EXTENDING THE SUPPORT OF 1- AND 2-LEVEL DENSITIES FOR CUSP FORM L-FUNCTIONS UNDER SQUARE-ROOT CANCELLATION HYPOTHESES

ANNIKA MAURO, JACK B. MILLER, AND STEVEN J. MILLER

Abstract

The Katz-Sarnak philosophy predicts that the behavior of zeros near the central point in families of L-functions agrees with that of eigenvalues near 1 of random matrix ensembles. Under GRH, Iwaniec, Luo and Sarnak showed agreement in the one-level densities for cuspidal newforms with the support of the Fourier transform of the test function in $(-2,2)$. Under a square-root cancellation conjecture ('Hypothesis S '), they extend allowable support to a (symmetric) larger open interval $\supsetneq(-2,2)$ still obeying random-matrix statistics. We formulate a twodimensional analog and show it leads to improvements in the two-level density. Specifically, we show that a square-root cancellation of certain classical exponential sums over primes increases the support of the test functions such that the main terms in the 1- and 2 -level densities of cuspidal newforms averaged over bounded weight k (and fixed level 1) converge to their random matrix theory predictions. We also conjecture a broad class of such exponential sums where we expect improvement in the case of arbitrary n-level densities, and note that the arguments in [ILS] yield larger support than claimed.

Contents

1. Introduction 2
1.1. Background 2
1.2. Previous Work 5
1.3. New Results 6
2. The One-Level Case 8
3. The Two-Level Case 13
4. An n-Level Conjecture 15

[^0]Key words and phrases. Katz-Sarnak Conjecture, Low-lying Zeros, Random Matrix Theory, Hypothesis S, Cuspidal Newforms.
This work was supported by NSF grant DMS1947438 and Williams College, and is gratefully dedicated to Henryk Iwaniec in celebration of his $75^{\text {th }}$ birthday for his years of direct mentoring and friendship to the third named author, and his indirect to the other authors (and numerous other students of the third author). We thank the referee who reviewed this paper for helpful comments on an earlier draft.

Appendix A.	Theorem	1.6

1. Introduction

1.1. Background. Since the observations of Montgomery and Dyson 50 years ago, random matrix theory has provided a guide to predicting the behavior of quantities related to the zeros and values of L-functions; we focus on the behavior of zeros here. Initially this agreement was limited to theoretical results on the pair correlation of zeros of the Riemann zeta function, and then extended to include the n-level correlations of automorphic forms and numerical results on the spacings between zeros; see [Ga; Hej; Mon; RS; Od1; Od2]. These statistics concern the behavior high up on the critical line, and are thus insensitive to finitely many zeros. In particular, they miss the effects from zeros at the central point, which are of great importance in a variety of number theory problems, from the Birch and Swinnerton-Dyer Conjecture and the ranks of the group of rational solutions of elliptic curves to bounding class numbers; see [BSD1; BSD2; Go].

To remedy this, Katz and Sarnak [KS1; KS2] introduced new statistics, the n-level densities; there is now an extensive literature on agreement between number theory and random matrix theory here; see [AAILMZ; AM; C-; CI; DHKMS1; DHKMS2; DM1; DM2; ER-GR; FiM; FI; Gao; GK; GJMMNPP; Gu; HM; HR1; HR2; ILS; LM; Mil1; MilPe; OS1; OS2; RR; Ro; Rub; ShTe; Ya; Yo1; Yo2] and the references therein, as well as [BFMT-B; Con; FM] for more on the history of the connections between the two subjects.

This work is a continuation of the seminal paper [ILS]; in brief, we extend their results for certain one-level densities to two-level, and discuss how to generalize to arbitrary n. Specifically, we show that a natural generalization of their Hypothesis S on cancellation in certain prime sums, which led to increasing the support for the one-level density, leads to increased support where the 2-level density of certain families of cuspidal newforms and random matrix theory agree. Such results have applications in bounding the order of vanishing at the central point. We assume the reader is familiar with the basics of L-functions; see for example [IK] for details. The following definitions are standard; we paraphrase from $[\mathbf{L i M}]$ as we will use
their framework to convert our results on increased support to estimates on weighted order of vanishing.

A function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Schwartz if it is infinitely differentiable and it and all of its derivatives decay faster than any polynomial. In our setting, an even Schwartz function Φ with compactly supported Fourier transform is called a test function. We frequently assume the Generalized Riemann Hypothesis (GRH) holds for each $L(s, f)$, and write the non-trivial zeros of a cuspidal newform $L(s, f)$ of level N and weight k by

$$
\begin{equation*}
\rho_{f}^{(j)}=\frac{1}{2}+i \gamma_{f}^{(j)} \tag{1.1}
\end{equation*}
$$

for $\gamma_{f}^{(j)} \in \mathbb{R}$ increasingly ordered and centered about zero..1 The number of zeros with $\left|\gamma_{f}^{(j)}\right|$ bounded by an absolute large constant is of order $\log c_{f}$ for some constant $c_{f}>1$; this is known as the analytic conductor.

Definition 1.1 (n-Level Density). The n-level density of an L-function $L(s, f)$ with respect to a test function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with compactly supported Fourier transform is defined as

$$
\begin{equation*}
D_{n}(f ; \Phi):=\sum_{\substack{j_{1}, \ldots, j_{n} \\ j_{i} \neq j_{k}}} \Phi\left(\frac{\log c_{f}}{2 \pi} \gamma_{f}^{\left(j_{1}\right)}, \ldots, \frac{\log c_{f}}{2 \pi} \gamma_{f}^{\left(j_{n}\right)}\right) \tag{1.2}
\end{equation*}
$$

Note that the existence of the n-level density does not depend on GRH.
One of the most important applications of the n-level density is to obtaining bounds on the order of vanishing to a given order at the central point. For such results, we need Φ to be non-negative and positive at the origin.

Unlike the n-level correlations, the sum (1.2) is hard to study for an individual f because by choice of Φ it essentially captures only a bounded number of zeros. Thus we study averages over finite subfamilies $\mathcal{F}(Q):=$ $\left\{f \in \mathcal{F}: c_{f} \in I(Q)\right\}$ (which are parametrized by some quantity Q such that as Q tends to infinity, the size of the subfamily tends to infinity as well), namely

$$
\begin{equation*}
\mathbb{E}\left[D_{n}(f ; \Phi), Q\right]:=\frac{1}{\# \mathcal{F}(Q)} \sum_{f \in \mathcal{F}(Q)} D_{n}(f ; \Phi) \tag{1.3}
\end{equation*}
$$

Common choices are $I(Q)=\{Q\},\{1,2, \ldots, Q\}$ and $\{Q, Q+1, \ldots, 2 Q\}$.

[^1]The Katz-Sarnak density conjecture $[\mathbf{K S 1} ; \mathbf{K S 2}]$ asserts that the n-level density of a family of L-functions, in the limit as the conductors tend to infinity, converges to the n-level density of eigenvalues of a classical compact group as the matrix sizes tend to infinity. Explicitly, if \mathcal{F} is a "good" family of L-functions and Φ is not zero at the origin, then there exists a distribution $W_{n, \mathcal{F}}$ such that

$$
\begin{equation*}
\lim _{Q \rightarrow \infty} \mathbb{E}\left[D_{n}(f ; \Phi), Q\right]=\frac{1}{\Phi(0, \ldots, 0)} \int_{\mathbb{R}^{n}} \Phi(x) \cdot W_{n, \mathcal{F}}(x) d x_{1} \cdots d x_{n} \tag{1.4}
\end{equation*}
$$

We have the following expansions for the quantities above; though for computational purposes it is often advantageous to use an alternative expansion due to Hughes-Miller [HM], which writes the n-level density as a sum of terms emerging as the support increases.

