INFINITE FAMILIES OF PARTITIONS INTO MSTD SUBSETS
HUNG VIET CHU, NOAH LUNTZLARA, STEVEN J. MILLER, AND LILY SHAO

ABSTRACT. A setA is MSTD (more-sum-than-difference) ii + A| > |A — A].
Though MSTD sets are rare, Martin and O’Bryant proved thatdtexists a positive
constant lower bound for the proportion of MSTD subset§lo®, ..., r} asr — oo.
Asada et al. [[AMMS] showed that there exists a positive camslower bound for
the proportion of decompositions ¢f, 2, ..., r} into two MSTD subsets as — o,
which implies the result of Martin and O’Bryant. Howevertimethod is probabilistic
and does not give explicit decompositions.

Continuing this work, we provide an efficient method to gaoti {1, 2, ..., 7} (for
r sufficiently large) intok > 2 MSTD subsets, positively answering a question raised
in [AMMS] as to whether or not this is possible for all suth Next, let R be the
smallestinteger such that for al>> R, {1,2,...,r} can bek-decomposed into MSTD
subsets, whilg1,2,..., R — 1} cannot bek-decomposed into MSTD subsets. We
establish rough lower and upper bounds foland the gap between the two bounds
grows linearly withk. Lastly, we provide a sufficient condition on when there &xis
a constant lower bound for the proportion of decompositioin$l, 2, ...,r} into k
MSTD subsets as — oc. This condition offers an alternative proof of Theorem h.4 i
[AMMS] and can be a promising approach to generalize therémo
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1. INTRODUCTION

1.1. Background. Given a setd of natural numbers, definé+ A = {a; +a;|a;, a; €
A} andA — A = {a; — aj|a;,a; € A}. ThenA is said to be sum-dominant or MSTD
(more-sums-than-differences) + A| > |A — A|, balanced ifA+ A| = |A— A| and
difference-dominated ifA + A| < |A— A|; see[He| Ma, Na1{, Na2, Rul, Ruz, Ru3] for
some history and early results in the subject. Research ocRDMs®ts has made great
progress in the last twenty years. In particular, Martin @iBryant [MO] showed
that with the uniform model, where each element is choseh pribbability 1 /2, the
proportion of MSTD subsets dfl, 2, ..., r} is uniformly bounded below by a positive
constant for large enough Zhao [Zh2] showed that the proportion converges as

oo and improved the lower bound #028 - 10~4. On the other hand, Hegarty and Miller
[HM] proved that with a sparse model, where each elementasat with probability
p(r) such that—! = o(p(r)) andp(r) — 0 asr — oo, almost all sets are difference-
dominated. These two results do not contradict each othee she probability of being
MSTD subsets depends on which model we are using. In provimgexr bound for the
proportion of MSTD subsets, Martin and O’Bryant used thebpiulistic method and
did not give explicit constructions of MSTD sets. Later wegave explicit construction
of large families of MSTD sets: Miller et al_[MOS] gave a fdynof MSTD subsets
of {1,2,...,r} with density@(l/r4)ﬂ, while Zhao [Zh1] gave a denser family with
density©(1/r), the current record.

In [AMMS], the authors used a technique introduced by Zhd®@[Zo show that the
proportion of 2-decompositions (i.e., parititons into teeis) of{1, 2, ..., r} that gives
two MSTD subsets is bounded below by a positive constants fidsgult is surprising
in view of the conventional method of constructing MSTD seiiich is to fix a fringe
pair (L, R) of two sets containing elements to be used in the fringe ofrttezval and
argue that all the middle elements appear with some pogtiokability. (The fringe
pair ensures that some of the largest and smallest diffessgre missed and that our set
is MSTD.) However, the result in [AMMS] seems to suggest thatcan find two (or
more) disjoint fringe pair$L,, R;) and(Ls, R,) such that’,; U L, andR; U R, cover a
full set of left and right elements dft, 2,...,r} and(Ly, R;), (L2, Ry) are two fringe
pairs for two disjoint MSTD sets. Previous research hasdedwn each fringe pair
independently, so it is interesting to see that two (or mfsneye pairs can complement
each other nicely on both sides{df, 2, . . ., »}. Motivated by that, we provide a method
to construct these fringe pairs and study partition§1oR, ..., r} into MSTD subsets
more thoroughly.

YILMZ2] showed that with slightly more work, the density improved to0 (1 /72).
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1.2. Notation and Main Results. Let [a, b] denote{/ € Z|a < ¢ < b} and, denote
[1,7]. We use the idea aP, sets described in [MOS]. A set is said to beP, if the
following conditions are met. Let = min A andb = max A. Then,

A+ A D [2a+n,2b—n] (1.1)
A—A D [(a—0b)+n,(b—a)—n] (1.2)
A set A is P, with respect to sumsS(P,) if condition (1.1) is satisfied, ané, with
respect to differencedXP,) if condition (1.2) is satisfied. Next, lét, b|, denote{/
Zla < ¢ < bandl —ais ever}. Finally, a2—decomposition of a setis A; U A, = S,

where A; N A, = (). We use the wordlecompositiorand partition interchangeably.
Our main result is:

Theorem 1.1. Let A; and A, be chosen such that both are MSTD aRd for some
n € N, and also

(1) (A4, Ay) partition [1, 2n],
(3) [1,4]u{n} C Lyand{n+ 1} U [2n — 3,2n] C R,, and

(4) 5,7 € Ly, [n+2,n+5] C Ly+ Lo, [2n —6,2n — 4] C Ry and[3n — 3, 3n]
Ry + Ry.
(See Remaitk.2 for an example of such detand A,).
Pickk > n/2 +2andm € N,. Set

Ry = Ri+m+4k +4,

Ry, = Ro+m+ 4k + 4,

O = {n+4}yU[n+5n+2k+ 1], U {n+ 2k + 2},

Op ={n+m+2k+3Un+m+2k+4,n+m+4kls U{n+m+4k + 1},

Oy = [n+1,n+3]Un+6,n+2ksU[n+2k+3,n+ 2k + 5],

Oxp = n4+m+2k,n+m+2k+2JUn+m+2k+5n+m+4k— 1]y
Uln+m+4k+2,n+m+ 4k +4].

