
Finding and Counting MSTD sets

Geoffrey Iyer, Oleg Lazarev, Steven J. Miller and Liyang Zhang

Abstract We review the basic theory of More Sums Than Differences (MSTD) sets,
specifically their existence, simple constructions of infinite families, the proof that
a positive percentage of sets under the uniform binomial model are MSTD but not
if the probability that each element is chosen tends to zero,and ‘explicit’ construc-
tions of large families of MSTD sets. We conclude with some new constructions
and results of generalized MSTD sets, including among otheritems results on a
positive percentage of sets having a given linear combination greater than another
linear combination, and a proof that a positive percentage of sets arek-generational
sum-dominant (meaningA, A+A, . . . , kA= A+ · · ·+A are each sum-dominant).
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1 Introduction

Many of the most important questions in additive number theory can be cast as
questions about sums or differences of sets, where the sumset of A andB is

A+B = {a+b : A∈ A,b∈ B} (1)

and the difference set is

A−B = {a−b : a∈ A,b∈ B}. (2)
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To see this, letP be the set of primes andNk (respectivelyN ′
k ) be the set ofkth

powers of integers (respectively non-negative integers).

1. The famous Goldbach problem is to prove that every even number may be written
as the sum of two primes; we may interpret this as saying that the even numbers
are contained inP+P. While this is still open, we do know that all sufficiently
large odd numbers are the sum of three primes. While sufficiently large means
greater than 101000 here, we may remove ‘sufficiently large’ if we assume the
Generalized Riemann Hypothesis [DETZ97].

2. Another example is Waring’s problem, which says for each integerk there is an
integerssuch that every positive integer is a sum of at mostsperfectkth powers.
In other words, there is ans (depending onk) such thatNk + · · ·+Nk (where
there ares sums) contains all positive integers. While the optimals for a given
k is not known, it is known that for eachk there does exist a finites (see for
instance [Na96]).

3. Fermat’s Last Theorem (proved in [Wi95, TW95]) states that if n≥ 3 andx,y,z
are integers, then the only solutions toxn + yn = zn havexyz= 0. After some
simple algebra we see it suffices to consider the case whenx,y and z are all
positive, and Fermat’s Last Theorem is just the statement that (N ′

n +N ′
n )∩N ′

n
is empty forn≥ 3.

The three examples above all involve determining what elements are in sums of
sets; it is also interesting to see how often a given element is represented in a sum.
For example, the Twin Prime Conjecture is the assertion thatthere are infinitely
many primes differing by 2; this is equivalent to how often 2 is obtained inPx−Px,
wherePx is the truncated set of primes at mostx.

As the topic of sum sets and difference sets is so vast, in thissurvey article we
restrict ourselves to an interesting class of questions where there has been significant
progress in recently years. Given a finite set of integersA, we may look atA+A and
A−A. The most natural question to ask is: As we varyA over a family of sets, how
often is the cardinality ofA+A larger thanA−A? Denoting the size of a setS by
|S|, for |A| large we expect a typicalA to have|A+A| < |A−A|. This is because
while the diagonal pairs(a,a) contribute a new sum toA+A for eacha but only
one difference (namely 0) toA−A, addition is commutative while subtraction is
not. This means that for the larger collection of pairs of distinct elements(a,a′)
we havea+ a′ = a′ + a but a− a′ 6= a′− a. We see a typical pair contributes two
differences toA−A but only one sum toA+A. Using such logic, one expects sets
with |A+A|> |A−A| to be rare.

If |A+A| > |A−A|, we sayA is a sum-dominatedset or aMore Sums Than
Differences (MSTD)set, while if |A+A| = |A−A| we sayA is balanced, and if
|A+A| < |A−A| thenA is difference-dominated. The purpose of this article is to
describe results in the following areas.

1. Non-probabilistic constructions of MSTD sets.In this section we summarize
some of the early constructions of MSTD sets, paying specialattention to the
limitation of these techniques in determining whether or not a typicalset is sum-
dominated.
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2. A positive percentage of sets are MSTD sets.Here we discuss the papers of Mar-
tin and O’Bryant [MO06] and Zhao [Zh11], which show that a very small, but
positive, percentage of all sets are sum-dominated.

3. When a ‘typical’ subset is difference-dominated.If we choose our subsets of
{0, . . . ,n− 1} from the uniform model, so that each of the 2n possible subsets
is equally likely to be chosen, then the previous section shows a positive per-
centage of subsets are sum-dominated. The situation is drastically different if
we sample differently. We describe the results of Hegarty and Miller [HM09],
who showed that if each element from{0, . . . ,n−1} is chosen with probability
p(n) and limn→∞ p(n) = 0, then in the limit almost all subsets are difference-
dominated.

4. Explicit constructions of large families of MSTD sets.The methods of [MO06,
Zh11] are probabilistic, and do not yield explicit familiesof MSTD sets. Miller,
Orosz and Scheinerman [MOS09] gave an explicit construction of a large family
of subsets of{0, . . . ,n−1} that are MSTD sets, specifically one whose cardinal-
ity is at leastC/n4 for someC> 0; later Zhao [Zh10] gave a different construction
yieldingC′/n with C′ > 0. We describe these constructions and generalizations;
for example, Miller, Pegado and Robinson [MPR12] show that the density of sets
A⊂{0, . . . ,n−1} with |A+A+A+A|> |A+A−A−A| is at leastC′′/nr , where
r = 1

6 log2(256/255)≤ .001.
5. Generalized MSTD Sets.A setA is ak-generational sum-dominant set ifA, A+A,

. . . , kA= A+ · · ·+A are each sum-dominant. Iyer, Lazarev, Miller and Zhang
[ILMZ11] proved that a positive percentage of sets arek-generational for any
positivek, but no set isk-generational for allk. Their construction uses a result
of interest in its own right, namely that if we are given any legitimate order of
linear combinations of sums and differences ofA of the same length1, a positive
percentage ofA have the cardinalities of these combinations in the desiredorder-
ing. Such a result was expected from the work of Miller, Oroszand Scheinerman
[MOS09], who showed if there exists one set satisfying the ordering then there
exists a large, explicitly constructible family of sets satisfying the condition. In
[ILMZ11] the needed set for the induction is found, and instead of appealing to
results from [MOS09], the authors modify the arguments of [MO06] in order to
obtain a positive percentage.

