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ABSTRACT. To an adult, it's obvious that the day of someone’s deattotgrecisely determined
by the day of birth, but it's a very different story for a chil/hen the fourth named author was four
years old he asked his father, the sixth named author: If @eple are born on the same day, do they
die on the same day? While this could easily be demonstratedgh an “accidental death”, such
a proof would greatly diminish the possibility of teachindd#ional lessons, and thus a different
approach was taken. With the help of the fifth named authgrithented what we’ll calthe M&M
Game Givenk people, each simultaneously flips a fair coin, with eachhgadin M&M on a head
and not eating on a tail. The process then continues unM&M'’S are consumed, and two people
are deemed to die at the same time if they run out of M&M’S tngI This led to a great concrete
demonstration of randomness appropriate for little kitatso led to a host of math problems which
have been used in probability classes and math competifidrese are many ways to determine the
probability of a tie, which allow us in this article to usegliproblem as a springboard to a lot of great
mathematics, including memoryless process, combinatastatistical inference, graph theory, and
hypergeometric functions.

1. THE ORIGINS OF THE GAME

The M&M Game began as a simple question asked by Steven Mitlerious four year-old son
Cam: If two people are born on the same day, do they die on the slay? Of course, needing
a way to explain randomness to children (two year old Kayla thare as well), the three Millers
took the most logical next step and used M&M'’S to give the arswwith a more fun question!
This led to what we now call the M&M Game (see Figlle 1 for amsiltation):

You and some friends start with some number of M&M’S. Evex¥igus a fair coin
at the same time; if you get a head you eat an M&M; if you get hytaiu don't.
You continue tossing coins together until no one has any M&Mft, and whoever
is the last person with an M&M lives longest and ‘wins’.

We can reformulate Cam’s question on randomness to: If emergtarts with the same number
of M&M'’S, what is the chance everyone eats their last M&M & game time? In the arguments
below we’ll concentrate on two people playing witffor Cam) and: (for Kayla) M&M’S, though
we encourage you to extend to the case of more people plgyasgibly with a biased coin. As
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FIGURE 1. The first M&M Game; for young players there is an additior@i-
plication in that it matters which colors you have, and théeoryou place them
down.

we will see in the following analysis, probability gameselithis one are a great way to see useful
but complicated mathematical processes. In the courseraheestigations we’ll see some nice
results in combinatorics and graph theory, and see apiplisadbf memoryless processes, statistical
inference and hypergeometric functions. Such conseqsesreetypical of good problems: in
addition to being interesting, they serve as an excelleimgpoard to good concepts.

Recalling that the binomial coefﬁcier@‘) = #LT), denotes the number of ways to choase
objects fromn when order doesn’t matter, we can compute the probaldflity, k) of a tie when
two people start witlk M&M'S. If we let P, (k, k) denote the probability that the game ends in a
tie with both people starting with M&M’S after exactlyn moves, then

Pk, k) = i Po(k, k);

note that we are starting the sumkaas it is impossible all the M&M’S are eaten in fewer than
moves (we could start the sum at zero, but sifigé:, k) = 0 for n < k there is no need).

We claim that n n
ran - () () (D 6)

This formula follows from the following observation: if tigame ends in a tie aftertosses, then
each person haxactlyk — 1 heads in their first. — 1 tosses. As we have a fair coin, each string
of heads and tails of length for a player has probabilityl /2)". The number of strings for each
person where the first — 1 tosses havexactlyk — 1 heads, and the'" toss is a head (we need
this as otherwise we do not have each person eating theiMi& on the n™ move) is(7~}) (}).
The (;) reflects the fact that the last toss must be a head; as thistis jtis common to omit that
factor. As there are two players, the probability that eaashtheirk™ head after the!™" toss is the
product, proving the formula.

We have thus shown the following.



Theorem 1.1. The probability the M&M Game ends in a tie with two people gdair coins and
starting withk M&M’S is
> (n—1 1\" /n—-1 1\" < /n—1\"1
Pk, k) = — — = —. 11
=2 (0 6) (2)6) -6 e
While the above formula solves the problem, it is unenlightg and difficult to work with. The
first difficulty is that it involves an infinite sum overfl Second, it is very hard to sniff out the
k-dependence: if we doubke what does that do to the probability of a tie? Itis highlyidsdse to
have exact, closed form solutions so we can not only quickiyute the answer for given values
of the parameter, but also get a sense of how the answer chasgee vary those inputs. In the

sections below we’ll look at many different approaches ie giroblem, most of them trying to
convert the infinite sum to a more tractable finite problem.

2. THE BASKETBALL PROBLEM, MEMORYLESSPROCESSES AND THEGEOMETRIC SERIES
FORMULA

2.1. A Basketball Game. It turns out that we can easily convert the infinite M&M Gamensu
equation[(1.1), into a finite sum using a powerful observative have aviemoryless Process
Briefly, what this means is that the behavior of the systeny depends on the values of the
parameters at a given moment in time, and not on how we gat.ther

There are many examples where all that matters is the coafigar not the path taken to reach
it. For example, imagine a baseball game. If the lead-oféhgingles or walks, the net effect is
to have a runner on first and the two results are the §afue.another example, consider a game
of Tic-Tac-Toe; what matters are where the X’s and O’s arehenbibard, not the order they are
placed. While chess at first might seem like a perfect exaniplails as many people play that
if there is ever a configuration repeated three times in tineeghen the game is declared a draw;
thus in chess we need to kndwwwe reached our state, and not just what state we are in.

