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ABSTRACT. To an adult, it’s obvious that the day of someone’s death is not precisely determined
by the day of birth, but it’s a very different story for a child. When the fourth named author was four
years old he asked his father, the sixth named author: If two people are born on the same day, do they
die on the same day? While this could easily be demonstrated through an “accidental death”, such
a proof would greatly diminish the possibility of teaching additional lessons, and thus a different
approach was taken. With the help of the fifth named author they invented what we’ll callthe M&M
Game: Givenk people, each simultaneously flips a fair coin, with each eating an M&M on a head
and not eating on a tail. The process then continues until allM&M’S are consumed, and two people
are deemed to die at the same time if they run out of M&M’S together1. This led to a great concrete
demonstration of randomness appropriate for little kids; it also led to a host of math problems which
have been used in probability classes and math competitions. There are many ways to determine the
probability of a tie, which allow us in this article to use this problem as a springboard to a lot of great
mathematics, including memoryless process, combinatorics, statistical inference, graph theory, and
hypergeometric functions.

1. THE ORIGINS OF THE GAME

The M&M Game began as a simple question asked by Steven Miller’s curious four year-old son
Cam: If two people are born on the same day, do they die on the same day? Of course, needing
a way to explain randomness to children (two year old Kayla was there as well), the three Millers
took the most logical next step and used M&M’S to give the answer - with a more fun question!
This led to what we now call the M&M Game (see Figure 1 for an illustration):

You and some friends start with some number of M&M’S. Everyone flips a fair coin
at the same time; if you get a head you eat an M&M; if you get a tail you don’t.
You continue tossing coins together until no one has any M&M’S left, and whoever
is the last person with an M&M lives longest and ‘wins’.

We can reformulate Cam’s question on randomness to: If everyone starts with the same number
of M&M’S, what is the chance everyone eats their last M&M at the same time? In the arguments
below we’ll concentrate on two people playing withc (for Cam) andk (for Kayla) M&M’S, though
we encourage you to extend to the case of more people playing,possibly with a biased coin. As
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FIGURE 1. The first M&M Game; for young players there is an additionalcom-
plication in that it matters which colors you have, and the order you place them
down.

we will see in the following analysis, probability games like this one are a great way to see useful
but complicated mathematical processes. In the course of our investigations we’ll see some nice
results in combinatorics and graph theory, and see applications of memoryless processes, statistical
inference and hypergeometric functions. Such consequences are typical of good problems: in
addition to being interesting, they serve as an excellent springboard to good concepts.

Recalling that the binomial coefficient
(

n
r

)

= n!
r!(n−r)!

denotes the number of ways to chooser

objects fromn when order doesn’t matter, we can compute the probabilityP (k, k) of a tie when
two people start withk M&M’S. If we let Pn(k, k) denote the probability that the game ends in a
tie with both people starting withk M&M’S after exactlyn moves, then

P (k, k) =

∞
∑

n=k

Pn(k, k);

note that we are starting the sum atk as it is impossible all the M&M’S are eaten in fewer thank
moves (we could start the sum at zero, but sincePn(k, k) = 0 for n < k there is no need).

We claim that

Pn(k, k) =

(

n− 1

k − 1

)(

1

2

)n(
n− 1

k − 1

)(

1

2

)n

.

This formula follows from the following observation: if thegame ends in a tie aftern tosses, then
each person hasexactlyk − 1 heads in their firstn− 1 tosses. As we have a fair coin, each string
of heads and tails of lengthn for a player has probability(1/2)n. The number of strings for each
person where the firstn − 1 tosses haveexactlyk − 1 heads, and thenth toss is a head (we need
this as otherwise we do not have each person eating their finalM&M on the nth move) is

(

n−1
k−1

)(

1
1

)

.
The

(

1
1

)

reflects the fact that the last toss must be a head; as this is just 1 it is common to omit that
factor. As there are two players, the probability that each has theirkth head after thenth toss is the
product, proving the formula.

We have thus shown the following.
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Theorem 1.1. The probability the M&M Game ends in a tie with two people using fair coins and
starting withk M&M’S is

P (k, k) =
∞
∑

n=k

(

n− 1

k − 1

)(

1

2

)n(
n− 1

k − 1

)(

1

2

)n

=
∞
∑

n=k

(

n− 1

k − 1

)2
1

22n
. (1.1)

While the above formula solves the problem, it is unenlightening and difficult to work with. The
first difficulty is that it involves an infinite sum overn.2 Second, it is very hard to sniff out the
k-dependence: if we doublek, what does that do to the probability of a tie? It is highly desirable to
have exact, closed form solutions so we can not only quickly compute the answer for given values
of the parameter, but also get a sense of how the answer changes as we vary those inputs. In the
sections below we’ll look at many different approaches to this problem, most of them trying to
convert the infinite sum to a more tractable finite problem.

2. THE BASKETBALL PROBLEM, MEMORYLESSPROCESSES AND THEGEOMETRIC SERIES

FORMULA

2.1. A Basketball Game. It turns out that we can easily convert the infinite M&M Game sum,
equation (1.1), into a finite sum using a powerful observation: we have aMemoryless Process.
Briefly, what this means is that the behavior of the system only depends on the values of the
parameters at a given moment in time, and not on how we got there.