N

Let M, C [n+ 2k + 6,n + m + 2k — 1] such that within)/;, there exists a sequence
of pairs of consecutive elements, where consecutive patreisequence are not more
than2k — 1 apart and the sequence starts with a paifin+ 2k + 6,n + 4k + 1] and
ends with a pairinn+m+4,n+m+2k —1]. LetMy C [n+2k+6,n+m+2k — 1]
such that withinM5, there exists a sequence of triplets of consecutive eleamehere
consecutive triplets in the sequence are not more tliaapart and the sequence starts
with a tripletin[n+ 2k +6, n+4k+5] and ends with a triplet i +m, n+m+2k —1].
AlSO,MlﬁMQ = @andM1UM2 = [n+2k‘+6,n+m+2k‘—1] SetR; = R,+m+4k+4
fori e {1,2}. Then

Al = LiUO1 UM UOp UR]
Ay = LyUOy UMy U Oy U R,
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are both MSTD and partitiofiL, 2n + m + 4k + 4].

Remark 1.2. To show that our family is not empty, we need to show the existef at
least one pair ofA; and A,. Note that our technique is similar to many other papers:
[He, MO, MOS,[MPR/ PWjn the sense that we need a good fringe to start with. A
random search yielded

Ay = {1,2,3,4,8,9,11,13, 14, 15,20, 21, 26, 27, 28, 31, 33, 37, 38, 39, 40},
A, = {5,6,7,10,12,16, 17, 18,19, 22,23, 24, 25, 29, 30, 32, 34, 35, 36}

We have
A+ A = [2,80] , At = [10.72
A=Ay = [=39,300\{+21} " 4, — 4, = [-31,31)\{£21).

Clearly, bothA; and A, are Pq. It can be easily checked that all conditions mentioned
in Theoreni_1]1 are satisfied. These pairs of sgtand A, are not hard for computers
to find: forn = 20, computer search shows that there are about 48 such pairs.

Remark 1.3. Our method of decomposing, r| into two MSTD sets allows a lot of
freedom in choosing the middle elements. This is becausetbadringe elements are
chosen, the conditions placed a#y and M, are relatively weak.

Next, we answer positively questi@) in [AMMS], where the authors ask: Can we
decompos€1,2,...,r} into three sets which are MSTD? For any finite numhbeis
there a sufficiently large for which there is a&-decomposition into MSTD sets?

Theorem 1.4.Letk € Ns, be chosen. There exists the small&st N such that
for all » > R, [1,r] can bek-decomposed into MSTD subsets, wiite; cannot be
k-decomposed into MSTD subsets.

In particular, we find some rough bourfids

(1) whenk is even8k < R < 10k,
(2) whenk > 5 o0dd,8k < R < 20k — 14, and
(3) whenk = 3,24 < R < 24T + 24,

whereT’ = min{max A : [A+ A| — |A— A| > 10|A|.}.

We prove Theorern 1.4 using sets constructed by the base sé&panethoﬁl that
helps generate an infinite family of MSTD sets from a given MS$Ets. The method is
a very powerful tool and has been used extensively in lieeanhcluding[He] [ILMZ1]
and [ILMZ2]. However, the base expansion method turns obetmefficient in terms
of our MSTD sets’ cardinality. Hence, we present a secondgnefficient approach
by using a particular family of MSTD sets. We present bothofsasince they are of
independent interest: the first proof is less technical ésg Efficient. Also, the second
proof cannot resolve the case= 3 while the first can.

2We make no attempt to optimize these bounds. Finer analysjsgive us better bounds.

3We can generate an infinite family of MSTD sets from a given ldSEt through the base expansion
method. Let4d be an MSTD set, and let, ,,, = {Zle a;m™1 1 a; € A}, If m is sufficiently large,
then| A £ Ak.m| = |A £ A¥ and| 4 .| = |A*.
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Lastly, we give a sufficient condition on when there exist®sifive constant lower
bound for the proportion of-decompositions ofl, r] into MSTD subsets. The con-
dition offers an alternative proof of Theorem 1.4 in [AMMS] & 2). Due to the
condition, we make the following conjecture.

Conjecture 1.5. For any finitek > 2, the proportion ofk-decompositions into MSTD
subsets is bounded below by a positive constant.

The outline of the paper is as follows. In sectidn 2, we pre\ad efficient method to
decomposél, r] into two MSTD subsets; sectigh 3 presents two method to dpose
[1,r]intok > 3 MSTD subsets; AppendixIB is devoted to establishing the deumen-
tioned in Theoreri_1]4 and the sufficient condition for a pesitonstant lower bound
of the proportion ofc—decompositions into MSTD subsets in Appenldix A. Appendix
contains many examples illustrating our lemmas and timesre

2. EXPLICIT 2-DECOMPOSITION INTOMSTD SUBSETS

In this section, we show how we can decompfse]| into two MSTD subsets. We
believe that the method can be applied to the caseddcompositions, but the proof
will be much more technical. However, fér> 4, we have a way to decompoge |
into kK MSTD subsets by simply usinzy-decompositions, which will be discussed later.

2.1. Explicit Construction of Infinite Families of MSTD sets. The following lemma
is useful in proving many of our results.

Lemma 2.1.LetA = LUR be an MSTDJ, setwherel C [1,n]andR C [n+1,2n].
FormA' = LUM UR', whereM C [n+1,n+m|andR’ = R+ m for somem € N,.
If A”isaSP, set, thend’ is MSTD.