The above list of topics is not meant to be definitive or exhaustive, but rather to
highlight some of the many results in the field. There are numerous generalizations
to other linear combinations of sets, as well as related problems in Abelian groups,
that can be handled with these methods. We strongly urge the reader to consult the
references for full details and statements of related, openquestions.

Miller thanks Mel Nathanson who, through books and conversations, helped in-
troduce him to this exciting subject, his collaborators Peter Hegarty, Brooke Orosz,

1 Note thatA+A+A−A=−(A−A−A−A); thus we might as well assume any linear combination
has at least as many sums ofA as differences ofA.
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Sean Pegado, Luc Robinson and Dan Scheinerman for the insights gleaned from our
studies, and the participants of various CANT Conferences (especially Greg Mar-
tin, Kevin O’Bryant and Jonathan Sondow) for many enlightening conversations;
all authors thank the participants of SMALL 2011 for helpfulconversations and
discussions. The first, second and fourth named authors weresupported by NSF
grants DMS0850577 and Williams College; the third named author was partially
supported by NSF grant DMS0970067.

2 Non-probabilistic Constructions of MSTD sets.

In [Na06], Nathanson wrote“Even though there exist sets A that have more sums
than differences, such sets should be rare, and it must be true with the right way of
counting that the vast majority of sets satisfies|A−A|> |A+A|.” Support for this
view can be found in the length of the search required to find the first MSTD set.
Conway is said to have found{0,2,3,4,7,11,12,14} in the 1960s, while Marica
[Ma69] in 1969 gave{0,1,2,4,7,8,12,14,15} and Freiman and Pigarev [FP73]
found{0,1,2,4,5, 9,12,13, 14,16,17, 21,24,25,26,28,29} in 1973. See also the
papers by Ruzsa [Ru76, Ru84, Ru92].

How hard is it to find such sets? A simple calculation shows that if B = αA+
β , then |A+A| = |B+B| and |A−A| = |B−B|; thus we might as well assume
0 is in our subset. The number of subsets of{0, . . . ,14} that include 0 is 214 =
16,384. This is easily searchable by computer, though a little out of the range of even
the most patient of mathematicians; the only MSTD set found is the one already
mentioned. Even Freiman and Pigarev’s example can be found by a brute force
within a reasonable time, as 229 = 536,870,912.

While there are many constructions of MSTD sets, most of these constructions
give a vanishingly small percentage of sets to be sum-dominated. Specifically, while
there are 2n+1 subsets of{0,1, . . . ,n}, these methods often give only on the order of
2n/2 (or worse) subsets that are MSTD.

For example, one way to generate an infinite family of MSTD sets from one
known MSTD set is through thebase expansion method. LetA be an MSTD set, and
let Ak;m= {∑k

i=1aimi−1 : ai ∈ A}. If m is sufficiently large, then|Ak;m±Ak;m|= |A±
A|k. We thus obtain an infinite family of MSTD sets, and, so long as|A+A|> 1, we
can have arbitrarily many more sums than differences. Unfortunately, asm is large,
the percentage of subsets created that are sum-dominated isexponentially small. We
thus discuss other constructions (though this method will play an important role in
proving many of the theorems in§6).

It is very easy to create balanced sets, and many constructions of MSTD sets
take advantage of this. First, note that ifA is an arithmetic progression thenA is
balanced. To see this, lettingA = {0,1, . . . ,n} we find A+A = {0,1, . . . ,2n} and
A−A= {−n, . . . ,n} so|A+A|= |A−A|= 2n+1. Another way to create a balanced
set is to take a set symmetric with respect to a number (which need not be in the
set); this means that there is a numbera∗ such thatA= a∗−A (this impliesA+A=
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a∗+A−A, so |A+A| = |A−A|). Note arithmetic progressions are a special case,
with a∗ = n/2. Nathanson [Na07] gives constructions of MSTD sets using this idea.
He creates infinite families by adjoining one number to a symmetric set which is a
small permutation of a generalized arithmetic progression. Numerous examples and
explicit constructions are given in [Na07]; we state the first.

Theorem 2.1 (Nathanson [Na07]) Let m,d, and k be integers with m≥ 4, 1≤ d ≤
m−1, d 6= m/2, and k≥ 3 if d < m/2 and k≥ 4 if d > m/2. Let B= {0,1, . . . ,m−
1} \ {d}, L = {m−d,2m−d, . . . ,km−d}, a∗ = (k+1)m−2d, and A∗ = B∪L∪
(a∗−B). Then A= A∗∪{m} is an MSTD set.

How large of a family is this? We have three parameters at our disposal:m,d and
k. NoteA⊂ {0, . . . ,(k+1)m−2d}. Given somen, look at all triples(m,d,k) such
that (k+1)m−2d ≤ n; this will be an upper bound for the number of MSTD sets
generated by the theorem that live in{0,1, . . . ,n} (it will be the actual number if we
show all the sets are distinct). As we also needk to be at least three, we obtain an
upper bound by counting all pairs(k,m) with km≤ n (which is trivially at mostn2)
and noting that we havem≤ n choices ofd for each pair. Thus this method generates
at mostn3 subsets of{0,1, . . . ,n} being MSTD sets, which is a vanishingly small
fraction in the limit. The paucity of this family is due to howexplicit the construction
is – everything is completely deterministic and at each stage there is only one option.

We conclude our discussion on constructions of MSTD sets andfamilies of
MSTD sets with a result of Hegarty [He07]. He proved

Theorem 2.2 (Hegarty [He07]) There are no MSTD subsets of the integers of size
seven. Up to linear transformations the only set of size 8 is{0,2,3,4,7,11,12,14}.