Theorem 1.2 (Determinant Expansion [KS1]). Let $K(x)=\frac{\sin \pi x}{\pi x}$ and $K_{\epsilon}(x, y)=K(x-y)+\epsilon K(x+y)$. Then the n-level densities have the following distinct closed form determinant expansions for each corresponding symmetry group:

$$
\begin{align*}
W_{n, \text { SO(even) }}(x) & =\operatorname{det}\left(K_{1}\left(x_{i}, x_{j}\right)\right)_{i, j \leq n}, \tag{1.5}\\
W_{n, \mathrm{SO} \text { (odd) }}(x) & =\operatorname{det}\left(K_{-1}\left(x_{i}, x_{j}\right)\right)_{i, j, \leq n}+\sum_{k=1}^{n} \delta_{0}\left(x_{k}\right) \operatorname{det}\left(K_{-1}\left(x_{i}, x_{j}\right)\right)_{i, j, \neq k}
\end{align*}
$$

$$
\begin{equation*}
W_{n, \mathrm{O}}(x)=\frac{1}{2} W_{n, \mathrm{SO}(\text { even })}(x)+\frac{1}{2} W_{n, \mathrm{SO}(\text { odd })}(x) \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
W_{n, \mathbf{U}}(x)=\operatorname{det}\left(K_{0}\left(x_{i}, x_{j}\right)\right)_{i, j, \leq n} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
W_{n, \mathrm{Sp}}(x)=\operatorname{det}\left(K_{-1}\left(x_{i}, x_{j}\right)\right)_{i, j, \leq n} \tag{1.8}
\end{equation*}
$$

As remarked, one of the main applications of this statistic is to bound the order of vanishing of a family of L-functions at the central point by choosing a test function which is non-negative and positive at the origin, see [BCDMZ; DM; Fr; FrMil; LiM]. Many of these papers are concerned with trying to find the optimal test function for a given support, but already in the work of [ILS] one sees that there may be only a negligible improvement in bounds from using the optimal functions derived from Fredholm theory over simple test functions. Thus, while there have been some recent advances in determining the optimal function for a given support, it has been more productive to increase the support and the level n studied; however, as n increases while the bounds obtained are better for the percentage of forms vanishing to order at least r when r is large, they are worse for small r. Thus there is a balancing act, with most of the effort devoted to finding the largest
support possible, and then given that determining the best bounds by using easy to compute test functions for each n. We concentrate on increasing the support for certain families of cusp forms, which can then be fed into the machinery from Dutta-Miller [DuM] to yield improved estimates.

In [ILS], the authors introduce the following hypothesis, whose implications are striking, allowing them to break $(-2,2)$ for the support for certain families.

Hypothesis 1.3 (Hypothesis S). Let $e(z):=e^{2 \pi i z}$, c be a positive integer and a be an arbitrary residue class mod c. Let $M_{1}(\alpha, A)$ denote a 2parameter family of hypotheses, where $\alpha \in[1 / 2,3 / 4], A \in[0, \infty)$, each of which states that for all $x \geq 2$ and $\varepsilon>0$,

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ p \equiv a(c)}} e\left(\frac{2 \sqrt{p}}{c}\right) \ll_{\varepsilon} c^{A} x^{\alpha+\varepsilon} \tag{1.10}
\end{equation*}
$$

holds uniformly over $c>0$ and residue classes a $\bmod c$, with α and A fixed.
1.2. Previous Work. The reason why [ILS] is interested in this family of hypotheses is because they increase the support of test functions for which the one-level density agrees with random matrix theory. We first review their result, and then discuss our generalization.

For convenience, as is often done in the subject, we assume our test function Φ is the product of one-dimensional test functions ϕ_{i}. Below we confine our study to cusp forms of level 1 and weight k. Following [ILS], one is able to get better results on the support by averaging over k. This allows us to exploit some oscillation in the Bessel function factors that emerge in application of the Petersson formula. Note that rather than sum over all forms equally, each form f of weight k is weighted by the slowly varying factor $1 / L\left(1, \operatorname{sym}^{2}(f)\right)[\mathbf{H L} ; \mathbf{I} 2]$. There is a trade-off in studying this modification of the n-level densities; these harmonic weights arise naturally in the Petersson formula, and their introduction simplifies calculations below. Unfortunately their presence means that we cannot obtain results on bounding the order of vanishing at the central point, but instead obtain results on weighted vanishing. In many families these weights can be removed through additional work; see [ILS].

Definition 1.4 (Agrees with Orthogonal RMT). A test function Φ agrees with Orthogonal Random Matrix Theory if

$$
\begin{align*}
& \lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k \leq K} \frac{4 \pi^{2}}{k-1} \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} D_{n}(f ; \Phi) \\
&=\int_{\mathbb{R}^{n}} \Phi(x) \cdot W_{n, \mathrm{O}}(x) d x_{1} \cdots d x_{n} \tag{1.11}
\end{align*}
$$

where $W_{n, \mathrm{O}}(x)$ is given by equation (1.7), and $H_{k}=H_{k}^{\star}(1)$ are Hecke eigencuspforms of weight k and level 1 , with normalization so that $a_{f}(1)=1$. The L-function $L(s, f)$ has coefficients $\lambda_{f}(n):=a_{f}(n) n^{-(k-1) / 2}$ so that $\lambda_{f}(p) \in[-2,2]$ and the L-function $L(s, f)$ is symmetric about $\mathfrak{R e}(s)=1 / 2$.

Remark 1.5. For the family considered above, previous results show that the underlying symmetry group is orthogonal, hence our comparison with the orthogonal behavior. For other families we would just use the corresponding densities from Theorem 1.2.

We are now able to state the following result from [ILS], which extends the support for the family of level 1 cusp forms to beyond $(-2,2)$.

Theorem 1.6 (One-level extended support). Assume GRH. Then $M_{1}(\alpha, A)$ implies that a test function ϕ agrees with random matrix theory if $\operatorname{supp}(\widehat{\phi}) \subset$ $(-\sigma, \sigma)$ for $\sigma=\min \{5 / 2,2+(6-8 \alpha) /(1+2 A+4 \alpha)\}$. More specifically, for every $h \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$with $\widehat{h}(0) \neq 0$, one has that

$$
\begin{align*}
\lim _{K \rightarrow \infty} \frac{1}{\widehat{h}(0) K} \sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) \sum_{f \in H_{k}} & \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} D_{1}(f ; \phi) \\
& \rightarrow \int_{\mathbb{R}} \phi(x) \cdot W_{1, \mathrm{O}}(x) d x \tag{1.12}
\end{align*}
$$

1.3. New Results. In their manuscript from 2000, Iwaniec, Luo and Sarnak [ILS] state and prove the Theorem 1.6 for $\sigma=2+(12-16 \alpha) /(5+$ $4 A+8 \alpha)$, which is less than $2+(6-8 \alpha) /(1+2 A+4 \alpha)$; however, a careful analysis of their arguments give more than what they claimed. In Section 2 , we give a proof of Theorem 1.6 based on Section 10 of [ILS], and discuss in Appendix A the difference in the claimed support and what the calculation yields.

Our main theorem, Theorem 1.8, is a natural extension of Theorem 1.6, showing that square-root cancellation hypotheses also extend to the case of the 2-level density. For ease of exposition and to highlight the issues, we focus on the $n=2$ case, though similar calculations should hold in general.

Hypothesis 1.7. Let $e(z):=e^{2 \pi i z}$, c be a positive integer, and a_{1}, a_{2} be arbitrary residue classes mod c. Let $M_{2}(\alpha, A)$ denote a 2-parameter family
of hypotheses, where $\alpha \in[1 / 2,3 / 4], A \in[0, \infty)$, each of which states that for all $x_{1}, x_{2} \geq 2$ and $\varepsilon>0$,

$$
\begin{equation*}
\sum_{\substack{p_{1} \leq x_{1} \\ p_{1} \equiv a_{1}(c)}} \sum_{\substack{p_{2} \leq x_{2} \\ p_{2} \equiv a_{2}(c)}} e\left(\frac{2 \sqrt{p_{1} p_{2}}}{c}\right) \ll \varepsilon c^{A}\left(x_{1} x_{2}\right)^{\alpha+\varepsilon} \tag{1.13}
\end{equation*}
$$

holds uniformly over $c>0$ and residue classes a_{1}, a_{2} mod c, with α and A fixed.

A natural extension of Theorem 1.6 is our main theorem, proven in Section 3

Theorem 1.8 (Two-level extended support). Assume GRH. Then $M_{1}(\alpha, A)$ and $M_{2}(\alpha, A)$ imply that a test function $\Phi(x)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)$ agrees with random matrix theory if $\operatorname{supp}\left(\widehat{\phi_{i}}\right) \subset\left(-\sigma_{i}, \sigma_{i}\right)$ for
$\sigma_{1}+\sigma_{2}=2+(6-8 \alpha) /(3+2 A+4 \alpha)$. More specifically, for every $h \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$ with $\widehat{h}(0) \neq 0$, one has that

$$
\begin{align*}
\lim _{K \rightarrow \infty} \frac{1}{\hat{h}(0) K} \sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) & \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} D_{2}(f ; \Phi) \\
& \rightarrow \int_{\mathbb{R}^{2}} \Phi(x) \cdot W_{2, \mathrm{O}}(x) d x_{1} d x_{2} \tag{1.14}
\end{align*}
$$

Using the machinery from $[\mathbf{D u M}]$ for an orthogonal ensemble with the naive test function we obtain the following immediately from Theorem 1.8.