Proof. We prove thatd’ is MSTD by showing that the increase in the number of differ-
ences is at most the increase in the number of sums. As shathia proof of Lemma
2.1 in [MQOS], the number of new added sumgis. Because?' = R + m, all differ-
ences iN—(2n +m — 1), —(n + m)] can be paired up with differences[ih— 2n, —n)|
from L — R and differences ifin + m, 2n + m — 1] can be paired up with differences
in [n,2n — 1] from R — L. Because the set is P,, A contains all differences in
[—n + 1,n — 1]. In the worst scenario (in terms of the increase in the nurabeiffer-
ences) A’ — A’ contains all differences if-(n +m) + 1, (n + m) — 1]. So, at most
|A'— A= |A= Al =|[-(n+m)+1,(n+m)—1]| = |[-n+ 1,n — 1]| = 2m. This
completes our proof. O

Lemma 2.2. Let an MSTD,P, set A be chosen, wherd = L U R for L C [1,n]
and R C [n + 1,2n]. Additionally, L and R must satisfy the following conditions:
[1,4]u{n} C Land{n+1}U[2n—3,2n] C R. Pickk > n/2+2andm € N,. Form
O = {n+4}Un+5n+2k+1U{n+2k+2}
Oy = {n+m+2k+3}Un+m+2k+4,n+m+4klpU{n+m+ 4k + 1}.
Let M C [n + 2k + 3,n +m + 2k + 2] be such that within\/, there exists a sequence

of pairs of consecutive elements, where consecutive patreisequence are not more
than2k — 1 apart and the sequence starts with a paifin+ 2k + 3,n + 4k + 1] and
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ends with a pair inn +m + 4, n +m + 2k + 2]. DenoteA’ = LUO; UM UO, U R/,
whereR' = R+ m + 4k + 4. ThenA’ is MSTD.

Proof. We know thatd’ C [2, 4n + 2m + 8k + 8]. To prove thatd’ is MSTD, it suffices
to prove thatd’ is S— P,.. In particular, we want to show that+2, 3n+2m+8k+8] C
A’ + A’. Due to symmetf it suffices to show that, + 2, 2n + m + 4k + 5] C A’ + A',
We have:

n+2,n+4] € A+ A (because,3,4,n e A’)
(14+01)U(2+4+0:1) = [n+5,n+ 2k + 4]
O, +0; = 2n+8,2n + 4k + 4].

Sincen + 2k +4 > 2n+8, [n+2,2n + 4k + 4] C A’ + A'. ConsiderM + O;. In
the worst scenario (in terms of getting necessary sumsiwbemallest elements of
M aren + 4k andn + 4k + 1, while the two largest elements of aren + m + 4
andn +m + 5. So,M + Oy D [2n + 4k + 4,2n + m + 2k + 7). We complete the
proof by showing thaf2n + m + 2k + 8,2n + m + 4k + 5] C A’ + A’. We have:
(n+4)+0)U((n+5)+02) = 2n+m +2k+7,2n+ m + 4k + 6]. So, A’ is
S — P, and thus, MSTD by Lemmniad.1. O

Lemma 2.3. Let an MSTD,P, set A be chosen, wherd = L U R for L C [1,n]
and R C [n + 1,2n]. Additionally, L and R must satisfy the following conditions:
5,7 C L, n+2,n+5 CL+L,[2n—6,2n—4] C Rand[3n — 3,3n] C R+ R.
Pickk > |n/2| andm € Ny. Form

Oy = [n+1,n+3lU[n+6,n+2klsU[n+2k+3,n+ 2k + 5],
Oy = [n+m+2kn+m+2k+2]U[n+m+2k+5n+m+4k — 1],
Un+m+4k+2,n+m+ 4k + 4].

Let M C [n + 2k + 6,n + m + 2k — 1] such that within}, there exists a sequence
of triplets of consecutive elements, where consecutipiets in the sequence are not
more than2k apart and the sequence starts with a tripletlin+ 2k + 6, n + 4k + 5]
and ends with a tripletifn +m, n+m+ 2k — 1]. Denoted’ = LUO; UM UOyU R/,
whereR' = R+ m + 4k + 4. ThenA’ is MSTD.

Proof. Similar as above, it suffices to prove that+ 2, 2n +m + 4k + 5] C A" + A'B
We have

n+2,n+5 C L+L
5+0)U(6+0)U(T+01) = [n+6,n+2k+ 12
O1+ 01 = [2n+2,2n + 4k + 10].

“Due to symmetry/’ has the same structure s+ m + 4k +5— A’ If [n+2,2n+m + 4k +5] C
A+ A thenin+2,2n+m+4k+5]C 2n+m+4k+5—-A)+C2n+m+4k+5—-A") =
An+2m+8k+10— (A’ + A')andso2n + m+ 4k +5,3n+2m + 8k + 8 C A’ + A'.

®Due to symmetryA’ has the same structurezs+ m + 4k + 5 — A’. If [n 42, 2n +m + 4k + 5]
A+ A thenin+2,2n+m+4k+5]C 2n+m+4k+5—-A)+2n+m+4k+5— A)
An+2m+8k+10— (A’ + A')andso2n + m+4k+5,3n+2m + 8k + 8 C A’ + A’

1N
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Becausen + 2k + 12 > 2n + 2, A’ + A’ contains|n + 2,2n + 4k + 10]. Consider
M + O,. In the worst scenario (in terms of getting sums), the srealéements in
M aren + 4k + 3,n + 4k + 4 andn + 4k + 5, while the largest elements il are
n+m,n+m+1andn+m+ 2. ThenM + O, D 2n + 4k + 4,2n +m + 2k + 7].
We only need to show tha@n + m + 2k + 8,2n +m + 4k + 5] C A’ + A’. We have:
(n+1)+02)U((n+2)+02)U((n+3)+02) = 2n+m+2k+1,2n+m~+4k+7].
This completes our proof that’ is MSTD. O