We paraphrase (slightly) from [He07] the description of theproof. LetA= {an =
0,an−1, . . . ,a1}, and represent then−1 differencesai −ai+1 as−→e i (theith standard
basis vector inRn−1). If we leave theai ’s undetermined, then|A+A|= n(n+1)/2
and|A−A|= n(n−1)+1. As |A−A| is larger (in the case where theai ’s are unde-
termined), in order forA to be an MSTD set we must have non-trivial coincidence
of differences, specificallyai −a j = ak−aℓ for some(i, j) 6= (k, ℓ). Given such an
equation we can, by projection onto the orthogonal complement ofRn−1 of the sub-
space(−→e i −−→e j)− (−→e k−−→e ℓ) spans, represent elements ofA by vectors inRn−1.
We recompute|A+A| and|A−A|. If |A+A| ≤ |A−A| we pick another non-trivial
identification of elements inA−A and repeat the above method with elements ofA
now represented as vectors inRn−3. The computation ends with all MSTD sets of
sizen whose smallest element is 0. With some additional insights that improve the
run-time, the program can checkn = 8 fairly quickly; unfortunatelyn = 9 is still
open (though Hegarty has results for all MSTD sets of size 9 having an additional
property).
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3 A positive percentage of sets are MSTD sets

As for eachn studied very few of the 2n subsets of{0,1, . . . ,n−1} were found to
be sum-dominant, it was reasonable to conjecture that in thelimit almost no subsets
were sum-dominant. While this conjecture is false, the percentage of sum-dominant
sets is so small that this error is understandable.

Theorem 3.1 (Martin - O’Bryant [MO06]) As n→ ∞, a positive percentage of
subsets of{0, . . . ,n−1} are sum-dominant.

Martin - O’Bryant [MO06] proved this probability is at least2·10−7, which was
improved by Zhao [Zh11] to at least 4·10−4; Monte Carlo experiments suggest the
true answer is around 4.5 ·10−4. For smalln, it is possible to enumerate all subsets
of {0, . . . ,n−1}, which we do in Figure 1.

1 2 3 4 5
LogHnL
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0.0003

0.0004

0.0005

PHnL

Fig. 1 The percentage of sum-dominated subsets of{0, . . . ,n− 1} versus logn. These numbers
were obtained by enumerating all possible subsets forn≤ 27, and by simulating 10,000,000 subsets
for eachn∈ {30,35,40,45,50,75,100,125,150}.

Martin and O’Bryant’s proof uses probabilistic techniquesto estimate the chance
that elements are in the sumset and the difference set. For definiteness, consider
subsetsSof {0,1, . . . ,n−1}. The sumsetS+S lies in{0,1, . . . ,2n−2} and the dif-
ference setS−Sin {−(n−1), . . . ,n−1}. The number of representations of a typical
k∈ {0,1, . . . ,2n−2} as a sum of two elements ofSis roughlyn/4−|n−k|/4, while
the number of representations of a typicalk∈ {−(n−1), . . . ,n−1} as a difference
of two elements ofS is roughlyn/4− |k|/4. To see this, first consider the special
case whenS= {0,1, . . . ,n}. If we wantk= x+ y with x≤ y, note oncex is chosen
theny is determined. Ifk ≤ n−1 there are essentiallyk/2 choices forx; the other
case is handled similarly. Our answer differs fromn/4−|n− k|/4 by a factor of 2.
This factor is due to the fact that a typical setShas approximatelyn/2 elements, and
not n elements (by the Central Limit Theorem, the probability is vanishingly small
that |S| differs fromn/2 by more thann1/2+ε). Figure 2 demonstrates the rapidity
of convergence. There we uniformly choose manyA∈ {0, . . . ,99} and calculate the
average number of representations for all the possible sumsand differences, and
compare with the predictions above. Note for the differenceplot we have removed
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the spike at 0, as for eachA there are|A| ways of representing 0 fromA−A, and by
the Central Limit Theorem|A| is approximately 100/2 or 50.
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Fig. 2 Comparison of predicted and observed number of representations of possible elements of
the sumset and difference set forA ⊂ {0, . . . ,99} chosen from the uniform model (so each of the
2100 possible subsets are equally likely to be chosen). We chose 100 different suchA and calculated
the average number of representations of each possible sum (left plot, which lives in{0, . . . ,198})
and difference (right plot, which lives in{−99, . . . ,99}), compared with the theoretical predictions.
Note the spike at 0 was removed from the difference plot.

We see from the above that there aremanyways to represent the possible sums
or differences, so long as they are not near the fringe elements. Their proof pro-
ceeds as follows. LetA be an MSTD set, and writeA as a disjoint unionL∪U , with
L ⊂ {0, . . . , ℓ−1} andR⊂ {ℓ, . . . , ℓ+u−1}. Consider the setsAM = L∪M ∪U ′,
where M ⊂ {ℓ, . . . , ℓ+ m− 1} and U ′ = U + m (so U ′ is just U translated by
m). If k is close to 0 (respectivelyℓ+m+ u), then whether or notk ∈ AM +AM

depends only onL + L (respectivelyU ′ +U ′). Similarly, the fringe elements of
AM −AM are determined byU ′−L andL−U ′. By cleverly choosingA (they take
L = {0,2,3,7,8,9,10} andU = {11,12,13,14,16,19,20,21}) we can ensure that
there are more sum fringe elements included than differencefringe elements. The
proof is completed by showing that a positive percentage of the possibleM’s lead
to no missing sums or differences in the remaining intervals. This is accomplished
through a series of technical lemmas. The estimates here arefar from optimal, but
suffice to prove a positive percentage of subsets are sum-dominant. Specifically, the
authors frequently appeal to the crude estimate that

Prob({a,a+1, . . . ,b}* A+A) ≤
b

∑
k=a

Prob(k 6∈ A+A)

(and similarly for difference sets).
There are many other results in this paper. The authors provethe existence of pos-

itive lower bounds for the percentage of sum-dominant, balanced, and difference-
dominated sets. Though they cannot show the limits exist, they conjecture that this
is the case. They show that the average cardinality of the difference sets is four more
than the average cardinality of the sumsets, providing additional support that sum-
dominant sets should be rare. They also explore|A+A|− |A−A|, and show that for
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anyx there is anA such that|A+A|− |A−A| = x with A ⊂ {0, . . . ,17|x|} (which
is significantly more economical than the base expansion method would give). The
paper ends with some numerical explorations of missing sums, and conjectures that
the proportion of subsetsA of {0, . . . ,n−1} with |A+A| = j and|A−A| = k con-
verges to a limiting proportionρ j ,k asn→ ∞.