Theorem 1.9. Taking ϕ to be the naive test function

$$
\begin{equation*}
\phi_{\mathrm{Naive}}(x)=\left(\frac{\sin (\pi v x)}{\pi v x}\right)^{2} \tag{1.15}
\end{equation*}
$$

the weighted percentage of forms vanishing to order at least r, denoted $P_{r}(\mathcal{F})$, is bounded by

$$
\begin{equation*}
P_{r}(\mathcal{F}) \leq \min \left\{\frac{1}{r}\left(\frac{1}{2}+\frac{1}{v_{1}}\right), \frac{1}{3\left(r-1 / v_{2}-1 / 2\right)^{2}}\right\} \tag{1.16}
\end{equation*}
$$

Here v_{1} and v_{2} denote the available support for the 1-level and 2-level density respectively, and the form f is weighted by the factor from (1.14) (normalized so that the sum of the weights equals 1). Assuming the strongest version of Hypothesis 1.7, one may take $v_{1}=2.5$ and $v_{2}=1.2$. These values yield

$$
\begin{array}{lll}
P_{1}(\mathcal{F}) \leq 0.9000, & P_{2}(\mathcal{F}) \leq 0.4500, & P_{3}(\mathcal{F}) \leq 0.1200 \\
& P_{4}(\mathcal{F}) \leq 0.0469, & P_{5}(\mathcal{F}) \leq 0.0248 \tag{1.17}
\end{array}
$$

Remark 1.10. We quickly comment on the conditional nature of these results. In [ILS] there are two places GRH is used. The first is for convenience to bound certain prime sums of cuspidal newforms, which they remark can
be bypassed by additional appeals to the Petersson formula (see the comments after their equation (4.24)). ${ }^{2}$ The second is when one splits by sign for square-free level N tending to infinity, GRH is needed to analyze the main term contribution and size of the error of the Bessel-Kloosterman term; however, we only need this for Dirichlet L-functions. If we do not split by sign and consider level 1 cuspidal newforms for k up to K (appropriately weighted), then Hypothesis S, a "GL ${ }_{1}$ "exponential sum, suffices.

Remark 1.11. We expect in the limit that 50% of the forms in our family should be rank 0 and 50% rank 1; thus (paraphrasing comments one of us heard from Iwaniec in graduate classes) for $r \geq 2$ we may interpret Theorem 1.9 as providing better upper bounds on 0.

We first review the proof for the one-level density in $\S 2$ to fix notation and then extend to the two-level in the next section. For notational convenience we prove Theorem 1.8 in the case when $\phi_{1}=\phi_{2}$; a similar argument holds in general (see for example the arguments in $[\mathbf{L i M}]$, which extend the n-level density results of $[\mathbf{H M}]$ from identical test functions to the more general case). We then discuss further generalizations to larger n.

2. The One-Level Case

We follow the arguments in [ILS] to prove Theorem 1.6 , but with extra care towards the step that derives their equation (10.17), since the expression in their original manuscript differs slightly from our estimation. This also sets the notation we need for our two-level result, as well as isolating certain one-level results that are used again.

We begin by justifying normalizing the one-level density sum

$$
\begin{equation*}
\mathscr{B}(K):=\sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} D_{1}(f ; \phi) \tag{2.1}
\end{equation*}
$$

by a factor of $\widehat{h}(0) K$. That is, given the total weighting

$$
\begin{equation*}
B(K):=\sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)}, \tag{2.2}
\end{equation*}
$$

we show that $B(K)=\widehat{h}(0) K+O(1)$, and thus either $B(K)$ or $\widehat{h}(0) K$ gives the same normalization of $\mathscr{B}(K)$ as $K \rightarrow \infty$. This follows from a special

[^2]case of the Petersson trace formula:
\[

$$
\begin{align*}
B(K) & =\sum_{k \text { even }} 2 h\left(\frac{k-1}{K}\right) \Delta_{k}(1,1) \tag{2.3}\\
\Delta_{k}(1,1) & =\frac{2 \pi^{2}}{k-1} \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} \tag{2.4}
\end{align*}
$$
\]

where the so-called trace $\Delta_{k}(m, n)$ is defined to be

$$
\begin{align*}
\Delta_{k}(m, n) & :=\sum_{f \in H_{k}} \frac{\Gamma(k-1)}{(4 \pi \sqrt{m n})^{k-1}} \frac{a_{f}(m) a_{f}(n)}{\langle f, f\rangle} \\
& =\frac{2 \pi^{2}}{k-1} \sum_{f \in H_{k}} \frac{\lambda_{f}(m) \lambda_{f}(n)}{L\left(1, \operatorname{sym}^{2}(f)\right)} \tag{2.5}
\end{align*}
$$

where $\langle\cdot, \cdot\rangle$ is the Petersson inner product and a_{f} are the Fourier coefficients of the cusp form f.

Proposition 2.1 (Petersson trace formula). Let $\delta(\cdot, \cdot)$ be Kronecker's delta, J_{k-1} a Bessel function of the first kind, and

$$
\begin{equation*}
S(m, n ; c):=\sum_{d(\bmod c)}^{\star} e\left(\frac{m d+n \bar{d}}{c}\right) \tag{2.6}
\end{equation*}
$$

is a Kloosterman sum, where \sum^{\star} denotes summing over primitive residue classes. Then the Petersson formula is

$$
\begin{equation*}
\Delta_{k}(m, n)=\delta(m, n)+2 \pi i^{k} \sum_{c=1}^{\infty} \frac{S(m, n ; c)}{c} J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c}\right) . \tag{2.7}
\end{equation*}
$$

Careful estimation of the Petersson trace formula for special values as in Corollary 2.3 of [ILS] gives $\Delta_{k}(1,1)=1+O\left(2^{-k}\right)$, and so our claim about $B(K)$ follows by interpreting the main term $H=\sum_{k \text { even }} 2 h\left(\frac{k-1}{K}\right)$ as a Riemann sum of the function $2 h(x)$ divided by the mean spacing $2 / K$, hence $H=\widehat{h}(0) K+O(1)$ where the implied constant depends on h, e.g., using the fact that h has bounded derivative (though the weaker condition of h having bounded variation would suffice).

In performing asymptotic analysis, we are interested in the weighted sum of traces

$$
\begin{equation*}
\mathscr{B}(m, n):=\sum_{k \text { even }} 2 h\left(\frac{k-1}{K}\right) \Delta_{k}(m, n) . \tag{2.8}
\end{equation*}
$$

Inserting (B.5) into (2.1) while taking $R \asymp K^{2}$ to be on order of the average conductor, we have

$$
\begin{equation*}
\mathscr{B}(K)=\widehat{h}(0) K\left\langle\phi, W_{1, \mathrm{o}}\right\rangle-\mathscr{P}(\phi)+O\left(K \frac{\log \log K}{\log K}\right), \tag{2.9}
\end{equation*}
$$

where the implied constant depends on ϕ, and $\mathscr{P}(\phi)$ is the weighted sum over local factors

$$
\begin{align*}
\mathscr{P}(\phi) & :=\sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} \mathbf{P}(f ; \phi) \\
& =\sum_{p} \mathscr{B}(p, 1) \widehat{\phi}\left(\frac{\log p}{2 \log K}\right) \frac{\log p}{p^{1 / 2} \log K} . \tag{2.10}
\end{align*}
$$

It is at this stage that the goal of the analysis becomes clear: estimate $\mathscr{P}(\phi)$ by extracting a main term and bounding the error. In the case of the one-level density, the prime sum $\mathscr{P}(\phi)$ does not contribute to the main term when $\operatorname{supp}(\widehat{\phi}) \subset(-\sigma, \sigma)$ for some σ we would like to determine, giving us agreement with random matrix theory. For example, without the use of Hypothesis 1.3, [ILS] immediately show using the Petersson trace formula and Weil's estimate that $\mathscr{B}(p, 1)=O\left(p^{1 / 2} K^{-4}\right)$, and so taking $\sigma=2$ means that p runs up to $P \ll K^{4-\delta}$ assuming $\operatorname{supp}(\widehat{\phi}) \subseteq[-2+\delta, 2-\delta]$ for some positive δ, which gives $\mathscr{P}(\phi) \ll K^{-\delta}$.

