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1 Introduction

In his 1981 Baseball Abstract [8], Bill James posed the following problem: suppose
two teams A and B have winning percentages a and b, respectively, having played
equally strong schedules in a game such as baseball where there are no ties. If A and
B play each other, what is the probability p(a, b) that A wins?

This question is perhaps more relevant to other sports, because in baseball the
outcome is particularly sensitive to the pitching matchup. (In 1972, the Philadelphia
Phillies won 29 of the 41 games started by Steve Carlton, and 30 of the 115 games
started by their other pitchers.) The answer is quite interesting, even if its applicability
is somewhat limited by the tacit assumption of uniformity.

For0 < a < 1 and ¢ > 0, define g.(a) by

qc(a)

James calls g 1 (a) the log5 of a, and does not consider any other values of c. Under the
assumption of uniformity, he claims that p(a, b) would be given by the function

q1(a)

Pa,b)y= ———.
q%(a)+q%(b)

(1.2)

In this context, we take uniformity to mean that a team’s likelihood of defeating an-
other team is determined only by their winning percentages. For example, this assump-
tion ignores the impact of the starting pitchers and precludes the situation where one
team has a tendency to do particularly well or particularly poorly against another team.

This technique is sometimes called the log5 method of calculating p(a, b), although
we will avoid using this name as there is nothing obviously logarithmic about it. It is
easy to see from (1.1) that

ca
1 —

qc (a) =
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Substituting this expression into (1.2), we see that

a(l —b)
a(l=b)+b(1—a)’

P(a,b) = (1.3)
not only for ¢ = % but for any positive c. The explicit form of P(a, b) was first given
by Dallas Adams [8], who also christened it the James function. It makes sense to ex-
tend the James function to values of @ and b in the set {0, 1}, except whena = b = O or
a = b = 1. In these two cases we would not have expected to be able to make predic-
tions based on winning percentages alone. Moreover, both cases would be impossible
if the two teams had previously competed against each other.

James’s procedure can be interpreted as a twofold application of the general method
known as the Bradley—Terry model (or sometimes the Bradley—Terry—Luce model). If
A and B have worths w(A) and w(B), respectively, the probability that A is considered
superior to B is

w(A)
w(A) +w(B)’

Despite the attribution of this model to Bradley and Terry [1] and to Luce [10], the
basic idea dates back to Zermelo [15]. The question, of course, is how to assign the
“right” measure for the worth of A in a particular setting. In chess, for instance, it is
common to express the worth of a player as 1084/40 where R, denotes the player’s
Elo rating (see [4]). (The rating of chess players is the question in which Zermelo
was originally interested. Good [5], who also considered this problem, seems to have
been the first to call attention to Zermelo’s paper.) Another example is James’s so-
called Pythagorean model (introduced in [7, p. 104] and discussed further in [12]) for
estimating a team’s seasonal winning percentage, based on the number R of runs it
scores and the number S of runs it allows. In this case, the worth of the team is R? and
the worth of its opposition is S.

In the construction of the James function, we can view the measure of a team’s
worth as being obtained from the Bradley—Terry model itself. We begin by assigning
an arbitrary worth ¢ > 0 (taken by James to be %) to a team with winning percentage %
Equation (1.1) can be construed as an application of the Bradley—Terry model, where
the worth of a team is determined by the assumption that its overall winning percentage
is equal to its probability of defeating a team with winning percentage % Equation (1.2)
represents a second application of the Bradley—Terry model, where each team has an
arbitrary winning percentage and the measure of its worth comes from the previous
application of the model.

This area of study, which is usually called the theory of paired comparisons, has
focused from the outset on the question of inferring worth from an incomplete set of
outcomes [15]. (See [2] for a thorough treatment, as well as [3] and [14] for addi-
tional context.) James, on the other hand, takes the worths to be known and uses them
to determine the probability of the outcomes. We will adopt a similar point of view,
emphasizing a set of axiomatic principles rather than a specific model.

James’s justification [8] for his method does not invoke the Bradley—Terry model,
but rather the fact that the resulting function P(a,b) satisfies six self-evident
conditions:

1. P(a,a) = %
2. P(a,})=a.
3. Ifa > b, then P(a,b) > 1, and if a < b, then P(a,b) < 1.
4. If b < %, then P(a,b) > a,and if b > 1, then P(a, b) < a.

2°

w(A, B) =
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5.0< P(a,b) <1,andif 0 < a < 1, then P(a,0) =1 and P(a, 1) = 0.
6. P(a,b)+ P(b,a) =1.