Martin and O’Bryant fixed the fringe (theirL andU) and varied the middleM;
Zhao [Zh11] allowed the fringe to vary as well. His methods allow him to obtain
MSTD sets that are not missing any middle sums, which he showshappens a van-
ishingly small number of times. This leads to a significant strengthening of the re-
sults of Martin and O’Bryant, and a proof of many of their (andothers) conjectures.
Specifically, he shows the following limits exist (and provides a deterministic algo-
rithm to approximate their values): the percentage of sets that are sum-dominant;
the percentage of sets that are balanced; the percentage of sets that are difference-
dominant; the percentage of sets that are missing exactlys sums andd differences;
the percentage of sets that have exactlyx more sums than differences. The paper
ends with an investigation of the probabilities of various elements being in an MSTD
set, proving a conjecture of Miller, Orosz and Scheinerman [MOS09] that asn grows
the probability a ‘middle’ element is in an MSTD set in{0, . . . ,n} tends to 1/2.

4 When a ‘typical’ subset is difference-dominated

The proofs that a positive percentage of subsets of{0, . . . ,n−1} are sum-dominant
all use, in one way or another, the following fact: ifA is uniformly drawn from the
2n subsets of{0, . . . ,n− 1}, then with high probabilityA has essentiallyn/2 ele-
ments and almost all possible sums and differences are realized. Along these lines,
Martin and O’Bryant [MO06] showed that a typical differenceset is missing only
7 of the possible differences, and a typical sumset is missing 11 (see [ILMZ11] for
a proof that the moments of the limiting distribution exist and the tail probabilities
are bounded above and below by exponentially decaying probabilities). These tech-
niques apply to a slightly more general case. We may reinterpret the uniform model
above as saying each elementk∈ {0, . . . ,n−1} is in a subsetA with probability 1/2.
We could instead fix a probabilityp∈ (0,1) and let eachk be inA with probability
p.

In this constant probability model, our previous results ona positive percentage
again hold. If, however, we allowp to vary withn, then the situation is drastically
different. Hegarty and Miller [HM09] consider a binomial model where eachk ∈
{0, . . . ,n−1} is independently chosen to be in a subsetA with probability p(n). If
p(n) is a constant independent ofn, we are in the regime handled by Martin and
O’Bryant (though we described their method in the uniform model case, similar
arguments work so long as the probability is independent ofn). If, however,p(n)
tends to zero, then we are no longer in the case where|A|, |A+A| and|A−A| are
always large. In this case very few sets are sum-dominant, which is in line with
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Nathanson’s (and others) intuition that, if properly counted, sum-dominant sets are
rare.

Before stating their main result, we first set some notation.Let N denote the
positive integers. We sayf (x) = o(g(x)) if | f (x)/g(x)| → 0 asx→ ∞.

Theorem 4.1 (Hegarty - Miller [HM09]) Let p: N→ (0,1) be any function such
that

n−1 = o(p(n)) and p(n) = o(1). (3)

For each n∈ N let A be a random subset of{0, . . . ,n− 1} chosen according to a
binomial distribution with parameter p(n) (so each k∈ {0, . . . ,n−1} is in A with
probability p(n)). Then, as n→ ∞, the probability that A is difference-dominated
tends to one.

More precisely, letS ,D denote respectively the random variables|A+A| and
|A−A|. Then the following three situations arise:

(i) p(n) = o(n−1/2) : Then

S ∼ (n · p(n))2

2
and D ∼ 2S ∼ (n · p(n))2. (4)

(ii) p(n) = c ·n−1/2 for some c∈ (0,∞) : Define the function g: (0,∞)→ (0,2) by

g(x) := 2

(
e−x− (1− x)

x

)
. (5)

Then

S ∼ g

(
c2

2

)
n and D ∼ g(c2)n. (6)

(iii) n−1/2 = o(p(n)) : Let S c := (2n+1)−S , Dc := (2n+1)−D . Then

S
c ∼ 2 ·Dc ∼ 4

p(n)2 . (7)

The proof proceeds by using various tools to obtain strong concentration results
on the sizes of the sum and difference sets. The tools needed depend on the decay
of p(n). Not surprisingly, the fasterp(n) decays the easier it is to obtain the needed
concentration results. The greater the decay, the fewer elements are in a typicalA,
and thus the greater the effect of the non-commutativity of subtraction in generating
more new elements. Chebyshev’s Theorem suffices for case (i), two still follows
elementarily (via a second moment argument), while the third case requires some
recent results on strong concentration by Kim and Vu [KV00, Vu00, Vu02].

The idea of the proof, at least in case (i), is fairly straightforward. Whenn−1 =
o(p(n)) and p(n) = o(n−1/2), then the expected size of a randomly chosenA is
np(n) = o(n1/2). The heart of the proof is to show that such sets are nearly Sidon
sets, which means that most pairs of elements generate distinct sums and differ-
ences from other pairs (other than the diagonal pairs, thosewhere the two elements
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are equal, which give just one difference, namely zero). As the non-diagonal pairs
generate one sum but two differences, we expect that the difference set will be twice
as large as the sumset. A simpler proof of this case is given inthe arXiv version of
[HM09], as well as [HM10] (see Appendix 2).

We sketch the proof of case (i) as it highlights the ideas without too many tech-
nicalities. The first step is to bound, with high probability, the size of a subsetA of
{0, . . . ,n−1} chosen from the binomial model with parameterp(n) = o(n−1/2). For
ease of exposition, assumep(n) = cn−δ for someδ ∈ (1/2,1). Using indicator ran-
dom variablesX0, . . . ,Xn−1 to denote whether or notk∈ A, by Chebyshev’s theorem
the probabilityX = X0 + · · ·+Xn−1 is in [1

2cn1−δ , 3
2cn1−δ ] is at least 1− 4

cNδ−1.
From here, we obtain upper and lower bounds for the number of pairs of elements
(m,n) with m< n both inA. All that remains is to show that, with high probability,
almost all of the pairs generate distinct sums and differences from each other.