Before delving into the reduction of the M&M Game into a firp®blem, we’ll look at a related
problem that'’s a little simpler but illustrates the samenpoMoreover, we can easily extract from
this problem the famous geometric series formula!

Imagine two of the greatest basketball players of all timery. Bird of the Boston Celtics and
Magic Johnson of the Los Angeles LaKbese playing a basketball game. Instead of the intense
competition which characterized the matches between tis@ins they instead play a one-on-one
game of hoops as follows.

In this contest, Bird and Magic alternate shooting free thisp with Bird going
first and first player to make a basket wins. Assume Bird alwisgkes a basket
with probability p;,, while Magic always gets a basket with probability;. If the
probability Bird wins iszz, what iszz?

2In general we need to be careful and make sure any infinite sunvecges; while we are safe here as we are
summing probabilities, we can elementarily prove convm:geNote(Zj) < n*~1/k!, and thus the sum is bounded
by k=23 -, n?*72/22"; as the polynomiah?*~2 grows significantly slower than the exponential facét, the
sum rapidly_converges.

3For the baseball purist, there could be a very slight diffeesas a single breaks up a no-hit attempt, and if the next
26 batters are retired the pitcher might perform diffenentith a no-hitter on the line!

“The players chosen reflect the childhood experiences ofdesteauthor.
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Note that this is almost a simplified M&M Game: there is onlyedv&M, but the players take
turns flipping their coins. We’'ll see, however, that it isssghtforward to modify the solution.

2.2. Solution from the Geometric Series Formula. The standard way to solve this problem uses
a geometric series. Similar to the analysis in the intradacthe probability that Bird wins is the
sum of the probabilities that Bird wins on hid' shot. We’'ll see in the analysis below that it's
algebraically convenient to defime= (1 —pp)(1 — par), which is the probability they both mis.
Let's go through the cases. We assume thaandp,, are not both zero; if they were, then neither
can hit a basket. Not only would this mean that our rankindneftt as two of the all-time greats is
wrong, but the game will never end and thus there’s no need amg analysis!

(1) Bird wins on his # shot with probabilityp .

(2) Bird wins on his 2¢ shot with probabilit1 — pg)(1 — pa)ps = rps.

(3) Bird wins on hisn" shot with probability(1 — pg)(1 — pas) - (1 — pa)(1 — par) -
(1—=p)(1 = pa)ps =1"""ps.

To see this, if we want Bird to win on shatthen we need to have him and Magic miss their
first n — 1 shots, which happens with probabilityl — p5)(1 — pa))"" = ", and then Bird
hits hisn™ shot, which happens with probability;. The important thing to remember here is that
we have broken the problem down into all of the possible ways &n beat Magic. In doing so,
notice how the geometric series is surfacing! This makesessimce we have — 1 trials where
Bird and Magic miss, and on thé" shot, Bird makes the basket and wins the game. Thus

Prob(Bird wins) = zp = pp +rpp +1’pp +r’pp + - = pBZT"-
n=0

which is a geometric series. As we assumpgdandp,, are not both zera; = (1 — p)(1 — pu)
satisfiegr| < 1 and we can use the geometric series formula to deduce

PB PB

BT T 1-0-pn)1—pm)

We have made enormous progress. We converted our infiniessseto aclosed-form expres-
sion, and we can easily see how the probability of Bird winningrades as we change; andp,;
we display this in Figurgl2.

Note the plot supports our intuition. As the probability afdBmaking a basket rises to 1, it
doesn’t matter what Magic’s probability is as Bird will alstesurely win on his first shot. Further,
if the two probabilities are equal then Bird should win mdrart half of the time, as there is an
advantage in going first.

2.3. Solution through Memoryless Process and the Geometric Series Formula. We now give
a second solution to the basketball game. Not only does pipisoach avoid needing to know the
geometric series formula, but it gives a proof of it!

Recall the assumptions we made. The probability Bird malst®aisp 5, the probability Magic
hits a basket ip,,, and the probability they both missis:= (1 — pg)(1 — par). There is a lot
hidden in these statements. We are assuming the two newethiy always make baskets with a

5SA quick word on notation. We ugeto denote probability, and put subscriftsand A/ so we can easily determine
if we're talking about Bird or Magic; we use the lettefor ratio, which will make sense when we see the geometric
series with ratia- emerge shortly. There is enormous value in good notation €ameget a better understanding of
what is going on simply by glancing down at the formula andglyi parsing the terms.
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FIGURE 2. Probability Bird, shooting first, gets a basket before Mag

fixed probability. We can use this to computeg, the probability Bird wins, in another way. Before
we wrotex g as a sum over the probabilities that Bird womiigames. We claim that

ProbBird wins) = x5 = pp +rep.