There are many examples where all that matters is the configuration, not the path taken to reach
it. For example, imagine a baseball game. If the lead-off hitter singles or walks, the net effect is
to have a runner on first and the two results are the same.3 For another example, consider a game
of Tic-Tac-Toe; what matters are where the X’s and O’s are on the board, not the order they are
placed. While chess at first might seem like a perfect example, it fails as many people play that
if there is ever a configuration repeated three times in the game then the game is declared a draw;
thus in chess we need to knowhowwe reached our state, and not just what state we are in.

Before delving into the reduction of the M&M Game into a finiteproblem, we’ll look at a related
problem that’s a little simpler but illustrates the same point. Moreover, we can easily extract from
this problem the famous geometric series formula!

Imagine two of the greatest basketball players of all time, Larry Bird of the Boston Celtics and
Magic Johnson of the Los Angeles Lakers4 are playing a basketball game. Instead of the intense
competition which characterized the matches between theirteams they instead play a one-on-one
game of hoops as follows.

In this contest, Bird and Magic alternate shooting free throws, with Bird going
first and first player to make a basket wins. Assume Bird alwaysmakes a basket
with probabilitypL, while Magic always gets a basket with probabilitypM . If the
probability Bird wins isxB, what isxB?

2In general we need to be careful and make sure any infinite sum converges; while we are safe here as we are
summing probabilities, we can elementarily prove convergence. Note

(

n−1

k−1

)

≤ nk−1/k!, and thus the sum is bounded
by k!−2

∑

n≥k n
2k−2/22n; as the polynomialn2k−2 grows significantly slower than the exponential factor22n, the

sum rapidly converges.
3For the baseball purist, there could be a very slight difference as a single breaks up a no-hit attempt, and if the next

26 batters are retired the pitcher might perform differently with a no-hitter on the line!
4The players chosen reflect the childhood experiences of the eldest author.
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Note that this is almost a simplified M&M Game: there is only one M&M, but the players take
turns flipping their coins. We’ll see, however, that it is straightforward to modify the solution.

2.2. Solution from the Geometric Series Formula. The standard way to solve this problem uses
a geometric series. Similar to the analysis in the introduction, the probability that Bird wins is the
sum of the probabilities that Bird wins on hisnth shot. We’ll see in the analysis below that it’s
algebraically convenient to definer := (1−pB)(1−pM), which is the probability they both miss.5

Let’s go through the cases. We assume thatpB andpM are not both zero; if they were, then neither
can hit a basket. Not only would this mean that our ranking of them as two of the all-time greats is
wrong, but the game will never end and thus there’s no need to do any analysis!

(1) Bird wins on his 1st shot with probabilitypB.
(2) Bird wins on his 2nd shot with probability(1− pB)(1− pM)pB = rpB.
(3) Bird wins on hisnth shot with probability(1 − pB)(1 − pM) · (1 − pB)(1 − pM) · · ·

(1− pB)(1− pM)pB = rn−1pB.

To see this, if we want Bird to win on shotn then we need to have him and Magic miss their
first n − 1 shots, which happens with probability((1− pB)(1− pM))n−1 = rn−1, and then Bird
hits hisnth shot, which happens with probabilitypB. The important thing to remember here is that
we have broken the problem down into all of the possible ways Bird can beat Magic. In doing so,
notice how the geometric series is surfacing! This makes sense since we haven − 1 trials where
Bird and Magic miss, and on thenth shot, Bird makes the basket and wins the game. Thus

Prob(Bird wins) = xB = pB + rpB + r2pB + r3pB + · · · = pB

∞
∑

n=0

rn.

which is a geometric series. As we assumedpB andpM are not both zero,r = (1 − pB)(1− pM)
satisfies|r| < 1 and we can use the geometric series formula to deduce

xB =
pB

1− r
=

pB
1− (1− pB)(1− pM)

.

We have made enormous progress. We converted our infinite series into aclosed-form expres-
sion, and we can easily see how the probability of Bird winning changes as we changepB andpM ;
we display this in Figure 2.

Note the plot supports our intuition. As the probability of Bird making a basket rises to 1, it
doesn’t matter what Magic’s probability is as Bird will almost surely win on his first shot. Further,
if the two probabilities are equal then Bird should win more than half of the time, as there is an
advantage in going first.

2.3. Solution through Memoryless Process and the Geometric Series Formula. We now give
a second solution to the basketball game. Not only does this approach avoid needing to know the
geometric series formula, but it gives a proof of it!

Recall the assumptions we made. The probability Bird makes ashot ispB, the probability Magic
hits a basket ispM , and the probability they both miss isr := (1 − pB)(1 − pM). There is a lot
hidden in these statements. We are assuming the two never tire; they always make baskets with a

5A quick word on notation. We usep to denote probability, and put subscriptsB andM so we can easily determine
if we’re talking about Bird or Magic; we use the letterr for ratio, which will make sense when we see the geometric
series with ratior emerge shortly. There is enormous value in good notation – wecan get a better understanding of
what is going on simply by glancing down at the formula and quickly parsing the terms.
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FIGURE 2. Probability Bird, shooting first, gets a basket before Magic.

fixed probability. We can use this to computexB , the probability Bird wins, in another way. Before
we wrotexB as a sum over the probabilities that Bird won inn games. We claim that

Prob(Bird wins) = xB = pB + rxB.