Condition (1) pertains to the situation where two different teams have the same win-
ning percentage (as opposed to a single team competing against itself). To avoid con-
tradicting (5), condition (4) should exclude the cases where ¢ = 0 and a = 1. We will
call this set, with this slight correction, the proto-James conditions. (James originally
referred to them as “conditions of logic.”) In addition to presenting some empirical
evidence for (1.2), James makes the following assertion.

The James Conjecture 1. (1981) The James function P(a, b) is the only function
that satisfies all six of the proto-James conditions.

Jech [9] independently proposed a similar, albeit shorter list of conditions. Although
he did not consider the James conjecture, he was able to prove a uniqueness theorem
pertaining to a related class of functions.

The purpose of this paper is to examine the mathematical theory underlying the
James function and to demonstrate that the James conjecture is actually false. In fact,
we will introduce and study a large class of functions that satisfy the proto-James
conditions.

While the proto-James conditions are certainly worthy of attention, we prefer to
work with a slightly different set. The following conditions apply to all points (a, b)
with) <a < 1land 0 < b < 1, except for (0, 0) and (1, 1):

(@ P, i) =a.

(b) P(a,0)=1for0<a < 1.
(c) P(b,a)=1— P(a,b).

(d P(1—b,1—a)= P(a,b).

(e) P(a,b) is a nondecreasing function of a for 0 < b < 1 and a strictly increasing
function of a for 0 < b < 1.

We shall refer to conditions (a) to (e) as the James conditions. Condition (d), which is
not represented among the proto-James conditions, simply states that the whole theory
could be reformulated using losing percentages rather than winning percentages, with
the roles of the two teams reversed. Together with condition (c), it is equivalent to
saying P(1 —a,1 —b) =1 — P(a, b), which may seem more natural to some readers.
It should be clear from (1.3) that the James function satisfies James conditions (a) to
(d). We will verify condition (e) in Section 3.

It is fairly obvious that the James conditions imply the proto-James conditions.
Condition (a) is identical to condition (2). Condition (c) is condition (6), which implies
(1) by taking b = a. Condition (e) is stronger than (3) and (4), and in concert with (1)
and (2) implies them both. Combined with (c) or (d), it also implies that P(a, b) is a
nonincreasing function of b for 0 < a < 1 and a strictly decreasing function of b for
0 < a < 1. Finally, (b) implies the second of the three parts of (5). Together with (c), it
also implies that P(0,b) = 01if 0 < b < 1. By taking b = 0 in (d) and replacing 1 —a
with b, condition (b) further implies that P(1,b) = 1if 0 < b < 1, and this together
with (c) gives P(a, 1) = 0for 0 < a < 1, which is (a hair stronger than) the third part
of (5). These facts, combined with (e), show that 0 < P(a,b) < 1 when 0 <a < 1
and 0 < b < 1, which implies the first part of (5).

We will focus our attention on functions that satisfy the James conditions, and
hence also the proto-James conditions. See [6], the online supplement to this paper,
for an example of a function that satisfies the proto-James conditions but not the James
conditions.
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2 Verification of the James function

While the Bradley—Terry model is practically ubiquitous, its applicability to this situ-
ation is not obvious from an axiomatic perspective. We now present a self-contained
proof that, under an intuitive probabilistic model in which a and b are the probabili-
ties of success in simultaneous Bernoulli trials, the James function P (a, b) represents
the probability p(a, b). This model satisfies the assumption of uniformity discussed in
Section 1. The following argument was discovered by the third-named author several
years ago [11], but has not previously appeared in a formal publication.

Theorem 1. The probability p(a, b) that a team with winning percentage a defeats a
team with winning percentage b is given by the James function
a(l —b)

Plab) = v ra—a)

except whena = b = 0ora = b =1, in which case p(a, b) is undefined.

Proof. Let teams A and B have winning percentages a and b, respectively. Inde-
pendently assign to each of A and B either a 0 or 1, where A draws 1 with probability
a and B draws 1 with probability b. If one team draws 1 and the other 0, the team with
1 wins the competition. If both teams draw the same number, repeat this procedure
until they draw different numbers.

The probability that A draws 1 and B draws 0 on any given turn is clearly a(1 — b),
while the opposite occurs with probability (1 — a). The probability that A and B both
draw 1 is ab, and the probability that they both draw O is (1 — a)(1 — b). Hence

ab+ (1 —a)(1 =b)+a(l =b)+b(1—a)=1. 2.1

It follows that 0 < ab+ (1 —a)(1 —b) <land 0 < a(l —b) +b(1 —a) < 1 when-
ever0<a<land0<b <.

