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Abstract We review the basic theory of More Sums Than Differences (MgSets,
specifically their existence, simple constructions of idifiamilies, the proof that
a positive percentage of sets under the uniform binomialehace MSTD but not
if the probability that each element is chosen tends to zerd,'explicit’ construc-
tions of large families of MSTD sets. We conclude with somes menstructions
and results of generalized MSTD sets, including among atkers results on a
positive percentage of sets having a given linear comhlunagreater than another
linear combination, and a proof that a positive percentdgets arek-generational
sum-dominant (meaning, A+ A, ..., KA= A+ ...+ Aare each sum-dominant).
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1 Introduction

Many of the most important questions in additive number the@an be cast as
guestions about sums or differences of sets, where the sofsandB is

A+B = {a+b:AcAbeB} (1)
and the difference set is

A—-B = {a—Db:acAbeB}. 2
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To see this, let” be the set of primes andj (respectively.4;’) be the set okt
powers of integers (respectively non-negative integers).

1. Thefamous Goldbach problem is to prove that every everbeumay be written
as the sum of two primes; we may interpret this as saying tieaéven numbers
are contained i + 2. While this is still open, we do know that all sufficiently
large odd numbers are the sum of three primes. While suffigiéarge means
greater than 19°° here, we may remove ‘sufficiently large’ if we assume the
Generalized Riemann Hypothesis [DETZ97].

2. Another example is Waring’s problem, which says for eatégerk there is an
integers such that every positive integer is a sum of at neqmerfectk’™ powers.
In other words, there is as(depending ork) such that 4 + - -- + 4, (where
there ares sums) contains all positive integers. While the optimé&dr a given
k is not known, it is known that for eackthere does exist a finite (see for
instance [Na96]).

3. Fermat’s Last Theorem (proved in [Wi95, TW95]) stateg tha > 3 andx,y,z
are integers, then the only solutions¥d+ y" = z" havexyz= 0. After some
simple algebra we see it suffices to consider the case wheandz are all
positive, and Fermat's Last Theorem is just the statementthy + .4 ) N .47/
is empty forn > 3.

The three examples above all involve determining what efésn@re in sums of
sets; it is also interesting to see how often a given elensergdresented in a sum.
For example, the Twin Prime Conjecture is the assertionttiere are infinitely
many primes differing by 2; this is equivalent to how ofteis ®btained in??y — x,
where 2y is the truncated set of primes at mast

As the topic of sum sets and difference sets is so vast, irsthigey article we
restrict ourselves to an interesting class of questionsevthere has been significant
progress in recently years. Given a finite set of intederge may look alA + Aand
A—A. The most natural question to ask is: As we vArgver a family of sets, how
often is the cardinality oA+ A larger thanA — A? Denoting the size of a s&tby
|S], for |Al large we expect a typica to have|A+A| < |[A—A|. This is because
while the diagonal pairga,a) contribute a new sum t8 + A for eacha but only
one difference (namely 0) t& — A, addition is commutative while subtraction is
not. This means that for the larger collection of pairs otidit elementga,a’)
we havea+a = a +abuta—a # a —a We see a typical pair contributes two
differences toA — A but only one sum té\ + A. Using such logic, one expects sets
with |A+A| > |A— A to be rare.

If JA+A| > |A—A|, we sayA is asum-dominatedet or aMore Sums Than
Differences (MSTD}et, while if A+ A| = |A— A| we sayA is balanced and if
|A+A] < |A— A thenAis difference-dominatedrhe purpose of this article is to
describe results in the following areas.

1. Non-probabilistic constructions of MSTD sets. this section we summarize
some of the early constructions of MSTD sets, paying spettahtion to the
limitation of these techniques in determining whether dratypical set is sum-
dominated.
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2. A positive percentage of sets are MSTD sdtxe we discuss the papers of Mar-
tin and O’Bryant [MOO06] and Zhao [Zh11], which show that aywsmall, but
positive, percentage of all sets are sum-dominated.

3. When a ‘typical’ subset is difference-dominatéfdwe choose our subsets of
{0,...,n—1} from the uniform model, so that each of th& 2ossible subsets
is equally likely to be chosen, then the previous sectionwvsha positive per-
centage of subsets are sum-dominated. The situation isicdlfs different if
we sample differently. We describe the results of Hegarty Miller [HM09],
who showed that if each element frof@,...,n— 1} is chosen with probability
p(n) and lim_. p(n) = 0, then in the limit almost all subsets are difference-
dominated.

4. Explicit constructions of large families of MSTD seffie methods of [MOOQ6,
Zh11] are probabilistic, and do not yield explicit familiesMSTD sets. Miller,
Orosz and Scheinerman [MOS09] gave an explicit constroci@ large family
of subsets of0,...,n— 1} that are MSTD sets, specifically one whose cardinal-
ity is at leastC/n* for someC > 0; later Zhao [Zh10] gave a different construction
yieldingC’/n with C’ > 0. We describe these constructions and generalizations;
for example, Miller, Pegado and Robinson [MPR12] show thatdensity of sets
AcC{0,...,n—1} with [A+A+A+A] > |A+A—A—Alis atleasC”/n", where
r = £log,(256/255) < .001.

5. Generalized MSTD Set&.setAis ak-generational sum-dominant sefAfA+ A,

..., KA=A+---+ A are each sum-dominant. lyer, Lazarev, Miller and Zhang
[ILMZ11] proved that a positive percentage of sets kigenerational for any
positivek, but no set ik-generational for alk. Their construction uses a result
of interest in its own right, namely that if we are given angitinate order of
linear combinations of sums and differences\aif the same length a positive
percentage of\ have the cardinalities of these combinations in the desirddr-
ing. Such a result was expected from the work of Miller, Oraisd Scheinerman
[MOS09], who showed if there exists one set satisfying thredng then there
exists a large, explicitly constructible family of setsisfsting the condition. In
[ILMZ11] the needed set for the induction is found, and iastef appealing to
results from [MOSO09], the authors modify the arguments o®O[6] in order to
obtain a positive percentage.

