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The celebrated isoperimetric theorem says that the circle provides the

least-perimeter way to enclose a given area. In this note we discuss a gener-

alization which arose at a departmental research seminar workshop [1] and

which moves the isoperimetric problem from geometry to number theory

and combinatorics. Instead of Euclidean space, let’s take the set X of non-

negative integers:

X = {0, 1, 2, 3, . . .}.

For any subset S of X, we define volume and perimeter as follows:

vol(S) := sum of elements of S

per(S) := sum of elements of S whose predecessor and successor

are not both in S.

For example, for S = {0, 1, 4, 5, 6, 7}, vol(S) = 23 and per(S) = 0+1+4+7 =

12. This definition is a natural generalization of the original problem; the

perimeter comes from elements that are on the ‘boundary’ of our set, as these

elements are in S but have a neighbor that is not.

We can now state the problem we want to consider:

Isoperimetric Set Problem. Among all sets S ⊂ X whose volume is n,

find the set S with smallest perimeter.
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Figure 1: Plot of minimum perimeter P (n) versus prescribed volume n.

For example, among all sets of non-negative integers that sum to n = 9,

the smallest possible perimeter turns out to be 6, with S = {2, 3, 4}. For

n = 19, the smallest perimeter is 10, with S = {1, 3, 4, 5, 6}. For small n, we

find P (n) by an exhaustive computer search; see Figure 1 for a plot.

How large is a typical P (n) relative to n? Does P (n) grow linearly with n,

or is it significantly slower? Unfortunately, our plot above has only 135 data

points, and it is very easy to be misled as to the limiting behavior from such

a small data set. Similar limitations of computations arise when counting

prime numbers. The famous Prime Number Theorem states that the fraction

of numbers from 1 to n which are prime is about 1/ log n. This tends to zero,

albeit very slowly. Of the numbers from 1 to 10, 40% are prime (2, 3, 5

and 7), and of the numbers from 1 to 20, still 40% are prime, without any

indication that the percentage is going to 0.

As our problem is a generalization of the standard isoperimetric problem,

perhaps the analysis there can suggest what the true behavior of P (n) should

be. Although our problem lies on the number line, each point is weighted by

its value, in some sense adding a dimension. So perhaps the two-dimensional
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Figure 2: Left: plot of the upper bound
√
2n1/2 + (2n1/4 + 8) log2 log2 n+ 58

and the lower bound
√
2n1/2−1/2. As n approaches infinity, our two bounds

asymptotically approach
√
2n1/2. Right: plot of the ratio of the upper and

lower bound. The two bounds have the same growth rate in the limit, but

the convergence is very slow.

classical isoperimetric problem would be a good guide. We know there that

the optimal solution is a circle. As the area of a circle of radius r is A = ¼r2

and the perimeter is P = 2¼r, simple algebra yields that the least perimeter

for a given area is P = 2
√
¼A1/2. Given this, it is not unreasonable to

conjecture for large n that P (n) should approximately equal a constant times√
n.

It turns out that the classical problem does provide the right intuition, as

the following proposition shows. It says that P (n) is asymptotic to
√
2n1/2,

that is, the ratio of P (n) to
√
2n1/2 approaches 1 as n tends to infinity. The

two bounds are graphed in Figure 2.

The proof of the lower bound is trivial. The proof of the upper bound is

a tricky induction argument. The hardest part was finding exactly the right

induction hypothesis, a process which involved much trial and error which

we spare the kind reader.
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Proposition. P (n) ∼ √
2n1/2. Indeed,

√
2n1/2 − 1/2 < P (n) <

√
2n1/2 + (2n1/4 + 8) log2 log2 n+ 58.

Proof: Clearly the perimeter of S is at least as large as the largest element of

S, which we denote by m. For the lower bound, if vol(S) = n then m must

satisfy

n ≤ 0 + 1 + ⋅ ⋅ ⋅+m =
m(m+ 1)

2
. (1)

This means that m is bounded below by a certain function f(n), namely (by

the quadratic formula), if we set

f(n) :=

(
2n+

1

4

)1/2

− 1

2

then

m ≥ f(n) =

(
2n+

1

4

)1/2

− 1

2
>

√
2n1/2 − 1/2,

as desired.

For the upper bound, we use the following greedy algorithm. Choose the

largest term m1 in S to be as small as possible. Continue taking consecutive

numbers as long as possible, through m2 ≤ m1. Choose the next term

m3 < m2 as small as possible. Continue. For example, for n = 19, this

algorithm yields S = {6, 5, 4, 3, 1}, which turns out to be optimal. For n = 11

it yields {5, 4, 2} with perimeter 11, worse than the optimal {5, 3, 2, 1, 0} with
perimeter 8.

First note that m1 < f(n) + 1, because for any integer m ≥ f(n), (1)

holds. Similarly for any odd k, mk < f(mk−1 − 1) + 1 because by choice

of mk−1, the remaining volume is less than mk−1 − 1. For even k, mk − 1

exceeded the remaining volume, so m = mk − 2 satisfies

m(m+ 1)

2
< mk−1
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by choice of mk−1. Hence mk − 2 < f(mk−1). In summary, for all k ≥ 2,

mk < f(mk−1) + 2. (2)

To avoid the complications of that +2, we move to a closely related func-

tion g(m). Note that

f(m) + 2 =

(
2m+

1

4

)1/2

+
3

2

≤
√
2m1/2 +

1

2
+

3

2

=
√
2m1/2 + 2 = g(m).