To see this, note either Bird makes his first basket and witgc(whappens with probability
pp) or he misses (with probability — pg). If Bird is going to win, then Magic must miss his first
shot, and this happens with probability- p,,. Something interesting happens, however, if both
Bird and Magic misswe have reset our game to its initial stateince both have missed, it’s as if
we just started playing the game right now. Note this wouldb®otrue if we stopped the analysis
after Bird misses, as then Magic would have the next shotlamddvantage. Since both miss and
Bird has the ball again, by definition the probability Birdnsifrom this configuration isz, and
thus the probability he wins iss + (1 — pg)(1 — pa)zs.

Solving forz g, the probability Bird beats Magic is

PB
1— B )
As this must equal the infinite series expansion from theiptsvsubsection, we deduce the geo-
metric series formula:

rp =

= r"™ therefore r’" = .

Remark 2.1. We have to be a bit careful. It's important to keep track ofuasgtions. In our
analysisr = (1 — pg)(1 — par) With 0 < pg, pys < 1 and bothp andp,, are not zero. Thus we

have only proved the geometric series formula # » < 1 (actually, ifpg = 0 we cannot divide
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both sides by, and some care is needed). With a bit more work we can cortvisrtd a proof
for all real || < 1 by splitting the infinite sum into a sum over even and odd psyveerd using the
formula twice; we encourage you to make this rigorous.

Let's look closely at what we've done in this subsection. Kag observation was to notice that
we have amemoryless process. In the infinite sum approach, which led to an infinite geoioetr
series, we cared about each time Bird and Magic miss a freg/itin our new approach we just
care about them both missing once. The reason is that if BicdNagic both miss, the game
essentially starts over, and the gamemasnemonryf what previously occurred. The advantage to
this method is that by reducing the game to the same stateanensth, we turn annfinite calcu-
lation into afinite one! In general it is incredibly difficult to come up with a vikable expression
for an infinite series, and finite expressions are easierngabe. Thus, perhaps there is hope that
we can convert the solution to the M&M Game, equatlonl(1rih an equivalent finite sum....

2.4. Lessons. Before returning to the M&M game, there are a few takeawayshwaf emphasis,
all of which will resurface moving forward.

(1) The Power of Perspectivén the hoops game, the infinite series may have been daunting.
However, after looking at the problem with a different persve, we saw that we can
use a memoryless process to attack an otherwise difficuttiggma In fact, the memory-
less process is one of the most powerful probability tooldhaxe because it replaces the
daunting challenge of infinite calculations with finite ondgain, any time we can reduce
an infinite problem to a finite problem is cause for celebrgtas we are making enormous
progress! (Technically infinite progress!)

(2) Circumvent Algebra with Deeper Understanditgequently there is a lot of messy algebra
that goes into finding a formula for an infinite sum. The trigkes used to circumnavigate
this algebra are great, and we should look for those typelsarfauts as often as possible.

(3) The Depth of a Problem Is Not Always What You Exp@ciginally, we may have thought
we needed the geometric series to solve this problem. Istomhwe didn’t! This will be a
valuable insight for the M&M game in that we should look forysao simplify problems
from infinite sums to finite expressions. That way, we donitento deal with difficult
infinite expressions.

(4) Math is Fun:How could anyone think otherwise?

3. MEMORYLESSM&M'’S

3.1. Setup. Remember (equatiof (1.1)) that we have an infinite sum foptbeability of a tie
with both people starting with M&M'’S:

e =S (20 (6) (006

It's hard to evaluate this series as we have an infinite antha squared binomial coefficient
whose top is changing. Thus instead of evaluating this sumgiws very difficult to do, we want
to somehow convert it to something where we have more fantyliaFrom the hoops game, we

should be thinking about how to obtairfiaite calculation. The trick there was to notice we had
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a memoryless process, and all that mattered was the garee sbathow we reached it. For our
problem, we’ll have many tosses of the coins, but in the enatwiatters is where we are, not the
string of heads and tails that got us there.

Let’s figure out some way to do this by lettidig= 1. In this case, we can do the same thing
we did in the hoops game and boil the problem down into caséereTare four equally likely
scenarios each time we toss coins, so the probability of eaeht occurring is 1/4 or 25%.

(1) Both players eat.

(2) Cam eats an M&M but Kayla does not.
(3) Kayla eats an M&M but Cam does not.
(4) Neither eat.

These four possibilities lead to the infinite series[in](1d we calculate the probability the
game ends im tosses. It turns out one of the four events is not needed f arelremove it we can
convert to a finite game.

Let’s revisit the lessons of the hoops game. There, we sawwtha@ould create anemoryless
process by saying if Bird and Magic both missed their free throws, é&saas if the game started
over. We can do the same thing here: if Cam and Kayla both gettad therefore don’t eat their
M&Ms, then it’s as if the coin toss never happened. We carefioee ignore the fourth possibility.
If you want, another way to look at this is that if we toss twibstéhen there is no change in the
number of M&M'’S for either kid, and thus we may pretend sucbsstever happened. This allows
us to remove all the tosses of double tails, and now after esshat least one player, possibly both,
have fewer M&M'’S. As we start with a finite number of M&M'’S, tlgame terminates in a finite
number of moves.