The above list of topics is not meant to be definitive or extiaeisbut rather to
highlight some of the many results in the field. There are mom®egeneralizations
to other linear combinations of sets, as well as relatedlprodin Abelian groups,
that can be handled with these methods. We strongly urgestigter to consult the
references for full details and statements of related, gpestions.

Miller thanks Mel Nathanson who, through books and conuarss, helped in-
troduce him to this exciting subject, his collaboratorsPétegarty, Brooke Orosz,

1 Note thatA+A+A—A= —(A—A—A—A); thus we might as well assume any linear combination
has at least as many sums/oés differences oA.
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Sean Pegado, Luc Robinson and Dan Scheinerman for the isgiglaned from our
studies, and the participants of various CANT Conferenespdcially Greg Mar-
tin, Kevin O’'Bryant and Jonathan Sondow) for many enligiigrconversations;
all authors thank the participants of SMALL 2011 for helpédnversations and
discussions. The first, second and fourth named authors sugmgorted by NSF
grants DMS0850577 and Williams College; the third namedautvas partially
supported by NSF grant DMS0970067.

2 Non-probabilistic Constructions of MSTD sets.

In [Na06], Nathanson wrottEven though there exist sets A that have more sums
than differences, such sets should be rare, and it must leevith the right way of
counting that the vast majority of sets satisfids- A| > |A+ A|” Support for this
view can be found in the length of the search required to firdfitist MSTD set.
Conway is said to have foun{D,2,3,4,7,11,12,14} in the 1960s, while Marica
[Ma69] in 1969 gave{0,1,2,4,7,8,12,14,15} and Freiman and Pigarev [FP73]
found{0,1,2,4,5, 9,12,13, 1416,17, 21 24,25,26,28 29} in 1973. See also the
papers by Ruzsa [Ru76, Ru84, Ru92].

How hard is it to find such sets? A simple calculation shows ifhB = aA+
B, then|A+A| = |[B+B| and |A— A| = |B — B|; thus we might as well assume
0 is in our subset. The number of subsets{6f...,14} that include 0 is ¥ =
16,384. This is easily searchable by computer, though a litttebthe range of even
the most patient of mathematicians; the only MSTD set fouwnthé one already
mentioned. Even Freiman and Pigarev’s example can be foyral lirute force
within a reasonable time, a$%= 536,870,912.

While there are many constructions of MSTD sets, most ofetleemstructions
give a vanishingly small percentage of sets to be sum-ddetdn&pecifically, while
there are 2! subsets 00, 1,...,n}, these methods often give only on the order of
2"/2 (or worse) subsets that are MSTD.

For example, one way to generate an infinite family of MSTDs $edm one
known MSTD set is through thease expansion methddet Abe an MSTD set, and
letAxm={TK ;am1:a € A}. If mis sufficiently large, thepAm+ Acm| = |A+
A[K. We thus obtain an infinite family of MSTD sets, and, so longfas A| > 1, we
can have arbitrarily many more sums than differences. Wmhately, asnis large,
the percentage of subsets created that are sum-dominatgubisentially small. We
thus discuss other constructions (though this method Vil pn important role in
proving many of the theorems §6).

It is very easy to create balanced sets, and many constngsatioMSTD sets
take advantage of this. First, note thatifis an arithmetic progression thénis
balanced. To see this, lettilg= {0,1,...,n} we findA+ A= {0,1,...,2n} and
A—A={-n,...,n} so|A+A| = |A—A] =2n+ 1. Another way to create a balanced
set is to take a set symmetric with respect to a number (whéed mot be in the
set); this means that there is a numaesuch thatA = a* — A (this impliesA+A=
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a*+A—A so|A+ A =|A—A]). Note arithmetic progressions are a special case,
with a* =n/2. Nathanson [Na07] gives constructions of MSTD sets usiigjdea.

He creates infinite families by adjoining one number to a sytnimset which is a
small permutation of a generalized arithmetic progressitumerous examples and
explicit constructions are given in [Na07]; we state the firs

Theorem 2.1 (Nathanson [Na07]) Let md, and k be integers withmm 4,1 <d <
m—1,d#m/2,and k> 3ifd <m/2and k> 4ifd > m/2. Let B={0,1,....m—
1}\{d}, L={m-d,2m—d,...,km—d}, @ = (k+1)m—2d, and A =BULU
(a* —B). Then A= A*U{m} is an MSTD set.

How large of a family is this? We have three parameters at ispodal:m, d and
k. NoteA C {0,...,(k+1)m—2d}. Given somen, look at all triples(m,d, k) such
that (k+ 1)m— 2d < n; this will be an upper bound for the number of MSTD sets
generated by the theorem that live{i 1, ..., n} (it will be the actual number if we
show all the sets are distinct). As we also n&dd be at least three, we obtain an
upper bound by counting all paifk, m) with km < n (which is trivially at most?)
and noting that we hava < n choices ofd for each pair. Thus this method generates
at mostn® subsets 0f0,1,...,n} being MSTD sets, which is a vanishingly small
fraction in the limit. The paucity of this family is due to haxplicit the construction
is —everything is completely deterministic and at eachestagre is only one option.
We conclude our discussion on constructions of MSTD sets fandlies of
MSTD sets with a result of Hegarty [He07]. He proved

Theorem 2.2 (Hegarty [He07]) There are no MSTD subsets of the integers of size
seven. Up to linear transformations the only set of size{®i&,3,4,7,11,12 14}.