To see this, note either Bird makes his first basket and wins (which happens with probability
pB) or he misses (with probability1− pB). If Bird is going to win, then Magic must miss his first
shot, and this happens with probability1 − pM . Something interesting happens, however, if both
Bird and Magic miss:we have reset our game to its initial state!Since both have missed, it’s as if
we just started playing the game right now. Note this would not be true if we stopped the analysis
after Bird misses, as then Magic would have the next shot and the advantage. Since both miss and
Bird has the ball again, by definition the probability Bird wins from this configuration isxB, and
thus the probability he wins ispB + (1− pB)(1− pM)xB.

Solving forxB, the probability Bird beats Magic is

xB =
pB

1− rB
.

As this must equal the infinite series expansion from the previous subsection, we deduce the geo-
metric series formula:

pB
1− r

= pB

∞
∑

n=0

rn therefore
∞
∑

n=0

rn =
1

1− r
.

Remark 2.1. We have to be a bit careful. It’s important to keep track of assumptions. In our
analysisr = (1 − pB)(1 − pM) with 0 ≤ pB, pM ≤ 1 and bothpB andpM are not zero. Thus we
have only proved the geometric series formula if0 ≤ r < 1 (actually, ifpB = 0 we cannot divide

5



both sides bypB, and some care is needed). With a bit more work we can convert this to a proof
for all real |r| < 1 by splitting the infinite sum into a sum over even and odd powers, and using the
formula twice; we encourage you to make this rigorous.

Let’s look closely at what we’ve done in this subsection. Thekey observation was to notice that
we have amemoryless process. In the infinite sum approach, which led to an infinite geometric
series, we cared about each time Bird and Magic miss a free throw. In our new approach we just
care about them both missing once. The reason is that if Bird and Magic both miss, the game
essentially starts over, and the game hasno memoryof what previously occurred. The advantage to
this method is that by reducing the game to the same state we start with, we turn aninfinitecalcu-
lation into afinite one! In general it is incredibly difficult to come up with a workable expression
for an infinite series, and finite expressions are easier to compute. Thus, perhaps there is hope that
we can convert the solution to the M&M Game, equation (1.1), into an equivalent finite sum....

2.4. Lessons. Before returning to the M&M game, there are a few takeaways worthy of emphasis,
all of which will resurface moving forward.

(1) The Power of Perspective:In the hoops game, the infinite series may have been daunting.
However, after looking at the problem with a different perspective, we saw that we can
use a memoryless process to attack an otherwise difficult problem. In fact, the memory-
less process is one of the most powerful probability tools wehave because it replaces the
daunting challenge of infinite calculations with finite ones. Again, any time we can reduce
an infinite problem to a finite problem is cause for celebration, as we are making enormous
progress! (Technically infinite progress!)

(2) Circumvent Algebra with Deeper Understanding:Frequently there is a lot of messy algebra
that goes into finding a formula for an infinite sum. The trickswe used to circumnavigate
this algebra are great, and we should look for those types of shortcuts as often as possible.

(3) The Depth of a Problem Is Not Always What You Expect:Originally, we may have thought
we needed the geometric series to solve this problem. It turns out we didn’t! This will be a
valuable insight for the M&M game in that we should look for ways to simplify problems
from infinite sums to finite expressions. That way, we don’t have to deal with difficult
infinite expressions.

(4) Math is Fun:How could anyone think otherwise?

3. MEMORYLESS M&M’S

3.1. Setup. Remember (equation (1.1)) that we have an infinite sum for theprobability of a tie
with both people starting withk M&M’S:

P (k, k) =

∞
∑

n=k

(

n− 1

k − 1

)(

1

2

)n−1
1

2
·
(

n− 1

k − 1

)(

1

2

)n−1
1

2
.

It’s hard to evaluate this series as we have an infinite sumand a squared binomial coefficient
whose top is changing. Thus instead of evaluating this sum, which is very difficult to do, we want
to somehow convert it to something where we have more familiarity. From the hoops game, we
should be thinking about how to obtain afinite calculation. The trick there was to notice we had
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a memoryless process, and all that mattered was the game state, not how we reached it. For our
problem, we’ll have many tosses of the coins, but in the end what matters is where we are, not the
string of heads and tails that got us there.

Let’s figure out some way to do this by lettingk = 1. In this case, we can do the same thing
we did in the hoops game and boil the problem down into cases. There are four equally likely
scenarios each time we toss coins, so the probability of eachevent occurring is 1/4 or 25%.

(1) Both players eat.
(2) Cam eats an M&M but Kayla does not.
(3) Kayla eats an M&M but Cam does not.
(4) Neither eat.

These four possibilities lead to the infinite series in (1.1), as we calculate the probability the
game ends inn tosses. It turns out one of the four events is not needed, and if we remove it we can
convert to a finite game.

Let’s revisit the lessons of the hoops game. There, we saw that we could create amemoryless
process by saying if Bird and Magic both missed their free throws, it was as if the game started
over. We can do the same thing here: if Cam and Kayla both get tails and therefore don’t eat their
M&Ms, then it’s as if the coin toss never happened. We can therefore ignore the fourth possibility.
If you want, another way to look at this is that if we toss two tails then there is no change in the
number of M&M’S for either kid, and thus we may pretend such a toss never happened. This allows
us to remove all the tosses of double tails, and now after eachtoss at least one player, possibly both,
have fewer M&M’S. As we start with a finite number of M&M’S, thegame terminates in a finite
number of moves.