Thus instead of viewing our game as having four alternativéseach toss, there are only three
and they all happen with probability 1/3. To see this, nog thPr(.X) is the probability that event
X happens, we now have a conditional probability prole‘m example, what is the probability
Cam and Kayla both eat an M&Niven that the outcome is not double t&il$f C' denotes the
event that Cam gets a head and eats @hdhe event that he gets a tail), and similafyfor
Kayla, then

Pr(CNK)
Pr(both eat|at least one eats) = PO AK) T Pr(CAK) T Pr(C A )
1/4 1

1/A+1/4+1/4 3
We may therefore consider the related game with just thresmmes for each set of tosses, each
happening with probability 1/3:
(1) both players eat;
(2) Cam eats an M&M but Kayla does not;
(3) Kayla eats an M&M but Cam does not.

Notice that after each toss the number of M&M’S is decreasedither 1 or 2, so the game
ends after at motk — 1 tosses.

3.2. Solution. Armed with the reduction from the previous subsection, wereplace the infinite
sum of [1.1) with a finite sum.

The standard notation is to writex(A|B) for the probability thatd happens, given thd happens.
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Theorem 3.1. The probability the M&M Game ends in a tie with two people gdair coins and
starting withk M&M’S is

o [2k—n—2\ [1\" (2k—2n—2) /1\*" /1)

e =2 (U0 6) GG G s e
Proof. Each of our three possibilities (both eat, just Cam eat$ §agla eats) happens with prob-
ability 1/3. Since the game ends in a tie, we know the final togst be double heads with both
eating, and each must eat exactly- 1 M&M'’S in the earlier tosses. Let denote the num-
ber of times both eat before the final toss (which again we kmust be double heads); clearly
n € {0,1,...,k — 1}. We thus have: + 1 double heads, and thus Cam and Kayla must each eat
k—(n+1) = k —n — 1 times when the other doesn't eat.

We see that, in the case where theresare 1 double heads (with the last toss being double
heads), the total number of tosses is

m+1)+k-—n—-1)4+(k—-n—-1) = 2k—n—1.

In the first2k — n — 2 tosses we must choogeto be double heads, then of the remainigg —

n —2) —n = 2k — 2n — 2) tosses before the final toss we must chdosen — 1 to be just heads
for Cam, and then the remainirkg— n — 1 tosses before the final toss must all be just heads for
Kayla. These choices explain the presence of the two bildautors. As each toss happens with
probability 1/3, this explains those factors; note we ccuale just written(1/3)%*~"~1, but we
prefer to highlight the sources. O

4. VIEWING DATA

4.1. Plotting Exact Answer. Before turning to additional ways to solve the problem, iwgth-
while to pause for a bit and discuss how to view data and usgtsder smallk to predict results
for larger ones.

While it is not obvious how we could replace the suniin](3.lthvainice closed form expression
involving k&, this finite sum is certainly easier to use than the infinite su(1.1). In fact, it's very
easy to use the finite sum to compute the exact answer. Belsanie simple code to do so in
Mathematica (and plot the result).

p[k ] := SunfBinomal[2 k - n- 2, n] Binhomal[2 k - 2 n - 2,
kK - n- 1 (/32 k - n- 1), {n, 0, k - 1}]
tielist ={};
For[k = 1, k <= 1000, k++, tielist = AppendTo[tielist, {k, p[k]}]]
ListPlot[tielist, AxesLabel -> {"k", "Probability of a tie"}]

For example, ifc = 1 the probability of a tie is 1/3; this is quite reasonable,hese are three
equally likely possibilities now and only one of them leadsittie when both start with one M&M.
Some other fun values: if = 2 the probability is5/27 ~ .185, if £ = 5itis 1921/19683 ~ .098,

if & = 10 it falls to almost 066, while for k = 100 it's about.020. See Figuré]3 for more values.
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FIGURE 3. The probability of a tie fok < 1000.

4.2. Log-log Plots. While equation[(3J]1) gives us a nice formula for finite congpiains, it is hard
to see the: dependence. To try and guess how the answer variesiwita can do a plot, but it’s
hard to look at the results in Figuré 3 and extrapolate toelavglues ofk. For example, what
would you guess for the probability of a tie if there are 200 M&? If there are 20167

An important skill to learn is how to view data. Frequentlthex than plotting the data as given
it's better to do a log-log plot. What this means is that iagtef plotting the probability of a tie as
a function ofk, we plot the logarithm of the probability of a tie against tbgarithm of%. We do
this in Figure 4.

log(Probability of a tie)
1L

2f
-3f

4l

FIGURE 4. The probability of a tie fok < 1000.

Notice that the plot here look&rylinear. Lines are probably the easiest functions to extedpp
and if this linear relationship holds we should be able to eap with a very good prediction for
the logarithm of the probability (and hence by exponentgbbtain the probability). We do this
in the next section.

