSarnak [ILS℄ write down an expli
it basis when N is square-free. As we will see in the next
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tion, Blomer and Mili¢evi¢ [BM℄ have re
ently obtained a basis for arbitrary level N .Our �rst key idea, a kind of tra
e formula for sums of He
ke eigenvalues over newforms inthe 
ase N is arbitrary, is an expli
it 
omputation with this new basis. Our se
ond keyidea on the one-level density of the L-fun
tions L(s, f) for f ∈ H⋆
k(N) uses our �rst keyidea in an essential way to redu
e the problem to the one already treated by Iwanie
, Luo,and Sarnak.To H⋆

k(M) we often asso
iate χ0;M , the trivial 
hara
ter mod M :
χ0;M (n) =

{
χ0;M (n) = 1 if (n,M) = 1

χ0;M (n) = 0 otherwise. (2.18)2.2. An orthonormal basis for Sk(N). For f ∈ H⋆
k(M) 
onsider the following arithmeti
fun
tions, whi
h 
oin
ide with the ones de�ned in [BM℄ up to a few 
orre
tions [BM2℄.

rf (c) :=
∑

b|c

µ(b)λf (b)
2

bσ−1(b)2
, α(c) :=

∑

b|c

χ0;M (b)µ(b)

b2
, β(c) :=

∑

b|c

χ0;M (b)µ2(b)

b
, (2.19)where µf (c) is the multipli
ative fun
tion given impli
itly by

L(f, s)−1 =
∑

c

µf (c)

cs
, (2.20)or expli
itly on prime powers by

µf (p
j) =





−λf (p) j = 1

χ0;M (p) j = 2

0 j > 2

(2.21)and
σ−1(b) =

∑

r|b

χ0;M (r)

r
. (2.22)For ℓ | d de�ne

ξ′d(ℓ) :=
µ(d/ℓ)λf (d/ℓ)

rf (d)1/2(d/ℓ)1/2β(d/ℓ)
, ξ′′d (ℓ) :=

µf (d/ℓ)

(d/ℓ)1/2(rf (d)α(d))1/2
. (2.23)Write d = d1d2 where d1 is square-free, d2 is square-full, and (d1, d2) = 1. Thus p || dimplies p | d1 and p2 | d implies p2 | d2. Then for ℓ | d de�ne

ξd(ℓ) := ξ′d1((d1, ℓ))ξ
′′
d2((d2, ℓ)), (2.24)and let f |ℓ (z) be de�ned by f |ℓ (z) = ℓk/2f(ℓz). Blomer and Mili¢evi¢ prove the following.Proposition 2.2 (Blomer and Mili¢evi¢ [BM, Lemma 9℄). Let

fd(z) :=
∑

ℓ|d
ξd(ℓ)f |ℓ (z), (2.25)



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 9where N = LM and f ∈ H⋆
k(M) is Petersson-normalized with respe
t to Petersson normon level N . Then {fd : d | L} is an orthonormal basis of Sk(L; f).We re
ord the following identities, whi
h are useful to later prove Proposition 3.1. Forprime powers, ξd(ℓ) simpli�es as

ξ1(1) = 1, ξpν (p
ν) =

(
rf (p)

(
1− χ0;M (p)/p2

))−1/2

ξp(p) = rf (p)
−1/2, ξpν (p

ν−1) =
−λf (p)√

p ξpν (p
ν)

ξp(1) =
−λf (p)√

p(1+χ0;M (p)/p)
ξp(p), ξpν (p

ν−2) =
χ0;M (p)

p ξpν (p
ν). (2.26)In addition, we will make use of the following lemma. Originally stated in the 
ontext ofsquare-free level, the same proof holds in general.Lemma 2.3 (Iwanie
, Luo, Sarnak [ILS, Lemma 2.5℄). If f is a newform of weight k andlevel M | N , then

〈f, f〉N = (4π)1−kΓ(k)
ν(N)ϕ(M)

12M
Z(1, f), (2.27)where ϕ is the Euler totient fun
tion, and

Z(s, f) :=

∞∑

1

λf (n
2)n−s. (2.28)It is often 
onvenient to work with the lo
al zeta fun
tion

ZN (s, f) :=
∑

ℓ|N∞

λf (ℓ
2)ℓ−s. (2.29)If f ∈ H⋆

k(N), then one dedu
es from (2.11) that the lo
al Euler fa
tors of Z(1, f) are givenby
Zp(1, f) =





(
1 + 1

p

)−1
ρf (p)

−1 if p ∤ N
(
1 + 1

p

)−1 (
1− 1

p

)−1 if p || N
1 if p2 | N,

(2.30)where ρf (c) is the multipli
ative fun
tion
ρf (c) =

∑

b|c
µ(b)b

(
λf (b)

ν(b)

)2

=
∏

p|c

(
1− p

(
λf (p)

p+ 1

)2
)
. (2.31)Assume now that N = LM and f ∈ H⋆

k(M), and, writing
p(L,M) :=

∏

pβ ||L
p|M

pβ, (2.32)note that
ZLM/p(L,M)(s, f) = ZN (s, f). (2.33)
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ializing to s = 1, we �nd
MN