We can conclude the argument in either of two ways. Since the probability that A
and B draw the same number is ab + (1 — a)(1 — b), in which case they draw again,
p(a, b) must satisfy the functional equation

pla,b)y=a(l —=b)+[ab+ (1 —a)(1 —b)] p(a,b).

The only case in which we cannot solve for p(a, b) is whenab + (1 —a)(1 — b) = 1.
By (2.1), this situation only occurs when a(1 — b) + b(1 — a) = 0, which implies that
eithera = b =0ora = b = 1. Otherwise, p(a, b) = P(a, b).

Alternatively, we may observe that the probability that A wins on the nth trial is

a(l =b)[ab+ (1 —a)(1 —b)]"',

and so the probability that A wins in at most n trials is

a(l —b) Z [ab+ (1 —a)(1 —b)]* .

k=1

As n tends to oo, this expression yields a convergent geometric series unless ab + (1 —
a) (1 —b) = 1. Using (2.1), we again obtain the James function. [ |

This proof relies on a particular model for the relationship between winning per-
centages and the outcome of a competition. Under different assumptions about this
relationship, it seems possible that we would obtain other approximations for p(a, b).
Any such function would presumably also satisfy the James conditions.
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3 Properties of the James function

In this section we will consider several important properties of the James function. We
begin by computing the partial derivatives of P (a, b), which will lead to an observation
originally due to Dallas Adams. Note that

oP b(1 —b)
SN - 3.1
da [a(1 —b)+b(1 —a)]
which shows that the James function satisfies condition (e), and also
oP —a(l —
= al ~a) (3.2)

b [a(l —b) +b(l —a)*
Furthermore, we have

3’ P —2b(1 —b)(1 —2b)

da>  [a(1—b)+b(1 —a)]’

so that, as a function of a, it follows that P(a, b) is concave up for % < b <1 and
concave down for 0 < b < % Similarly,

9’p _ 2a(l —a)(1 —2a)

2 [a(l —b)+ b1 —a)]

Adams makes an interesting remark relating to the mixed second partial derivative

9’P a—>b

3adb _ [a(l—b) + b1 —a)] (3-3)

It follows from (3.3) that %—i, viewed as a function of b, is increasing for b < a and

decreasing for b > a, so it is maximized as a function of » when b = a. Since g—g is
positive for every 0 < b < 1, it must be most positive when b = a. Alternatively, (3.3)
tells us that %, viewed as a function of a, is increasing for a > b and decreasing for
a < b, soitis minimized as a function of @ when a = b. Since %—‘Z is negative for every
0 < a < 1, we conclude that it is most negative when a = b.

Adams interprets these facts in the following manner: since P (a, b) increases most
rapidly with a when b = a (and decreases most rapidly with & when a = b), one
should field one’s strongest team when playing an opponent of equal strength [8]. Once
again, this observation is perhaps more interesting in sports other than baseball, where
the star players (other than pitchers) play nearly every game when healthy, although
James points out that Yankees manager Casey Stengel preferred to save his ace pitcher,
Whitey Ford, for the strongest opposition. It seems particularly relevant to European
soccer, where the best teams engage in several different competitions at the same time
against opponents of varying quality, and even the top players must occasionally be
rested.

In principle, there are two ways to increase the value of P (a, b): by increasing a or
by decreasing . Under most circumstances, a team can only control its own quality
and not that of its opponent. There are some situations, however, such as the Yankees
signing a key player away from the Red Sox, where an individual or entity might
exercise a degree of control over both teams. Similarly, there are many two-player
games (such as Parcheesi and backgammon) in which each player’s move affects the
position of both players. In any such setting, it is a legitimate question whether the
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priority of an individual or team should be to improve its own standing or to diminish
that of its adversary.

Recall that the gradient of a function signifies the direction of the greatest rate
of increase. The next result, which has apparently escaped notice until now, follows
directly from equations (3.1) and (3.2).

Proposition 2. For any point (a, b), except where a and b both belong to the set {0, 1},
the gradient of the James function P (a, b) is a positive multiple of the vector

(b(1 =b), —a(l — a)).

In other words, to maximize the increase of P(a, b), the optimal ratio of the increase
of a to the decrease of b is b(1 — b) : a(l — a).