4.3. Statistical Inference. Let's try to predict the answer for large valuesiorom smaller ones.

The fifth named author gave a talk on this at the'1hfeeting of the Association of Teachers of
9
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FIGURE 5. The probability of a tie fok < 110. The best fit line is good, but is
noticeable non-perfect.

Mathematics in Massachusetts in March 2013, which will axpthe prevalence of 110 and 220
below.

Figurel® gives the log-log plot for < 110. Using the Method of Least Squares from Statifltics
with P (k) the probability of a tie when we start withM&M’S, we find a predicted best fit line of

log (P(k))) ~ —1.42022 — 0.545568 log k,

or exponentiating

P(k) ~ 0.2412/k>%°,
This predicts a probability of a tie whén= 220 of about 0.01274, but the answer is approximately
0.0137. While we are close, we are off by a significant amo(intsituations like this it is better
to look at not the difference in probabilities, which is sinliit the percentage we are off; here we
differ by about 10%.)

Why are we so far off? The reason is that small valuésark affecting our prediction more than
the should. If we have a main term in the log-log plot whichngér, it will eventually dominate
lower order termdut those lower order terms could have a sizable effect for oW hus, it's a
good idea to ignore the smaller values when extrapolatimdpest fit line.

In Figure[® we now go fromk = 50 to 110.

Our new best fit line is

log (P(k)) ~ —1.58261 — 0.50553log k.

or exponentiating
P(k) ~ 0.205437 k505

we should compare this to our previous prediction.aft1662/k->455). Using our new formula we
predict 0.01344 fok = 220, which compareseryfavorably to the true answer of 0.01347.

The point of this section is to give you a brief introductiorthe power of statistics and extrapo-
lating, and give you a sense of some of the issues in theiMis@re able to get a fairly reasonable
prediction with very little work, and if we clean up the dat#itde we improve to a phenomenal
agreement.

These formulas can be derived using multivariable calcumsi linear algebra. For a derivation,
see for examplehttp://web.w llians. edu/ Mat hematics/sjmller/public_htm/105Sp10/
handout s/ Met hodLeast Squar es. pdf .
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FIGURE 6. The probability of a tie fob0 < k£ < 110. The best fit line is almost
indistinguishable from the data.

5. RECURRENCES

As our goal is not to write a book on this game but rather to show it leads to many good
mathematical items, in the interest of space we will jusefyidiscuss two final approaches, re-
currence relations in this section and hypergeometrictfons in the next. Seé [M] for a quick
introduction to recurrences.

5.1. Recurrence Review. If you've seen the Fibonacci numbers
{F.}02y = {0,1,1,2,3,5,8,...},

you've seen a terrific example of a linear recurrence withstamt coefficients, as they are the
unique sequence satisfying

Fowo = Fopn +F,, Fo =0, Fy = 1

Once we know the relation and the first two coefficients, we foah any subsequent value by
substituting. Unfortunately, this is costly in practice, @mputing thex" term requires us to
know all the previous ones.

Fortunately, there are many ways to efficiently solve pnoisi¢ike this, and often these lead to
beautiful closed form expressions. To solve the Fibonaaation we guess$;,, = r". Why is this
reasonable? Clearly the Fibonacci sequence is non-deweas F),,, < 2F, 1, which means
that every time we increase the index by 1 we at most doubl@wuwber, saF,, < 2". Similarly
we find F, ., > 2F},; now increasing the index by 2 causes us to at least double¢cseasing the
index by 1 should yield an increase of at least a factoy/®f Thus we expect the Fibonaccis to
satisfy a relation such as

2" < F, <27,
which is highly suggestive of exponential growth; this isywhe try F,, = .

Substituting this into the recurrence we obtain the chargstic polynomial forr, which, after
dividing both sides by", is
r° = r—+1;
the solutions to this are




A beautiful property of linear recurrences is that an adpjtdlinear combination of solutions is a
solution, and we find the general solution of the Fibonacuiineence is

E, = cr' 4 corly.

As we requireF, = 0 and F; = 1, after some more algebra we obtain Binet's Formula, the

spectacular relation
po_ L (1vB) 1 (146
RV 2 NG 2 ‘

This formula is amazing: it gives us a simple, closed fornresgion for thex™ Fibonacci number;
we can jump to this term in the sequenaghoutcomputing any of the earlier onBs!

The point of the above is to give a brief glimpse at the rictotigethere is far more that could
be said (especially concerning generating function aggresito solve problems such as these),
but for our purposes this suffices. The main takeaways isstiraetimes we are lucky and able to
derive simple closed form expressions, but even if we cammoare often able to determine the
terms by repeated application of the defining relation artehlrconditions.

5.2. TheM&M Recurrence. Even though we have a finite sum for the probability of a tieuéeq
tion[3.1), finding that required some knowledge of combiriasoand binomial coefficients. We
give an alternate approach which avoids these ideas. Issiple to do it with or without noting
that we have a memoryless process. We'll do the memorylegegs first as we’ll assume we're
still clever enough to notice that, and then remark aftedwdrow we would have found the same
formula even if we didn’t realize this.