ϕ(M)ν(N)

∏

p|L
p∤M=1

ρf (p)
−1 = ZN (1, f)

∏

p2|M

(
p2

p2 − 1

)
. (2.34)We also note that if p ∤ M , then rf (p) = ρf (p), and if p | M , then rf (p) = 1− λf (p)

2/p.3. A Formula for ∆k,N(m,n)In this se
tion we provide an expli
it formula for ∆k,N(m,n) in terms of He
ke eigen-values. We begin with a result about the 
oe�
ients inherited from the orthonormal basisde�ned in Proposition 2.2. Note that if f(z) ∈ H⋆
k(M) has Fourier expansion

f(z) =
∑

n>1

af (n)e(nz), (3.1)then
fd(z) :=

∑

ℓ|d
ξd(ℓ)f |ℓ (z) =

∑

ℓ|d
ξd(ℓ)ℓ

k/2f(ℓz), (3.2)so the 
oe�
ients of the Fourier expansion of fd(z) are given by
afd(n) =

∑

ℓ|(d,n)
ξd(ℓ)ℓ

k/2af (
n
ℓ ). (3.3)Let N = LM and let f be a newform of weight k and level M . Let f ′ = f/||f ||N sothat f ′ is Petersson-normalized with respe
t to level N . Then by Proposition 2.2, the set

{f ′
d : d | L} is an orthonormal basis of Sk(L; f). Let

Bk(N) =
⋃

LM=N

⋃

f∈H⋆
k
(M)

⋃

d|L
f ′
d (3.4)be our orthonormal basis for Sk(N), and note that

af ′(n) =
λf (n)n

(k−1)/2

||f || . (3.5)We have
∆k,N(m,n) =

12

(k − 1)ν(N)

∑

LM=N

M

ϕ(M)

∑

f∈H⋆
k
(M)

1

Z(1, f)

×
∑

d|L


 ∑

ℓ|(d,m)

ξd(ℓ)ℓ
1/2λf (

m
ℓ )




 ∑

ℓ|(d,n)
ξd(ℓ)ℓ

1/2λf (
n
ℓ )


 . (3.6)
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it formula for ∆k,N(m,n) in terms of He
ke eigenvalues. Assume
(m,n,N) = 1 and let

Ξd(m,n; f) :=


 ∑

ℓ|(d,m)

ξd(ℓ)ℓ
1/2λf (

m
ℓ )




 ∑

ℓ|(d,n)
ξd(ℓ)ℓ

1/2λf (
n
ℓ )


 (3.7)for d | L | N , and note that

Ξd(m,n; f) =
∑

ℓ1|(d,m)
ℓ2|(d,n)

ξd(ℓ1)ξd(ℓ2)(ℓ1ℓ2)
1/2λf (

m
ℓ1
)λf (

n
ℓ2
). (3.8)We 
an rewrite the formula (3.6) as

∆k,N(m,n) =
12

(k − 1)ν(N)

∑

LM=N

M

ϕ(M)

∑

f∈H⋆
k
(M)

1

Z(1, f)

∑

d|L
Ξd(m,n; f). (3.9)Using the multipli
ativity of Fourier 
oe�
ients, one readily obtains that if (ℓ1, ℓ2) = 1,and ℓ1ℓ2 | m, then

λf (
m
ℓ1
)λf (

m
ℓ2
) = λf (m)λf (

m
ℓ1ℓ2

). (3.10)Using the multipli
ativity of ξd(ℓ) and this identity, one �nds that if (g1, g2) = 1,
Ξg1(m,n; f) · Ξg2(m,n; f) = λf (m)λf (n)Ξg1g2(m,n; f). (3.11)This allows us to redu
e to the 
ase of studying Ξpα(m,n; f). Applying (3.11) to (3.6)yields

∆k,N(m,n) =
12

(k − 1)ν(N)

×
∑

LM=N

M

ϕ(M)

∑

f∈H⋆
k
(M)

1

Z(1, f)
(λf (m)λf (n))

1−ω(L)
∏

pα||L

(∑

d|pα
Ξd(m,n; f)

)
, (3.12)with ω(n) the number of distin
t prime fa
tors of n.The task 
learly be
omes to understand the quantity

Vpα(m,n; f) :=
∑

d|pα
Ξd(m,n; f). (3.13)The following proposition a
hieves this. To simplify notation, we introdu
e the followingsymbols. Put

♣q(a) :=

{
q q | a
1 otherwise. (3.14)

♠q(a1, a2, . . . , an) :=

{
1 q | ai for some i

0 otherwise. (3.15)
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∆k,N(m,n) =

12

(k − 1)N

∑

LM=N

∏

p2|M

(
p2

p2 − 1

) ∑

f∈H⋆
k
(M)

ZN (1, f)

Z(1, f)
(λf (m)λf (n))

−ω(L)+1

×
∏

p|L
p∤M

rf (p)
∏

pα||L
Vpα(m,n; f) (3.16)where

Vpα(m,n; f) = λf (m)λf (n)

