MOST SUBSETS ARE BALANCED IN FINITE GROUPS
STEVEN J. MILLER AND KEVIN VISSUET

ABSTRACT. The sumset is one of the most basic and central objects ithadtumber
theory. Many of the most important problems (such as Goldksamonjecture and
Fermat's Last theorem) can be formulated in terms of the suist S = {z +

y : x,y € S} of a set of integerss. A finite set of integersA is sum-dominated

if |[A+ Al > |A — A|]. Though it was believed that the percentage of subsets of
{0,...,n} that are sum-dominated tends to zero, in 2006 Martin and ya'Brproved

a very small positive percentage are sum-dominated if ttssase chosen uniformly at
random (through work of Zhao we know this percentage is apprately4.5 - 10~%).
While most sets are difference-dominated in the integes,dhss is not the case when
we take subsets of many finite groups. We show that if we takeets of larger and
larger finite groups uniformly at random, then not only ddes probability of a set
being sum-dominated tend to zero but the probability fHat A| = |A — A tends to
one, and hence atypical setis balanced in this case. The oétlgs marked difference
in behavior is that subsets 8, . . ., n} have a fringe, whereas finite groups do not. We
end with a detailed analysis of dihedral groups, where thglt®are in striking contrast
to what occurs for subsets of integers. Specifically, evengh almost all subsets of
dihedral groups are balanced as the size grows, more sesuar&ominated than
difference-dominated.
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1. INTRODUCTION

Given a subse$' of a groupG, we define its sumseét + S and difference sef — S
by

S+S = {ai+aj:ai,aj€A}
S-S5 = {a;—a;:a;,a; €A}, (1.1)

and let| X' | denote the cardinality oK. Notice that we’re writing the group action as
addition, but are not assuming commutativity. If we were tdaewthe action multiplica-
tively we would still call these the sumset and the differeset, instead of the product
and quotient sets, to match the language from earlier workiwdtudied subsets of the
integers.

If |S+ S| > |S— S|thensS is sum-dominant or an MSTD (more sums than differ-
ences) set, while ifS + S| = |S — S| we sayS is balanced and ifS + S| < |S — S|
thenS is difference-dominated. If we let the grodpbe the integers, then we expect
that for a ‘generic’ set we have|S — S| > |S + S|. This is because addition is com-
mutative while subtraction is not, since a typical pairy) contributes one sum and
two differences.

Though MSTD sets are rare among all finite subsets of integezg do exist. Ex-
amples of MSTD sets go back to the 1960s. Conway is creditddfinding {0, 2, 3, 4,

7, 11, 12, 14}; for other early examples see also Marita [Ma] and Freimaih Rin
garev [FP]. Recently there has been much progress in findiimgte families, either
through explicit constructions (see Hegarty [He] and Nasioa [Nal]), and existance
arguments via non-constructive methods (see Ruzsa [R&2lFR1B] and Miller-Orosz-
Scheinerman [MOS]). The main result in the subject is due totid and O’Bryant
[MO], who proved a positive percentage of subset§ofi, ..., N} are sum-dominant,
though the percentage is small (work of Zhao [Zh2] suggéstsarounds.5 - 10~4).

Almost all previous research on MSTD sets focused exclisive subsets of the
integers, though recently Zhao [Zh1] extended previouslte®f Nathanson [Na2],
who showed that MSTD sets of integers can be constructed M&MD sets in fi-
nite abelian groups. Zhao provides asymptotics for the rmrmobMSTD sets in finite
abelian groups. An immediate corollary of the main theorefZh?2] is that if {G,,} is
a sequence of finite abelian groups wWjth,,} — oo then the percentage of MSTD sets
is almost surely. In this paper we not only extend this result to differenoeathated
sets but to non-abelian finite groups as well.

Theorem 1.1. Let {G, } be a sequence of finite groups, not necessarily abelian, with
|G| — oo. LetS,, be a uniformly chosen random subset aka ThenP(S,, + S,, =

S, — S, = G) — 1 asn — oo. In other words, as the size of the finite group grows
almost all subsets are balanced (with sumset and differeatthe entire group).