We need to consider a more general problem. We always ddmoteumber of M&M’S Cam
has withe, and Kayla withill; we frequently denote this state by, £). Then we can rewrite the
three equally likely scenarios, each with probability H8 follows:

e (¢c,k) — (¢c—1,k — 1) (double heads and both eat),
e (¢,k) — (c—1,k) (Cam gets a head and Kayla a tail),
e (¢,k) — (¢, k — 1) (Cam gets a tail and Kayla a head).

If we let 2., denote the probability the game ends in a tie when we staht @#&m having
¢ M&M’'S and Kayla havingk, we can use the above to set up a recurrence relation. How so?
Effectively, on each turn we move frofa, k) in exactly one of the following three ways: either
Cam and Kayla both eat an M&M in which caée k) — (¢ — 1,k — 1); only Cam flips heads
and eats an M&M in which case, k) — (¢ — 1, k); or Kayla is the only one to eat an M&M
in which casgc, k) — (¢, k — 1). Now, we can use simpler game states to figure out how the
probability of a tie when we start with more M&M, as in each loé three cases we have reduced
the total number of M&M’S by at least one. We thus find that theurrence relation satisfied by

{xc,k:} is

1 1 1 | Te 11t Teo1k t Tep1
Tek = ZLe—1,k—1 + ZLe—1,k + SLek—1 = 3 .

3 3 3
8Additiona||y, as the Fibonaccis are all integers Binet'sniala must return an integer; at first this might seem
unlikely, as our expression involves square-roots andifmas, but fortunately everything that needs to cancel does
%We can see the power of good notation. Usirandk to represent the number of M&M’S Cam and Kayla each
have allows us to know exactly what is going on as the mathrgetg involved.
12
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From our work on the Fibonacci numbers we know that cannohbdull story — we need to
specify initial conditions. A little thought says , must be 1 (if they both have no M&M'’S then
it must be a tie), while:. o = 0 if ¢ > 0 and similarlyz,, = 0if £ > 0 (as in these cases exactly
one of them has an M&M, and thus the game cannot end in a tie).

We have made tremendous progress. We use these initiab\aidethe recurrence relation (5.1)
to determiner. ;. Unfortunately we cannot get a simple closed form expresiot we can easily
compute the values by recursion. A good approach is to cogrgdlit. ;, wherec + £ equals sum
fixed sums. We've already done the cases- 0 ands = 1, findingzoo = 1, 291 = 210 = 0.

We now move tos = 2. We need only findr; ;, as we knowzyg = x9, = 0. Using the
recurrence relation we find

20,0 +JJ071 +JJ170 1+0+4+0 1
[L‘Ll = g = —

3 3 3

Next is the case when the indices sum to 3. Of courge,= =30 = 0, so all we need are, »
andz,; (which by symmetry are the same). We find

1’1,1—‘—1'2,0—#1'0,2 1/3+0+0 1
x2,1 = [L‘Lz = = = —,

3 3 9
We can continue te = 4, and after some algebra easily obtain

21,1 + X211 + x1,2 . 5
3 e

If we continued on with these calculations, we would find that = &, 744 = F5, 55 =
e, Tamsesol = 31, T17 = oo, andzgs = 229 The beauty of this recursion process is
that we have a sure-fire way to figure out the probability ofeaati different states of the M&M
game. We leave it as an exercise to the interested readentpace the computational difficulty
of finding x100,100 by the recurrence relation versus by the finite suml (3.1).

We end with one final comment on this approach. It's possibketast this problem as one in
counting paths on a graph. In Figle 7 we start withk) = (4,4), and look at all the possible
paths that end ii0, 0). The probability of any path is equal f@/3)", wheret is the number of
terms in the path. It turns out the solution is very similatite famous Catalan numbers, which
count the number of paths fro, 0) to (n,n) moving in unit horizontal or unit vertical steps
and never going above the main diagonal; the difference isaleat we now have three possible
choices at each turn.

X292 =

5.3. Forgetting Memoryless Processes. In the previous subsection we found a recurrence rela-
tion for z., but our analysis was based on there only being three opéibeach step. What if
we hadn’t noticed there was a memoryless process lurkingtldwee still have found the same
relation? In that case, there would now be four possibiliba each turn, each happening with
probability 1/4.

¢— 1,k — 1) (double heads and both eat),

¢ —1,k) (Cam gets a head and Kayla a tail),
¢,k — 1) (Cam gets a tail and Kayla a head),
¢, k) (double tails and neither eats).

o~~~
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FIGURE 7. The M&M game whenk = 4. Count the paths! Answer 1/3 of
probability hit (1,1).