One consequence of this result is that when two teams have identical winning per-
centages, the optimal strategy for increasing P (a, b) is to increase a and to decrease b
in equal measure. The same fact holds when two teams have complementary winning
percentages. In all other situations, the maximal increase of P (a, b) is achieved by in-
creasing a and decreasing b by different amounts, with the ratio tilted towards the team
whose winning percentage is further away from % In the extremal cases, when one of
the two values a or b belongs to the set {0, 1}, the optimal strategy is to devote all
resources to changing the winning percentage of the team that is either perfectly good
or perfectly bad. This observation is somewhat vacuous when a = 1 or b = 0, since
P(a, b) is already as large as it could possibly be, although the strategy is entirely
reasonable when a = 0 or b = 1. It also makes sense that the gradient is undefined
at the points (0, 0), (0, 1), (1, 0), and (1, 1), since these winning percentages do not
provide enough information to determine how much one team must improve to defeat
the other.

If P(a,b) = c, it is easy to see that a(l — b)(1 — ¢) = (1 — a)bc, which implies
the next result.

Proposition 3. If 0 < a < 1, then P(a,b) = c if and only if P(a,c) = b. In other
words, for a fixed value of a, the James function is an involution.

The practical interpretation of this result is simple to state, even if it is not intuitively
obvious: if team A has probability ¢ of beating a team with winning percentage b, then
team A has probability b of beating a team with winning percentage c. The James
conditions already imply this relationship whenever b and ¢ both belong to the set
{0, 1} or the set {%, a}. Nevertheless, it is not evident at this point whether the involutive
property is a necessary consequence of the James conditions. (Example 6 will provide
an answer to this question.)

Proposition 3 has two further implications that are worth mentioning. The first is a
version of the involutive property that holds for a fixed value of b:

If0 <b < 1,then P(a,b) =1 —cifand onlyif P(c,b) =1 —a.
The second is that the level curves for the James function (that is, the set of all points
for which P (a, b) = c for a particular constant ¢) can be written

. _ a(l —c¢)
b= P(a,c)= ad—otel—a) 3.4)

for 0 < a < 1. These level curves are the concrete manifestation of a straightforward
principle: if a team A improves by a certain amount, there should be a corresponding
amount that a team B can improve so that the probability of A defeating B remains
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0.,1) (LD

(0,0) (1,0)

Figure 1 The level curves for the James function P(a, b)

unchanged. Each level curve represents the path from (0, 0) to (1, 1) that such a pair
would take in tandem. (See FIGURE 1.)
We conclude this section with one more observation relating to these level curves.

Proposition 4. For any 0 < ¢ < 1, the corresponding level curve for the James func-
tion P(a, b) is the unique solution to the differential equation

db _ b(1—b)
da  a(l —a)

that passes through the point (c, %).

Another way of stating this result is that, for two teams to maintain the same value of
P(a, b), they should increase (or decrease) their winning percentages according to the
ratio a(1 — a) : b(1 — b). One can either verify this assertion directly, by solving the
differential equation to obtain (3.4), or by appealing to Proposition 2 and recalling that
the gradient is always perpendicular to the level curve at a particular point.

4 Jamesian functions

We will now consider the question of whether there is a unique function satisfying the
James conditions. We begin with the following observation, which is implicit in the
construction of the James function.

Proposition 5. The James function is the only function derived from the Bradley—Terry
model that satisfies the James conditions.

Proof. Suppose m(A, B) satisfies the James conditions and is derived from the
Bradley—Terry model. Let team A have winning percentage a, with 0 < a < 1, and
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let team C have winning percentage % Condition (a) implies that

w(A)
a=n(A,C) = ——.
w(A) +w(C)
Solving for w(A), we obtain
w(A) = “lw(c) = g.(a),
—a

where ¢ = w(C). Thus 7 (A, B) agrees with the James function P(a, b) when both
a and b belong to the interval (0, 1). Since the James conditions uniquely determine
the value of a function whenever a or b belongs to {0, 1}, the functions 7 (A, B) and
P (a, b) must be identical. [ |

Let S denote the open unit square (0, 1) x (0, 1). We will say that any function
J(a, b), defined on the set E\ {(0,0) U (1, 1)}, that satisfies the James conditions is
a Jamesian function. Our immediate objective is to disprove the James conjecture by
identifying at least one example of a Jamesian function that is different from the James
function P (a, b). Proposition 5 guarantees that any such function, if it exists, cannot
be derived from the Bradley—Terry model.