While Theoren_1l1 shows that in the limit almost all subsétfimite groups are
balanced, it leaves open the relative behavior of sum-damiand difference-dominant
sets. Though the number of such sets are lower order andypagesvise tends to zero,
are there more, equal or fewer sum-dominant or differermraidant sets? For example,
Figure[1 shows the result of numerical simulations for 10,6@ck groupsZ/nZ for
n € {10,...,100}.
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FIGURE 1. Numerical simulations on the number of balanced,
difference-dominated and sum-dominated subset& ofZ for n €
{10,...,100}. For eachn we uniformly chose 10,000 random subsets
of {1,...,n}. Top plot is the percentage of balanced, middle is the per-
centage of difference-dominated, and bottom is the peagendf sum-
dominated.

In Sectior 3.2 we explore this question for subsets of diéleghoups, and see very
different behavior than in the integers. We conjecture Wiate almost all subsets of
the dihedral group are balanced, there are more MSTD satdtieae are difference-
dominated sets, in sharp contrast to the prevalence ofelifte-dominated subsets of
the integers.

The paper is organized as follows. We first prove our mainlrésuall finite groups
in §2. We then explore the MSTD sets of the dihedral group_In\88 end with some
concluding remarks and suggestions for future research.

2. UBSETS OFFINITE GROUPS

Martin and O’Bryant[[MO] showed that although MSTD subsetthe integers are
rare, they are a positive percentage of subsets. MSTD sditsiten groups are even
rarer. We will prove that as the size of a finite group tendshfity, the probability
that a subset chosen uniformly at random is sum-dominaxdistém zero. Somewhat
surprisingly, this is also true for difference-dominatedss This is very different than
the integer case, where more than 99.99% of all subsetsféegeedice-dominated.

The reason the integers behave differently than finite ggasiphat a subset of the
integers contains fringe elements, which we now define. L.bt a subset of,, :=
{0,1,...,n} chosen uniformly at random. The elementsSofiear 0 and: are called
the fringe elements. Interestingly the notion of nearnggsdependent af; the reason
is that almost all possible elementsigf+ I,, and/,, — I,, are realized respectively by
S+ S andS—.S; Martin and O’'Bryant[MO] prove that +.5 andS — S miss on average
10 and 6 elements, while Lazarev, Miller and O'Bry&ant [LMQbpe the variance is
bounded independent af Thus whether or not a set is sum-dominant is essentially
controlled by the fringe elements 6f as the ‘middle’ is filled with probability 1 and
the presence and absence of fringe elements control thensedt In a finite group,
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there are no fringe elements since each element can bemaiste-| different sums
and differences, and thus most elements appear in the swmdéterence set with
high probability.

In the proof of Theorem 111 we reduce certain probabilitegroducts of Lucas
numbersL(n); these satisfy the recurrendgn + 2) = L(n + 1) + L(n) with ini-
tial conditionsL(0) = 2 andL(1) = 1. Note this is the same recurrence relation as
the Fibonacci numberg'(n), who differ from the Lucas numbers in that their initial
conditions are’(0) = 0 andF'(1) = 1.

The following lemma is useful, and is in the spirit of caldidas from [LMQ]. The
interpretation will be that the red vertices correspondléments chosen to be in an
S, and the condition that no neighboring vertices are botbreal red will ensure that
certain elements are not represented i S.

Lemma 2.1. LetC,, = {a4,...,a,} denote a closed chain of elements (s@, is
adjacent toay anda,, and so on). IfP(n) is the number of ways to color the vertices
of C,, red or blue such that no two neighboring vertices are colaesti thenP(n) =
L(n).

Proof. We derive a recurrence formula féf(n). We may drawC,, as a regulan-gon
with thea;’s as the vertices. Let(n) denote the number of ways a line withvertices
ay,as, . . .,a, can be colored red or blue so that no two neighboring verticesolored
red. We have

P(n) = A(n—1)+ A(n —3). (2.1)

To see this, there are two cases. Consider the first verteX,it is colored blue then
we may ‘break’ the chain at; and the problem reduces to determining the number of
ways to colom — 1 vertices on a line red or blue so that no two neighboring ones a
both red; by definition this isl(n — 1). Alternatively, ifa, is colored red then, anda,,
must both be colored blue, and thus we are left with colorinrg3 vertices on a line so
that no two consecutive vertices are both red; again, byitiefirthis is justA(n — 3).