We now obtain the following relation:
1 1 1 1

Tek = Zxc—l,k—l + Zxc—l,k + Zxc,k:—l + Zxc,k-

Note that if we bring th%xc,k over to the left hand side we relajec,;C to multiples ofz.—1 1, 1.k

andz.j_1:
3 1 1

Z«Tc,k - Z«Tc—l,k—l + Z«Tc—l,k + Zxc,k—l-
If we then multiply through byt /3 we regain our old recurrence, equatibn{5.1):
1 1
Lek = g«rc—l,k—l + gxc—l,k + gxc,k—l-

This is wonderful: it means if we did not initially notice thidnere was a memoryless process,
doing the algebra suggests there should be one!

5.4. Revisiting and Generalizing the Hoops Game. When you learn new concepts in math,
it often pays great dividends to revisit earlier problem®t'd. go back to the hoops game; not
surprisingly, we'll see that, similar to the M&M Game, we azast it as a double recurrence.

The way the recurrence method worked was we reduced thegonobe wished to study to
a simpler state; however, that required us to know those enrsswi hus it is not enough to deal
with justzp in general, and we need to study,, ., which is the probability Bird wins when he
needs to maké more baskets to win, Magic needs to makemore to win,and Bird is currently
shooting We find

Tebm = DPBPMTBp—1.m—1 +08(1 —DPM)TBp—1m
+ (1 = pB)PmTBsm—1 + (1 =) (1 — Par)TBbm- (5.2)
To see why this is true, let's look at the first term. Themeans Bird got a basket, reducing the

number he needs by 1. Note thabif- 1 = 0 then Bird wins and the game should stop (we'll
deal more with this in a moment). Now it’s Magic’s turn to shodf he gets a basket, which

1%Another option is that we could introduesy;, ,,,, the corresponding probability where now Magic is shoating
14



happens with probability,,, that reduces his number of baskets needed to 1, which explains
thepsprrpp—1.m—1 term; the other three terms arise from the other possisliti

We also need the initial conditions. Cleatty;;,o = 0if b > 0 andzp,,, = 1if m > 0, but
what should we choose farg,, ? Well, the way to interpret this is that each needs to make zer
baskets and Bird shoots first, so he is the first to reach zeskebs Thus we sets,( equal to 1.
Another justification is that we only reach this situationemtBird makes a basket and then Magic,
who shouldn’t have been allowed to shoot as Bird just won #ree shoots. These normalizations
often are tricky, but can frequently be determined by a geoysThis is similar to the convention
that0! = 1, which we interpret as there is only one way to do nothing, (treere is one way to
order no elements — there shouldn’t be multiple ways to dbingt).

We have thus found a recurrence 19y, ,,,. Let’'s check and make sure it reduces to our previous
result wherb = m = 1. In that case, equatioh (5.2) becomes

rpa1 = pepml +pe(l—pa)l + (1 —pe)pp0+ (1 —pa)(1 — par) T
Remembering that we usdor (1 — pg)(1 — p,,) after some simple algebra we obtain

PB
1—7’

exactly as before! Of course, this now suggests a naturatigne what does s, , look like asb
grows (let’'s say under the assumption that= p,,)?

rBp1,1 =

6. HYPERGEOMETRICFUNCTIONS

We end our tour of solution approaches with a method thatdgtprefers the infinite sum to
the finite one, hypergeometric functions (see for examp, [BR]). These functions arise as the
solution of a particular linear second order differentighation:

(1 —x2)y"(x) + [c — (1 — a+ b)z|y'(x) — aby(x) = 0

(this is also called Gauss's differential equation). Tigsagion is useful because every other linear
second order differential equation with three singulango{in the case they are at 0, 1, arg
can be transformed into it. As this is a second order difféaéequation there should be two
solutions. One is

abr  a(a+1)b(b+1)z*  ala+1)(a+2)b(b+1)(b+2)z?
AT et 2 clc+ 1)(c+2)3! o

y(z) = 1+

so long as is not a non-positive integer; we denote this solutiond® (a, b; ¢; z). By choosing
appropriate values af, b and c we recover many special functions. Wikipedia lists threseni
examples:

log(14x) = zoF1(1,1;2; ), (1—2)™* = oF(a,1;1;2), arcsin(x) = zoF(1/2,1/2;3/2;27).

By introducing some notation we can write the series expensiore concisely. We define the
Pochhammer symbol by

(a+n—1)!

(@ = ala+Da+2)--(a+tn=1) = = —y

15



(where the last equality holds for integer for real « we need to interpret the factorial as its
completion, the Gamma function). Our solution becomes

oFi(a,b,c;x) = Z %%.

n=0
Note the factorials in the above expression suggest theg gteould be connections between hy-
pergeometric functions and products of binomial coeffitsen this notation, the 2 represents the
number of Pochhammer symbols in the numerator, the 1 the auai®ochhammer symbols in
the denominator, and the b, andc are what we evaluate the symbols at (the first two are the ones
in the numerator, the last the denominator). One could ofssoconsider more general functions,
such as

o0

(al)n te (as)nxn
sFr({a; b, {b;}ix) = .

The solution , Fi(a, b, c; x) is called a hypergeometric function, and if you look closatyit
while recalling the infinite sum solution to the M&M Game yought see the connection. After
some algebra where we convert the binomial coefficientsenirfinite sum solution(111) to the
falling factorials that are the Pochhammer symbols, we fiedfollowing closed form solution.