To increase σ, it is necessary to deal with a worse error term that cannot be absorbed into $O\left(p^{1 / 2} K^{-4}\right)$ when $\sigma>2$. Namely, by applying the Petersson formula to $\mathscr{B}(m, n)$ and approximating the Bessel function sums using standard techniques (see Corollary 8.2 in [ILS] and then the top of page 86 in [I1]), one may derive the following.

Lemma 2.2 (Lemma 10.1 in [ILS]). One has that

$$
\begin{align*}
& \mathscr{B}(m, n)=\widehat{h}(0) K \delta(m, n)+O\left(\delta(m, n)+\sqrt{m n} K^{-4}\right) \tag{2.11}\\
& -\pi^{1 / 2}(m n)^{-1 / 4} K \operatorname{Im}\left(\bar{\zeta}_{8} \sum_{c=1}^{\infty} c^{-1 / 2} S(m, n ; c) e\left(\frac{2 \sqrt{m n}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{m n}}\right)\right),
\end{align*}
$$

where the implied constant depends on h, and the function \hbar is defined to be the transform

$$
\begin{equation*}
\hbar(v):=\int_{0}^{\infty} \frac{h(\sqrt{u})}{\sqrt{2 \pi u}} e^{i u v} d u \tag{2.12}
\end{equation*}
$$

The above lemma follows by applying the Petersson trace formula to (2.8), and then estimating the weighted sum of Bessel functions $I(x)=$ $\sum_{k \text { even }} 2 h\left(\frac{k-1}{K}\right) i^{k} J_{k-1}(x)$ (cf. the twisted character sum on page 86 of [$\left.\mathbf{I} 1\right]$). Crucial in the analysis is executing the sum over the weights k to exploit the oscillation in the Bessel terms.

Using this expression for $\mathscr{B}(p, 1)$ to estimate (2.10), we obtain by a simple triangle inequality

$$
\begin{align*}
& \mathscr{P}(\phi) \ll_{h} P K^{-4}+ \tag{2.13}\\
& \left|\sum_{p} K \operatorname{Im}\left(\bar{\zeta}_{8} \sum_{c=1}^{\infty} \frac{S(p, 1 ; c)}{\sqrt{c}} e\left(\frac{2 \sqrt{p}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p}}\right) \widehat{\phi}\left(\frac{\log p}{2 \log K}\right) \frac{\log p}{p^{3 / 4} \log K}\right)\right|,
\end{align*}
$$

where P is the largest prime such that $\frac{\log P}{2 \log K}$ is greater than the support of $\widehat{\phi}$. Notice that we use a crude estimate such as $\sum_{p \leq P} 1 \ll P$ because logarithmic factors will not increase the support (as our results are for open and not closed intervals). We moved $\widehat{\phi}\left(\frac{\log p}{2 \log K}\right)$ and $\frac{\log p}{p^{3 / 4} \log K}$ into the imaginary component, since they are both real.

Our next step is to interchange summing over p versus c, and we replace $|\operatorname{Im}(\cdot)|$ by the full complex modulus $|\cdot|$ (we do not expect the real part to be significantly larger than the imaginary part, so this should not lead to a decrease in support).

$$
\begin{align*}
& \mathscr{P}(\phi)-P K^{-4} \tag{2.14}\\
& \ll K \sum_{c=1}^{\infty} \frac{1}{\sqrt{c}}\left|\sum_{p} S(p, 1 ; c) e\left(\frac{2 \sqrt{p}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p}}\right) \hat{\phi}\left(\frac{\log p}{2 \log K}\right) \frac{\log p}{p^{3 / 4} \log K}\right| \\
& \ll K \sum_{c=1}^{\infty} \frac{1}{\sqrt{c}} \sum_{a(\bmod c)}^{\star}\left|\sum_{p \equiv a(c)} S(p, 1 ; c) e\left(\frac{2 \sqrt{p}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p}}\right) \hat{\phi}\left(\frac{\log p}{2 \log K}\right) \frac{\log p}{p^{3 / 4} \log K}\right| \\
& =K \sum_{c=1}^{\infty} \frac{1}{\sqrt{c}} \sum_{a(\bmod c)}^{\star}|S(a, 1 ; c)|\left|\sum_{p \equiv a(c)} e\left(\frac{2 \sqrt{p}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p}}\right) \hat{\phi}\left(\frac{\log p}{2 \log K}\right) \frac{\log p}{p^{3 / 4} \log K}\right| . \tag{2.15}
\end{align*}
$$

We only sum over primitive residue classes $\bmod c$, each of which contains infinitely many primes, whereas the non-primitive classes consist of primes p dividing c. Because \hbar is rapidly decaying, only large primes $p \gg c^{2} K^{4}$ contribute, and so the non-primitive residue classes are absorbed into the Vinogradov notation.

We now perform summation by parts. For each sum over primes in a residue class, we put $\psi_{c}(x)=\hbar\left(\frac{c K^{2}}{8 \pi \sqrt{x}}\right) \widehat{\phi}\left(\frac{\log x}{2 \log K}\right) \frac{\log x}{x^{3 / 4} \log K}$ which is smooth and supported for primes $p<P$. By Abel summation, we obtain

$$
\begin{equation*}
\sum_{2 \leq n \leq P} e\left(\frac{2 \sqrt{n}}{c}\right) \mathbb{1}_{n \in\{p \equiv a(c)\}} \psi_{c}(n)=-\int_{2}^{P} \mathcal{E}_{1}(x) \psi_{c}^{\prime}(x) d x \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{1}(x):=\sum_{\substack{p \equiv a(c) \\ p \leq x}} e\left(\frac{2 \sqrt{p}}{c}\right) . \tag{2.17}
\end{equation*}
$$

Thus we see a natural opportunity to use Hypothesis 1.3 in our estimate for the local factors arising from the explicit formula applied to the weighted average of the one-level density $D_{1}(f ; \phi)$.

From now on let us assume hypothesis $M_{1}(\alpha, A)$ found in 1.10). We estimate $\psi_{c}^{\prime}(x)$ as

$$
\begin{equation*}
\psi_{c}^{\prime}(x)=\hbar^{\prime}\left(\frac{c K^{2}}{8 \pi \sqrt{x}}\right) \cdot O\left(\frac{c K^{2}}{x^{9 / 4}}\right)+\hbar\left(\frac{c K^{2}}{8 \pi \sqrt{x}}\right) \cdot O\left(\frac{1}{x^{7 / 4}}\right) \tag{2.18}
\end{equation*}
$$

where the implied constant depends on ϕ. We treat $\psi_{c}^{\prime}(x)$ as $O(1)$ for small c and as rapidly decaying for large c. The exact transition region for c is governed by the argument of the rapidly decaying function \hbar, i.e., $c K^{2} / \sqrt{P}=\theta(1)$. Thus, we truncate our sum over c in (2.14) at the value $C=P^{1 / 2} K^{\varepsilon-2}$. Indeed, applying Weil's estimate and equation (2.18) with $\hbar^{\prime}(x), \hbar(x)=O_{\Omega}\left(x^{-\Omega}\right)$ for $\Omega>0$ large, we bound the tail of 2.14) by

$$
\begin{align*}
K \sum_{c \geq C} c & \int_{2}^{P} \mathcal{E}_{1}(x) \psi_{c}^{\prime}(x) d x \\
& <_{h, \Omega, \varepsilon} K \sum_{c \geq C} c^{A+1} \int_{2}^{P} x^{\alpha+\varepsilon}\left(\frac{c K^{2}}{\sqrt{x}}\right)^{-\Omega} \cdot\left(\frac{c K^{2}}{x^{9 / 4}}+\frac{1}{x^{7 / 4}}\right) d x \\
& \ll P^{\alpha+\varepsilon+\Omega / 2} K^{1-2 \Omega} C^{A+3-\Omega} \\
& =K^{O(1)-\varepsilon \Omega} \tag{2.19}
\end{align*}
$$

Thus we have a balancing act, where we let $\varepsilon \rightarrow 0$ while $O(1)-\varepsilon \Omega<0$ to maximize the extension of support obtained by this method. This shows that we may neglect these terms for further computation, i.e., they are absorbed into the Vinogradov notation.