For definiteness we study the differences. If(m,n) and(m′,n′) generate the same
difference thenm− n = m′ − n′. Let Ym,n,m′,n′ be 1 if m,n,m′,n′ are inA andm−
n = m′ − n′, and letY be the sum of theYm,n,m′,n′ ’s. What isE[Y]? Rather than
determining it exactly, it suffices to obtain an upper bound.One can showE[Y] ≤
2C4n3−4δ whereC = max(1,c) by considering separately the cases where all four
indices are distinct and when three are. As a typicalA has size on the order ofn1−δ ,
we expect on the order of 2n2−2δ differences; this is significantly larger thanE[Y], so
most of the differences are distinct from each other. All that remains is to control the
variance ofY, and then another application of Chebyshev’s theorem proves thatY is
concentrated near its mean, and hence there are on the order of 2n2−2δ differences.
The variance estimate follows from elementary counting.

A particularly interesting feature of the above theorem is the existence of a
threshold function for the density. If the densityp(n) = o(n−1/2) then almost surely
the ratio of the size of the difference set to the sumset is 2, while above the thresh-
old (so n−1/2 = o(p(n))) the ratio is 1 (though the number of missing sums is
twice that of the number of missing differences). Ifp(n) = cn−1/2 then the ratio
of |A−A|/|A+A| tends tog(c2)/g(c2/2), with g(x) = 2(e−x− (1− x))/x. Note
this ratio tends to 2 asc→ 0 and tends to 1 asc→ ∞, which is in line with Cases
(i) and (iii) of the theorem. There is thus a nice phase transition in behavior, though
this is hard to see experimentally as 10−10n−1/2 is smaller thann−1/2 log−1n until n
exceeds exp(1010). In Figure 3 we numerically explore this transition.

Not surprisingly, for a fixedn the largerc is, the closer the behavior is to the lim-
iting case. To investigate this further, in Figure 4 we examine 40 choices ofc from
.01 to .41 withn = 1,000,000. Forc = .01 the typical randomA has only 10 ele-
ments; this increases to about 400 whenc= .41. We see a noticeable improvement
between the observed and conjectured behavior for this larger value ofn.

To further investigate the transition behavior, we fixed twovalues ofc and stud-
ied the ratio for variousn. We chosec = .01 (where the ratio should converge to
1.99997) andc = .1 (where the ratio should converge to 1.99667); the results are
displayed in Table 1.
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Fig. 3 Plot of |A−A|/|A+A| for tenA chosen uniformly from{1, . . . ,n} (n= 10,000 on the left
and 100,000 on the right) with probabilityp(n) = c/

√
n versusg(c2)/g(c2/2).
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Fig. 4 Plot of |A−A|/|A+A| for tenA chosen uniformly from{1, . . . ,n} with probability p(n) =
c/
√

n (n= 1,000,000) versusg(c2)/g(c2/2) (second plot is just a zoom in of the first).

n Observed Ratio (c= .01) Observed Ratio (c= .1)
100,000 1.123 1.873

1,000,000 1.614 1.956
10,000,000 1.871 1.984

100,000,000 1.960 1.993

Table 1 Observed ratios of|A−A|/|A+A| for A chosen with the binomial modelp(n) = cn−1/2 for
k∈ {0, . . . ,n−1} for c= .01 and .1; asn→ ∞ the ratios should respectively converge to 1.99997
and 1.99667. Each observed data point is the average from 10 randomly chosenA’s, except the last
one forc= .1 which was for just one randomly chosenA.

5 Explicit constructions of large families of MSTD sets

Until recently, all explicit constructions of families of MSTD sets led to very sparse
families, with an exponentially small percentage of the 2n subsets of{0, . . . ,n−1}
being sum-dominant. While the methods of Martin and O’Bryant proved that a posi-
tive percentage of the 2n subsets were sum-dominant, their probabilistic method did
not allow them to explicitly list these MSTD sets. We quicklyreview their construc-
tion, which was described in greater detail in§4.

The word explicit requires some comment. We say a construction is explicit if
there is a very simple rule that can quickly be implemented togenerate the sets.
For example, one method involves taking any setM ∈ {0, . . . ,m−1} such that there
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are neverk consecutive elements in{0, . . . ,m−1} not in M. It is very easy to write
down sets having this property; it is also easy to count how many such sets there are
(and it is this ease in counting that leads to many good results).

Martin and O’Bryant began by choosing a special setA = L ∪U with L ⊂
{0, . . . , ℓ− 1} andU ⊂ {ℓ, . . . , ℓ+ u− 1} such that more of the fringe sums were
realized inA+A than fringe differences. They then showed that one could insert
almost any set in the middle ofA (shifting the elements ofU up) and have a sum-
dominant set. Miller, Orosz and Scheinerman [MOS09] explored which sets, when
inserted, did not lead to sum-dominant sets. While this is a very hard question, it
turns out that if one carefully chooses setsL andU then one can showanyset that is
never locally too sparse may be inserted and yield a sum-dominant set. The end re-
sult is a sparser family than Martin and O’Bryant; however, it is still a large family,
and all the technical probability lemmas of [MO06] are replaced with elementary
counting arguments.