Thus the lemma is reduced to computiAgr ), which satisfies the Fibonacci-Lucas
recurrence. To see this, considevertices on a line, wittd(n) the number of ways to
color these red and blue so that no neighbors are both calededf the first vertex is
colored blue, then by definition there atén — 1) ways to color the remaining vertices,
while if the first vertex is colored red then the second mustdiered blue, leaving
A(n — 2) ways to color the remaining vertices. Thus

An) = A(n—1)+ A(n —2). (2.2)
It is easy to see that(1) = 2 and A(2) = 3, which implies
A(n) = F(n+2), (2.3)
whereF(n) is then" Fibonacci number. A®(n) = A(n — 1) + A(n — 3), we find
P(n) = F(n+1)+ F(n—1). (2.4)
As then™ Lucas number satisfies
Lin) = Fln+1)+ F(n—1) (2.5)

(this can easily be proved directly, or see for example|[B@} find P(n) = L(n) as
claimed. ]
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We now prove our main theorem.

Proof of Theorerh 111We start by showing that the probabilityae G = {g1, 92, - - -,
gn}isin S + S approaches 1 exponentially fast. Ffoe G, we have

Plg¢g S+S) =Plxa¢ SVy¢S Ve,yeGstar+y=g). (2.6)

To determine the probability that + S is not all of G we will add the probabilities
P(g ¢ S+ 5) for eachg. Note these probabilities are not independent; &sG affects
the probability of severa} being inS + S.

We concentrate on a fixed If z € G then there exista chain of elemefits, s . .. x,, }
= X C @ such that

TH+2x = T2+T3g =0 = Tp1 T2 = Tp+2 = g, (2.7)

; clearly the pairs depend a@n Note thatX also depends on the choiceot G. If we
denote all distinct chains as4, ..., X,, then these sets partitigh. If S is a subset of
G, for g not to be represented $+ S we need at least one element of each pair in each
X, to fail to be inS. The number of ways this can happer [sL(| X;|), whereL(n) is
then™ Lucas number.

To see this equality we use a method similar to that used bwrkesz Miller, and
O’Bryant in [LMQ]. Counting the number of subsets &f such that we never take two
adjacent elements is equivalent to counting the number p$ Wee vertices of a regular
polygon with|X;| = n vertices can be colored with two colors (say red and blue) suc
that no two adjacent vertices are blue. Note that each siubsétvertices with this
property is equivalent to a set wheyez S + S, and since theX; partitionG, then by
Lemma[Z.1 the number of such coloringdisL(]| X;|). Combining the independence
of the X; with LemmdZ.1, we conclude,

P(g¢ s +5) = LD

511 (2.8)

For example, take the element-b € Dg = (a,bla+a+a,b+b,a+b+a+b), where
Dg is the dihedral group with six elements. Here we have that

a+b=(a+b)+(a+a+a)=(a+a+a)+ (a+0) (2.9)
and
a+b=(a+a)+(a+a+b) =(a+a+b)+(a) = (a)+(b) = (b) + (¢ +a), (2.10)

where plus denotes the group operation. The two chains veécdoteX; = {a+b,a+
a+a}andX, ={a+a,a+a+b,a,b}. LettingSx, = SN X; andSyx, = SN X, we
have that

P(a+b¢5—|—5) = P(Q—Fbg_fSX1+SX1)P<CL+Z)¢SX2+SX2)

(L2(22)> <L2(f)) | (2.11)

where the latter equality occurs because of Lernmia 2.1.
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Note thatL(n) = ¢™ + (—¢) " where¢ = % is the golden ratio. As th&;’s are
disjoint, we obtain for each € G that

. | X5 |G|
Plg¢ S+5S) = HL2|((|;XZ|) < H;S' = (%) . (2.12)

As crude bounds suffice, we use the union bound to bound thelmation from each
element iniG, and find

1.8\
B(IS+5] < |G]) = P(Ugea & C) < ZP<g¢s+s>s|G|( ) (213)

2
geS+S

As the size of the group approaches infinity, we havelttig + S| < |G|) approaches
zero. The same argument holds fr S since there is a one to one bijection between
group elements and their inverses. Thus most subsets anechkdl O

Remark 2.2. The above arguments do not apply to subsets of the integleeste@son
is due to the lack of a group structure. In particular, theuktsrom equation2.4) does
not hold and different elements have different number aksgmtations as a sum or a
difference. For example, for the integers the number ofg@iry) c {0,...,n — 1}?
such thatr + y = k is a triangular function ofk, peaking wherk = n — 1. Thus
whether or not small (near 0) or large (nearn — 2) k are in the sumset is controlled
by the fringe elements of our set. A similar result holds fiffiecences, and thus if the
fringe is carefully chosen then we can force our set to be daminant or difference-
dominant. Note such forcing arguments cannot happen witloaggstructure.