We paraphrase (slightly) from [He07] the description ofpineof. LetA= {a, =
0,an-1,...,a1}, and represent the— 1 differences; — a1 as€; (thei™ standard
basis vector iR"1). If we leave theay’s undetermined, thefA+ A| = n(n+1)/2
and|/A—A| =n(n—1)+1. As|A—A| s larger (in the case where thgs are unde-
termined), in order foA to be an MSTD set we must have non-trivial coincidence
of differences, specificallg; — a; = ax — a, for some(i, j) # (k,¢). Given such an
equation we can, by projection onto the orthogonal compigmiER" 1 of the sub-
space( € — €;) — (€x— €/) spans, represent elementsfoby vectors inR™ 1.
We recomputeA+ Al and|A—A|. If |A+A| < |A— A| we pick another non-trivial
identification of elements iA — A and repeat the above method with elementa of
now represented as vectorsi—3. The computation ends with all MSTD sets of
sizen whose smallest element is 0. With some additional insigiasimprove the
run-time, the program can cheok= 8 fairly quickly; unfortunatelyn = 9 is still
open (though Hegarty has results for all MSTD sets of sizevnlgaan additional

property).
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3 A positive percentage of setsare M STD sets

As for eachn studied very few of the 2subsets 0f0,1,...,n— 1} were found to
be sum-dominant, it was reasonable to conjecture that ilinttitealmost no subsets
were sum-dominant. While this conjecture is false, the gratiage of sum-dominant
sets is so small that this error is understandable.

Theorem 3.1 (Martin - O’'Bryant [MO06]) As n— o, a positive percentage of
subsets of0,...,n— 1} are sum-dominant.

Martin - O’Bryant [MOO6] proved this probability is at leadt10~7, which was
improved by Zhao [Zh11] to at least 40~4; Monte Carlo experiments suggest the
true answer is around®- 10~*. For smalln, it is possible to enumerate all subsets
of {0,...,n— 1}, which we do in Figure 1.

0.0005F
0.00041
0.000%f
0.000z1-

0.0001-

L L L L L Logn)
1 2 3 4 5

Fig. 1 The percentage of sum-dominated subset§Oof..,n— 1} versus log. These numbers

were obtained by enumerating all possible subsets 027, and by simulating 10,000,000 subsets
for eachn € {30,35,40,45,50, 75,100,125 150}.

Martin and O’Bryant’s proof uses probabilistic technigtesstimate the chance
that elements are in the sumset and the difference set. Fioiteleess, consider
subsetsof {0,1,...,n—1}. The sumse$+ Slies in{0,1,...,2n— 2} and the dif-
ference se—Sin {—(n—1),...,n—1}. The number of representations of a typical
ke {0,1,...,2n— 2} as a sum of two elements 8fs roughlyn/4 — |n—k| /4, while
the number of representations of a typika {—(n—1),...,n—1} as a difference
of two elements oSis roughlyn/4 — |k| /4. To see this, first consider the special
case whers= {0,1,...,n}. If we wantk = x+y with x < 'y, note oncec is chosen
theny is determined. Ik < n— 1 there are essentially/2 choices foix; the other
case is handled similarly. Our answer differs fra# — |n— k| /4 by a factor of 2.
This factor is due to the fact that a typical Sdtas approximatelg/2 elements, and
notn elements (by the Central Limit Theorem, the probabilityasishingly small
that|S differs fromn/2 by more tham®?*¢). Figure 2 demonstrates the rapidity
of convergence. There we uniformly choose margy {0, ...,99} and calculate the
average number of representations for all the possible sumddifferences, and
compare with the predictions above. Note for the differeplot we have removed
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the spike at 0, as for ea¢hthere argA| ways of representing O frol— A, and by
the Central Limit Theoren®| is approximately 1002 or 50.

L L L n L L
50 100 150 200 -100 -50 0 50 100

Fig. 2 Comparison of predicted and observed number of represmmadf possible elements of
the sumset and difference set fdor- {0,...,99} chosen from the uniform model (so each of the
2100 hossible subsets are equally likely to be chosen). We cha@different suctA and calculated
the average number of representations of each possiblelsfirplét, which lives in{0,...,198})
and difference (right plot, which lives i—99, . ..,99}), compared with the theoretical predictions.
Note the spike at 0 was removed from the difference plot.

We see from the above that there aranyways to represent the possible sums
or differences, so long as they are not near the fringe el&sn&heir proof pro-
ceeds as follows. L&k be an MSTD set, and writd as a disjoint unio. UU, with
Lc{0,....,—1}andRcC {4,...,£+u—1}. Consider the setdy =LUMUU’,
whereM C {¢,...,4+m—1} andU’ =U +m (soU’ is justU translated by
m). If k is close to 0 (respectively+ m+ u), then whether or nok € Ay + Aw
depends only o + L (respectivelyU’ 4+ U’). Similarly, the fringe elements of
Ay — Ay are determined by’ — L andL — U’. By cleverly choosingA (they take
L=1{0,2,3,7,8,9,10} andU = {11,12,13 14,16,19,20,21}) we can ensure that
there are more sum fringe elements included than differéimoge elements. The
proof is completed by showing that a positive percentagéefiossiblév’s lead
to no missing sums or differences in the remaining intervelss is accomplished
through a series of technical lemmas. The estimates hefargi®m optimal, but
suffice to prove a positive percentage of subsets are sunndomSpecifically, the
authors frequently appeal to the crude estimate that

b
Prob({a,a+1,....b} ZA+A) < % Probk¢ A+A)
k=a

(and similarly for difference sets).