Focusing now on the small values of c, we estimate $\psi_{c}^{\prime}(x)=O_{h}\left(K^{\varepsilon} x^{-7 / 4}\right)$ for $x \geq c^{2} K^{4-2 \varepsilon}$, handling the smaller values of x using rapid decay estimates similar to above. This gives

$$
\begin{align*}
K \sum_{c \leq C} c \int_{c^{2} K^{4-2 \varepsilon}}^{P} \mathcal{E}_{1}(x) \psi_{c}^{\prime}(x) d x & \lll h, \varepsilon \\
& \ll K^{1+\varepsilon} \sum_{c \leq C} c^{A+1} \int_{C^{2} K^{4-2 \varepsilon}}^{P} x^{\alpha-7 / 4+\varepsilon} d x \tag{2.20}\\
& \ll P^{\alpha+A / 2+1 / 4} K^{-2 A-3+O(\varepsilon)} .
\end{align*}
$$

We usually write $O(\varepsilon)$ as ε, as this can be done by rescaling ε. Thus, we have derived

$$
\begin{equation*}
\mathscr{P}(\phi) \ll_{\phi, h, \varepsilon} P K^{-4}+P^{\alpha+A / 2+1 / 4} K^{-2 A-3+\varepsilon} . \tag{2.21}
\end{equation*}
$$

To understand an account of the various estimates for (2.21), see Appendix A.

Since $P=K^{2 \sigma^{\prime}}$ where $\sigma^{\prime}=\frac{\log P}{2 \log K}$ tends to the maximum of $\operatorname{supp}(\widehat{\phi})$, and so $\sigma^{\prime}<\sigma$ for all large K. Since we have agreement with random matrix theory only if $\mathscr{P}(\phi)=o(K)$, each term in (2.21) gives us an upper bound on our method for obtaining σ in Theorem 1.6. Namely, $P K^{-4}=o(K)$ gives $\sigma \leq 5 / 2$, and $P^{\alpha+A / 2+1 / 4} K^{-2 A-3+\varepsilon}$ as $\varepsilon \rightarrow 0$ gives $\sigma \leq 2+(6-8 \alpha) /(1+$ $2 A+4 \alpha$). This concludes our proof of Theorem 1.6 .

The best support we could expect would be using hypothesis $M_{1}\left(\frac{1}{2}, 0\right)$, which gives an increased support of $\operatorname{supp}(\widehat{\phi}) \subset(-5 / 2,5 / 2)$; see Appendix A
for a history of this derivation. Notice that $\sigma=5 / 2$ can also be achieved using M_{1} with respect to any (α, A) along the linear interpolation of $(0.5,0.5)$ and $(0.55,0)$.

3. The Two-Level Case

The starting point is the explicit formula, and inclusion-exclusion to express the two-level density in terms of prime sums. The calculation is standard (see Section B) and yields equation (B.7), which we restate below (recall $\mathbf{P}(f ; \phi)$ is defined in 2.10):

$$
\begin{align*}
D_{2}(f ; \phi)= & \widehat{\phi}(0)^{2}\left(\frac{\log k}{\log K}\right)^{2}-\frac{3}{4} \phi(0)^{2}+\widehat{\phi}(0) \phi(0) \frac{\log k}{\log K}-2 \widehat{\phi^{2}}(0) \frac{\log k}{\log K} \\
& +O_{\phi}\left(\frac{\log \log k}{\log K}\right)+\mathbf{P}(f ; \phi)^{2}+2 \mathbf{P}\left(f ; \phi^{2}\right) \\
& -\left(2 \widehat{\phi}(0) \frac{\log k}{\log K}+\phi(0)+O_{\phi}\left(\frac{\log \log k}{\log K}\right)\right) \mathbf{P}(f ; \phi) \tag{3.1}
\end{align*}
$$

From Section 2, we know that the averages of $\mathbf{P}\left(f ; \phi^{2}\right)$ and $\mathbf{P}(f ; \phi)$ are $o(K)$ when $\operatorname{supp}(\phi) \subset(-\widetilde{\sigma} / 2, \tilde{\sigma} / 2)$, where $\widetilde{\sigma}$ is $\sigma(\alpha, A)$ given in Theorem 1.6 and we assume hypothesis $M_{1}(\alpha, A)$. We now proceed to extract the diagonal sum from $\mathbf{P}(f ; \phi)^{2}$ since it contributes. We have

$$
\begin{equation*}
\mathbf{P}(f ; \phi)^{2}=\sum_{p, q} \frac{\lambda_{f}(p) \lambda_{f}(q)}{\sqrt{p q}} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \widehat{\phi}\left(\frac{\log q}{\log R}\right) \frac{4 \log p \log q}{(\log R)^{2}} \tag{3.2}
\end{equation*}
$$

where p, q run over the primes. When we average over f we get

$$
\begin{align*}
\mathscr{P}_{2}(\phi) & :=\sum_{k \text { even }} \frac{4 \pi^{2}}{k-1} h\left(\frac{k-1}{K}\right) \sum_{f \in H_{k}} \frac{1}{L\left(1, \operatorname{sym}^{2}(f)\right)} \mathbf{P}(f ; \phi)^{2} \\
& =\sum_{p, q} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \widehat{\phi}\left(\frac{\log q}{\log R}\right) \frac{4 \log p \log q}{\sqrt{p q}(\log R)^{2}} \mathscr{B}(p, q) \tag{3.3}
\end{align*}
$$

where $\mathscr{B}(p, q)$ was defined in 2.8). Applying Lemma 2.2, we have

$$
\begin{align*}
\mathscr{P}_{2}(\phi)= & (\widehat{h}(0) K+O(1)) \sum_{p} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right)^{2}\left(\frac{2 \log p}{\log R}\right)^{2}+O_{\phi, h}\left(P^{2} K^{-4}\right) \\
- & \pi^{1 / 2} K \sum_{p, q} \frac{1}{p^{3 / 4} q^{3 / 4}} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \widehat{\phi}\left(\frac{\log q}{\log R}\right) \frac{4 \log p \log q}{(\log R)^{2}} \\
& \times \operatorname{Im}\left(\bar{\zeta}_{8} \sum_{c=1}^{\infty} c^{-1 / 2} S(p, q ; c) e\left(\frac{2 \sqrt{p q}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p q}}\right)\right) \tag{3.4}
\end{align*}
$$

The diagonal sum yields

$$
\begin{align*}
\sum_{p} \frac{1}{p} & \left(\frac{\log p}{\log R}\right)^{2}\left(\frac{2 \log p}{\log R}\right)^{2}=\int_{2}^{\infty} \widehat{\phi}\left(\frac{\log x}{\log R}\right)^{2} \frac{4 \log ^{2} x}{x \log ^{2} R} d \pi(x) \\
& =\int_{2}^{\infty} \hat{\phi}\left(\frac{\log x}{\log R}\right)^{2} \frac{4 \log ^{2} x}{x \log ^{2} R}\left(\frac{d x}{\log x}+O\left(\frac{\log ^{2} x}{\sqrt{x}}\right) d x\right) \\
& =\int_{0}^{\infty} \widehat{\phi}(u)^{2} 4 u d u+O\left(\frac{1}{\log R}\right)+O\left(\eta+\frac{\log R}{R^{\eta}}\right) \tag{3.5}
\end{align*}
$$

Taking $\eta=A \log \log R / \log R$ with $A \geq 2$ a constant yields an error of size $O(\log \log R / \log R)$, where we have used the Riemann hypothesis for $\zeta(s)$ for a good error term in the integration.

We now analyze the non-diagonal component of $\mathscr{P}_{2}(\phi)$, denoted $\mathscr{P}_{2}^{(\text {nd })}(\phi)$, similar to our treatment of $\mathscr{P}(\phi)$ beginning at (2.14). We take $R \asymp K^{2}$.

$$
\begin{align*}
& \mathscr{P}_{2}^{(\mathrm{nd})}(\phi)-P^{2} K^{-4} \\
& \ll K \sum_{c=1}^{\infty} \frac{1}{\sqrt{c}}\left|\sum_{p, q} S(p, q ; c) e\left(\frac{2 \sqrt{p q}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p q}}\right) \hat{\phi}\left(\frac{\log p}{2 \log K}\right) \hat{\phi}\left(\frac{\log q}{2 \log K}\right) \frac{\log p \log q}{p^{3 / 4} q^{3 / 4}(\log K)^{2}}\right| \\
& \ll K \sum_{c=1}^{\infty} \frac{1}{\sqrt{c}} \sum_{a, b(\bmod c)}^{\star}|S(a, b ; c)| \times \\
& \sum_{a, b(\bmod c)}^{*}|S(a, b ; c)|\left|\sum_{\substack{p \equiv a(c) \\
q \equiv b(c)}} e\left(\frac{2 \sqrt{p q}}{c}\right) \hbar\left(\frac{c K^{2}}{8 \pi \sqrt{p q}}\right) \hat{\phi}\left(\frac{\log p}{2 \log K}\right) \hat{\phi}\left(\frac{\log q}{2 \log K}\right) \frac{\log p \log q}{p^{3 / 4} q^{3 / 4}(\log K)^{2}}\right| . \tag{3.6}
\end{align*}
$$