Thus instead of viewing our game as having four alternativeswith each toss, there are only three
and they all happen with probability 1/3. To see this, note that if Pr(X) is the probability that event
X happens, we now have a conditional probability problem6; for example, what is the probability
Cam and Kayla both eat an M&Mgiven that the outcome is not double tails? If C denotes the
event that Cam gets a head and eats (andCc the event that he gets a tail), and similarlyK for
Kayla, then

Pr(both eat|at least one eats) =
Pr(C ∩K)

Pr(C ∩K) + Pr(C ∩Kc) + Pr(Cc ∩K)

=
1/4

1/4 + 1/4 + 1/4
=

1

3
.

We may therefore consider the related game with just three outcomes for each set of tosses, each
happening with probability 1/3:

(1) both players eat;
(2) Cam eats an M&M but Kayla does not;
(3) Kayla eats an M&M but Cam does not.

Notice that after each toss the number of M&M’S is decreased by either 1 or 2, so the game
ends after at most2k − 1 tosses.

3.2. Solution. Armed with the reduction from the previous subsection, we can replace the infinite
sum of (1.1) with a finite sum.

6The standard notation is to writePr(A|B) for the probability thatA happens, given thatB happens.
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Theorem 3.1. The probability the M&M Game ends in a tie with two people using fair coins and
starting withk M&M’S is

P (k, k) =
k−1
∑

n=0

(

2k − n− 2

n

)(

1

3

)n(
2k − 2n− 2

k − n− 1

)(

1

3

)k−n−1(
1

3

)k−n−1
1

3
. (3.1)

Proof. Each of our three possibilities (both eat, just Cam eats, just Kayla eats) happens with prob-
ability 1/3. Since the game ends in a tie, we know the final tossmust be double heads with both
eating, and each must eat exactlyk − 1 M&M’S in the earlier tosses. Letn denote the num-
ber of times both eat before the final toss (which again we knowmust be double heads); clearly
n ∈ {0, 1, . . . , k − 1}. We thus haven + 1 double heads, and thus Cam and Kayla must each eat
k − (n+ 1) = k − n− 1 times when the other doesn’t eat.

We see that, in the case where there aren + 1 double heads (with the last toss being double
heads), the total number of tosses is

(n+ 1) + (k − n− 1) + (k − n− 1) = 2k − n− 1.

In the first2k − n − 2 tosses we must choosen to be double heads, then of the remaining(2k −
n− 2)− n = 2k − 2n− 2) tosses before the final toss we must choosek − n− 1 to be just heads
for Cam, and then the remainingk − n − 1 tosses before the final toss must all be just heads for
Kayla. These choices explain the presence of the two binomial factors. As each toss happens with
probability 1/3, this explains those factors; note we couldhave just written(1/3)2k−n−1, but we
prefer to highlight the sources. �

4. VIEWING DATA

4.1. Plotting Exact Answer. Before turning to additional ways to solve the problem, it isworth-
while to pause for a bit and discuss how to view data and use results for smallk to predict results
for larger ones.

While it is not obvious how we could replace the sum in (3.1) with a nice closed form expression
involving k, this finite sum is certainly easier to use than the infinite sum in (1.1). In fact, it’s very
easy to use the finite sum to compute the exact answer. Below issome simple code to do so in
Mathematica (and plot the result).

p[k_] := Sum[Binomial[2 k - n - 2, n] Binomial[2 k - 2 n - 2,
k - n - 1] (1/3)^(2 k - n - 1), {n, 0, k - 1}]

tielist = {};
For[k = 1, k <= 1000, k++, tielist = AppendTo[tielist, {k, p[k]}]]
ListPlot[tielist, AxesLabel -> {"k", "Probability of a tie"}]

For example, ifk = 1 the probability of a tie is 1/3; this is quite reasonable, as there are three
equally likely possibilities now and only one of them leads to a tie when both start with one M&M.
Some other fun values: ifk = 2 the probability is5/27 ≈ .185, if k = 5 it is 1921/19683 ≈ .098,
if k = 10 it falls to almost.066, while for k = 100 it’s about.020. See Figure 3 for more values.

8



FIGURE 3. The probability of a tie fork ≤ 1000.

4.2. Log-log Plots. While equation (3.1) gives us a nice formula for finite computations, it is hard
to see thek dependence. To try and guess how the answer varies withk we can do a plot, but it’s
hard to look at the results in Figure 3 and extrapolate to larger values ofk. For example, what
would you guess for the probability of a tie if there are 200 M&M’S? If there are 2016?

An important skill to learn is how to view data. Frequently rather than plotting the data as given
it’s better to do a log-log plot. What this means is that instead of plotting the probability of a tie as
a function ofk, we plot the logarithm of the probability of a tie against thelogarithm ofk. We do
this in Figure 4.

FIGURE 4. The probability of a tie fork ≤ 1000.

Notice that the plot here looksverylinear. Lines are probably the easiest functions to extrapolate,
and if this linear relationship holds we should be able to come up with a very good prediction for
the logarithm of the probability (and hence by exponentiating obtain the probability). We do this
in the next section.