There are many other results in this paper. The authors pinevexistence of pos-
itive lower bounds for the percentage of sum-dominant,ridd, and difference-
dominated sets. Though they cannot show the limits exisy, tonjecture that this
is the case. They show that the average cardinality of tierdiice sets is four more
than the average cardinality of the sumsets, providingtadil support that sum-
dominant sets should be rare. They also explare A| — |A— A|, and show that for
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anyx there is anA such thajA+ A| — |A— Al = x with A C {0,...,17x|} (which
is significantly more economical than the base expansiohodewould give). The
paper ends with some numerical explorations of missing santsconjectures that
the proportion of subse#s of {0,...,n— 1} with |A+A| = j and|A— A] =k con-
verges to a limiting proportiop; x asn — o.

Martin and O’Bryant fixed the fringe (thelr andU) and varied the middI&/;
Zhao [Zh11] allowed the fringe to vary as well. His methodswalhim to obtain
MSTD sets that are not missing any middle sums, which he shappens a van-
ishingly small number of times. This leads to a significargrsgthening of the re-
sults of Martin and O’Bryant, and a proof of many of their (anters) conjectures.
Specifically, he shows the following limits exist (and prde$ a deterministic algo-
rithm to approximate their values): the percentage of setsdre sum-dominant;
the percentage of sets that are balanced; the percentagtsdhat are difference-
dominant; the percentage of sets that are missing exsstiyns andl differences;
the percentage of sets that have exagtiymore sums than differences. The paper
ends with an investigation of the probabilities of varioleeents being in an MSTD
set, proving a conjecture of Miller, Orosz and Scheinern&@$09] that as grows
the probability a ‘middle’ element is in an MSTD set{#,...,n} tends to 1/2.

4 When a ‘typical’ subset is difference-dominated

The proofs that a positive percentage of subse{9of..,n— 1} are sum-dominant
all use, in one way or another, the following factAifis uniformly drawn from the
2" subsets of 0,...,n— 1}, then with high probabilityA has essentially/2 ele-
ments and almost all possible sums and differences areedallong these lines,
Martin and O’Bryant [MOO06] showed that a typical differerset is missing only
7 of the possible differences, and a typical sumset is ngskin(see [ILMZ11] for
a proof that the moments of the limiting distribution exiatahe tail probabilities
are bounded above and below by exponentially decaying pilitixs). These tech-
nigues apply to a slightly more general case. We may reirgétipe uniform model
above as saying each elemkrt {0,...,n— 1} is in a subsef with probability 1/2.
We could instead fix a probability € (0,1) and let eaclk be in A with probability
p.
In this constant probability model, our previous resultsagrositive percentage
again hold. If, however, we allow to vary with n, then the situation is drastically
different. Hegarty and Miller [HMO9] consider a binomial ol where eaclk €
{0,...,n— 1} is independently chosen to be in a sub&etith probability p(n). If
p(n) is a constant independent of we are in the regime handled by Martin and
O’Bryant (though we described their method in the uniformdelocase, similar
arguments work so long as the probability is independemf off, however,p(n)
tends to zero, then we are no longer in the case wiféréA+ Al and|A— Al are
always large. In this case very few sets are sum-dominarithwk in line with
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Nathanson’s (and others) intuition that, if properly cathtsum-dominant sets are
rare.

Before stating their main result, we first set some notati@i.N denote the
positive integers. We saf(x) = o(g(x)) if |f(x)/g(x)| — 0 asx — co.

Theorem 4.1 (Hegarty - Miller [HMO09]) Let p: N — (0,1) be any function such
that

n! = o(p(n)) and p(n) = o(1). 3)

For each ne N let A be a random subset ¢0,...,n— 1} chosen according to a
binomial distribution with parameter (@) (so each ke {0,....,n— 1} is in A with
probability p(n)). Then, as n— o, the probability that A is difference-dominated
tends to one.

More precisely, let”, 2 denote respectively the random variab|ést+ A| and
|A— AJ|. Then the following three situations arise:

(i) p(n) = o(n"/2) : Then
S~ (npiz(n))z and 2 ~2 ~ (n-p(n)) (4)

(i) p(n) = c-n~Y/2 for some c= (0, ) : Define the function g(0,%) — (0,2) by

o = 2( =), ©
Then 5
S~ g<%> n and 2 ~ g(c?)n. (6)
(iyn~Y2=0o(p(n)) : Let.C:= (2n+1) —.#, 2°:= (2n+1) — 2. Then
C ~ . C ~ 4
S~ 2.9 O (7)

The proof proceeds by using various tools to obtain stromgentration results
on the sizes of the sum and difference sets. The tools neesfend on the decay
of p(n). Not surprisingly, the fastgp(n) decays the easier it is to obtain the needed
concentration results. The greater the decay, the fewareglts are in a typical,
and thus the greater the effect of the non-commutativityibtrsction in generating
more new elements. Chebyshev’'s Theorem suffices for casav@)still follows
elementarily (via a second moment argument), while theltbarse requires some
recent results on strong concentration by Kim and Vu [KV00Q¥, Vu02].

The idea of the proof, at least in case (i), is fairly straigiward. Whemn 1 =
o(p(n)) and p(n) = o(n~/2), then the expected size of a randomly chogeis
np(n) = o(n'/?). The heart of the proof is to show that such sets are neartynSid
sets, which means that most pairs of elements generataatfistims and differ-
ences from other pairs (other than the diagonal pairs, thwbeee the two elements
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are equal, which give just one difference, namely zero).h&srton-diagonal pairs
generate one sum but two differences, we expect that thereiifte set will be twice
as large as the sumset. A simpler proof of this case is givémeimrXiv version of

[HMO09], as well as [HM10] (see Appendix 2).