Remark 2.4. In order that our families of MSTD sets are nonempty, we misstfind
such a setd satisfying the conditions mentioned in each of the lemmasL&mmad 2.2,
an example of oursetis A; = {1,2,3,4,7,10, 12,13, 14, 15, 20, 21, 23, 24}. We have

A+ A = [2,48],

Ay — A; = [-23,23]\{£15}.
Clearly, A, is P, and A; satisfies all conditions required by Lemmal2.2. For Lernmia 2.3
an example of our set is A, = {5,6,7,9,11,16,17,18,19, 22,23, 24, 25,29, 31, 33,
34,35,36}. We have:

Ay + Ay = [10,72]\{19},

Ay — Ay = [-31,31]\{£21}.
Clearly, A, is P,; and A, satisfies all conditions required by Lemmal2.3.

2.2. Explicit Partitions into Two MSTD Sets. We are now ready to prove Theo-
rem[L.1. The proof follows from Lemmas 2.2 dnd]2.3.

Proof. As indicated in Remark 11.2, there exists pairs of sétsand A, such that all
conditions in Theorern 1.1 are satisfied. Pick> n/2 + 2 andm € N,. SetR, =
R, +m+ 4k + 4 fori = 1,2. Form

O = {n+4}Un+5n+2k+ 1, U{n+2k+ 2},

O = {n+m+2k+3 Un+m+2k+4,n+m+4klo U{n+m+ 4k + 1},

Oy = [n+1,n+3]Un+6,n+2klsU[n+2k+3,n+ 2k + 5],

Oy = n+m+2k,n+m+2k+2JUn+m+2k+5n+m+4k — 1]y
Uln+m+4k+2,n+m + 4k + 4].

We see thab),; U0 = [n+1,n+2k+5] andO1,UO = [n+m-+2k, n+m+4k+4].
By Lemma2.2 and Lemnia 2.3, we know th#t = L, U O,; U M, U O U R} and
Al = LU0 UMyUO9UR), are MSTD sets an@d), AY) partition[1, 2n+m+4k+4],
given that three following conditions are satisfied:

(1) My C [n+2k+6,n+m+2k—1] such that withinV/;, there exists a sequence of
pairs of consecutive elements, where consecutive paitgisequence are not
more thar2k—1 apart and the sequence starts with a pdinin2k+6, n+4k+1]
and ends with a pair im + m + 4, n +m + 2k — 1],

(2) My C [n+2k+6,n+m+ 2k — 1] such that within\/,, there exists a sequence
of triplets of consecutive elements, where consecutiydetis in the sequence
are not more thagk apart and the sequence starts with a tripletin- 2k +
6,n + 4k + 5] and ends with a triplet ifn + m, n + m + 2k — 1}, and
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This completes the proof of the theorem. O

Remark 2.5. Observe that our fringe pairs in this case dre; U Oy, R} U O12) and
(Ly U Oq1, R, U O93). Though disjoint, the union of the two fringe pairs gives dslh
set of left and right elements of, 2n + m + 4k + 4] and each is a fringe pair for a
MSTD set.

3. BEXPLICIT E-DECOMPOSITION INTOMSTD SUBSETS

3.1. Overview. Theoren 1l gives us a way to partitignr] into two MSTD subsets.
Due to linear transformations, we can partition any (longwgh) arithmetic progres-
sions into two MSTD subsets. If we can find an MSTD sulfsetf [1, | such that
[1,7]\S is a union ofk arithmetic progressions)_, ;, then we can partitiofi, 7] into

1 + 2k MSTD subsets (because eathcan be partitioned into two MSTD subsets).
This is the central idea in both methods we usé-tlecomposd, into MSTD subsets
presented later.

3.2. Base Expansion Method k£ > 3). We explicitly provide a way td-decompose
[1,r] into MSTD subsets. First, we need to define a “strong MSTD? 8¢ call a
setS a 10—strong MSTD set ifiS + S| — |5 — 5| > 10|58 This type of MSTD
set does exist. For example, using the base expansion metkeazhn construct them.
UsingS = {0,2,3,4,7,11,12, 14}, by the method, we can constru&such thatS| =
|S|2 = 8" = 4096, |S + S| = 26* = 456976 and|S — S| = 25* = 390625; then,
IS+ S| —|S =S| > 10]S5].

Lemma 3.1.If S'is al0—strong MSTD set, thefi U {a1, as, as, as }, whereay, > az >
as > a; > max S, is a MSTD set. Similarlys U {b1, bs, b3, by }, Whereb; < by < b3 <
by, < min S, is also a MSTD set.

Proof. We want to show that U{a;, as, as, as} is MSTD. Adding one more element to
a setS produces at leastnew sums and at mo3tS| new differences. S@(SU{a, })+
(SU{a1})|—|(SU{ai})—(SU{a1})| > 10|S|+0—-2|S| = 8|5]. So,SU{a; } is MSTD.
DefineS; = S U {a,} with |S1| = |S| + 1. Similarly, |(S; U {a2}) 4+ (S1 U {az2})| —
[(S1U{az}) = (S1U{a})| = 8]S|+0—2[S1] = 8|S| —2(|S[ + 1) = 6[S| — 2. Again,
S1U{as} is MSTD. Repeating this argument, we can show fhat SU{ay, as, as, as}
is a MSTD set. The proof is similar faf U {by, bs, b3, b4 }. O

Remark 3.2. The following fact will be useful later: An arithmetic pragsion of
integers (assumed long enough) can contain an arbitraglgé number of disjoint
10—strong MSTD sets.

With the above remark, we are ready to prove the following.

Lemma 3.3. There existsV € N such that for all- > N, I, = [1, r] can be partitioned
into exactly three MSTD subsets.