(
1 +

λf (p)
2

p (1 + χ0;M (p)/p)2 · rf (p)
+

χ0;M (p)

p2 · rf (p) (1− χ0;M(p)/p2)

)

+♠p(nm)λf (m/♣p(m))λf (n/♣p(n))

×
( −λf (p)

rf (p) (1 + χ0;M(p)/p)
+

−λf (p)χ0;M (p)

p · rf (p) (1− χ0;M(p)/p2)

)

+♠p2(n,m)λf (m/♣p2(m))λf (n/♣p2(n))

(
χ0;M (p)

rf (p) (1− χ0;M (p)/p2)

) (3.17)if α > 2 and
Vpα(m,n; f) = λf (m)λf (n)

(
1 +

λf (p)
2

p (1 + χ0;M (p)/p)2 · rf (p)

)

+♠p(nm)λf (m/♣p(m))λf (n/♣p(n))

( −λf (p)

rf (p) (1 + χ0;M (p)/p)

) (3.18)if α = 1.(Note that the 
ases p | m and p | n are mutually ex
lusive. Thus the formulas given by(3.17) and (3.18) are well-de�ned.)Proof of Proposition 3.1. Using (3.12), we write
∆k,N(m,n)

=
12

(k − 1)ν(N)

∑

LM=N

M

ϕ(M)

∑

f∈H⋆
k
(M)

1

Z(1, f)
(λf (m)λf (n))

1−ω(L)
∏

pα||L
Vpα(m,n; f)

=
12

(k − 1)ν(N)

∑

LM=N

M

ϕ(M)

∑

f∈H⋆
k
(M)

1

Z(1, f)
(λf (m)λf (n))

1−ω(L)

×
∏

p|L
p∤M

ρf (p)
−1rf (p)

∏

pα||L
Vpα(m,n; f)
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=

12

(k − 1)N

∑

LM=N

∏

p2|M

(
p2

p2 − 1

) ∑

f∈H⋆
k
(M)

ZN (1, f)

Z(1, f)
(λf (m)λf (n))

1−ω(L)

×
∏

p|L
p∤M

rf (p)
∏

pα||L
Vpα(m,n; f).The se
ond line follows from the �rst as p ∤ M implies that rf (p) = ρf (p). To 
on
ludethe proof, we need to obtain the 
orre
t expressions for Vpα(m,n; f). These are proved inAppendix A. �As the formula given by (3.1) is unwieldy, we assume (m,N) = 1 and (n,N) = 1 for theremainder of the paper. We have the following useful lemma:Lemma 3.2. Write LM = N . Fix f ∈ H⋆

k(M). Then if (n,N) = 1 and (m,N) = 1 wehave
(λf (m)λf (n))

1−ω(L)
∏

p|L
p∤M

rf (p)
∏

pα||L
Vpα(m,n; f)

= λf (m)λf (n)
∏

p2|L
p∤M

(
p2

p2 − 1

) ∏

p|L
p||M

(
p2

p2 − 1

)
. (3.19)We give the proof in Appendix B. Proposition 3.1 and Lemma 3.2 implyLemma 3.3. Suppose (m,N) = 1 and (n,N) = 1. Then

∆k,N(m,n) =
12

(k − 1)N

∏

p2|N

(
p2

p2 − 1

) ∑

LM=N

∑

f∈H⋆
k
(M)

ZN (1, f)

Z(1, f)
λf (m)λf (n). (3.20)4. Between weighted and unweighted sumsWe now introdu
e the arithmeti
ally weighted sums, as de�ned in [ILS, (2.53)℄,

∆∗
k,N(m,n) =

∑

f∈H⋆
k
(N)

λf (n)λf (m)ZN (1, f)

Z(1, f)
. (4.1)This allows us to state one of our main results, whi
h generalizes Iwanie
, Luo, and Sar-nak [ILS, Proposition 2.8℄ and Rouymi [R, Proposition 2.3℄.Proposition 4.1. Suppose (m,N) = 1 and (n,N) = 1. Then

∆k,N(m,n) =
12

(k − 1)N

∏

p2|N

(
p2

p2 − 1

) ∑

LM=N

∑

ℓ|L∞

(ℓ,M)=1

ℓ−1∆⋆
k,M(mℓ2, n) (4.2)
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∆⋆

k,N(m,n) =
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

ℓ|L∞

(ℓ,M)=1

ℓ−1∆k,M(mℓ2, n), (4.3)where M ′ denotes the square-free part of M and N ′′ denotes the square-full part of N .Proof of Proposition 4.1. We �rst prove (4.2). Note the following: (m,N) = 1 and (n,N) =
1 imply (m,M) = 1, (n,M) = 1, and (ℓ,m) = 1.These observations together with Lemma 3.3 imply
∆k,N(m,n) =

12

(k − 1)N

∏

p2|N

(
p2

p2 − 1

) ∑

LM=N

∑

f∈H⋆
k
(M)

ZL/p(L,M)(1, f)ZM (1, f)

Z(1, f)
λf (m)λf (n)

=
12

(k − 1)N

∏

p2|N

(
p2

p2 − 1

) ∑

LM=N

∑

f∈H⋆
k
(M)