We sketch the proof of case (i) as it highlights the ideas euttioo many tech-
nicalities. The first step is to bound, with high probabijlitye size of a subsét of
{0,...,n—1} chosen from the binomial model with paramepén) = o(n~%/2). For
ease of exposition, assurpén) = cn~9 for somed < (1/2,1). Using indicator ran-
dom variable, . .., X,_1 to denote whether or n&te A, by Chebyshev’s theorem
the probabilityX = Xo+ -+ +Xn_1 is in [3cnt=2, 3cnt 9] is at least - 4N°-1,
From here, we obtain upper and lower bounds for the numbeaios pf elements
(m,n) with m < n both inA. All that remains is to show that, with high probability,
almost all of the pairs generate distinct sums and diffezsfijmm each other.

For definiteness we study the differencegnifn) and(m',n’) generate the same
difference them—n=m' —n'. Let Yy v be 1 ifmn,m .1’ are inA andm—
n=m —n', and letY be the sum of th&, v v's. What isE[Y]? Rather than
determining it exactly, it suffices to obtain an upper boude can shovE[Y] <
2C*n%-4 whereC = max(1,c) by considering separately the cases where all four
indices are distinct and when three are. As a typichahs size on the order of 2,
we expect on the order of2-29 differences; this is significantly larger thaiy], so
most of the differences are distinct from each other. Alt teanains is to control the
variance ofY, and then another application of Chebyshev’s theorem gribvagY is
concentrated near its mean, and hence there are on the 6&tér & differences.
The variance estimate follows from elementary counting.

A particularly interesting feature of the above theoremhs éexistence of a
threshold function for the density. If the densjign) = o(n~/2) then almost surely
the ratio of the size of the difference set to the sumset isilevabove the thresh-
old (son~1/2 = o(p(n))) the ratio is 1 (though the number of missing sums is
twice that of the number of missing differences) pifn) = cn~1/2 then the ratio
of |[A—AJ/|A+A| tends tog(c?)/g(c?/2), with g(x) = 2(e X~ (1—-x)) /x. Note
this ratio tends to 2 as— 0 and tends to 1 as— o, which is in line with Cases
(i) and (iii) of the theorem. There is thus a nice phase ttasin behavior, though
this is hard to see experimentally as #h~—1/2 is smaller tham~/2log~* n until n
exceeds ex{10'%). In Figure 3 we numerically explore this transition.

Not surprisingly, for a fixech the largercis, the closer the behavior is to the lim-
iting case. To investigate this further, in Figure 4 we exaaO0 choices of from
.01 to .41 withn = 1,000,000. Forc = .01 the typical randormi has only 10 ele-
ments; this increases to about 400 witen .41. We see a noticeable improvement
between the observed and conjectured behavior for thisdaue of.

To further investigate the transition behavior, we fixed watues ofc and stud-
ied the ratio for various. We chosec = .01 (where the ratio should converge to
1.99997) andt = .1 (where the ratio should converge to 1.99667); the restdts a
displayed in Table 1.
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L L L L
1 2 3 4

Fig. 3 Plot of [A—A|/|A+ A for tenA chosen uniformly from{1,...,n} (n = 10,000 on the left
and 100000 on the right) with probabilitp(n) = ¢/./n versusy(c?),/g(c?/2).

L L L
0.1 0.2 03 0.4
i i i i
0.1 0.2 03 0.4

Fig.4 Plotof|[A—A|/|A+A| for tenAchosen uniformly fron{1,...,n} with probability p(n) =
¢/+/n (n=1,000,000) versugy(c?)/g(c?/2) (second plot is just a zoom in of the first).

n{|Observed Ratioo= .01)|Observed Ratiod=.1)
100,00( 1.123 1.873
1,000,00 1.614 1.956
10,000,00 1.871 1.984
100,000,00 1.960 1.993

Table1 Observed ratios diA—A|/|A+A| for Achosen with the binomial modg(n) = cn—Y/2 for
ke {0,...,n—1} forc=.01 and .1; a; — o the ratios should respectively converge to 1.99997

and 1.99667. Each observed data point is the average froantidmly chosed's, except the last
one forc = .1 which was for just one randomly chosAn

5 Explicit constructions of large families of MSTD sets

Until recently, all explicit constructions of families of 8D sets led to very sparse
families, with an exponentially small percentage of thes@bsets of0,...,n—1}
being sum-dominant. While the methods of Martin and O’Bityanved that a posi-
tive percentage of the'aubsets were sum-dominant, their probabilistic method did
not allow them to explicitly list these MSTD sets. We quickéyiew their construc-
tion, which was described in greater detaik#h

The word explicit requires some comment. We say a constmudsi explicit if
there is a very simple rule that can quickly be implementeddnerate the sets.
For example, one method involves taking anyMet {0,...,m— 1} such that there
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are nevek consecutive elements {f0,...,m— 1} notin M. It is very easy to write
down sets having this property; it is also easy to count howynsach sets there are
(and it is this ease in counting that leads to many good ®sult

Martin and O’Bryant began by choosing a special 8et LUU with L C
{0,...,¢£—1} andU C {¢,...,¢+u—1} such that more of the fringe sums were
realized inA+ A than fringe differences. They then showed that one coulerins
almost any set in the middle & (shifting the elements df up) and have a sum-
dominant set. Miller, Orosz and Scheinerman [MOSO09] exqaarhich sets, when
inserted, did not lead to sum-dominant sets. While this igry ard question, it
turns out that if one carefully chooses setsndU then one can shoanyset that is
never locally too sparse may be inserted and yield a sum+tmmset. The end re-
sult is a sparser family than Martin and O’Bryant; howeveis still a large family,
and all the technical probability lemmas of [MOOQG6] are regld with elementary
counting arguments.