We now consider compositional powers gk(n), where for example g3(n) =

g(g(g(n))). By (2), for k ≥ 2, the compositional power gk(n) satisfies

mk < gk(n), (3)

without the pesky +2 of (2). Now all we need is an upper bound on gk(n).

We’ll prove by induction that for k ≥ 1

gk(n) < 21−1/2kn1/2k + 8. (4)

The base case k = 1 is immediate. The induction step takes just a little

algebra:

gk+1(n) < 21/2
(
21−1/2kn1/2k + 8

)1/2

+ 2

< 21/2
(
21/2−1/2k+1

n1/2k+1

+ 81/2
)
+ 4

= 21−1/2k+1

n1/2k+1

+ 8.

Now we can translate our upper bound for gk(n) into an upper bound for

P (n). Indeed, by (3) and (4) it follows that

P (n) ≤ m1 +m2 +m3 + ⋅ ⋅ ⋅
< (21/2n1/2 + 2) + (23/4n1/4 + 8) + (27/8n1/8 + 8) + ⋅ ⋅ ⋅
< 21/2n1/2 + (2n1/4 + 8)(log2 log2 n− 1) + 68,
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because there are at most log2 log2 n terms with n1/2k ≥ 2 and the rest by

(4) are less than 12, with sum at most 66. Hence

P (n) <
√
2n1/2 + (2n1/4 + 8) log2 log2 n+ 58,

as desired. □

It is interesting to consider other sets X. For example, for the set of

harmonic numbers X = {1/1, 1/2, 1/3, . . .} one may attain arbitrary positive

volume (via infinitely many terms). We know almost nothing about the

minimum perimeter.

Roger Bolton proposed including negative numbers, say all the integers

in order:

X = Z := {. . . ,−1, 0, 1, 2, . . .}; (5)

perimeter should now be defined as a sum of the absolute values. Now certain

types of holes in the previous solution can be filled to reduce the perimeter.

First, if the smallest term in the previous solution is k > 1, then adding

the terms −(k − 1), . . . , 0, . . . , k − 1 will leave the volume unaffected and

reduce the perimeter by 1. For instance, the minimizer for volume 9 can be

improved from {2, 3, 4} with perimeter 6 to {−1, 0, 1, 2, 3, 4} with perimeter

5. Second, if there is a hole in a non-negative sequence with at least two

terms before and after, e.g. . . . , a − 1, a + 1, . . ., adding {−a, a} will leave

the volume untouched while reducing the perimeter by a. For instance, the

minimizer for volume 19 can be improved from {0, 1, 3, 4, 5, 6} with perimeter

10 to {−2, 0, 1, 2, 3, 4, 5, 6} with perimeter 8.

Often in number theory a related problem allowing differences as well

as sums is significantly easier to solve than the original allowing just sums.

One famous example is Waring’s Problem and the Easier Waring’s Problem.

Waring’s Problem states that for each k there is an s(k) such that all positive

integers are a sum of at most s(k) kth powers. The Easier Waring’s Problem
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allows differences as well as sums. For example, 7 is not the sum of three

squares, but 7 = 32 − 12 − 12. It can be proved in half a page [2, p. 102].

Similarly, we can study the Easier Isoperimetric Sequence Problem, where

we allow pluses and minuses when summing the elements of the subset S to

obtain the prescribed volume n. In this case it is significantly easier to analyze

the fluctuations about
√
2n1/2. Let EP(n) denote the minimum perimeter

(with all contributions to perimeter still positive) for our related problem,

which is obviously at most P (n). The lower bound is still
√
2n1/2 − 1/2, but

now we can remove the log2 log2 n factor in the upper bound, as it is easy

to show that EP(n) <
√
2n1/2 + 4. Indeed, choose the smallest k such that

0 + 1 + 2 + ⋅ ⋅ ⋅ + k = k(k + 1)/2 ≥ n; then k <
√
2n1/2 + 1. To obtain a

sum of exactly n, take a minus sign on one term, changing the sum by an

even integer to n or n+ 1, and in the latter case drop the 1, adding 2 to the

perimeter. In the exceptional case when k(k + 1)/2 = n+ 3, drop the 1 and

the 2, adding 3 to the perimeter. In any case, EP(n) <
√
2n1/2+4, and thus

the fluctuations about
√
2n1/2 cannot be larger than 5.

We end with some questions for further research. What does the mini-

mum perimeter function P (n) say about the number theoretical properties of

a set X? What are some interesting examples? What is the true scale of fluc-

tuations of P (n) about
√
2n1/2 when X is the non-negative integers? Are the

fluctuations frequently as large as log2 log2 n? In other words, what can we

say about P (n)−√
2n1/2? Is there some ℎ(n) so that (P (n)−√

2n1/2)/ℎ(n)

has a nice limiting distribution as n → ∞?
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