Swe pick the number 10 just to be safe for our later arguments.m&ke no attempt to provide an
efficient way to decomposg into kK MSTD subsets.
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Proof. We use a pair of fringe elements described in [MQ]= {1, 3,4,8,9,10, 11}
andR={r—10,7r—9,r =8, r—7,r—51r—2.r—1,r}. We see that,\(LUR) =
{2,5,6,7VU 12,7 — 11U {r — 3,7 — 4,7 — 6}. We have

L+ L = [2,22]\ {3}
L+R = [r—9,r+11]
R+ R = [2r —20,2r].

ConsiderK = {¢|12< (¢ <r—11,lisever U{r—11}. We have({11} U K U {r —
10+ ({11} UKU{r—10}) = [22,2r—20]. So,(LUKUR)+(LUKUR) = [2,2r]\{3}.
Becauset(R — L) lacks£(r — 7), LU K U Ris a MSTD set. Itis not hard to see that
adding numbers ifi2,r — 11]\ K to L U K U R still gives a MSTD set.

Now, [12,7 — 11]\ K contains an arithmetic progression of consecutive odd inte
gers. We can make this arithmetic progression arbitraaigd by increasing. By
Remark[3.R, this arithmetic progression can contain twgoilis 10—strong MSTD
sets, calledS; and S;. We write [12,r — 11\ K = S; U S, U M. By Lemma[3.1,
S;=51U{2,5,6,7}andS; = Sy U{r —6,r—4,r — 3} are both MSTD. By what we
say aboveK* = M U LUK UR s also MSTD. Becaus&; U S; U K* = I,, we have
completed the proof. O

Proof of Theorerh Tl4Let £ > 2 be chosen. Writé¢ = 2m; + 3m, for somem,; and
my € Nyg. We can findN € N such thatfy = [1, N] = ([1, k] U [k + 1, ko] U -+ - U
[kml—l +1, kml]) U ([kml +1, km1+1] U [km1+1 +1, km1+2] U---u [km1+m2—1 +1, N])
Each of the firstn; intervals are large enough to be partitioned into two MSTE3 se
while the nextm, intervals are large enough to be partitioned into three MS&3.
So, Iy can be partitioned in exactlyMSTD sets. This completes our proof. O

3.3. Efficient Methods (k > 4).

3.3.1. Notations and Preliminary Result$Ve introduce a notation to write a set; this
notation was first used by Spohn [Sp]. Given a$et {a;, as, ..., a,}, we arrange its
elements in increasing order and find the differences betwee consecutive numbers
to form a sequence. Suppose that< a, < --- < a,, then our sequence is —
ay,as — as,as — as, ..., a, — a,_1. Then we represent

S = (CL1|CLQ —a1,a3 — ag,04 — A3, ...,Qn — an_l).

TakeS = {3,2,5, 10,9}, for example. We arrange the elements in the increasing orde
to have2, 3,5,9,10 and form a sequence by looking at the difference between two
consecutive numbers: 2,4, 1. So, we writeS = (2|1, 2,4, 1). All information about a

set is preserved in this notation.
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Lemma 3.4. The following are also MSTD sets for a givenc N:
(1)1,1,2,1,4...,4,3,1,1,2),
N——

m-times
(1)1,1,2,1,4...,4,3,1,1,2,1),
~——
m-times
(1]1,1,2,1,4...,4,3,1,1).
——

m-times

We present the proof in Appendix C.

3.3.2. Efficient MethodsK > 4). In our decomposition of, into £ MSTD subsets for
k > 3, we use the base expansion method. However, the base expansthod is
inefficient in terms of cardinalities of our sets. Is there arenefficient way to decom-
pose? In answering this question, we present a method ofgezsing/,. into K MSTD
subsetsk > 4) that helps reduce the cardinalities of sets. We use thatmfeimily of
MSTD sets in LemmB_3]4 to achieve this.

We want to decomposg. for sufficiently larger into k& (k > 4) MSTD subsets. If
k is even, we can simply writé. as the union of /2 arithmetic progressions, each of
which, by Theorerh 111, can be decomposed into two MSTD sslrsan efficient way.
If £ > 5is odd, then we considermod 4. If » = 1 mod 4, write r = 4m + 13 for
somem € N and considef1|1,1,2,1,4...,4,3,1,1,2). We have

m-times

I\{1,2,3,5,6,10,14,18,22,26,...,6 + 4m,9 + 4m, 10 + 4m, 11 + 4m, 13 + 4m}
= {4,8,12,16,20,...,8 4+ 4m, 12 + 4m} U {7,9,11,13,...,7 + 4m}.

Notice that both{4, 8,12,16,20,...,8 4+ 4m, 12+ 4m} and{7,9,11,13,..., 7+ 4m}
are arithmetic progressions and each of these sets cant®pesed into an even num-
ber of MSTD sets. So, our original sets= [1, 13 + 4m] can be decomposed into ex-
actlyk MSTD sets. Ifr = 2mod 4, writer = 4m+14 and considef1|1,1,2,1,4...,4,
m-times

3,1,1,2,1). If r = 3mod 4, writer = 4m+11 and considef1|1,1,2,1,4...,4,3,1,1).
N——

m-times

If = 0 mod 4, writer = 4m+ 12 and conside(2|1,1,2,1,4...,4,3,1,1). Using the
~——

m-times
same argument as above, we can showthean be decomposed into exactiWISTD
sets. We prove the upper and lower boundsifan AppendixB.

4. FUTURE WORK

We end with several additional questions to pursue.

(1) In [AMMS], the authors show that there is a positive canstiower bound
for the percentage of decompositions into two MSTD setshdseta positive
constant lower bound for the percentage of decompositinias:i MSTD sets
for £ > 37 In other words, is Conjectufe 1.5 true? A method is to find alfam
of sets(A4;)¥_, that satisfies the condition in Theor€mA.4.
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(2) Isthere a method df-decomposition that is of high density, for exam@lel /r¢)
for smallc?