The following property is crucial in the argument. We say aodéntegersA has
theproperty R (or is aP,-se) if both its sumset and its difference set contain all but
the first and lash possible elements (and of course it may or may not contairesom
of these fringe elements). Explicitly, lat= minA andb = maxA. ThenAis aR,-set
if

{2a+n,...,2b—n} C A+A (8)
and
{=(b—a)+n,..., (b—a)—n} C A—A 9)

Itis not hard to show that for fixed € (0,1/2) arandom set drawn frog0,...,n—
1} in the uniform model is & 4, -set with probability approaching 1 @s— co; it
is even easier in our situation as the length of theAsstll grow but n will remain
fixed. Their main result is

Theorem 5.1 (Miller-Orosz-Scheinerman [MOS09]) LetA=LURbeaR, MSTD
set where LC {0,...,n—1}, RC {n,2n—1}, and 0,2n— 1 € A;2 for example,
A={0,1,2,4,7,8,12 14,15} from [Ma69] works. Fix a k> n and let m be arbi-
trary. Let M be any subset §h+k, ..., n+k-+m— 1} with the property that it does
not have a run of more than k missing elements (i.e., fof al{n+k,...,n+m}
thereisa je {¢—1,...,/4+k—2} such that je M). Assume further that# k ¢ M
and set AM;k) =LUO;UMUO2,UR, where Q = {n,...,n+k—1}, O, =
{n+k+m,...,n+2k+m—1} (thus the @s are just sets of k consecutive inte-
gers), and R= R+ 2k+m. Then

1. A(M;k) is an MSTD set, and thus we obtain an infinite family of distM8TD
sets as M varies;

2. there is a constant & 0 such that as r— o the proportion of subsets of
{0,...,r — 1} that are in this family (and thus are MSTD sets) is at leagt'C

2 Requiring 02n— 1 € Aiis quite mild; we do this so that we know the first and last eletmiefA.
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It turns out that being &,-set is not an especially harsh condition, and it is pos-
sible to find these sets. The idea of the construction is tosadsl in the middle
such that all possible middle sums and differences aremddaiand thus whether
or notA(M, k) is sum-dominant will depend only ok Specifically, it will depend
on whether or noA itself is an MSTD set. While the choices in the construction
are not optimal, they do suffice to almost give a positive petage of sets are sum-
dominant, where now we miss by a power instead of by an exp@mheA little
algebra shows that i is a Py-set, then so too is ouk(M; k). To see this, we need
only show that we hit all possible sums and differences ebaigihe fringe. Briefly,
the idea behind the construction is that becaDsend O, havek consecutive in-
tegers andM never misse& consecutive integers, when we look at sums such as
01+ M we will always have two elements i(M; k) that will add to the desired
number (and similarly for the differences).

The rest of the proof deals with examining how restrictive #ssumption is
that M never misse& consecutive integers. One can solve this by writing down
a recurrence relation, but an elementary approach is &l@ilghich yields quite
good results with little work. We assume a slightly strongendition: we brealvi
into blocks of lengthk/2 and assumi# always has an element from each of these
blocks. This ensures that there can never be a gap as lakgeeiseen elements of
M (the gap is at most— 2). There are 2 possibilities for each block of lengky2;
all but one (choosing no elements) satisfies the strongetittom. The percentage
of such valid sets i40,...,r — 1} is a constant times

4 1\ %2
kznﬁ(l—m> . (10)

There are two factors leading to obtaining less than a pesiercentage. The first

is, obviously, that in each block of lengiti2 we lose one possibility, and this factor
is raised to a high power. The second is t@atandO, are completely determined

and their length depends ¢ Thus, as soon dsgrows withn, we see we cannot

have a positive percentage. Analyzing the sum gives thmeldibounds.

Remark 5.2 The above theorem can be improved by appealing to an analfysis
probability m consecutive tosses of a fair coin has its I@hgéreak of consecutive
heads of lengtlf (see [Sc90]). What is fascinating about the answer is thatewh
the expected value défgrows likelog,(m/2), the variance converges to a quantity
independent of m, implying an incredibly tight concentratilf we take @ and G

as before and of length k, we may take a positive percentag# bf's of length

m to insert in the middle, so long as=klog,(m/2) — ¢ for some c. The size of A
is negligible; the set has length essentiallyak. Of the2™2¢ possible middles
to insert, there are @™ possibilities (we have a positive percentage of M work, but
the two O’s are completely forced upon us). This gives a p¢ace on the order of
2m /2™ 2k as k= log,(m/2) — ¢, this gives on the order df/n? as a lower bound
for the percentage of sum-dominated sets, much better beapreviousl /mt*,
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The results of [MOS09] can be generalized to compare liregang. We can find
infinite families of sets satisfying

|&lA+ -+ &A] > | A+ +EA], §,8§€{-11} (11)

if we can find one set satisfying the above. We've seen from [MQ@0@a1] that
very few sets are sum-dominant; thus we expect the percemtagets satisfying
(11) to be extremely small, and thus expect it to be a chafldadind the needed
set. Brute force search foud@, 1, 2, 3,7, 11, 17, 21, 22, 24, 25, 28, 29, 30, 31, 33,
44, 45, 48, 49, which gives|A+ A+ A > |A+ A— A|; unfortunately, such naive
searching was unsuccessful in finding examples for othepeoisons. We describe
a new method by lyer, Lazarev, Miller and Zhang [ILMZ11]§6 which generates
the needed sets to begin the induction arguments.

In the above generalizations, the construction from [MQ30 |A+A| > |A—
Al is mimicked for the linear forms. In particular, we still asse thatM has at least
one element in each block of lendtf2. While this was necessary fix+A| > |A—
A, Miller, Pegado and Robinson [MPR12] show that this is n@&del in general.
For example, if we are studyingh+ A+ A+ A| versus|A+A—A—A|, we are
assisted by the fact that we can h&¥et O; and then add this tM + M. The final
result of all of this is that we may allo®; andO, to be significantly more sparse
than in [MOSO09], where they had to chodseonsecutive elements and thus had no
freedom. What matters is th& + O; contain large consecutive blocks of integers,
not that eact®; do so. This allows us to improve upon the2# terms in (10).