Example 6. We will reverse engineer our first example of a new Jamesian function
by starting with its level curves. Consider the family of curves {j.}.co,1) defined as
follows:

a 2c
—, O<ac<
jc(a): 2c 14+ 2¢
2ca+1—2c, — <a<1
+ 2¢
for0<c§%and
(2 —2c¢) 0 < :
—2¢)a <a
: _ ’ —3-2
J@=1 g11-2 1 ‘
, <a<1
2—2c 3—-2¢

for % < ¢ < 1. (See FIGURE 2.) These curves have been chosen to satisfy certain
symmetry properties, which the reader can probably deduce but which we will not state
explicitly. (Suffice it to say that j.(c) = % for all c.) We define the function J (a, b) on
S by assigning to every point (a, b) the value of ¢ associated with the particular curve
Jj. that passes through that point. We assign the value O or 1 to points on the boundary
of §, as dictated by the James conditions.

A bit more work yields an explicit formula for J(a, b), from which one can verify
directly that all of the James conditions are satisfied:

Za_b’ @.b)el
2a —b
a-v (a,b)ell
2a

san={ ,
"7 (@b ell
2(1—a)
14+a—-2b
_razs by eIV
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0,1) (1,1)

(0,0) (1,0)

Figure 2 The level curves for the function J(a, b) in Example 6

where I, I, III, and IV are subsets of S\ {(0, 0) U (1, 1)} that are defined according to
FIGURE 3.

Observe that the appropriate definitions coincide on the boundaries between regions,
from which it follows that J (a, b) is continuous on S \ {(0,0) U (1, 1)}. On the other
hand, it is not difficult to see that J(a, b) fails to be differentiable at all points of the
form (a, 1 —a) for0 < a < % or % < a < 1. (With some effort, one can show that it is

differentiable at the point (%, %).) In reference to Proposition 3, note that J (1 ! 3

33 =3
and J %, %) = 14—5. In other words, the involutive property is not a necessary conse-
quence of the James conditions.

In view of the preceding example, we need to refine our terminology somewhat. We
will refer to any Jamesian function (such as the James function itself) that satisfies the
condition

J(a,J(a,b))=b

for 0 < a < 1 as an involutive Jamesian function.

It turns out to be fairly easy to construct Jamesian functions with discontinuities in
S (see [6]). Proposition 8, which we will prove in the next section, guarantees that any
such function is not involutive. Rather than considering such pathological examples,
we will devote the next section to examining Jamesian functions that are involutive,
continuous, and (in many cases) differentiable.

5 Involutive Jamesian functions

We now turn our attention to Jamesian functions that satisfy the involutive property

J(a, J(a, b)) =b,
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0,1) (1,1

111

II

0,0 (1,0)

Figure 3 The subsets of S\ {(0,0) U (1, 1)} in Example 6

or equivalently
J(a,b) = cifand only if J(a,c) = b,

whenever 0 < a < 1. This property essentially subsumes three of the five James con-
ditions (namely (a), (b), and (d)).

Proposition 7. A function J: S\ {(0,0) U (1, 1)} — [0, 1] is an involutive Jamesian
function if and only if it satisfies the involutive property, James condition (c), and
James condition (e).

Proof. By definition, an involutive Jamesian function must satisfy the involutive
property, as well as all five James conditions. Suppose then that J(a, b) satisfies the
involutive property, together with conditions (c¢) and (e).

To see that J(a, b) satisfies condition (b), take 0 < a < 1 and suppose that
J(a,0) = cfor0 < ¢ < 1. The involutive property would then dictate that J (a, ¢) = 0,
and thus condition (c) would imply that J (¢, a) = 1. Hence J(¢’, a) < J(c, a) forc <
¢’ < 1, which would violate condition (e). Consequently J(a,0) = 1for0 <a < 1.
Since J(a, b) is a nondecreasing function of a, we conclude that J(1,0) = 1 as well.

Next consider condition (d). Applying the involutive property three times and con-
dition (c) twice, we see that

J@,b)=c < J(a,c)=0>
— J(c,a)=1-b
<— J(,1—-b)=a
<— J(—=-b,c)=1—a
<— J(1-b,1—-0a)=c,
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as long as a, b, and c all belong to the interval (0, 1). The cases where a, b, or ¢ belongs
to {0, 1} can be dealt with by appealing to condition (b). In particular, we know that
J(a,0) =1 for 0 < a < 1, which implies that J(1 —a,0) =1for 0 <a < 1. The
involutive property dictates that J(1 —a, 1) =0 for0 <a < 1. Since J(1,0) = 1, it
follows from (c) that J(1,1 —a) =1 = J(a,0) for 0 < a < 1. Hence condition (d)
holds whenever b = 0. The remaining cases can be deduced from this observation.
Finally, consider condition (a). Taking b = a in condition (c), we see that
J(a,a) = % Hence the involutive property dictates that J (a, %) =afor0<a<l1.
For a = 1, simply note that conditions (d) and (b) imply that J (1, %) =J (%, 0)= 1.
Similarly, condition (c) shows that J (0, %) =1-J (%, 0) =0. [ ]