4.3. Statistical Inference. Let’s try to predict the answer for large values ofk from smaller ones.
The fifth named author gave a talk on this at the 110th meeting of the Association of Teachers of
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FIGURE 5. The probability of a tie fork ≤ 110. The best fit line is good, but is
noticeable non-perfect.

Mathematics in Massachusetts in March 2013, which will explain the prevalence of 110 and 220
below.

Figure 5 gives the log-log plot fork ≤ 110. Using the Method of Least Squares from Statistics7

with P (k) the probability of a tie when we start withk M&M’S, we find a predicted best fit line of

log (P (k))) ≈ −1.42022− 0.545568 log k,

or exponentiating
P (k) ≈ 0.2412/k.5456.

This predicts a probability of a tie whenk = 220 of about 0.01274, but the answer is approximately
0.0137. While we are close, we are off by a significant amount.(In situations like this it is better
to look at not the difference in probabilities, which is small, but the percentage we are off; here we
differ by about 10%.)

Why are we so far off? The reason is that small values ofk are affecting our prediction more than
the should. If we have a main term in the log-log plot which is linear, it will eventually dominate
lower order termsbut those lower order terms could have a sizable effect for lowk. Thus, it’s a
good idea to ignore the smaller values when extrapolating our best fit line.

In Figure 6 we now go fromk = 50 to 110.
Our new best fit line is

log (P (k)) ≈ −1.58261− 0.50553 log k,

or exponentiating
P (k) ≈ 0.205437/k.50553;

we should compare this to our previous prediction of0.241662/k.5456). Using our new formula we
predict 0.01344 fork = 220, which comparesveryfavorably to the true answer of 0.01347.

The point of this section is to give you a brief introduction to the power of statistics and extrapo-
lating, and give you a sense of some of the issues in their use.We are able to get a fairly reasonable
prediction with very little work, and if we clean up the data alittle we improve to a phenomenal
agreement.

7These formulas can be derived using multivariable calculusand linear algebra. For a derivation,
see for examplehttp://web.williams.edu/Mathematics/sjmiller/public_html/105Sp10/
handouts/MethodLeastSquares.pdf.
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FIGURE 6. The probability of a tie for50 ≤ k ≤ 110. The best fit line is almost
indistinguishable from the data.

5. RECURRENCES

As our goal is not to write a book on this game but rather to showhow it leads to many good
mathematical items, in the interest of space we will just briefly discuss two final approaches, re-
currence relations in this section and hypergeometric functions in the next. See [M] for a quick
introduction to recurrences.

5.1. Recurrence Review. If you’ve seen the Fibonacci numbers

{Fn}∞n=0 = {0, 1, 1, 2, 3, 5, 8, . . .},
you’ve seen a terrific example of a linear recurrence with constant coefficients, as they are the
unique sequence satisfying

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1.

Once we know the relation and the first two coefficients, we canfind any subsequent value by
substituting. Unfortunately, this is costly in practice, as computing thenth term requires us to
know all the previous ones.

Fortunately, there are many ways to efficiently solve problems like this, and often these lead to
beautiful closed form expressions. To solve the Fibonacci relation we guessFn = rn. Why is this
reasonable? Clearly the Fibonacci sequence is non-decreasing, soFn+2 ≤ 2Fn+1, which means
that every time we increase the index by 1 we at most double ournumber, soFn ≤ 2n. Similarly
we findFn+2 ≥ 2Fn; now increasing the index by 2 causes us to at least double, soincreasing the
index by 1 should yield an increase of at least a factor of

√
2. Thus we expect the Fibonaccis to

satisfy a relation such as
2n/2 ≤ Fn ≤ 2n,

which is highly suggestive of exponential growth; this is why we tryFn = rn.
Substituting this into the recurrence we obtain the characteristic polynomial forr, which, after

dividing both sides byrn, is
r2 = r + 1;

the solutions to this are

r1 =
1 +

√
5

2
, r2 =

1−
√
5

2
.
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A beautiful property of linear recurrences is that an arbitrary linear combination of solutions is a
solution, and we find the general solution of the Fibonacci recurrence is

Fn = c1r
n
! + c2r

n
2 .

As we requireF0 = 0 andF1 = 1, after some more algebra we obtain Binet’s Formula, the
spectacular relation

Fn =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

.

This formula is amazing: it gives us a simple, closed form expression for thenth Fibonacci number;
we can jump to this term in the sequencewithoutcomputing any of the earlier ones!8

The point of the above is to give a brief glimpse at the rich theory; there is far more that could
be said (especially concerning generating function approaches to solve problems such as these),
but for our purposes this suffices. The main takeaways is thatsometimes we are lucky and able to
derive simple closed form expressions, but even if we cannotwe are often able to determine the
terms by repeated application of the defining relation and initial conditions.

5.2. The M&M Recurrence. Even though we have a finite sum for the probability of a tie (equa-
tion 3.1), finding that required some knowledge of combinatorics and binomial coefficients. We
give an alternate approach which avoids these ideas. It’s possible to do it with or without noting
that we have a memoryless process. We’ll do the memoryless process first as we’ll assume we’re
still clever enough to notice that, and then remark afterwards how we would have found the same
formula even if we didn’t realize this.