Before stating the result, we need to slightly generaligertbtion of aP,-set to
aPi-set. We saAis aPi-setif A+ A+ A+AandA+A— A— Aeach contain all
but the first and last elements; thus what we calledPaset before is really Enz—set.

Theorem 5.3 (Miller-Pegado-Robinson [MPR12]) Let A=LUR be a R, MSTD
set where LC {0,...,n—1}, RC {n,2n—1}, and0,2n— 1 € A;® for example,
A={0,1,3,4,7, 26, 29, 30, 32, 33, 34, 27, 28, 31, 53, 56, 57, 596 60works.
Fix a k> n and let m be arbitrary. Let M be any subsefaft k..., n+k+m—1}
with the property that it does not have a run of more than k imiselements (i.e.,
forall £ € {n+Kk,...,n+m} thereisa je {{—1,...,¢+k— 2} such that j€ M).
Assume further that# k¢ M and set AM; k) = LUO;UMUO,UR/, where Q =
{n,...,n+k—1}, Oy = {n+k+m,...,n+2k+ m— 1} (thus the @s are just sets
of k consecutive integers), and-R R+ 2k+m. Then

1. A(M;k) is an MSTD set, and thus we obtain an infinite family of distM8TD
sets as M varies.

2. There is a constant & 0 such that as r— o the proportion of subsets of
{0,...,r — 1} that are in this family (and thus are MSTD sets) is at leagt'c®.

3. With better choices of Oand G, one can explicitly construct a large family
of sets A withA+A+A+A| > [(A+A) — (A+ A)| and show that the density

8 As before, requiring ®n— 1 € A is quite mild and is done so that we know the first and last
elements oA



Finding and Counting MSTD sets 15

of sets AC {0,...,n— 1} satisfying this condition is at least/@", where r=
110g,(256/255) < .001

4. For each integer k, there is a setA{0,...,15%} such thai2A + 2A| — [2A—
2A| = k; if k is large we may take & {0,...,35Kk|}.

The proof of the first two assertions follows identically asjMOS09] (if we
argue as in Remark 5.2 and use the results from [Sc90], we masove (2) from
r%/3 to r?/3). For the third assertion, the additional binary operatigives us enor-
mous savings and removes many of the restrictions on thedbthe O;’'s. We note
that theO;’s show up in sums and differences at least in pairs, unlesshad with
L+L+L R+R+RorL+L-R (A=LUR). EachofL+L+L, R+R +R
andL +L — R contains a run of 16 elements in a row for our &eThis allows us
to relax the restrictions o®; from [MOS09] (eachD; wask consecutive elements);
if eachQ; has no run of 16 missing elements ar@ 2s full for both O;’s, simple
algebra shows that we get all sums and differences as béfoielooser structure
on theO;’s allows us to replace the/2%¢ in (10) with a much better term, leading
to a significantly better exponent and thus greatly imprbeedensity bound.

Returning to MSTD sets (and not their generalizations),ciingent record for
densest explicit family of MSTD sets is due to Zhao [Zh10]odbund a family of
{0,...,n—1} of order 2'/n. He achieved this by showing a correspondence between
bidirectional ballot sequences and sum-dominant setmlbt sequences a list of
1s and Os if every prefix has more 1s than 0s and the maximunsexéd.s over
Os is attained at the end of the sequence. If you imagine tlas ¥8nning $1 and
the Os as losing $1, we may interpret this as we bet a fixed aneawh game, our
winnings are always positive and our greatest balance Iseag¢nd. A sequence of
1s and Os is didirectional ballot sequencié both it and the reversed sequence are
ballot sequences.

Much of the construction is similar to [MO06, MOS09]; we agtake a set that
leads to the desired fringe behavior, and study whichMatsay be inserted. Unlike
the previous constructions, here we ask thfats a bidirectional ballot sequence
(where we write 1 if an element is M and O if it is not). This is equivalent to the
following. LetM C {0,...,m—1}. Then every prefix and suffix df0,...,m— 1}
has more than half its elementsih As each prefix and suffix has more than half its
elements irM, by the pidgeon hole principle at least one pair will bdvinand that
will generate the desired sum or difference. The probleims teduced to counting
the number of bidirectional ballot sequences,

6 Generalized MSTD Sets

There are many ways to generalize the notion of a sum-domgenBelow we
discuss two possibilities that were recently analyzed iiMZ11]; we comment
briefly on the ideas and constructions, and refer the readére article for full

details. As we are always adding sets and never multiplyimal] arguments below
we use the shorthand notation
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KA = A+---+A. (12)
——

ktimes

1. Given non-negative integess di,s,, d, with s; +d; = s, +d» > 2, can we find
a setA with |s5A—diA| > |s;A—doA|, and if so, does this occur a positive per-
centage of the time?

2. We say a set ik-generational ifA, A+ A, ..., kAare all sum-dominant. Dk
generational sets exist, and if so, do they occur a positvegntage of the time?
Is there a set that isgenerational for ak?

The first question is motivated by generalizing the binargnparison. When
s +d; = 2, the only possible sets afe+ AandA— A (note—A— Ais the same as
the negation oA+ A). Whens; + d; = 3, again there are again essentially just two
possibilitiesA+A+AandA+A—A(asA—A—A=—(A+A—A), and thus without
loss of generality we might as well assuge d;). The situation is markedly differ-
entonce the sum s at least 4. In that case, we nowhAavA+ A+ A, A+A+A—A
andA+ A— A— A All possible orderings happen a positive percentage ofitthe.