In other words, to identify an involutive Jamesian function, we can restrict our attention
to the following set of conditions:

(i) J(a,J(a, b)) =bfor0<a <1
@) Jb,a) =1—J(a,b).
(iii) J(a, b) is a nondecreasing function of a for 0 < b < 1 and a strictly increasing
function of a for 0 < b < 1.

We will refer to this list as the involutive James conditions.
Condition (i) also guarantees that a Jamesian function possesses another important

property.

Proposition 8. Every involutive Jamesian function is continuous on S\ {(0,0) U

(1, D}

Proof. Take a fixed value 0 < ¢ < 1 and consider the level curve J(a, b) = c,
which can be rewritten b = J (a, ¢) for 0 < a < 1. Conditions (i) and (ii) imply that

J(l —J(a,c),c) =1-—a.

Thus J(a, c), viewed as a function of a, is a bijection from the interval (0, 1) onto
itself. Hence it follows from (iii) that the curve J(a, ¢) is a continuous, strictly in-
creasing function of a that connects the points (0, 0) and (1, 1).

Suppose, for the sake of contradiction, that J (a, b) fails to be continuous at a point
(ag, by) in S. In other words, there exists a positive number &, such that, for any posi-
tive §, there is a point (a, b) such that || (a, b) — (ag, bo)|| < § and |J (a, b) — J (ag, by)|
> go. (If necessary, redefine gy so it is less than min{2J (ay, by), 2 — 2J (ay, by)}.)
Let ¢y = J(ap, by) — €9/2 and ¢, = J(ay, by) + &p/2, and consider the level curves
J(a,cy) and J(a, ¢y). Let 8, denote the minimum of the distance between (ag, by) and
J(a, ¢y) and the distance between (ag, by) and J (a, ¢»).

By assumption, there is a point (a3, b3) such that |[(as, b3) — (ag, bo)|| < 8y and
c3 = J(as, b3) is either less than or equal to J(ay, by) — €y or greater than or equal
to J(ao, by) + €. Since J(a, ¢;) = % at a = c;, the level curve J(a, c3) intersects the
line b = % either to the left of the curve J(a, c;) or to the right of the curve J(a, c,).
On the other hand, since (as, b3) lies within &y of (ag, by), the curve J(a, c3) must
intersect the line b = b3 between J (a, ¢;) and J (a, ¢,). Hence two of the level curves
must intersect at a point in S, which is impossible. (See FIGURE 4 for a graphical
illustration of this argument.)

Now consider a point (ag, by) on the boundary of S. The only difference in the proof
is that, if a = 0 or b = 1, the level curve J(a, c;) does not exist. In this case, it is not
difficult to see that J (a, c¢3) must intersect the curve J(a, ¢;). Similarly, if a = 1 or
b = 0, there is no level curve J(a, c¢,), but one can show that J (a, c3) must intersect
J(a,cy). [ |
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J(a, cy) J(a, c3) J(a, c3)

(J(ao. by), 0.5)

(ao, bo)

[ ]
(a3, b3

Figure 4 An illustration of the proof of Proposition 8

Let g: (0,1) — R be a continuous, strictly increasing function that satisfies the
conditions

* gl —a)=—gla).
* 1i1’(I)1+ g(a) = —oo0.

These conditions imply that g(%) = 0 and that

lim g(a) = oo.

a—1—

Observe that g=': R — (0, 1) is a continuous, strictly increasing function with
g '(—s) =1 — g7'(s). It makes sense to define g(0) = —oco and g(1) = oo, so
that g7!(—o0) = 0 and g~ '(c0) = 1. We claim that any such function g can be used
to construct an involutive Jamesian function.

Theorem 9. For any g satisfying the conditions specified above, the function
J(a.b) =g '(g(a) — g(b)) (.1

is an involutive Jamesian function.