We now perform summation by parts on our double sum over primes in residue classes. We let

$$
\begin{equation*}
\psi_{c}(x, y):=\hbar\left(\frac{c K^{2}}{8 \pi \sqrt{x y}}\right) \hat{\phi}\left(\frac{\log x}{2 \log K}\right) \hat{\phi}\left(\frac{\log y}{2 \log K}\right) \frac{\log x \log y}{x^{3 / 4} y^{3 / 4}(\log K)^{2}} \tag{3.7}
\end{equation*}
$$

and sum by parts. We have

$$
\begin{equation*}
\sum_{\substack{p \equiv a(c) \\ q \equiv b(c)}} e\left(\frac{2 \sqrt{p q}}{c}\right) \psi_{c}(p, q)=\int_{2}^{P} \int_{2}^{P} \mathcal{E}_{2}(x, y) \frac{\partial^{2} \psi_{c}}{\partial x \partial y}(x, y) d x d y \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{2}(x, y):=\sum_{\substack{p \equiv a(c) \\ q \equiv b(c)}} e\left(\frac{2 \sqrt{p q}}{c}\right) . \tag{3.9}
\end{equation*}
$$

We now assume hypothesis $M_{2}(\alpha, A)$, found in (1.13).
As was illustrated by estimates in Section 2, it suffices to only integrate over the region $x y \geq c^{2} K^{4-2 \varepsilon}$; we may also truncate our sum at $c \leq C=P K^{\varepsilon-2}$. Allowing this reduction along with Weil's estimate and

$$
\begin{align*}
\partial_{x y}^{2} \psi_{c}(x, y) & =O\left(K^{\varepsilon}(x y)^{-7 / 4}\right), \text { we obtain } \\
\mathscr{P}_{2}^{(\mathrm{nd)}}(\phi) & \ll{ }_{\phi, h, \varepsilon} P^{2} K^{-4}+K^{1+\varepsilon} \sum_{c \leq C} c^{2} \iint_{x y \geq c^{2} K^{4-2 \varepsilon}} c^{A}(x y)^{\alpha-7 / 4+\varepsilon} d x d y \\
& \ll P^{2} K^{-4}+P^{3 / 2+A+2 \alpha} K^{-6-2 A+O(\varepsilon)} \tag{3.10}
\end{align*}
$$

This gives an increased support of $\operatorname{supp}(\widehat{\phi}) \subset(-\sigma / 2, \sigma / 2)$ where $\sigma=2+$ $\frac{6-8 \alpha}{3+2 A+4 \alpha}$.

This concludes our proof of Theorem 1.8 , since equation ($\overline{\mathrm{B} .7}$) for the 2-level expansion yields the main term $\left\langle\Phi, W_{2,0}\right\rangle$ plus an error term that is controlled by the family averages of $\mathbf{P}\left(f ; \phi^{2}\right)$ and $\mathscr{P}_{2}^{(\text {nd })}(\phi)$. Indeed, our main term is

$$
\begin{equation*}
2 \int_{-\infty}^{\infty}|u| \widehat{\phi}(u)^{2} d u+\widehat{\phi}(0)^{2}-\frac{3}{4} \phi(0)^{2}+\widehat{\phi}(0) \phi(0)-2 \widehat{\phi^{2}}(0), \tag{3.11}
\end{equation*}
$$

and it is a standard calculation (see $[\mathbf{H M} ; \mathbf{C}-]$) that this is equal to $\left\langle\Phi, W_{2,0}\right\rangle$ (it is straightforward combinatorics to pass between n-level densities and $n^{\text {th }}$ centered moments).

By Hypotheses $M_{1}(\alpha, A)$ and $M_{2}(\alpha, A)$ the error does not contribute as $K \rightarrow \infty$ for
$2 \sigma \leq \min \left\{\frac{5}{2}, 2+\frac{6-8 \alpha}{1+2 A+4 \alpha}, 2+\frac{6-8 \alpha}{3+2 A+4 \alpha}\right\}=2+\frac{6-8 \alpha}{3+2 A+4 \alpha}$.
This is because the rest of the calculation for the two-level support consists of cross terms that already appear in the one-level case, and these terms are negligible assuming $M_{1}(\alpha, A)$ and 2σ in the above range by following the proof of Theorem 1.6 in Section 2.

4. An n-Level Conjecture

Based on our calculations in Sections 2 and 3, we notice that the fundamental sums arising from local factors which may contribute have a predictable analysis. The natural generalization of cancellation in such sums lead to the following conjecture on extending support.

Conjecture 4.1 (n-level Hypothesis). Assume GRH. Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a test function given by $\Phi(x)=\prod_{i=1}^{n} \phi\left(x_{i}\right)$. For fixed $\alpha \in\left[\frac{1}{2}, \frac{3}{4}\right], A \in$ $[0, \infty), k \in \mathbb{N}$, consider the following hypothesis which holds for all x_{1}, \ldots, $x_{k} \geq 2, \varepsilon>0$,

$$
\begin{equation*}
M_{k}(\alpha, A): \quad \sum_{\substack{p_{1} \leq x_{1} \\ p_{1} \equiv a_{1}(c)}} \cdots \sum_{\substack{p_{k} \leq x_{k} \\ p_{k} \equiv a_{k}(c)}} e\left(\frac{2 \sqrt{p_{1} \cdots p_{k}}}{c}\right) \ll_{\varepsilon} c^{A}\left(x_{1} \cdots x_{k}\right)^{\alpha+\varepsilon} \tag{4.1}
\end{equation*}
$$

where the implied constant is uniform over $c \in \mathbb{N}$ and the residue classes $a_{1}, \ldots, a_{n} \bmod c$. Then $M_{1}(\alpha, A), \ldots, M_{n}(\alpha)$ imply that Φ agrees with random matrix theory whenever $\operatorname{supp}(\widehat{\phi}) \subset(-\sigma, \sigma)$, where σ is given by

$$
\begin{align*}
n \sigma & =\min \left\{\frac{5}{2}, 2+\frac{6-8 \alpha}{1+2 A+4 \alpha}, \ldots, 2+\frac{6-8 \alpha}{2 n-1+2 A+4 \alpha}\right\} \\
& =2+\frac{6-8 \alpha}{2 n-1+2 A+4 \alpha} . \tag{4.2}
\end{align*}
$$

Expansions of the $n^{\text {th }}$ centered moments or n-level densities have been calculated for related families where we split by sign and let the level $N \rightarrow$ ∞ through the primes; see [$\mathbf{C}-]$ for families of such cuspidal newforms, with the resulting agreement holding for $\operatorname{supp}(\hat{\phi}) \subset(-2 / n, 2 / n)$. A good future project ${ }^{3}$ would be to apply their combinatorial arguments in the level 1 setting, in particular seeing whether or not these are the only terms that restricted the support to $2 / n$.

Appendix A. Theorem 1.6 in the Literature

We provide some brief remarks on the support improvements from Hypothesis S .

Let us suppose that $\alpha=1 / 2$ and $A=0$ for hypothesis $M_{1}(\alpha, A)$, i.e., the exponential sums satisfy true square-cancellation. Theorem 1.6 says that we may take $\sigma=5 / 2$. In their 1999 pre-print, Iwaniec, Luo and Sarnak perform the correct integration by parts technique, but their estimate of a sum of Bessel functions is non-sharp; they write

$$
\begin{equation*}
\sum_{k \text { even }} 2 h\left(\frac{k-1}{K}\right) i^{k} J_{k-1}(x)=\text { Main Term }+O_{h}\left(\frac{x}{K^{4}}+\frac{x^{2}}{K^{6}}\right) \tag{A.1}
\end{equation*}
$$

(cf. Proposition 1 of Section 2 in this pre-print). It is this extra error of $O_{h}\left(x / K^{6}\right)$ that affects the final result, giving $\sigma=7 / 3$ instead of $\sigma=5 / 2$. In their 2000 publication, the error term in A.1) is corrected to $O_{h}\left(x / K^{4}\right)$, which leads to the correct estimate in Corollary 8.2 of [ILS]. However, [ILS] derives $\sigma=22 / 9$ instead of $\sigma=5 / 2$; this is because although their Bessel sum estimate is correct, they derive

$$
\begin{equation*}
\mathscr{P}(\phi)<_{\phi, h, \varepsilon} P K^{-4}+P^{\alpha+A / 2+5 / 8} K^{-2 A-9 / 2+\varepsilon} . \tag{A.2}
\end{equation*}
$$

It is unclear how they did this; following their integration by parts technique in the 1999 preprint, it seems that with the correction to (A.1) found in their 2000 publication, they would have derived equation 2.21 as we present it today.