Theorem 6.1 (Iyer-Lazarev-Miller-Zhang[ILMZ11]) Given non-negative inte-
gers §,d1,S,dy with 5y +dy = s+ dp =k > 2, if {s,d1} # {s,d2} then a pos-
itive percentage of all sets A satisfsgA— diA| > |S,A— doA|. For definiteness
assume sis the largest of the s's and d’s. Given any non-negativeger® i |
with j < 2i, for all n sufficiently large there exists an @ {0,1,...,n} such that
[ssA—diAl =kn+1—iand|sA—doAl =kn+1—j.

Sketch of the proofThe proof is similar in spirit to many of the results in the
field; we first find one example by cleverly constructing a sitha certain fringe
structure, and then use the methods from Martin-O’Bryan®[M] to expand the
set by essentially adding anything in the middle. The difficias was apparent in
[MOS09], is in constructing one such set. To make such asete pick fringes
L andR such that their sums (with themselves or with each otherg llag same
structure (a few chosen elements below the maximum missittgen we letA =
LUMU (n—R), whereM is a large interval in the middle. M is large enough, we
don’t have to worry about anything besides the fringesAdssummed, the fringes
slowly fill in, however, we choosk such that mafl.) < max(R). This means that
the right fringe ofkAfills in faster than the left. Note that the right fringeloh is
justk(n—R), and the right fringe 0§,A — d»A is s,(n— R) — dL. SinceR grows
faster tharL, we can choose the middle such thét — R) will intersect with the
middle and be filled in, but,(n — R) — d,L will not. At the same time, we have that
the left fringe ofkA is missing one element, and the left fringessA — d,A is as
well. We refer the reader to [ILMZ11] for details of the comsttion for a given
andj.

To illustrate the method, consider
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L = {0,1,3,4,....k— 1k k+1,2k+1}
= [0,0\ ({2} U[¢—k+1,6—1])
R ={0,1,2,4,5,...,kk+1k+22k+2}
= [0,1]\ ({3} U [k+3,2k+1]). (13)

For anyx,y € N, the basic structure ofL + yRis the same as that of the original
set. BasicallyxL + yRis always missing the firdk elements below the maximum,
as well as the singleton elemerit2 1 away from the maximum. Even more, it is
missing no other elements.

Returning to the original problem, our initial set has aderstructure and suf-
ficient empty space to allow the fringe to grow and exhibit desired behavior,
followed by a full middle. We can have more control of theseghavior by putting
in another fringe along the outside, with sufficient emptaato let the fringe
exhibit the correct behavior before it intersects with theer fringe. This process
becomes technical, but it allows for a great degree of coater sets.

More generally, one has

Theorem 6.2 (lyer-Lazarev-Miller-Zhang[ILMZ11]) Given finite sequences of
length k called x,yj, wj,zj such that x+yj = wj +zj = |, X; # wj and X # z;, for
every2 < j <k, there exists a set A such tHajA—y;A| > |w;A—z;A| for every

2 < j <k. In particular, there exists a set A such the@A+ cA| > |cA— cA| for every
1<c<k.

The above theorem answers our second question, and is th@dsssble (at
least in regard tk-generational sets) as every set is finite generationaltiaro
words, one cannot have a sktsuch thatjcA+ cAl > |cA—cA| for all c. It turns
out that all sets have a kind of limiting behavior. As we coné addingA to its
sums, eventually we have a full middle, and any interestialgalvior will occur
on the fringes. Note that if we normaliZeto include 0, we haveA C cA— cA
Essentially, the difference sets eventually have eaciydrelement as the sum sets.
Whenc is sufficiently large, the fringes afA stabilize, which givescA— cAl >
|cA+cAl. Now, taking differences allows the left fringe to interadgth the right
fringe, while taking only sums keeps these separate. Thamthat it is possible
(and in fact likely) to havecA— cA| > |cA+ cA for all sufficiently largec. We can
readily obtain an upper bound on how long we must wait for iméihg behavior
of |kA to setin.

Theorem 6.3 (lyer-Lazarev-Miller-Zhang[ILMZ11]) LetA={aj,ap,...,am} C
{0,1,...,n—1} be a set of integers {a< a < ... < am) and let s=gcday, a, ...,
am). Then there exists an integer N such that for Kl we havedkA| = k@"‘is’al) -C
where C is a constant and k is bounded abovétyf.

Sketch of the prooflt is enough to show the claim for a set of the form
{0,a1,...,am} with gcd(ay,...,am) = 1. AddingA to itself a; times will generate
all congruence classes af because of gd@y, . ..,an) = 1. AddingA to itself am,
times will make both the leftl() and right R) fringes stabilize, wherke = kAN {0,
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1,...,aam} andR= kAN {kam—aiam, . ..,kam}, and also ensures that the middle
part is completely filled.

We end with a few examples of the previous theorems. In theseréms no
effort was made to optimize the arguments and generate rairsach sets; this
would be an interesting future project, as it is almost supalssible to construct
examples of sets with the above properties that contain rfemgr elements. In
particular, the base expansion method of combining seigrisraely inefficient. An
alternative, which is discussed briefly above, is the midtfgnges method. This
allows for much smaller sets, however, the requirementshfermethod to work
are very stringent, and the proofs are messy. Therefore watfivest to give the
constructions using the base expansion method instead.

e If we set
A = {0,1,3,4,5,9,33,34,35,50,54,55,56,58,59, 60} (14)
then
[A+A+A+A > [A+A+A-A. (15)
e If we take

A = {0,1,3,4,7,26,27,29,30,33,37,38,40,41, 42,43, 46,49,50,52,53, 54,
72,75,76,78,79,80} (16)

then
[A+A] > [A—A and [A+A+A+A > [A+A-A-A; a7)

in other wordsA is 2-generational.
o Ifwe let

A ={0,1,3,4,5,6,11,50,51,53,54,55,56,61,97,132 137,138 140,
142,143,144,182 187,188 189,190,192 193 194} (18)

then
|[4A—A| > |BA| and |[4A—A| > |3A—2A|. (19)
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