( ∑

ℓ|L∞

(ℓ,M)=1

λf (ℓ
2)ℓ−1

)ZM (1, f)

Z(1, f)
λf (m)λf (n)

=
12

(k − 1)N

∏

p2|N

(
p2

p2 − 1

) ∑

LM=N

∑

ℓ|L∞

(ℓ,M)=1

ℓ−1∆⋆
k,M(mℓ2, n). (4.4)We are now ready to prove (4.3) using Möbius inversion. We begin with

k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

ℓ|L∞

(ℓ,M)=1

ℓ−1∆k,M(mℓ2, n)

=
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

ℓ|L∞

(ℓ,M)=1

ℓ−1 12

(k − 1)M

∏

p2|M

(
p2

p2 − 1

)

×
∑

QW=M

∑

f∈H⋆
k
(W )

ZM (1, f)

Z(1, f)
λf (mℓ2)λf (n)

=
∑

LM=N

µ(L)
∑

QW=M

∑

f∈H⋆
k
(W )

( ∑

ℓ|L∞

(ℓ,M)=1

λf (ℓ
2)ℓ−1

)ZM (1, f)

Z(1, f)
λf (m)λf (n)

=
∑

LM=N

µ(L)
∑

QW=M

∑

f∈H⋆
k
(W )

ZN (1, f)

Z(1, f)
λf (m)λf (n). (4.5)Let

♥N (W ) :=
∑

f∈H⋆
k
(W )

ZN (1, f)

Z(1, f)
λf (m)λf (n). (4.6)
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hanging orders of summation yields
∑

LM=N

µ(L)
∑

QW=M

♥N (W ) =
∑

W |N
♥N (W )

∑

L|NW

µ(L) = ∆⋆
k,N(m,n), (4.7)as the Möbius sum vanishes unless W = N and ♥N (N) = ∆⋆

k,N(m,n). �One of our primary appli
ations of Proposition 4.1 is to obtain a formula for pure sumsof He
ke eigenvalues. We de�ne the pure sum
∆⋆

k,N(n) :=
∑

f∈H⋆
k
(N)

λf (n) (4.8)and prove Theorem 1.2 from the introdu
tion, whi
h we restate here for 
onvenien
e.Theorem 1.2. Suppose that (n,N) = 1. Then
∆⋆

k,N(n) =
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1

m−1∆k,M(m2, n). (4.9)Proof. We remove the weights in (4.1) by summing m−1∆⋆
k,N(m2, n) over all (m,N) = 1.On one side we have

∑

(m,N)=1

m−1∆⋆
k,N(m2, n) =

∑

(m,N)=1

m−1
∑

f∈H⋆
k
(N)

λf (m
2)λf (n)ZN (1, f)

Z(1, f)

=
∑

f∈H⋆
k
(N)

λf (n)

Z(1, f)

∑

(m,N)=1

∑

ℓ|N∞

(ℓm)−1λf (ℓ
2)λf (m

2)

=
∑

f∈H⋆
k
(N)

λf (n)

Z(1, f)

∑

r>1

r−1λf (r
2)

=
∑

f∈H⋆
k
(N)

λf (n)

= ∆⋆
k,N(n). (4.10)On the other hand we have, using (4.3), for (n,N) = 1,

∑

(m,N)=1

m−1∆k,N(m2, n)

=
∑

(m,N)=1

m−1k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

ℓ|L∞

(ℓ,M)=1

1

ℓ
∆k,M((mℓ)2, n)

=
k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,N)=1

∑

ℓ|L∞

(ℓ,M)=1

1

mℓ
∆k,M((mℓ)2, n)
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=

k − 1

12

∑

LM=N

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1

1

m
∆k,M(m2, n). (4.11)This 
ompletes the proof. �5. Estimating tails of pure sumsOne might inquire about the 
onvergen
e of the innermost sum in Theorem (1.2). It isassured by the holomorphy of L(s, sym2 f), but is not absolute (see [ILS, p. 79℄ for a fulldis
ussion). For this reason, following [ILS, �2℄, we begin our work towards the DensityConje
ture by splitting

∆⋆
k,N(n) = ∆′

k,N(n) + ∆∞
k,N (n) (5.1)where

∆′
k,N(n) :=

k − 1

12

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1
m6Y

m−1∆k,M(m2, n), (5.2)and ∆∞
k,N(n) is the 
omplementary sum. Here X,Y > 1 are free parameters.We 
onsider sequen
es A = {aq} that satisfy

∑

(q,nN)=1

λf (q)aq ≪ (nkN)ε (5.3)for all f ∈ H⋆
k(M) with M | N su
h that the implied 
onstant depends only on ε. Thesequen
e we need for our appli
ation, given by

aq = p−1/2 log p if q = p 6 Q, (5.4)and aq = 0 elsewhere, satis�es this property provided logQ ≪ log kN ; see [ILS, p. 80℄ formore details.Lemma 5.1. Suppose (n,N) = 1 and that A satis�es (5.3). Then
∑

(q,nN)=1

∆∞
k,N(nq)aq ≪ kN(X−1 + Y −1/2)(nkNXY )ε. (5.5)Proof. Suppose (q, nN) = 1. By Lemma 3.3 we write