Theorem 6.1. The probability the M&M Game ends in a tie with two people gdair coins and
starting withk M&M’S is
Pk, k) = oF(k k,1;1/4)47", (6.1)

It is not immediately clear that this is progress; after iallpoks like we've just given a fancy
name to our infinite sum. Fortunately, special values of hygemetric functions are well studied,
and a lot is known about their behavior as a function of thairameters. We encourage the
interested reader to explore the literature and discower'tiseful’ the above is.

7. OEIS

We end with a short bonus section on how to guess formulasreTisean enormous wealth
of information available on-line, but often it is hard to frguout what we need and where it
resides. A terrific resource is the On-Line Encyclopediandéder Sequences (OEIS; t p: //
oei s. org/). This is a wonderful resource with a large number of intespgruences tabulated
and stored. You enter some known terms in your sequence harglte not only tells you what
sequences it knows that agree with this, but it providesslipkoperties and formulas when it can!

For example, if we use our finite series expansionl (3.1) orebarrence relatiorh (3.1) we can
easily calculate the probability of a tie for some smiallWe give the probabilities fok up to
8 in Table[1. In addition, we also giv&#*~*P(k, k). The reason we do this is that looking at
the probability of a tie one is struck by the fact that the demators are all powers of 3; after a
little algebra we see that if we multiply 37~ we clear the denominators, and we will obtain
a sequence ahtegers Note that it is very important that we end with integers ant national
numbers if we wish to use the OEIS.

Remark 7.1. If we didn’t notice the right power of 3, we could have reactieel same conclu-
sion another way. There are three possibilities each timamfFigure[T we saw our problem is

equivalent to counting how many paths there are ffaénik) to (0,0). As we end a0, 0) our last
16
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3 Pk, k) | 3%-1P(k, k)
1 173 1
2 5/27 5
3 11/81 33
4 245/2187 245
5 1921/19683 1921
6 575/6561 15525
7|l 42635/531441 127905
8 || 355975/4782969 1067925

TABLE 1. Probability of a tie as a function of the number of M&M’S th&o
players have.

step is forced, and the longest path comes when we never geledoeads. As we must remove
2k — 2 M&M'’S (remember the last toss of double heads removed 2 @fithehe longest path has
2k — 2+ 1 =2k — 1 steps, explaining the presence of this factor as the expgafién

Thus to the M&M Game with two players we can associate thegertsequence 1, 5, 33, 245,
1921, 15525, 127905, 1067925, . We plug that into the OEIS and find that it knows that se-
guence! Itis sequence A084771 (dee p: / / oei s. or g/ A0O84771). The very first comment
there on this sequence is that it equals the number of paths igraph we discussed!

The OEIS is a powerful tool for research. Think back to prdmfanduction: if you are told

what to prove, it is a lot easier and often the proof writeslitsThe OEIS frequently gives you
such an advantage.

8. TAKEAWAYS AND FURTHER QUESTIONS

We've seen many different ways of solving the M&M Game, eaading to a different impor-
tant aspect of mathematics. There are many related questiertan explore. How long do we
expect a game to take? What would happen to the M&M probleneifnereased the number of
players? What if all of the players started with differentmhers of M&M’S? Maybe the game
would yield interesting results if the participants usegisied coins.

In one of the first games ever played, Cameron, Kayla and Stéviéer each started with five
M&M’S and Kayla tossed five consecutive heads, dying immiedija years later she still talks
about that memorable performance. There is a lot known gheubngest run of heads or tails in
tosses of a fair (or biased) coin (see for example [Sch]). &eask related questions here. What
is the expected longest run of heads or tails by any playegamae? What is the expected longest
run of tosses where all players’ coins have the same outcome?

We could also revisit the hoops game and consider geneiahzathere. What if Bird and
Magic keep shooting until someone makebaskets. What's the probability of a tie now? What
if you keep shooting until you miss? We could also ask quaestabout streaks of hits and misses
within the game. For another possibility, what if Bird’s pability of making a basket and Magic’s
probability of a basket are independent random variablesdiuniformly:t on [0, 1]: what is the
probability that Bird has a greater chance of winning thargid2 If you look at Figuré12 this
problem withk = 1 is equivalent to finding the area in the unit square above auiget left of the

HThis means that for any intervét,b]  [0,1], the probabilityps € [a,b] is b — a, similarly for py;, and
knowledge ofp gives no information omp,, (or vice-versa).
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contour line with value .5; the answer turns out toldag2) ~ .693147. Is there a nice answer for
generak? What if instead we ask what is the probability Bird wingjifandp,, are independently
drawn uniform random variables ¢in 1]? If & = 1 the answer is?/6—1 ~ .644934. It's nice that
in both phrasings the answers are interesting numbershahthe two different interpretations are
quite close.

There are plenty of further questions out there, all of whichuld provide great insights not
only into the M&M game and its educational value but also ihi® study of math in general. We
hope you will explore some of these or, even better, ones of gan choosing, and let us know
what you find!
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