(3) For the3—decomposition, we use the base expansion method, whiclefis in
cient. Can we find an efficient way to decompg@ise] into three MSTD subsets.

(4) Can we find some better bounds #0in TheoreniZI.K? There is a yawning gap
between our upper and lower bounds.

(5) Suppose that, can be decomposed infoMSTD subsets. Can we conclude
that/,,; can be decomposed intoMSTD subsets?

APPENDIX A. SUFFICIENT CONDITION ON CONSTANT LOWER BOUND

Lemma A.1. ConsiderS C {0,1,...,r—1}andS=LUM UR. Fix L C [0,¢ — 1]
andR C [r — ¢,r — 1] for some fixed. Let M be a uniformly randomly chosen subset
of [¢,r — ¢ — 1]. Then for any > 0, there exists sufficiently largesuch that

P([2¢ —1,2r —20—1] C S+ S) > 1—6(27 1 42718 — ¢ (A1)
Proof. We write
P([2¢ —1,2r =20 —1] C S+ S) = 1 -P([20 —1,2r =20 —1] Z S+ S)
=1-P(20—1,r—0—=1U[r+{0—-1,2r—20—-11Z S+ S
orP(r—Cr+¢—-2ZS+5S) (A.2)
> 1-P([20—1,r —(—1U[r+0—-1,2r =20 1] Z S+ S
—P(r—4,r+0—-2]ZS+5S).
By Proposition 8 in[[MQO],
P20 —1,r —{—1U[r+£—1,2r—20—-1] Z S+ S) < 6(27H + 2718 (A.3)
We find a upper bound for
P(r—tr+0—-21ZS+S) < P(r—L,r+0—2]< M+ M). (A.4)

becauser —2¢,r —2] S+ S implies[r —¢,r+(—2] M+ M. By a linear shift of

¢, we can considek/ a subset of0, r —2¢ — 1] andP([r — ¢, r+¢—2] £ M+ M) turns
into P([r — 2¢,r — 2] M + M). Use the change of variablé = r — 2/. We have:
M C[0,N —1]and we estimateP([r —2¢,r —2| M+ M) =P([N,N+2(—-2] ¢
M+ M) < S22 P(k ¢ M+ M). Lemma 7 in[[MO] shows that the last quantity
tend to0 as N goes to infinity. So, for any > 0, there exists sufficiently largesuch
thatP([r — ¢,r +( —2] £ S+ S5) < . This completes our proof. O

Lemma A.2. ConsiderS € {0,1,...,r—1}andS=LUM UR. Fix L C [0,¢ — 1]
andR C [r — ¢,r — 1] for some fixed. Let M be a uniformly randomly chosen subset
of [¢,r — ¢ — 1]. Leta denote the smallest integer such that b@tl2¢ — o] C L + L
and[2r —2(+a—2,2r —(—2] C R+ R. Then, for alle > 0, there exists sufficiently
large r such that

P(20 —a+1,2r—20+a—3]CS+5)
> 1—(a—2)27W 1 277D _ (271l 4 27IRl) — ¢
wherer(L) ={ie€ Lli<{—a+1}andr(R) ={i€ Rli >r —{(+a— 2}.

(A.5)
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Proof. We have:
P(20 —a+1,2r—20+a—3]CS+5)
=P(20—-1,2r—20—-1]CS+Sand2{ —a+1,20-2|C S+ S
and[2r —20,2r —2{+a—3] C S+ 5)
=1-P(20—-1,2r—20 -1 ZS+Sor[2 —a+1,20-2|Z S+ S
or2r—20,2r—2l+a—-3]¢Z S+595)
> 1-P(20—a+1,20-2]Z S+ S)—P([2r—2¢(,2r —20+a—3] Z S+ 5)
—P(20—-1,2r—20—-1] Z S+ 5).

By LemmdA1P([2¢ —1,2r —20 — 1] € S+ 5) < 6(271H + 2718 -2, We have
20—2
P(20—a+1,20-21ZS+8) < > PkegS+09). (A.6)
k=20—a+1
Let7(L) ={ie Lli <{—a+1}andr(R) ={i € R|i > r —{+ a— 2}. For each
value ofk in [2¢ — a + 1,2¢ — 2], in order thatt ¢ S + S, all pairs of numbers that
sum up tok must not be both irt. Takek = 2¢ — a + 1, for example. For a number
x < ¢ —a+ 1, the number that when added to gives2/ — a + 1 is at least and
y ¢ S. So,
P20 —a+1,20-2]ZS+8) < (a—2)27"D (A7)

P([2r —20,2r —20 +a—3]Z S+ 5S) < (a—2)27"H, (A.8)

We have shown that

P(20 —a+1,2r—2(+a—3] CS+5)
> 1—(a—2)27""W 42 7)) _ g2 4 2717y — ¢,
This completes our proof. O

Corollary A.3. Let A be an MSTDP, set such thatl = L U R, whereL C [0,n — 1]
andR C [n,2n — 1]. Letm € N be chosen. S& = R+ m C [n+m,2n +m — 1].
Let M C [n,n + m — 1] be randomly chosen. Letbe the smallest integer such that
n,2n—a] C L+ Land[2n+a—2,3n —2] C R+ R. Then for alle > 0, there exists
sufficiently largen such that

P(2n—a+1,2n+2m+a—3] £ S+ 5)
< (a—2)27"W 42770 4 g(27IH 4 2717 4 ¢
wherer(L) ={i€ Lli<n—a+1}andr(R) ={i € Rli >n+a—2}.