Proof. Consider each of the three involutive James conditions:
(i) Note that

J(a, J(a,b)) =g "(g@) — g(g7"(g(a) — g))))
g ' (g(a) — g(a) + g(b))
o

'(g(®) = b,
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aslongas 0 < a < 1. (The cases where a = 0 and a = 1 yield the indeterminate forms
—00 4 00 and 00 — 00.)
(i1) Similarly,

J(b,a) =g '(gb) — gl@) =1—g ' (ga) — gb)) =1—J(a,b).

(iii) Since both g and g~! are strictly increasing, it follows that J (a, b) is a strictly
increasing function of ¢ when 0 < b < 1. Moreover, J(a, b) takes on the constant
value 1 when b = 0 and the constant value O when b = 1. [ |

While it is unnecessary to verify James conditions (a) and (d), it is worth noting that
(a) corresponds to the property g(%) = 0 and (d) to the property g(1 —a) = —g(a).
In effect, we verified condition (b) in the process of considering (iii).
It is easy to use Theorem 9 to generate concrete examples.
Example 10. The function
@ 2a — 1
a) = ———-
§ a(l—a)

satisfies all the necessary conditions for Theorem 9, so (5.1) defines an involutive
Jamesian function. Since

. s —2++/s24+4
g ®)=—F
2s
we obtain
_ 2 2
J(a7b)=x+y VXTEYT

X
2y x4y /2y
where x = 2ab(1 —a)(1 —b)andy = (b —a)(2ab —a — b + 1).

Example 11. The function g(a) = — cot(mra) yields the involutive Jamesian function
L
J(a,b) = — cot™'(cot(ra) — cot(mb)),
g

where we are using the version of the inverse cotangent that attains values between 0
and 7.

The construction described in Theorem 9 is closely related to what is known as a
linear model for paired comparisons. In such a model,

7(A, B) = F(v(A) — v(B)),

where v denotes a measure of worth and F' is the cumulative distribution function of
a random variable that is symmetrically distributed about O (see [2, Section 1.3]). The
Bradley—Terry model can be viewed as a linear model, where F is the logistic function

Fis) = —& f “ a
§) = —— = _—
ctr1 ). d1er

and v(A) = logw(A). In particular, the James function can be constructed in the man-
ner of Theorem 9, with F = g~! being the logistic function and g being the so-called

logit function
a
g(@) =log( +—).
—a
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(This observation could charitably be construed as an a posteriori justification for the
term “log5” originally used by James.)

What is distinctive about the James function in this context is that the construc-
tion is symmetric, with v(A) = logw(A) and v(B) = logw(B) replaced by g(a)
= log(a/(1 — a)) and g(b) = log(b/(1 — b)), respectively. This symmetry corre-
sponds to the twofold application of the Bradley—Terry model that was discussed in
Section 1. Likewise, the fact that both g and g~' appear in the general formulation
of Theorem 9 can be interpreted as a consequence of the same model being used to
define both worth and probability.

Example 12. Take

Fis)=¢g"'(s) = \/%/ e_%dt,

so that g is the so-called probit function. The involutive Jamesian function J(a, b)
=g! (g(a) — g(b)) can be considered the analogue of the James function relative to
the Thurstone—Mosteller model (see [2]).

Theorem 9 allows us to identify a large class of functions that can be viewed as
generalizations of the James function. Since

] a / LRI PP / LY
(0] —_— = — —_— = .
B\1-4 TS L (-1

¢ 1
g:l(a)z/; mdf

for any real number n > 1. It is not difficult to verify that g, satisfies all of the pre-

we define

scribed requirements for Theorem 9. (The stipulation that g,(0) = —oo precludes the
case where 0 < n < 1.) Define
H,(a,b) = g, " (g.(a) — g.(b)). (5.2)

For n > 1, we shall refer to H, (a, b) as a hyper-James function. Each of these func-
tions is an involutive Jamesian function.

In some situations, it is possible to obtain a more concrete representation for
H,(a, b). For example, one can show that

g%(a) =

and

s + \/m
IEENCERTI
and hence
v'/u —u'\Jv
2/u 4+ v — duv — 2u'v' Juv

foru =a(l —a),v=>b(—>b),u’ =1—2a,and v' = 1 — 2b (see [6] for more de-
tails). In general, though, it seems unlikely that there is an explicit formula for H, (a, b)
that is more useful than (5.2).

1
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We will now examine the issue of differentiability. For any function defined accord-
ing to Theorem 9, a routine calculation shows that

gl

da  g'(J(a,b)) e

and
0 —g'h)

b g(Ja b)) o

at all points (a, b) for which the above quotients are defined. Based on this observation,
we are able to obtain the following result.