∆∞
k,N(nq) =

∑

KLM=N
L>X

µ(L)
∑

f∈H⋆
k
(M)

λf (nq)

+
∑

KLM=N
L6X

µ(L)
∑

f∈H⋆
k
(M)

λf (nq)Rf (KM ;Y ) (5.6)where
Rf (KM ;Y ) :=

ZKM (1, f)

Z(1, f)

∑

(m,KM)=1
m>Y

m−1λf (m
2). (5.7)
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Rf (KM ;Y ) ≪ Y −1/2(kKMY )ε. (5.8)Combining this fa
t with the Deligne bound for |λf (n)|, we have

∑

(q,nN)=1

∆∞
k,N(nq)aq =

∑

KLM=N
L>X

µ(L)
∑

f∈H⋆
k
(M)

λf (n)
∑

(q,nN)=1

λf (q)aq

+
∑

KLM=N
L6X

µ(L)
∑

f∈H⋆
k
(M)

λf (n)Rf (KM ;Y )
∑

(q,nN)=1

λf (q)aq

≪
∑

KLM=N
L>X

µ(L)|H⋆
k(M)|τ(n)(nkN)ε

+
∑

KLM=N
L6X

µ(L)|H⋆
k(M)|τ(n)Y −1/2(kKMY )ε(nkN)ε

≪
∑

KLM=N
L>X

µ(L)

(
k − 1

12

)
ϕ(M)τ(n)(nkN)ε

+
∑

KLM=N
L6X

µ(L)

(
k − 1

12

)
ϕ(M)τ(n)Y −1/2(kKMY )ε(nkN)ε

≪
∑

KLM=N
L>X

kN
X (nkN)ε +

∑

KLM=N
L6X

kNY −1/2(kKMY )ε(nkN)ε

≪ kN(X−1 + Y −1/2)(nkNXY )ε. (5.9)This establishes the lemma. �We now substitute the Petersson formula (Proposition 2.1) for ea
h instan
e of∆k,M(m2, n)to obtain an exa
t formula for ∆′
k,N (n) in terms of Kloosterman sums.Proposition 5.2. Suppose (n,N) = 1. Then

∆′
k,N(n) = δY (m

2, n)
k − 1

12
n−1/2

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1

+
k − 1

12

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1

×
∑

(m,M)=1
m6Y

m−12πik
∑

c≡0 (mod M)

c−1S(m2, n; c)Jk−1

(
4πm

√
n

c

)
,
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δY (m

2, n) =

{
1 if n = m2 and m 6 Y,

0 otherwise. (5.10)We re
over the bounds for |H⋆
k(N)| given by Martin in [Ma, Theorem 6(
)℄ and use themto prove the following proposition in Appendix C.Proposition 5.3. We have that as kN → ∞

k − 1

12
ϕ(N)

∏

p

(
1− 1

p2 − p

)
+O

(
(kN)2/3

)
6 |H⋆

k(N)| 6
k − 1

12
ϕ(N) +O

(
(kN)2/3

)
.(5.11)6. The Density Conje
ture for H⋆

k(N)Fix some φ ∈ S(R) with φ̂ supported in (−u, u). We reprise some basi
 de�nitions fromthe introdu
tion.To a holomorphi
 newform f , we asso
iate the L-fun
tion
L(s, f) =

∞∑

1

λf (n)n
−s. (6.1)Assuming the Riemann Hypothesis for L(s, f), we 
an write its non-trivial zeros as

̺f =
1

2
+ iγf . (6.2)We are interested in the one-level densities of low-lying zeroes. We re
all the de�nition of

D1(f ;φ) in (1.10):
D1(f ;φ) =

∑

γf

φ
(γf
2π

log cf

)
, (6.3)where cf is the analyti
 
ondu
tor of f whi
h in our 
ase is k2N . We also introdu
e as
aling parameter R whi
h we take to satisfy 1 < R ≍ k2N .Iwanie
, Luo, and Sarnak [ILS, �4℄ establish that for f ∈ H⋆

k(N),
D1(f ;φ) = E(φ) − P (f ;φ) +O

(
log log kN

logR

) (6.4)where
E(φ) = φ̂(0) +

1

2
φ(0) (6.5)and

P (f ;φ) =
∑

p∤N

λf (p)φ̂

(
log p

logR

)
2 log p√
p logR

. (6.6)



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 19Note that their argument does not depend on N being square-free. The Density Conje
ture
on
erns the average over H⋆
k(N), so we 
onsider the sum

B
⋆
k(φ) =

∑

f∈H⋆
k
(N)

D1(f ;φ). (6.7)Substituting (6.4) into the above we �nd that
B

⋆
k(φ) = |H⋆

k(N)|E(φ)− P
⋆
k(φ) +O

(
|H⋆

k(N)| log log kN
logR

) (6.8)where
P
⋆
k(φ) =

∑

p∤N

∆⋆
k,N(p)φ̂

(
log p

logR

)
2 log p√
p logR

. (6.9)In order to establish that as kN → ∞ that the main term of B⋆
k(φ)/ |H⋆

k(N)| is E(φ), weneed to establish that P⋆
k(φ) = o(kϕ(N)). This is su�
ient be
ause |H⋆

k(N)| ≍ kϕ(N), aswe showed in Proposition 5.3.We 
an now write
P
⋆
k(φ) =

∑

p∤N

(
∆′

k,N(p) + ∆∞
k,N (p)