Appendix B. Explicit Formulae For The Densities

We order the zeros of $L(s, f)$ by $0 \leq \gamma^{(1)} \leq \gamma^{(2)} \leq \cdots$ including multiplicity, and $\gamma^{(-j)}=-\gamma^{(j)}$, giving us a zero $\gamma^{(j)}$ for each $j \in \mathbb{Z}-\{0\}$. We

[^3]recall that the one-level density of $L(s, f)$ with respect to a test function ϕ is
\[

$$
\begin{equation*}
D_{1}(f ; \phi):=\sum_{j \neq 0} \phi\left(\frac{\log c_{f}}{2 \pi} \gamma^{(j)}\right) \tag{B.1}
\end{equation*}
$$

\]

where $c_{f}=k^{2} N$ is the analytic conductor of a form f with weight k and level N. Throughout this paper, we exclusively deal with level 1 modular forms, so $\log c_{f}=2 \log k$ for $f \in H_{k}$.

Similarly, the two-level density with respect to a one-dimensional test function $\phi: \mathbb{R} \rightarrow \mathbb{R}\left(\right.$ so $\left.\Phi\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)$ is

$$
\begin{equation*}
D_{2}(f ; \phi):=\sum_{\substack{j, \ell \neq 0 \\ j \neq \pm \ell}} \phi\left(\frac{\log c_{f}}{2 \pi} \gamma^{(j)}\right) \phi\left(\frac{\log c_{f}}{2 \pi} \gamma^{(\ell)}\right) \tag{B.2}
\end{equation*}
$$

Straightforward inclusion-exclusion yields that this two-level density simplifies as

$$
\begin{equation*}
D_{2}(f ; \phi)=D_{1}(f ; \phi)^{2}-2 D_{1}\left(f ; \phi^{2}\right), \tag{B.3}
\end{equation*}
$$

with similar expansions for the n-level densities as a degree n polynomial expression in terms of the one-level densities of powers of ϕ.

In Section 4 of [ILS], they derive the following expansion.
Lemma B. 1 (Lemma 4.1 of [ILS]). Let ϕ be even Schwartz and $\widehat{\phi}$ compactly supported. Then for $f \in H_{k}^{\star}(N)$, we have

$$
\begin{align*}
D_{1}(f ; \phi)= & \widehat{\phi}(0) \frac{\log k^{2} N}{\log R}+\frac{1}{2} \phi(0)-\sum_{p} \lambda_{f}(p) \widehat{\phi}\left(\frac{\log p}{\log R}\right) \frac{2 \log p}{\sqrt{p} \log R} \\
& -\sum_{p} \lambda_{f}\left(p^{2}\right) \widehat{\phi}\left(\frac{2 \log p}{\log R}\right) \frac{2 \log p}{p \log R}+O\left(\frac{\log \log 3 N}{\log R}\right) \tag{B.4}
\end{align*}
$$

where $R>1$ is an arbitrary parameter and the implied constant depends only on ϕ.
[ILS] remark that, by assuming the Riemann hypothesis for $L\left(s, \operatorname{sym}^{2}(f)\right)$, the second sum over primes above is a small error of size $O\left(\frac{\log \log k N}{\log R}\right)$ which depends on ϕ, and very crucially does not depend on f (cf. equation (4.23) of [ILS]). They also remark that one can achieve a similar error size on average via unconditional means, which is described in Appendix B of [ILS]. Thus, assuming GRH, we have

$$
\begin{align*}
& D_{1}(f ; \phi)=\widehat{\phi}(0) \frac{\log k^{2} N}{\log R}+\frac{1}{2} \phi(0)-\sum_{p} \lambda_{f}(p) \widehat{\phi}\left(\frac{\log p}{\log R}\right) \frac{2 \log p}{\sqrt{p} \log R} \\
&+O_{\phi}\left(\frac{\log \log k N}{\log R}\right) . \tag{B.5}
\end{align*}
$$

Let $\mathbf{P}(f ; \phi)$ denote the sum over primes which may contribute to the density.

$$
\begin{equation*}
\mathbf{P}(f ; \phi):=\sum_{p} \frac{\lambda_{f}(p)}{\sqrt{p}} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \frac{2 \log p}{\log R} . \tag{B.6}
\end{equation*}
$$

We drop the parameter R from the notation of $\mathbf{P}(f ; \phi)$, since we often take R as the analytic conductor $c_{f}=k^{2} N$ or the average conductor over the family, i.e., $R \asymp K^{2} N$.

We now consider the two-level density for ϕ. By applying (B.5) to (B.3) with $f \in H_{k}=H_{k}^{\star}(1)$ and $R \asymp K^{2}$, we obtain

$$
\begin{align*}
D_{2}(f ; \phi)= & \widehat{\phi}(0)^{2}\left(\frac{\log k}{\log K}\right)^{2}-\frac{3}{4} \phi(0)^{2}+\widehat{\phi}(0) \phi(0) \frac{\log k}{\log K}-2 \widehat{\phi^{2}}(0) \frac{\log k}{\log K} \\
& +O_{\phi}\left(\frac{\log \log k}{\log K}\right)+\mathbf{P}(f ; \phi)^{2}+2 \mathbf{P}\left(f ; \phi^{2}\right) \\
& -\left(2 \widehat{\phi}(0) \frac{\log k}{\log K}+\phi(0)+O_{\phi}\left(\frac{\log \log k}{\log K}\right)\right) \mathbf{P}(f ; \phi) . \tag{B.7}
\end{align*}
$$

As we observe in Section 3, the only prime sum which contributes to random matrix theory agreement is $\mathbf{P}(f ; \phi)^{2}$: the terms involving $\mathbf{P}\left(f ; \phi^{2}\right)$ and $\mathbf{P}(f ; \phi)$ become negligible under the support conditions for $\Phi(x)=$ $\phi^{2}\left(x_{1}\right) \phi^{2}\left(x_{2}\right)$ given by Theorem 1.6 assuming Hypothesis 1.3 .