We need to consider a more general problem. We always denote the number of M&M’S Cam
has withc, and Kayla withk9; we frequently denote this state by(c, k). Then we can rewrite the
three equally likely scenarios, each with probability 1/3,as follows:

• (c, k) −→ (c− 1, k − 1) (double heads and both eat),
• (c, k) −→ (c− 1, k) (Cam gets a head and Kayla a tail),
• (c, k) −→ (c, k − 1) (Cam gets a tail and Kayla a head).

If we let xc,k denote the probability the game ends in a tie when we start with Cam having
c M&M’S and Kayla havingk, we can use the above to set up a recurrence relation. How so?
Effectively, on each turn we move from(c, k) in exactly one of the following three ways: either
Cam and Kayla both eat an M&M in which case(c, k) −→ (c − 1, k − 1); only Cam flips heads
and eats an M&M in which case(c, k) −→ (c − 1, k); or Kayla is the only one to eat an M&M
in which case(c, k) −→ (c, k − 1). Now, we can use simpler game states to figure out how the
probability of a tie when we start with more M&M, as in each of the three cases we have reduced
the total number of M&M’S by at least one. We thus find that the recurrence relation satisfied by
{xc,k} is

xc,k =
1

3
xc−1,k−1 +

1

3
xc−1,k +

1

3
xc,k−1 =

xc−1,k−1 + xc−1,k + xc,k−1

3
. (5.1)

8Additionally, as the Fibonaccis are all integers Binet’s formula must return an integer; at first this might seem
unlikely, as our expression involves square-roots and fractions, but fortunately everything that needs to cancel does.

9We can see the power of good notation. Usingc andk to represent the number of M&M’S Cam and Kayla each
have allows us to know exactly what is going on as the math getsmore involved.
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From our work on the Fibonacci numbers we know that cannot be the full story – we need to
specify initial conditions. A little thought saysx0,0 must be 1 (if they both have no M&M’S then
it must be a tie), whilexc,0 = 0 if c > 0 and similarlyx0,k = 0 if k > 0 (as in these cases exactly
one of them has an M&M, and thus the game cannot end in a tie).

We have made tremendous progress. We use these initial values and the recurrence relation (5.1)
to determinexc,k. Unfortunately we cannot get a simple closed form expression, but we can easily
compute the values by recursion. A good approach is to compute allxc,k wherec + k equals sum
fixed sums. We’ve already done the casess = 0 ands = 1, findingx0,0 = 1, x0,1 = x1,0 = 0.

We now move tos = 2. We need only findx1,1, as we knowx2,0 = x0,2 = 0. Using the
recurrence relation we find

x1,1 =
x0,0 + x0,1 + x1,0

3
=

1 + 0 + 0

3
=

1

3
.

Next is the case when the indices sum to 3. Of course,x0,3 = x3,0 = 0, so all we need arex1,2

andx2,1 (which by symmetry are the same). We find

x2,1 = x1,2 =
x1,1 + x2,0 + x0,2

3
=

1/3 + 0 + 0

3
=

1

9
.

We can continue tos = 4, and after some algebra easily obtain

x2,2 =
x1,1 + x2,1 + x1,2

3
=

5

27
.

If we continued on with these calculations, we would find thatx3,3 = 11
81

, x4,4 = 245
2187

, x5,5 =
1921
19863

, x575,6561 = 11
81

, x7,7 = 42635
531441

, andx8,8 = 355975
4782969

. The beauty of this recursion process is
that we have a sure-fire way to figure out the probability of a tie at different states of the M&M
game. We leave it as an exercise to the interested reader to compare the computational difficulty
of findingx100,100 by the recurrence relation versus by the finite sum (3.1).

We end with one final comment on this approach. It’s possible to recast this problem as one in
counting paths on a graph. In Figure 7 we start with(c, k) = (4, 4), and look at all the possible
paths that end in(0, 0). The probability of any path is equal to(1/3)t, wheret is the number of
terms in the path. It turns out the solution is very similar tothe famous Catalan numbers, which
count the number of paths from(0, 0) to (n, n) moving in unit horizontal or unit vertical steps
and never going above the main diagonal; the difference hereis that we now have three possible
choices at each turn.

5.3. Forgetting Memoryless Processes. In the previous subsection we found a recurrence rela-
tion for xc,k, but our analysis was based on there only being three optionsat each step. What if
we hadn’t noticed there was a memoryless process lurking: would we still have found the same
relation? In that case, there would now be four possibilities on each turn, each happening with
probability 1/4.

• (c, k) −→ (c− 1, k − 1) (double heads and both eat),
• (c, k) −→ (c− 1, k) (Cam gets a head and Kayla a tail),
• (c, k) −→ (c, k − 1) (Cam gets a tail and Kayla a head),
• (c, k) −→ (c, k) (double tails and neither eats).

13



FIGURE 7. The M&M game whenk = 4. Count the paths! Answer 1/3 of
probability hit (1,1).

We now obtain the following relation:

xc,k =
1

4
xc−1,k−1 +

1

4
xc−1,k +

1

4
xc,k−1 +

1

4
xc,k.