)
φ̂

(
log p

logR

)
2 log p√
p logR

. (6.10)We �rst bound
∑

p∤N

∆∞
k,N(p)φ̂

(
log p

logR

)
2 log p√
p logR

. (6.11)Let aq be as in (5.4) for q 6 Ru and 0 for q > Ru (the latter is due to the appearan
eof φ̂, whi
h is zero for P > Ru). We see that this sequen
e satis�es the 
ondition on Qin the de�nition (5.4), and sin
e φ is of S
hwartz 
lass, we may apply Lemma 5.1 with
X = Y = (kN)δ for small positive δ to �nd
∑

p∤N

∆∞
k,N(p)φ̂

(
log p

logR

)
2 log p√
p logR

≪ kN(X−1 + Y −1/2)(kNXY )ε = o(kϕ(N)). (6.12)Next we must estimate the other term from (6.10),
M

⋆
k(φ) :=

∑

p∤N

∆′
k,N(p)φ̂

(
log p

logR

)
2 log p√
p logR

. (6.13)To begin, de�ne
Q⋆

k;N(m; c) = 2πik
∑

p∤N

S(m2, p; c)Jk−1

(
4πm

c

√
p

)
φ̂

(
log p

logR

)
2 log p√
p logR

. (6.14)Then we apply Lemma 5.2 to ea
h instan
e of ∆′
k,N . Note that the �rst term in Lemma5.2 disappears be
ause p is never a square. Then, moving the initial summation over p ∤ N
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an rewrite in terms of Q⋆
k;N(m; c):

M
⋆
k(φ) =

k − 1

12

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1
m6Y

m−1
∑

c≡0(M)

c−1Q⋆
k;N(m; c).(6.15)Iwanie
, Luo, and Sarnak [ILS, �6℄ prove the bound (whi
h still holds for N not square-free)

Q⋆
k;N (m; c) ≪ γ̃(z)mP 1/2(kN)ε(log 2c)−2, (6.16)where z = 4πm

√
P/c, P = Ru′ with some u′ < u, and γ̃(z) = 2−k if 3z 6 k; this boundappears after their equation (6.17), and uses GRH for Diri
hlet L-fun
tions (they expandthe Kloosterman sums with Diri
hlet 
hara
ters). In order to apply this bound we need tose
ure 12πmP 1/2 6 kc (so as to satisfy a 
ondition on an estimate for the Bessel fun
tion).Noting that m 6 Y and c > M > N/X, it su�
es to have 12πXY P 1/2 6 kN . Takinglogarithms, this be
omes a 
ondition on u, namely

u 6
2(1− 2δ) log(kN)

log(k2N)
. (6.17)For u in this range we 
an apply the estimate (6.16) to �nd

M
⋆
k(φ) =

k − 1

12

∑

LM=N
L6X

µ(L)M

×
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1
m6Y

m−1
∑

c≡0(M)

c−12−kmP 1/2(kN)ε(log 2c)−2

=
k − 1

12
2−kP 1/2(kN)ε

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1
m6Y

∑

c≡0(M)

c−1(log 2c)−2.(6.18)Trivial estimation plus the bound
∑

c≡0(M)

1

c(log c)2
≪ 1

M
(6.19)yields

∑

p∤N

∆′
k,N(p)φ̂

(
log p

logR

)
2 log p√
p logR

≪ k − 1

12
2−kP 1/2(kN)εXY, (6.20)whi
h is o(kϕ(N)) for ε+ 2δ < 1/2.Thus by taking δ su�
iently small and applying the 
ombined estimates for the 
ompletedsums, (6.12) and (6.20), we have established that P⋆

k(φ) = o(kϕ(N)) where φ̂ is supported
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u <

2 log kN

log k2N
, (6.21)whi
h implies the following.Theorem 6.1. Assuming the Generalized Riemann Hypothesis for L(s, f) and L(s, sym2 f)and for all Diri
hlet L-fun
tions, the Density Conje
ture holds for the family H⋆

k(N) forany test fun
tion φ(x) whose Fourier transform is supported inside (−u, u) with u givenby (6.21).We immediately obtain the following.Theorem 1.3. Fix any φ ∈ S(R) with supp φ̂ ⊂ (−2, 2). Then, assuming the GeneralizedRiemann Hypothesis for L(s, f) and L(s, sym2 f) for f ∈ H∗
k(N) and for all Diri
hlet L-fun
tions,

lim
N→∞

1∣∣H⋆
k(N)

∣∣
∑

f∈H⋆
k
(N)