(A.9)

Proof. The corollary follows immediately by setting = 2n + m and/ = n in the
theorem. Also, notice that’ is a linear shift ofRz. O

For conciseness, we denote
f(L,R) = (a—2)(277® 4277 p (271 4 2718l 4 ¢
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Theorem A.4. Suppose that there exist sét§)¥_,, which are pairwise disjoint, MSTD,
P, andU(4;)¥_, = [0,2n —1]. In particular, each4; = L; U R;, whereL; C [0,n — 1]
and R; C [n,2n — 1]. Letm € Ny be chosen. Fornk, = R; + m and (M;)F_, C
[n,n +m — 1] such that(M;)¥_, are pairwise disjoint andJf_, M; = [n,n + m — 1].
Then for a positive percentage of the time,&ll= L, U M; U R; are MSTD given the
following condition:

k
1= f(Li,R;) > 0, (A.10)
i=1

for m sufficiently large. In other words, there exists a positivastant lower bound for
the proportion ofk-decompositions into MSTD subsetsas— cc.

Proof. Let a; be the correspondingvalue (defined in Lemmia Al.2) fak; and R;. By
CorollarylA.3, the probability
P(Vi, S; is MSTD) > P(Vi,S; + S; 2 [2n — a; + 1,2n + 2m + a; — 3))

(A.11)

k
> 1-Y f(Li,Ri)>0.
i=1

The first inequality is becausen — a; + 1,2n + 2m + a; — 3] C S; + S; guarantees
thatS; is SP, and thus, MSTD. By Lemma2.5; is MSTD. O

Now, we prove Theorem 1.4 in [AMMS] easily.

Corollary A.5. There exists a constant> 0 such that the percentage of 2-decompositions
of [0, — 1] into two MSTD subsets is at least

Proof. Let

Ly = {0,1,2,3,7,8,10,12,13, 14,19},

Ry = {20,25,26,27,30,32,36,37,38,39},

L, = {4,5,6,9,11,15,16,17, 18},

Ry = {21,22,23,24,28,29,31,33,34,35}.
Notice thatn = 20. We find thata; = 12 anda, = 4. From that we calculate
T(Ly) = 6,7(Ry) = 6,7(Ly) = 8andr(Ry) = 9. So, f(Ly, Ry) is less than 0.33

for m sufficiently large, whilef (L., R») is less than 0.03 fom sufficiently large. By
Theoren A%, we are done. O

APPENDIX B. LOWER AND UPPERBOUNDS FORR IN THEOREM[I.4

Givenk > 2, the lower bound is obvious since by [He], the smallest cenlity of an
MSTD sets is 8. INJAMMS], it is shown that for all > 20, I, can be partitioned into
two MSTD subsets. To decompose= [1,r] into £ > 2 (even) MSTD subsets, we
write I, to be the union of /2 arithmetic progressions and require each to be of length
at least 20. So, for alt > 10k, I, can be decomposed intoMSTD subsets. Hence,

R < 10k.
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In our method to decompose = [1,7] into & > 5 (odd) MSTD subsets, we use
particular MSTD sets, which are

A = (1)1,1,2,1,4...,4,3,1,1,2),
H,—/
m-times

Ay = (1]1,1,2,1,4...,4,3,1,1,2,1),
W—/
m-times

Ay = (1]1,1,2,1,4...,4,3,1,1),
W—/
m-times

Ay = (2]1,1,2,1,4...,4,3,1,1).
——

m-times

These sets have the property thial, 4.\ A;,7 € [1,4] is the union of two arithmetic
progressions. Givem, I,.x 4, \53 gives a pair of arithmetic progressions of shortest
length,m + 2 and2m + 1, while max Ay = 4m + 14 = max{max A;|i € [1,4]}. We
consider two cases.

(1) k =45+ 1(j > 1). We require that all arithmetic progressions of length at
leastm + 2 can be partitioned intdj; MSTD sets. Themn + 2 > 205 and so,
m > 207 — 2, which also guarantees that all arithmetic progressionsrgjth
at least2m + 1 can be partitioned int@j MSTD sets. So, we find out that for
r > 4(205 — 2) + 14 = 20k — 14, I, can be partitioned inté MSTD subsets.
Hence,R < 20k — 14.

(2) k =45+ 3(j > 1). We require that all arithmetic progressions of length at
leastm + 2 can be partitioned intdj; MSTD sets. Themn + 2 > 205 and so,
m > 207 — 2, which also guarantees that all arithmetic progressiotesngfth at
least2m + 1 can be partitioned intdj + 2 MSTD sets. So, we find out that for
r > 4(205 — 2) + 14 = 20k — 14, I, can be partitioned inté MSTD subsets.
Hence,R < 20k — 14.

Finally, for 3—decomposition, we use the base expansion method, wherequeee
a run of consecutive odd numbers (an arithmetic progressoooontain two disjoint
10—strong MSTD sets. The length of the arithmetic progressat Ieas%26 +1. Let
T bemin{max A : Ais 10 — strong}. Then we requiré=* + 1 > T orr > 2T + 24,
Hence24 < R <27 + 24.

APPENDIX C. PROOF OFLEMMA [3.4
We prove that for a fixedh € N, S = (0|1,1,2,1,4...,4,3,1,1,2) is MSTD. The
——

proof for other sets in the lemma follows similarly. rimes

Note thatmax S = 12 + 4m. We will prove that|S + S| > 26 + 6m. SinceS
containsl and2, if the difference between two numbers, say y, in S is less than
or equal to 3, thery + S contains|z, y]. If a,b € S anda — b = 4, then in the worst
case (in term of cardinality of the sum se%);+ S does not contaim — 1. So, for the
interval [0, 12+ 4m/|, S+ S misses at most: — 1 sums because there aredifferences
of4and8 = 4+ 4 € S+ S. Next, considef13 + 4m, 24 + 8m| and observe that
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S;={1</¢<9+4mandl/=1mod4} C S+ S. We have

(12+4m)+S; = {13+ 4m < ¢ <21+ 8m andl/ = 1 mod 4},
(10+4m)+ 51 = {{11+4m < ¢ <19+ 8m and/ = 3 mod 4},
(9+4m)+ 51 = {£]10+4m < ¢ <18+ 8mandl = 2 mod 4}.