Note that if we bring the1
4
xc,k over to the left hand side we relate3

4
xc,k to multiples ofxc−1,k−1, xc−1,k

andxc,k−1:
3

4
xc,k =

1

4
xc−1,k−1 +

1

4
xc−1,k +

1

4
xc,k−1.

If we then multiply through by4/3 we regain our old recurrence, equation (5.1):

xc,k =
1

3
xc−1,k−1 +

1

3
xc−1,k +

1

3
xc,k−1.

This is wonderful: it means if we did not initially notice that there was a memoryless process,
doing the algebra suggests there should be one!

5.4. Revisiting and Generalizing the Hoops Game. When you learn new concepts in math,
it often pays great dividends to revisit earlier problems. Let’s go back to the hoops game; not
surprisingly, we’ll see that, similar to the M&M Game, we cancast it as a double recurrence.

The way the recurrence method worked was we reduced the problem we wished to study to
a simpler state; however, that required us to know those answers. Thus it is not enough to deal
with justxB in general, and we need to studyxB;b,m, which is the probability Bird wins when he
needs to makeb more baskets to win, Magic needs to makem more to win,and Bird is currently
shooting!.10 We find

xB;b,m = pBpMxB;b−1,m−1 + pB(1− pM)xB;b−1,m

+ (1− pB)pMxB;b,m−1 + (1− pB)(1− pM)xB;b,m. (5.2)

To see why this is true, let’s look at the first term. ThepB means Bird got a basket, reducing the
number he needs by 1. Note that ifb − 1 = 0 then Bird wins and the game should stop (we’ll
deal more with this in a moment). Now it’s Magic’s turn to shoot. If he gets a basket, which

10Another option is that we could introducexM ;b,m, the corresponding probability where now Magic is shooting.
14



happens with probabilitypM , that reduces his number of baskets needed tom− 1, which explains
thepBpMxB;b−1,m−1 term; the other three terms arise from the other possibilities.

We also need the initial conditions. ClearlyxB;b,0 = 0 if b > 0 andxB;0,m = 1 if m > 0, but
what should we choose forxB;0,0? Well, the way to interpret this is that each needs to make zero
baskets and Bird shoots first, so he is the first to reach zero baskets. Thus we setxB;0,0 equal to 1.
Another justification is that we only reach this situation when Bird makes a basket and then Magic,
who shouldn’t have been allowed to shoot as Bird just won the game, shoots. These normalizations
often are tricky, but can frequently be determined by a good story. This is similar to the convention
that0! = 1, which we interpret as there is only one way to do nothing (i.e., there is one way to
order no elements – there shouldn’t be multiple ways to do nothing!).

We have thus found a recurrence forxB;b,m. Let’s check and make sure it reduces to our previous
result whenb = m = 1. In that case, equation (5.2) becomes

xB;1,1 = pBpM1 + pB(1− pM)1 + (1− pB)pM0 + (1− pB)(1− pM)xB;1,1.

Remembering that we user for (1− pB)(1− pM) after some simple algebra we obtain

xB;1,1 =
pB

1− r
,

exactly as before! Of course, this now suggests a natural question: what doesxB;b,b look like asb
grows (let’s say under the assumption thatpB = pM )?

6. HYPERGEOMETRICFUNCTIONS

We end our tour of solution approaches with a method that actually prefers the infinite sum to
the finite one, hypergeometric functions (see for example [AS, GR]). These functions arise as the
solution of a particular linear second order differential equation:

x(1 − x)y′′(x) + [c− (1− a+ b)x]y′(x)− aby(x) = 0

(this is also called Gauss’s differential equation). This equation is useful because every other linear
second order differential equation with three singular points (in the case they are at 0, 1, and∞)
can be transformed into it. As this is a second order differential equation there should be two
solutions. One is

y(x) = 1 +
abx

c1!
+

a(a+ 1)b(b+ 1)x2

c(c+ 1)2!
+

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)x3

c(c+ 1)(c+ 2)3!
+ · · · ,

so long asc is not a non-positive integer; we denote this solution by2F1(a, b; c; z). By choosing
appropriate values ofa, b and c we recover many special functions. Wikipedia lists three nice
examples:

log(1+x) = x 2F1(1, 1; 2;−x), (1−x)−a = 2F1(a, 1; 1; x), arcsin(x) = x 2F1(1/2, 1/2; 3/2; x
2).

By introducing some notation we can write the series expansion more concisely. We define the
Pochhammer symbol by

(a)n = a(a + 1)(a+ 2) · · · (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
15



(where the last equality holds for integera; for real a we need to interpret the factorial as its
completion, the Gamma function). Our solution becomes

2F1(a, b, c; x) =
∞
∑

n=0

(a)n(b)nx
n

(c)nn!
.

Note the factorials in the above expression suggest that there should be connections between hy-
pergeometric functions and products of binomial coefficients. In this notation, the 2 represents the
number of Pochhammer symbols in the numerator, the 1 the number of Pochhammer symbols in
the denominator, and thea, b, andc are what we evaluate the symbols at (the first two are the ones
in the numerator, the last the denominator). One could of course consider more general functions,
such as

sFt({ai}, {bj}; x) =
∞
∑

n=0

(a1)n · · · (as)nxn

(b1)n · · · (bt)nn!
.