D1(f ;φ) =

∫ ∞

−∞
φ(x)W1(O)(x) dx (6.22)where W1(O)(x) = 1+ 1

2δ0(x); thus the 1-level density agrees only with orthogonal symmetry.Appendix A. Simplifying Vpα(m,n; f)De�nitions needed in the appendix 
an be found in Se
tion 3. We have the following:
∑

d|pα
Ξd(m,n; f) = Ξ1(m,n; f) + Ξp(m,n; f) + · · · +Ξpα

= ξ1(1)ξ1(1)λf (m)λf (n) +
∑

ℓ1|(p,m)
ℓ2|(p,n)

ξp(ℓ1)ξp(ℓ2)(ℓ1ℓ2)
1/2λf (

m
ℓ1
)λf (

n
ℓ2
)

+
∑

ℓ1|(p2,m)
ℓ2|(p2,n)

ξp2(ℓ1)ξp2(ℓ2)(ℓ1ℓ2)
1/2λf (

m
ℓ1
)λf (

n
ℓ2
), (A.1)where the remaining summands vanish for the following reason: Suppose p | m. Then

p | (m,L) so (m,n,N) = 1 implies that p ∤ n. Then if ℓ2 | (p, n) we must have ℓ2 = 1, andsimilarly if p | n; hen
e ξpβ(1) vanishes for β > 3. Thus we have
Vpα(m,n; f) :=

∑

d|pα
Ξd(m,n; f)

= λf (m)λf (n) + ξp(1)
2λf (m)λf (n)

+♠p(nm)ξp(p)ξp(1)p
1/2λf (m/♣p(m))λf (n/♣p(n))

+ ξp2(1)
2λf (m)λf (n) +♠p(nm)ξp2(p)ξp2(1)p

1/2λf (m/♣p(m))λf (n/♣p(n))

+♠p2(n,m)ξp2(p
2)ξp2(1)pλf (m/♣p2(m))λf (n/♣p2(n))

= λf (m)λf (n)(1 + ξp(1)
2 + ξp2(1)

2)
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+♠p(nm)λf (m/♣p(m))λf (n/♣p(n))

√
p(ξp(p)ξp(1) + ξp2(p)ξp2(1))

+♠p2(n,m)ξp2(p
2)ξp2(1)pλf (m/♣p2(m))λf (n/♣p2(n))

= λf (m)λf (n)

(
1 +

λf (p)
2

p (1 + χ0;M (p)/p)2 rf (p)
+

χ0;M(p)

p2rf (p) (1− χ0;M (p)/p2)

)

+♠p(nm)λf (m/♣p(m))λf (n/♣p(n))

×
( −λf (p)

rf (p) (1 + χ0;M (p)/p)
+

−λf (p)χ0;M (p)

prf (p) (1− χ0;M (p)/p2)

)

+♠p2(n,m)λf (m/♣p2(m))λf (n/♣p2(n))

(
χ0;M (p)

rf (p) (1− χ0;M (p)/p2)

)
.(A.2)and now (3.18) follows by removing the 
ontribution from the p2 terms.Appendix B. Verifi
ation of Lemma 3.2Lemma B.1 (Lemma 3.2). Write LM = N . Fix f ∈ H⋆

k(M). Then if (n,N) = 1 and
(m,N) = 1 we have

(λf (m)λf (n))
1−ω(L)

∏

p|L
p∤M

rf (p)
∏

pα||L
Vpα(m,n; f)

= λf (m)λf (n)
∏

p2|L
p∤M

(
p2

p2 − 1

) ∏

p|L
p||M

(
p2

p2 − 1

)
. (B.1)Note that the 
onditions (m,N) = 1 and (n,N) = 1 imply that if p | L then p ∤ m and

p ∤ n. Thus by Proposition 3.1, Appendix B, (2.11), and (2.31), we have
(

1

λf (m)λf (n)

)ω(L)−1 ∏

p|L
p∤M

rf (p)
∏

pα||L


∑

d|pα
Ξd(m,n; f)




= λf (m)λf (n)
∏

p||L
p∤M

rf (p)


1 +

λf (p)
2

p
(
1 +

χ0;M (p)
p

)2
rf (p)




×
∏

p2|L
p∤M

rf (p)


1 +

λf (p)
2

p
(
1 +

χ0;M (p)
p

)2
rf (p)

+
χ0;M (p)

p2rf (p)
(
1− (

χ0;M (p)
p )2

)



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×
∏

p||L
p|M


1 +

λf (p)
2

p
(
1 +

χ0;M (p)
p

)2
rf (p)




×
∏

p2|L
p|M


1 +

λf (p)
2

p
(
1 +

χ0;M (p)
p

)2
rf (p)

+
χ0;M (p)

p2rf (p)
(
1− (

χ0;M (p)
p )2

)




= λf (m)λf (n)
∏

p||L
p∤M

rf (p)


1 +

λf (p)
2

p
(
1 + 1

p

)2
rf (p)




×
∏

p2|L
p∤M

rf (p)


1 +

λf (p)
2

p
(
1 + 1

p

)2
rf (p)

+
1

p2rf (p)
(
1− (1p)

2
)




∏

p|(L,M)

(
1 +

λf (p)
2

prf (p)

)

= λf (m)λf (n)
∏

p||L
p∤M


ρf (p) +

λf (p)
2

p
(
1 + 1

p

)2



∏

p2|L
p∤M


ρf (p) +

λf (p)
2

p
(
1 + 1

p

)2 +
1

p2 − 1




×
∏

p|(L,M)