Proposition 13. If g is continuously differentiable on (0, 1), with g’ never equal to
0, the corresponding Jamesian function J(a, b) is differentiable on S. Conversely, if
J(a, b) is differentiable on S, the function g must be differentiable on (0, 1) with g’
never Q.

Proof. Suppose that g’ is continuous and nonzero on (0, 1). It follows from (5.3)
and (5.4) that both ‘3—; and g—g are defined and continuous at all points in the open set
S, which guarantees that J (a, b) is differentiable on S.

Now suppose that J (a, b) is differentiable at every point in S. Let gy be an arbitrary
element of (0, 1). Since g is strictly increasing, it could only fail to be differentiable
on a set of measure O (see [13, p. 112]). In particular, there is at least one ¢ in (0, 1) for
which g'(c) is defined. Since J(ay, b), viewed as a function of b, attains every value
in the interval (0, 1), there exists a by in (0, 1) such that J (ag, by) = c. Note that

g(a) = g(J(a, bo)) + g(bo)

for all @ in (0, 1), so the chain rule dictates that

, , dJ
g'(ap) = g'(o) - %2 (a0, bo).
a

Therefore, g is differentiable on the entire interval (0, 1). Suppose, for the sake of
contradiction, that there were some d in (0, 1) for which g'(d) = 0. As before, there
would exist a by in (0, 1) such that J (ag, b;) = d, which would imply that

, , aJ
8 (@) = g (d) - ——(ao, br) =0.

Consequently, g’ would be identically 0 on (0, 1), which is impossible. ]

In other words, all the specific examples of Jamesian functions we have introduced
in this section, including the hyper-James functions, are differentiable on S. We can
now state a more general version of Proposition 2, which follows directly from (5.3)
and (5.4).

Proposition 14. For any differentiable Jamesian function J(a, b) defined according
to Theorem 9, the gradient at a point (a, b) in S is a positive multiple of the vector

(g'(a), —g'(b)).

If g is differentiable on (0, 1), the condition that g(1 — a) = —g(a) implies that
g'(1 —a) = g'(a). Hence the gradient of J(a, b) is a positive multiple of (1, —1)
whenever b = a or b = 1 — a. This observation generalizes the fact that, whenever
two teams have identical or complementary winning percentages, the optimal strategy
for increasing P (a, b) is to increase a and decrease b by equal amounts.
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For any Jamesian function given by (5.1), the level curve J(a, b) = cfor0 <c < 1
can be rewritten

b=J(a,c)=g '(g(a) —g),
or g(a) = g(b) + g(c). Hence we have the following generalization of Proposition 4.

Proposition 15. Let J(a, b) be a differentiable Jamesian function defined according
to Theorem 9. For any 0 < ¢ < 1, the corresponding level curve for J(a, b) is the
unique solution to the differential equation

db _ g'(a)
da — g'(b)

that passes through the point (c, %).

Thus the level curves for the Jamesian functions defined in Examples 10 and 11 are
given by the differential equations

db (2a® —2a + 1)(b(1 — b))?
da (b2 =2b+ D)(a(l — a))?

db  (sin(wb)\’

da \sin(ra)/) ’
respectively. Likewise, the level curves for any hyper-James function H,(a, b) are
given by the differential equation

db <b(1 —b))”
da \a(l—a))

FIGURE 5 shows the level curves for the hyper-James function H;(a, b).

and

6 Final thoughts

While it is possible to construct additional examples of noninvolutive Jamesian func-
tions, it would be reasonable to focus any further investigation on the involutive case.
Perhaps the most obvious question is whether one can assign any probabilistic signif-
icance to the involutive Jamesian functions we have just introduced, particularly the
hyper-James functions. For instance, could one somehow alter the assumptions under-
lying Theorem 1 to obtain one of these functions in place of P(a, b)?

Within this context, several lines of inquiry seem especially worthwhile:

1. Does every involutive Jamesian function have the form described in Theorem 9, for
some particular function g?

2. While it is clear how the involutive property arises mathematically, is there any a
priori reason that it should hold, based on the probabilistic interpretation of the
James function?

3. Are there any situations for which nondifferentiability would make sense in the
setting of an athletic competition?

We would be delighted if this paper motivated other mathematicians (or sports enthu-
siasts) to consider any of these questions.
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(0,1) (1,1)

(0,0) (1,0)

Figure 5 The level curves for the hyper-James function H;(a, b)
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