The solution 2F1(a, b, c; x) is called a hypergeometric function, and if you look closelyat it
while recalling the infinite sum solution to the M&M Game you might see the connection. After
some algebra where we convert the binomial coefficients in the infinite sum solution (1.1) to the
falling factorials that are the Pochhammer symbols, we find the following closed form solution.

Theorem 6.1. The probability the M&M Game ends in a tie with two people using fair coins and
starting withk M&M’S is

P (k, k) = 2F1(k, k, 1; 1/4)4
−k. (6.1)

It is not immediately clear that this is progress; after all,it looks like we’ve just given a fancy
name to our infinite sum. Fortunately, special values of hypergeometric functions are well studied,
and a lot is known about their behavior as a function of their parameters. We encourage the
interested reader to explore the literature and discover how ‘useful’ the above is.

7. OEIS

We end with a short bonus section on how to guess formulas. There is an enormous wealth
of information available on-line, but often it is hard to figure out what we need and where it
resides. A terrific resource is the On-Line Encyclopedia of Integer Sequences (OEIS,http://
oeis.org/). This is a wonderful resource with a large number of integersequences tabulated
and stored. You enter some known terms in your sequence, and the site not only tells you what
sequences it knows that agree with this, but it provides links, properties and formulas when it can!

For example, if we use our finite series expansion (3.1) or therecurrence relation (5.1) we can
easily calculate the probability of a tie for some smallk. We give the probabilities fork up to
8 in Table 1. In addition, we also give32k−1P (k, k). The reason we do this is that looking at
the probability of a tie one is struck by the fact that the denominators are all powers of 3; after a
little algebra we see that if we multiply by32k−1 we clear the denominators, and we will obtain
a sequence ofintegers. Note that it is very important that we end with integers and not rational
numbers if we wish to use the OEIS.

Remark 7.1. If we didn’t notice the right power of 3, we could have reachedthe same conclu-
sion another way. There are three possibilities each time; from Figure 7 we saw our problem is
equivalent to counting how many paths there are from(k, k) to (0, 0). As we end at(0, 0) our last
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k P (k, k) 32k−1P (k, k)
1 1/3 1
2 5/27 5
3 11/81 33
4 245/2187 245
5 1921/19683 1921
6 575/6561 15525
7 42635/531441 127905
8 355975/4782969 1067925

TABLE 1. Probability of a tie as a function of the number of M&M’S thetwo
players have.

step is forced, and the longest path comes when we never get double heads. As we must remove
2k− 2 M&M’S (remember the last toss of double heads removed 2 of the2k), the longest path has
2k − 2 + 1 = 2k − 1 steps, explaining the presence of this factor as the exponent of 3.

Thus to the M&M Game with two players we can associate the integer sequence 1, 5, 33, 245,
1921, 15525, 127905, 1067925,. . . . We plug that into the OEIS and find that it knows that se-
quence! It is sequence A084771 (seehttp://oeis.org/A084771). The very first comment
there on this sequence is that it equals the number of paths inthe graph we discussed!

The OEIS is a powerful tool for research. Think back to proofsby induction: if you are told
what to prove, it is a lot easier and often the proof writes itself. The OEIS frequently gives you
such an advantage.

8. TAKEAWAYS AND FURTHER QUESTIONS

We’ve seen many different ways of solving the M&M Game, each leading to a different impor-
tant aspect of mathematics. There are many related questions we can explore. How long do we
expect a game to take? What would happen to the M&M problem if we increased the number of
players? What if all of the players started with different numbers of M&M’S? Maybe the game
would yield interesting results if the participants used biased coins.

In one of the first games ever played, Cameron, Kayla and Steven Miller each started with five
M&M’S and Kayla tossed five consecutive heads, dying immediately; years later she still talks
about that memorable performance. There is a lot known aboutthe longest run of heads or tails in
tosses of a fair (or biased) coin (see for example [Sch]). We can ask related questions here. What
is the expected longest run of heads or tails by any player in agame? What is the expected longest
run of tosses where all players’ coins have the same outcome?

We could also revisit the hoops game and consider generalizations there. What if Bird and
Magic keep shooting until someone makesk baskets. What’s the probability of a tie now? What
if you keep shooting until you miss? We could also ask questions about streaks of hits and misses
within the game. For another possibility, what if Bird’s probability of making a basket and Magic’s
probability of a basket are independent random variables drawn uniformly11 on [0, 1]: what is the
probability that Bird has a greater chance of winning than Magic? If you look at Figure 2 this
problem withk = 1 is equivalent to finding the area in the unit square above and to the left of the

11This means that for any interval[a, b] ⊂ [0, 1], the probabilitypB ∈ [a, b] is b − a, similarly for pM , and
knowledge ofpB gives no information onpM (or vice-versa).
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contour line with value .5; the answer turns out to belog(2) ≈ .693147. Is there a nice answer for
generalk? What if instead we ask what is the probability Bird wins ifpB andpM are independently
drawn uniform random variables on[0, 1]? If k = 1 the answer isπ2/6−1 ≈ .644934. It’s nice that
in both phrasings the answers are interesting numbers, and that the two different interpretations are
quite close.

There are plenty of further questions out there, all of whichwould provide great insights not
only into the M&M game and its educational value but also intothe study of math in general. We
hope you will explore some of these or, even better, ones of your own choosing, and let us know
what you find!
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