The following property is crucial in the argument. We say a set of integersA has
theproperty Pn (or is aPn-set) if both its sumset and its difference set contain all but
the first and lastn possible elements (and of course it may or may not contain some
of these fringe elements). Explicitly, leta= minA andb= maxA. ThenA is aPn-set
if

{2a+n, . . . , 2b−n} ⊂ A+A (8)

and

{−(b−a)+n, . . . , (b−a)−n} ⊂ A−A. (9)

It is not hard to show that for fixedα ∈ (0,1/2) a random set drawn from{0, . . . ,n−
1} in the uniform model is aP⌊αn⌋-set with probability approaching 1 asn→ ∞; it
is even easier in our situation as the length of the setA will grow but n will remain
fixed. Their main result is

Theorem 5.1 (Miller-Orosz-Scheinerman [MOS09]) Let A= L∪R be a Pn, MSTD
set where L⊂ {0, . . . ,n− 1}, R⊂ {n,2n− 1}, and 0,2n− 1 ∈ A;2 for example,
A = {0,1,2,4,7,8,12,14,15} from [Ma69] works. Fix a k≥ n and let m be arbi-
trary. Let M be any subset of{n+k, . . . ,n+k+m−1} with the property that it does
not have a run of more than k missing elements (i.e., for allℓ ∈ {n+ k, . . . ,n+m}
there is a j∈ {ℓ−1, . . . , ℓ+k−2} such that j∈ M). Assume further that n+k 6∈ M
and set A(M;k) = L ∪ O1 ∪ M ∪ O2 ∪ R′, where O1 = {n, . . . ,n+ k− 1}, O2 =
{n+ k+m, . . . ,n+ 2k+m− 1} (thus the Oi ’s are just sets of k consecutive inte-
gers), and R′ = R+2k+m. Then

1. A(M;k) is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies;

2. there is a constant C> 0 such that as r→ ∞ the proportion of subsets of
{0, . . . , r −1} that are in this family (and thus are MSTD sets) is at least C/r4.

2 Requiring 0,2n−1∈ A is quite mild; we do this so that we know the first and last elements ofA.
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It turns out that being aPn-set is not an especially harsh condition, and it is pos-
sible to find these sets. The idea of the construction is to addsets in the middle
such that all possible middle sums and differences are obtained, and thus whether
or notA(M,k) is sum-dominant will depend only onA. Specifically, it will depend
on whether or notA itself is an MSTD set. While the choices in the construction
are not optimal, they do suffice to almost give a positive percentage of sets are sum-
dominant, where now we miss by a power instead of by an exponential. A little
algebra shows that ifA is aPn-set, then so too is ourA(M;k). To see this, we need
only show that we hit all possible sums and differences except at the fringe. Briefly,
the idea behind the construction is that becauseO1 andO2 havek consecutive in-
tegers andM never missesk consecutive integers, when we look at sums such as
O1 +M we will always have two elements inA(M;k) that will add to the desired
number (and similarly for the differences).

The rest of the proof deals with examining how restrictive the assumption is
that M never missesk consecutive integers. One can solve this by writing down
a recurrence relation, but an elementary approach is available which yields quite
good results with little work. We assume a slightly strongercondition: we breakM
into blocks of lengthk/2 and assumeM always has an element from each of these
blocks. This ensures that there can never be a gap as large ask between elements of
M (the gap is at mostk−2). There are 2k/2 possibilities for each block of lengthk/2;
all but one (choosing no elements) satisfies the stronger condition. The percentage
of such valid sets in{0, . . . , r −1} is a constant times

r/4

∑
k=n

1
22k

(
1− 1

2k/2

) r
k/2

. (10)

There are two factors leading to obtaining less than a positive percentage. The first
is, obviously, that in each block of lengthk/2 we lose one possibility, and this factor
is raised to a high power. The second is thatO1 andO2 are completely determined
and their length depends onk. Thus, as soon ask grows withn, we see we cannot
have a positive percentage. Analyzing the sum gives the claimed bounds.

Remark 5.2 The above theorem can be improved by appealing to an analysisof the
probability m consecutive tosses of a fair coin has its longest streak of consecutive
heads of lengthℓ (see [Sc90]). What is fascinating about the answer is that while
the expected value ofℓ grows likelog2(m/2), the variance converges to a quantity
independent of m, implying an incredibly tight concentration. If we take O1 and O2

as before and of length k, we may take a positive percentage ofall M’s of length
m to insert in the middle, so long as k= log2(m/2)− c for some c. The size of A
is negligible; the set has length essentially m+ 2k. Of the2m+2k possible middles
to insert, there are C2m possibilities (we have a positive percentage of M work, but
the two O’s are completely forced upon us). This gives a percentage on the order of
2m/2m+2k; as k= log2(m/2)− c, this gives on the order of1/m2 as a lower bound
for the percentage of sum-dominated sets, much better than the previous1/m4.
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The results of [MOS09] can be generalized to compare linear forms. We can find
infinite families of sets satisfying

|ε1A+ · · ·+ εnA| > |ε̃1A+ · · ·+ ε̃nA| , εi , ε̃i ∈ {−1,1} (11)

if we can find one set satisfying the above. We’ve seen from [MO06, Zh11] that
very few sets are sum-dominant; thus we expect the percentage of sets satisfying
(11) to be extremely small, and thus expect it to be a challenge to find the needed
set. Brute force search found{0, 1, 2, 3, 7, 11, 17, 21, 22, 24, 25, 28, 29, 30, 31, 33,
44, 45, 48, 49}, which gives|A+A+A| > |A+A−A|; unfortunately, such naive
searching was unsuccessful in finding examples for other comparisons. We describe
a new method by Iyer, Lazarev, Miller and Zhang [ILMZ11] in§6 which generates
the needed sets to begin the induction arguments.

In the above generalizations, the construction from [MOS09] with |A+A|> |A−
A| is mimicked for the linear forms. In particular, we still assume thatM has at least
one element in each block of lengthk/2. While this was necessary for|A+A|> |A−
A|, Miller, Pegado and Robinson [MPR12] show that this is not needed in general.
For example, if we are studying|A+A+A+A| versus|A+A−A−A|, we are
assisted by the fact that we can haveOi +O j and then add this toM+M. The final
result of all of this is that we may allowO1 andO2 to be significantly more sparse
than in [MOS09], where they had to choosek consecutive elements and thus had no
freedom. What matters is thatOi +O j contain large consecutive blocks of integers,
not that eachOi do so. This allows us to improve upon the 1/22k terms in (10).

Before stating the result, we need to slightly generalize the notion of aPn-set to
a P4

n -set. We sayA is aP4
n -set if A+A+A+A andA+A−A−A each contain all

but the first and lastn elements; thus what we called aPn-set before is really aP2
n -set.