1 +

λf (p)
2

p
(
1− λf (p)

2

p

)




= λf (m)λf (n)
∏

p||L
p∤M


1− p

(
λf (p)

p + 1

)2

+
λf (p)

2

p
(
1 + 1

p

)2




×
∏

p2|L
p∤M


1− p

(
λf (p)

p+ 1

)2

+
λf (p)

2

p
(
1 + 1

p

)2 +
1

p2 − 1



∏

p|L
p‖M


1 +

1

p2
(
1− 1

p2

)




= λf (m)λf (n)
∏

p2|L
p∤M

(
1 +

1

p2 − 1

) ∏

p|L
p‖M

(
1 +

1

p2 − 1

)

= λf (m)λf (n)
∏

p2|L
p∤M

(
p2

p2 − 1

) ∏

p|L
p‖M

(
p2

p2 − 1

)
.
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k(N)|In this se
tion we re
over the main terms of some bounds of Martin [Ma℄ on the 
ardinalityof the set H⋆

k(N). Sin
e λf (1) = 1, we see that ∆⋆
k,N(1) = |H⋆

k(N)|. So, in order todetermine the 
ardinality of H⋆
k(N) it su�
es to have an estimate of ∆⋆

k,N (1). Taking oneterm q = 1 from Lemma 5.1, we �nd that
∆∞

k,N(n) ≪ kN
(
X−1 + Y −1/2

)
(nkNXY )ε. (C.1)Next we turn to evaluating ∆′

k,N(1).
∆′

k,N (n) =
k − 1

12

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1 ∑

(m,M)=1
m6Y

m−1∆k,M(m2, n). (C.2)An appli
ation of Weil's bound for Kloosterman sums and a 
rude bounding of the Besselfun
tion in the Petersson formula (Proposition 2.1) yields an estimate su
h as [ILS, Corol-lary 2.2℄, whi
h we reprodu
e now. For any m,n > 1,
∆k,M(m,n) = δ(m,n) +O

(
τ(M)

Mk5/6
(m,n,M)τ3((m,n))

((m,M) + (n,M))1/2

(
mn√

mn+ kM

)1/2

log 2mn

)
,(C.3)where the implied 
onstant is absolute. When n = 1 and m 6 Y we �nd

∆k,M(m2, 1) = δ(m, 1) +O

(
M εm1+ε

M3/2k4/3

)
. (C.4)In our 
ase this gives that

∆′
k,N(1) =

k − 1

12

∑

LM=N
L6X

µ(L)M
∏

p2|M

(
p2

p2 − 1

)−1

+O

(
X1/2Y (kNY )ε

N1/2k1/3

)
. (C.5)We now turn to the evaluation of

η(N) :=
∑

LM=N

µ(L)M
∏

p2|M

(
1− 1

p2

)
. (C.6)LetM ′′ denote the square-full part ofM and let g(M) = M/ζM ′′(2), whi
h is multipli
ative.Then η = µ ⋆ g is multipli
ative as it is the Diri
hlet 
onvolution of two multipli
ativefun
tions and we 
an 
ompute dire
tly the value of η on prime powers:

η(pv) =





p
(
1− 1

p

) if v = 1

p2
(
1− 1

p − 1
p2

) if v = 2

pv
(
1− 1

p2

)(
1− 1

p

) if v > 2.

(C.7)



ONE-LEVEL DENSITY FOR HOLOMORPHIC CUSP FORMS OF ARBITRARY LEVEL 25It is also useful to establish a bound relating η(N) to ϕ(N). By inspe
tion we have that
η(N) 6 ϕ(N). Then as the ratio η(pv)/ϕ(pv) is minimized when v = 2 and as

η(p2)/ϕ(p2) =
p2 − p− 1

p2 − p
= 1− 1

p2 − p
, (C.8)we �nd that

ϕ(N)
∏

p

(
1− 1

p2 − p

)
6 η(N) 6 ϕ(N). (C.9)Now 
ombining (C.1) (C.5) and (C.6), we �nd that

∆⋆
k,N(1) =

k − 1

12
η(N)

(
1 +O

(
τ(N)N

η(N)X

))
+O

(
X1/2Y (kNY )ε

N1/2k1/3

)

+O
(
kN

(
X−1 + Y −1/2

)
(kNXY )ε

)
. (C.10)Taking X = Y 1/2 = k8/21N3/7 then gives

∆⋆
k,N(1) =

k − 1

12
η(N) +O

(
(kN)2/3

)
, (C.11)whi
h re
overs the tight asymptoti
 bounds given on |H⋆

k(N)| in [Ma, Theorem 6(
)℄. Com-bining this with (C.9) we establish the following.Proposition C.1 (Proposition 5.3). We have that as kN → ∞
k − 1

12
ϕ(N)

∏

p

(
1− 1

p2 − p

)
+O

(
(kN)2/3

)
6 |H⋆

k(N)| 6
k − 1

12
ϕ(N) +O

(
(kN)2/3

)
.(C.12)Referen
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