Note that

16+4m = (12+4m)+4 € S+ 5,
164+8m = (84+4m)+ (8+4m) € S+ 5,
20+8m = (104+4m) + (10 +4m) € S+ S,
224+8m = (10+4m) + (12+4m) € S+ 5,
244+8m = (12+4m)+ (12+4m) € S+ 5.

On the interval13 + 4m, 24 4+ 8m|, S 4+ S misses at most the whole Sg420 + 4m <
¢ <12+ 8mandl = 0 mod 4} U {23 + 8m}, which hasm numbers. Therefore, in
total, S + S misses at mostm — 1 numbers.

Next, we show that the difference set- S misses at leastn numbers by proving
thatS — S contains none of the elements{i6+ 4¢|0 < ¢ < m — 1}. We use proof by
contradiction. Suppose that there exi$ts ¢ < m — 1 such thatt + 4/isin S — S.
Then, there must exists a run withinl, 2,1,4...,4,3,1, 1, 2 that sums up t6 + 4¢.

m-times
Because + 4¢ = 2 mod 4, the run must either starts within 1, 2, 1 or ends within
3,1,1,2. Consider two following cases:

(1) Case L the run starts withiri, 1,2, 1. Becausd + 1+ 2+ 1 =5 < 6, the run
must end withim, 1, 1, 2. Therefore, the run sums up to a number of the form
a+4m+0b, where the value of andb depend on where the run starts and where
it ends, respectively. Since+4m +b=6+4( <6+4(m—1),a+b < 2.
This is a contradiction because> 3.

(2) Case lI: the run ends withir3, 1, 1, 2. Because there is no runs within. . , 4,

m-times
3,1,1,2 that sum up t® + 4/, the runs must start withih, 1, 2, 1. Repeating
the argument used i@ase land we have a contradiction.

Therefore,(S — S)N {6 +4¢|0 < ¢ <m — 1} = () and s0,5 — S misses at leastm
elements. This completes our proof tisais MSTD. O

APPENDIX D. EXAMPLES

D.1. LemmalZ.2. We use the seti; mentioned in Remark 2.4. As = 12, we have
k > 8. Pickk = 8 andm = 40. Then

O, = {16} U [17,29], U {30}
O, = {71} U [72,84], U {85}.

By Lemmal2.2, we must choose C [31,70] such that within)/, there exists a se-
guence of pairs of consecutive elements, where consequive in the sequence are
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not more than 15 apart and the sequence starts with a pgit,in5] and ends with a
pair in[56, 70]. We pick M :
M = {38,39,54,55,59,60}.
Our setd’ is
A = {1,2,3,4,7,10,12} U {16} U [17,29]s U {30} U {38,39,54,55,59,60}
U {71} U [72,84], U {85} U {89,90,91,96,97,99,100}.

It can be verified thatd’ + A’'| = 199 > |A’ — A’'| = 197, s0 A’ is MSTD.

D.2. LemmalZ.3. We use the setl, mentioned in Remark 2.4. As = 20, we have
k > 10. Pickk = 12 andm = 35. Then

O, = [21,23] U [26,44], U [47,49]

O, = [79,81] U [84,102], U [105,107].
By LemmalZ.2, we must choosd C [50, 78] such that within}/, there exists a se-
quence of triplets of consecutive elements, where conisecuiplets in the sequence
are not more than 23 apart and the sequence starts with et inghb0, 73] and ends
with a triplet in[55, 78]. We pick M :

M = {60,61,62}.
Our setd’ is
A = {5,6,7,9,11,16,17,18,19}

U [21,23] U [26,44], U [47,49)]

U {60,61,62} U [79,81] U [84,102], U [105,107]

U {109,110,111,112,116, 118,120, 121, 122, 123}.

It can be verified thatd’ + A’| = 236 > |A’ — A’| = 235, s0A’ is MSTD.

D.3. Theorem[1.1. We useA; and A, mentioned in Remark1.2. Pidk = 12 and
m = 30. Set

Al =1{1,2,3,4,8,9,11,13, 14, 15,20}
U {24} U [25,45], U {46} U {50,51} U [54,69] U {72,73}
U {77} U [78,98], U {99}
U {103,108,109, 110,113, 115, 119, 120, 121, 122},
A, ={5,6,7,10,12,16,17,18,19}
U [21,23] U [26,44], U [47,49] U {52,53,70,71}
U [74,76] U [79,97], U [100,102]
U {104, 105,106, 107,111,112, 114, 116, 117, 118}.

We havelAlle + Allel - |A/16 - A/16| = 243 — 241 = 2, Aée + A,26| - |A,26 - Al26| -
227 — 225 = 2 and(A,, A,,) partitions[1, 122].
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D.4. 5-decompositions.We do not give an example of a 3-decomposition because our
method is inefficient and involves a large set arising fromhhase expansion method.
Neither do we give an example of a 4-decomposition becaeseéthod is straightfor-
ward. We use the efficient method to have a 5-decompositiorMiSTD sets. Set

M, = (1)1,1,2,1,4...,4,3,1,1,2)
——

119-times

= {1,2,3,5} U [6,482], U {485,486,487,489}.
Observe that
[1,489]\M; = [4,488], U [7,483],.
Becausé4, 488], is an arithmetic progression of length 122, we have
M, = 4A, and
My = 44},

partition [4, 488]4. Notice that in the example mentionedinD.3, we can pick- 147
and find A7, (containing 1) andd/, that partition[1, 239]. We have

M, = 2A7, +5and
M5 - QA/Q/G + 5
partition |7, 483],. We have found M;, M, Ms, M,, Ms) that partition[1, 489].
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