Theorem 5.3 (Miller-Pegado-Robinson [MPR12]) Let A= L∪R be a Pn, MSTD
set where L⊂ {0, . . . ,n− 1}, R⊂ {n,2n− 1}, and 0,2n− 1 ∈ A;3 for example,
A= {0, 1, 3, 4, 7, 26, 29, 30, 32, 33, 34, 27, 28, 31, 53, 56, 57, 59, 60, 61} works.
Fix a k≥ n and let m be arbitrary. Let M be any subset of{n+k, . . . ,n+k+m−1}
with the property that it does not have a run of more than k missing elements (i.e.,
for all ℓ ∈ {n+ k, . . . ,n+m} there is a j∈ {ℓ−1, . . . , ℓ+ k−2} such that j∈ M).
Assume further that n+k 6∈ M and set A(M;k) = L∪O1∪M∪O2∪R′, where O1 =
{n, . . . ,n+ k−1}, O2 = {n+ k+m, . . . ,n+2k+m−1} (thus the Oi ’s are just sets
of k consecutive integers), and R′ = R+2k+m. Then

1. A(M;k) is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies.

2. There is a constant C> 0 such that as r→ ∞ the proportion of subsets of
{0, . . . , r −1} that are in this family (and thus are MSTD sets) is at least C/r4/3.

3. With better choices of O1 and O2, one can explicitly construct a large family
of sets A with|A+A+A+A|> |(A+A)− (A+A)| and show that the density

3 As before, requiring 0,2n− 1 ∈ A is quite mild and is done so that we know the first and last
elements ofA.
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of sets A⊂ {0, . . . ,n− 1} satisfying this condition is at least C/nr , where r=
1
6 log2(256/255)≤ .001.

4. For each integer k, there is a set A⊂ {0, . . . ,157k} such that|2A+2A| − |2A−
2A| = k; if k is large we may take A⊂ {0, . . . ,35|k|}.

The proof of the first two assertions follows identically as in [MOS09] (if we
argue as in Remark 5.2 and use the results from [Sc90], we may improve (2) from
r4/3 to r2/3). For the third assertion, the additional binary operations gives us enor-
mous savings and removes many of the restrictions on the formof theOi ’s. We note
that theOi ’s show up in sums and differences at least in pairs, unless matched with
L+ L+ L, R′ +R′+R′ or L+ L−R′ (A = L∪R). Each ofL+ L+ L, R′+R′+R′

andL+L−R′ contains a run of 16 elements in a row for our setA. This allows us
to relax the restrictions onOi from [MOS09] (eachOi wask consecutive elements);
if eachOi has no run of 16 missing elements and 2Oi is full for both Oi ’s, simple
algebra shows that we get all sums and differences as before.This looser structure
on theOi ’s allows us to replace the 1/22k in (10) with a much better term, leading
to a significantly better exponent and thus greatly improve the density bound.

Returning to MSTD sets (and not their generalizations), thecurrent record for
densest explicit family of MSTD sets is due to Zhao [Zh10], who found a family of
{0, . . . ,n−1} of order 2n/n. He achieved this by showing a correspondence between
bidirectional ballot sequences and sum-dominant sets. Aballot sequenceis a list of
1s and 0s if every prefix has more 1s than 0s and the maximum excess of 1s over
0s is attained at the end of the sequence. If you imagine the 1sas winning $1 and
the 0s as losing $1, we may interpret this as we bet a fixed amount each game, our
winnings are always positive and our greatest balance is at the end. A sequence of
1s and 0s is abidirectional ballot sequenceif both it and the reversed sequence are
ballot sequences.

Much of the construction is similar to [MO06, MOS09]; we again take a set that
leads to the desired fringe behavior, and study which setsM may be inserted. Unlike
the previous constructions, here we ask thatM is a bidirectional ballot sequence
(where we write 1 if an element is inM and 0 if it is not). This is equivalent to the
following. Let M ⊂ {0, . . . ,m−1}. Then every prefix and suffix of{0, . . . ,m−1}
has more than half its elements inM. As each prefix and suffix has more than half its
elements inM, by the pidgeon hole principle at least one pair will be inM, and that
will generate the desired sum or difference. The problem is thus reduced to counting
the number of bidirectional ballot sequences,

6 Generalized MSTD Sets

There are many ways to generalize the notion of a sum-dominant set. Below we
discuss two possibilities that were recently analyzed in [ILMZ11]; we comment
briefly on the ideas and constructions, and refer the reader to the article for full
details. As we are always adding sets and never multiplying,in all arguments below
we use the shorthand notation
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kA = A+ · · ·+A︸ ︷︷ ︸
k times

. (12)

1. Given non-negative integerss1,d1,s2,d2 with s1+d1 = s2+d2 ≥ 2, can we find
a setA with |s1A−d1A| > |s2A−d2A|, and if so, does this occur a positive per-
centage of the time?

2. We say a set isk-generational ifA, A+A, . . . , kA are all sum-dominant. Dok-
generational sets exist, and if so, do they occur a positive percentage of the time?
Is there a set that isk-generational for allk?

The first question is motivated by generalizing the binary comparison. When
s1+d1 = 2, the only possible sets areA+A andA−A (note−A−A is the same as
the negation ofA+A). Whens1+d1 = 3, again there are again essentially just two
possibilities,A+A+A andA+A−A (asA−A−A=−(A+A−A), and thus without
loss of generality we might as well assumesi ≥ di). The situation is markedly differ-
ent once the sum is at least 4. In that case, we now haveA+A+A+A, A+A+A−A
andA+A−A−A. All possible orderings happen a positive percentage of thetime.

Theorem 6.1 (Iyer-Lazarev-Miller-Zhang [ILMZ11]) Given non-negative inte-
gers s1,d1,s2,d2 with s1 +d1 = s2 +d2 = k ≥ 2, if {s1,d1} 6= {s2,d2} then a pos-
itive percentage of all sets A satisfy|s1A−d1A| > |s2A−d2A|. For definiteness
assume s1 is the largest of the s’s and d’s. Given any non-negative integers i, j
with j ≤ 2i, for all n sufficiently large there exists an A⊆ {0,1, . . . ,n} such that
|s1A−d1A|= kn+1− i and |s2A−d2A|= kn+1− j.