References

[AAILMZ] L. Alpoge, N. Amersi, G. Iyer, O. Lazarev, S. J. Miller and L. Zhang, Maass waveforms and low-lying zeros, in Analytic Number Theory: In Honor of Helmut Maier's 60th Birthday, Springer-Verlag, 2015.
[AM] L. Alpoge and S. J. Miller, The low-lying zeros of level 1 Maass forms, Int. Math. Res. Not. IMRN 2010, no. 13, 2367-2393.
[BFMT-B] O. Barrett, F. W. K. Firk, S. J. Miller and C. Turnagebutterbaugh, From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond, in Open Problems in Mathematics (editors John Nash Jr. and Michael Th. Rassias), Springer-Verlag, 2016, pages 123-171.
[BSD1] B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves. I, J. reine angew. Math. 212 (1963), 7-25.
[BSD2] B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves. II, J. reine angew. Math. 218 (1965), 79-108.
[BCDMZ] E. Bołdyriew, F. Che, C. Devlin VI, S. J. Miller and J. Zhao, Determining optimal test functions for 2-level densities, to appear in Research in Number Theory. https://arxiv.org/ pdf/2011.10140.
[C-] Peter Cohen, Justine Dell, Oscar E. Gonzalez, Geoffrey Iyer, Simran Khunger, Chung-Hang Kwan, Steven J. Miller, Alexander Shashkov, Alicia Smith Reina, Carsten Sprunger, Nicholas Triantafillou, Nhi Truong, Roger Van Peski, Stephen Willis,
and Yingzi Yang, Extending Support for the Centered Moments of the Low-Lying Zeroes Of Cuspidal Newforms, preprint (2022), https://arxiv.org/pdf/2208.02625
[Con] J. B. Conrey, L-Functions and random matrices. Pages 331352 in Mathematics unlimited - 2001 and Beyond, SpringerVerlag, Berlin, 2001.
[CFZ1] J. B. Conrey, D. W. Farmer and M. R. Zirnbauer, Autocorrelation of ratios of L-functions, Comm. Number Theor. Phys. 2 (2008), no. 3, 593-636
[CFZ2] J. B. Conrey, D. W. Farmer and M. R. Zirnbauer, Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the classical compact groups, preprint. http://arxiv.org/abs/math-ph/0511024.
[CI] J. B. Conrey and H. Iwaniec, Spacing of Zeros of Hecke LFunctions and the Class Number Problem, Acta Arith. 103 (2002) no. 3, 259-312.
[CS] J. B. Conrey and N. C. Snaith, Applications of the L-functions Ratios Conjecture, Proc. London Math. Soc. (3) 94 (2007), no. 3, 594-646.
[D-1] E. Dueñez, D. K. Huynh, J. C. Keating, S. J. Miller and N. Snaith, The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp).
[D-2] E. Dueñez, D. K. Huynh, J. C. Keating, S. J. Miller and N. Snaith, Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp).
[DM1] E. Dueñez and S. J. Miller, The low lying zeros of a GL(4) and a GL(6) family of L-functions, Compositio Mathematica 142 (2006), no. 6, 1403-1425.
[DM2] E. Dueñez and S. J. Miller, The effect of convolving families of L-functions on the underlying group symmetries, Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.
[DuM] S. Dutta and S. J. Miller, Bounding the Order of Vanishing of Cuspidal Newforms via the $n^{\text {th }}$ Centered Moments, preprint. https://arxiv.org/pdf/2211.04945.
[ER-GR] A. Entin, E. Roditty-Gershon and Z. Rudnick, Low-lying zeros of quadratic Dirichlet L-functions, hyper-elliptic curves and Random Matrix Theory, Geometric and Functional Analysis 23 (2013), no. 4, 1230-1261.
[FiM] D. Fiorilli and S. J. Miller, Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions, Algebra \& Number Theory Vol. 9 (2015), No. 1, 13-52.
[FM] F. W. K. Firk and S. J. Miller, Nuclei, Primes and the Random Matrix Connection, Symmetry 1 (2009), 64-105; doi:10.3390/sym1010064. http://www.mdpi.com/2073-8994/1/1/64.
[FI] E. Fouvry and H. Iwaniec, Low-lying zeros of dihedral Lfunctions, Duke Math. J. 116 (2003), no. 2, 189-217.
[Fr] J. Freeman, Fredholm Theory and Optimal Test Functions for Detecting Central Point Vanishing Over Families of Lfunctions, Journal of Number Theory 240 (2022), 1-30. https : //doi.org/10.1016/j.jnt.2021.11.013.
[FrMil] J. Freeman and S. J. Miller, Determining Optimal Test Functions for Bounding the Average Rank in Families of LFunctions, in SCHOLAR - a Scientific Celebration Highlighting Open Lines of Arithmetic Research, Conference in Honour of M. Ram Murty's Mathematical Legacy on his 60th Birthday (A. C. Cojocaru, C. David and F. Pappaardi, editors), Contemporary Mathematics 655, AMS and CRM, 2015.
[Gal] P. X. Gallagher, Pair correlation of zeros of the zeta function, Journal für die reine und angewandte Mathematik 362 (1985), 72-86.
[Gao] P. Gao, N-level density of the low-lying zeros of quadratic Dirichlet L-functions, Ph. D thesis, University of Michigan, 2005.
[Go] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3, 4 (1976), 624-663.
[GK] D. Goldfeld and A. Kontorovich, On the GL(3) Kuznetsov formula with applications to symmetry types of families of L functions, In Automorphic Representations and L-Functions (ed. D. Prasad et al), Tata Institute (2013), 263-310.
[G-] J. Goes, S. Jackson, S. J. Miller, D. Montague, K. Ninsuwan, R. Peckner and T. Pham, A unitary test of the L-functions Ratios Conjecture, Journal of Number Theory 130 (2010), no. 10, 2238-2258.
[GHK] S. M. Gonek, C. Hughes and J. P. Keating, A hybrid EulerHadamard product for the Riemann zeta function, Duke Math. J. 136 (2007) 507-549.
[Gü] A. Güloğlu, Low Lying Zeros of Symmetric Power L-Functions, Int. Math. Res. Not. (2005), no. 9, 517-550.
[Hej] D. Hejhal, On the triple correlation of zeros of the zeta function, Internat. Math. Res. Notices 1994, no. 7, 294-302.
[HL] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman, Ann. of Math. (2) 140 (1994), no. 1, 161181.
[HM] C. Hughes and S. J. Miller, Low-lying zeros of L-functions with orthogonal symmetry, Duke Math. J. 136 (2007), no. 1, 115172.
[HR1] C. Hughes and Z. Rudnick, Mock Gaussian behaviour for linear statistics of classical compact groups, J. Phys. A 36 (2003), 2919-2932.
[HR2] C. Hughes and Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Quart. J. Math. Oxford 54 (2003), 309-333.
[I1] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. ISBN: 0-8218-0777-3.
[I2] H. Iwaniec, Small eigenvalues of Laplacian for $\Gamma_{0}(N)$, Acta Arith. 56 (1990), no. 1, 65-82.
[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, Vol. 53, AMS, Providence, RI, 2004.
[ILS] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55-131.
[KS1] N. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, AMS Colloquium Publications, Vol. 45, AMS, Providence, RI, 1999.
[KS2] N. Katz and P. Sarnak, Zeros of zeta functions and symmetries, Bull. AMS 36 (1999), 1-26.
[LM] J. Levinson and S. J. Miller, The n-level density of zeros of quadratic Dirichlet L-functions, Acta Arithmetica 161 (2013), 145-182.
[LiM] S. Li and S. J. Miller, Bounding Vanishing at the Central Point of Cuspidal Newforms, Journal of Number Theory (Computational Section) 244 (March 2023), 279-307.
[Mil] S. J. Miller, 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952-992.
[MilPe] S. J. Miller and R. Peckner, Low-lying zeros of number field Lfunctions, Journal of Number Theory 132 (2012), 2866-2891.
[Mon] H. Montgomery, The pair correlation of zeros of the zeta function. Pages 181-193 in Analytic Number Theory, Proceedings of Symposia in Pure Mathematics, vol. 24, AMS, Providence, RI, 1973.
[Od1] A. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), no. 177, 273-308.
[Od2] A. Odlyzko, The 10^{22}-nd zero of the Riemann zeta function. Pages 139-144 in Proceedings of the Conference on Dynamical, Spectral and Arithmetic Zeta Functions, ed. M. van Frankenhuysen and M. L. Lapidus, Contemporary Mathematics Series,AMS, Providence, RI, 2001.
[OS1] A. E. Özlük and C. Snyder, Small zeros of quadratic Lfunctions, Bull. Austral. Math. Soc. 47 (1993), no. 2, 307-319.
[OS2] A. E. Özlük and C. Snyder, On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis, Acta Arith. 91 (1999), no. 3, 209-228.
[RR] G. Ricotta and E. Royer, Statistics for low-lying zeros of symmetric power L-functions in the level aspect, Forum Mathematicum 23 (2010), no. 5
[Ro] E. Royer, Petits zéros de fonctions L de formes modulaires, Acta Arith. 99 (2001), 47-172.
[Rub] M. Rubinstein, Low-lying zeros of L-functions and Random Matrix Theory, Duke Math. J. 109 (2001), no. 1, 147-181.
[RS] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke J. of Math. 81 (1996), 269-322.
[ShTe] S. W. Shin and N. Templier, Sato-Tate theorem for families and low-lying zeros of automorphic L-functions, Invent. Math. 203 (2016), 1-177.
[Ya] A. Yang, Low-lying zeros of Dedekind zeta functions attached to cubic number fields, preprint.
[Yo1] M. Young, Lower-order terms of the 1-level density of families of elliptic curves, Int. Math. Res. Not. (2005), no. 10, 587-633.
[Yo2] M. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2006), no. 1, 205-250.

Department of Mathematics, Stanford University
Email address: amauro@stanford.edu
Department of Mathematics, Yale University
Email address: jack.miller.jbm82@yale.edu
Department of Mathematics and Statistics, Williams College
Email address: sjm1@williams.edu

[^0]: Date: September 29, 2023.
 2010 Mathematics Subject Classification. 11M26 (primary), 11M41, 15A52 (secondary).

[^1]: ${ }^{1}$ In many of the calculations of Bessel-Kloosterman terms, we need GRH for Dirichlet L-functions. We can often avoid GRH for cuspidal newforms at the expense of more involved calculations, but if GRH fails while we can still formally calculate these statistics, as the zeros are no longer on the critical line we lose the correspondence with physics.

[^2]: ${ }^{2}$ While we need GRH to have the zeros lie on the critical line, and thus have a direct comparison to eigenvalues of Hermitian matrices or energy levels of heavy nuclei, such an assumption is only needed for this interpretation or correspondence; the n-level densities exist whether or not GRH holds.

[^3]: ${ }^{3}$ It is likely that this will be investigated in a future SMALL REU.