Sketch of the proof.The proof is similar in spirit to many of the results in the
field; we first find one example by cleverly constructing a set with a certain fringe
structure, and then use the methods from Martin-O’Bryant [MO06] to expand the
set by essentially adding anything in the middle. The difficulty, as was apparent in
[MOS09], is in constructing one such set. To make such a setA, we pick fringes
L andR such that their sums (with themselves or with each other) have the same
structure (a few chosen elements below the maximum missing). Then we letA =
L∪M∪ (n−R), whereM is a large interval in the middle. IfM is large enough, we
don’t have to worry about anything besides the fringes. AsA is summed, the fringes
slowly fill in, however, we chooseL such that max(L) < max(R). This means that
the right fringe ofkA fills in faster than the left. Note that the right fringe ofkA is
just k(n−R), and the right fringe ofs2A−d2A is s2(n−R)−d2L. SinceR grows
faster thanL, we can choose the middle such thatk(n−R) will intersect with the
middle and be filled in, buts2(n−R)−d2L will not. At the same time, we have that
the left fringe ofkA is missing one element, and the left fringe ofs2A− d2A is as
well. We refer the reader to [ILMZ11] for details of the construction for a giveni
and j.

To illustrate the method, consider
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L = {0,1,3,4, . . . ,k−1,k,k+1,2k+1}
= [0, ℓ]\({2}∪ [ℓ− k+1, ℓ−1])

R = {0,1,2,4,5, . . . ,k,k+1,k+2,2k+2}
= [0, r]\({3}∪ [k+3,2k+1]). (13)

For anyx,y ∈ N, the basic structure ofxL+ yR is the same as that of the original
set. Basically,xL+ yR is always missing the firstk elements below the maximum,
as well as the singleton element 2k−1 away from the maximum. Even more, it is
missing no other elements.

Returning to the original problem, our initial set has a fringe structure and suf-
ficient empty space to allow the fringe to grow and exhibit thedesired behavior,
followed by a full middle. We can have more control of the set’s behavior by putting
in another fringe along the outside, with sufficient empty space to let the fringe
exhibit the correct behavior before it intersects with the inner fringe. This process
becomes technical, but it allows for a great degree of control over sets.

More generally, one has

Theorem 6.2 (Iyer-Lazarev-Miller-Zhang [ILMZ11]) Given finite sequences of
length k called xj ,y j ,wj ,zj such that xj +y j = wj +zj = j, x j 6= wj and xj 6= zj , for
every2≤ j ≤ k, there exists a set A such that

∣∣x jA− y jA
∣∣ >

∣∣wj A− zjA
∣∣ for every

2≤ j ≤ k. In particular, there exists a set A such that|cA+ cA|> |cA− cA| for every
1≤ c≤ k.

The above theorem answers our second question, and is the best possible (at
least in regard tok-generational sets) as every set is finite generational. In other
words, one cannot have a setA such that|cA+ cA| > |cA− cA| for all c. It turns
out that all sets have a kind of limiting behavior. As we continue addingA to its
sums, eventually we have a full middle, and any interesting behavior will occur
on the fringes. Note that if we normalizeA to include 0, we havecA⊂ cA− cA.
Essentially, the difference sets eventually have each fringe element as the sum sets.
Whenc is sufficiently large, the fringes ofcA stabilize, which gives|cA− cA| ≥
|cA+ cA|. Now, taking differences allows the left fringe to interactwith the right
fringe, while taking only sums keeps these separate. This means that it is possible
(and in fact likely) to have|cA− cA|> |cA+ cA| for all sufficiently largec. We can
readily obtain an upper bound on how long we must wait for the limiting behavior
of |kA| to set in.

Theorem 6.3 (Iyer-Lazarev-Miller-Zhang [ILMZ11]) Let A= {a1,a2, . . . ,am}⊂
{0,1, . . . ,n−1} be a set of integers (a1 < a2 < .. . < am) and let s= gcd(a1, a2, . . . ,

am). Then there exists an integer N such that for k≥ N we have|kA|= k(am−a1)
s −C

where C is a constant and k is bounded above byam−a1
s .

Sketch of the proof: It is enough to show the claim for a set of the form
{0,a1, . . . ,am} with gcd(a1, . . . ,am) = 1. AddingA to itself a1 times will generate
all congruence classes ofa1 because of gcd(a1, . . . ,am) = 1. AddingA to itself am

times will make both the left (L) and right (R) fringes stabilize, whereL = kA∩{0,
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1, . . . , a1am} andR= kA∩{kam−a1am, . . . ,kam}, and also ensures that the middle
part is completely filled.

We end with a few examples of the previous theorems. In these theorems no
effort was made to optimize the arguments and generate minimal such sets; this
would be an interesting future project, as it is almost surely possible to construct
examples of sets with the above properties that contain manyfewer elements. In
particular, the base expansion method of combining sets is extremely inefficient. An
alternative, which is discussed briefly above, is the multiple fringes method. This
allows for much smaller sets, however, the requirements forthe method to work
are very stringent, and the proofs are messy. Therefore we find it best to give the
constructions using the base expansion method instead.

• If we set

A = {0,1,3,4,5,9,33,34,35,50,54,55,56,58,59,60} (14)

then
|A+A+A+A| > |A+A+A−A|. (15)

• If we take

A = {0,1,3,4,7,26,27,29,30,33,37,38,40,41,42,43,46,49,50,52,53,54,

72,75,76,78,79,80} (16)

then

|A+A| > |A−A| and |A+A+A+A| > |A+A−A−A|; (17)

in other words,A is 2-generational.
• If we let

A = {0,1,3,4,5,6,11,50,51,53,54,55,56,61,97,132,137,138,140,

142,143,144,182,187,188,189,190,192,193,194} (18)

then
|4A−A| > |5A| and |4A−A|> |3A−2A|. (19)
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