Note that we used.8 as a very crude bound. Whilg L(|X;|) is much closer t@"
then it is to1.87, sinceq’ is less thar.(0), ¢™ does not provide an inequality for al

3. SUM DOMINATED SETS INDIHEDRAL GROUPS

Although sum-dominated sets and and difference-domirsgtdare rare in arbitrar-
ily large finite groups, we can compare the size of the numbsum-dominated subsets
and difference-dominated subsets in any fixed finite gronghik section we first ex-
plore the sumset and difference set of cyclic groups. We dipgty those results to give
intuition on why in any dihedral group, there should be manasiominated sets than
difference-dominated sets.

3.1. Cyclic Group Preliminaries. Before we look at the dihedral group, we explore
two different cases in cyclic groups. In the first case we aat@phe probability of an
element missing in the sumset and difference set. In thensecase we compute the
probability of missing an element ia + B where A and B are both subsets @/nZ.

Lemma 3.1. Let.S be a uniformly chosen random subseZghZ. Then
P(k¢ S+5) = 0((3/49)"?). (3.1)

Proof. Let k € Z/nZ. Since addition is commutative, all sets of pairs of elern¢mt
sum tok partition the group. Furthermore, the number of pairs dfirlt$ elements in
Z/nZis equal to eithen/2,n/2—1 or (n—1)/2. The number of distinct pairs depends
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on the parity ofn andk. From the independence of the pairs of elements that sum to
we have

Pk¢ S+S5) = J] Pli¢Svk—ig¢s). (3.2)

0<i<[(n+1)/2]

Finally, since counting the number of distinct pairs isigfinforward, we conclude
(1/2)%(3/4)"/>~1 Kk even anch even
P(k¢ S+9) = (3/4)7/? k odd andn even (3.3)
(1/2)(3/4)™=Y/2 p odd.

The factor of1/2 is due to the number of elementsc Z/nZ such thatr + = = k.
Again, the number of these elements depends on the parityantl . O

Lemma 3.2. LetS; and .S, be uniformly chosen random subsetZghZ. Then

Proof. Let k € Z/nZ. The claim follows immediately from the fact that

Pk¢ Si+S) = [ PligSivhk—ig¢sS) (3.5)
0<i<n—1
and the fact that theseproducts are mutually independent. O

Lemma 3.3. Let S be a uniformly chosen random subseZghZ. Then

Pk ¢ 5—-5) = LY 0 (/). @)

whereged(k,n) = d, L(n) is then™ Lucas number, and is the golden ratio.

Proof. Let £ € Z/nZ. Since the order ok in Z/nZ is equal ton/ ged(n, k), if we
have a se{xy,xs, ..., z,} such thate; — x9 = 29 — 23 = - -+ = x,,, — x; = k then

m = n/ged(n, k). These sets partition the group and thus, the number of ®ubte
Z/nZ that satisfy this property iscd(n, k). Combining the fact that these sets have a
pairwise trivial intersection with Lemnia 2.1 we have

L(n/d)?

P(k¢S—58) = =+,

(3.7)

as desired. O
Lemma 3.4. LetS; and S, be uniformly chosen random subsetZghZ. Then

Plk ¢ S — Sy) — G)n (3.8)
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Proof. The proof follows immediately from the following equalisie
P(k¢ S —S)= [] Ple¢Siua—k¢S,)

z€ZL/nL
= J[ O-PaesSinz—k¢s,)
z€ZL/nL

— H (1-PxeS)P(x—k¢&Ss))

x€Z/nZ
_(3Y
=13 .

Proposition 3.5. Let S be uniformly chosen random subsetsZgfnZ then asn ap-
proaches infinity?(|.S + S| = |S — S| = n) approaches 1.

Proof. This is immediate from the union bound and Lemmas[3.132aB8d3.4. [

3.2. Dihedral Group Case. Let S be a subset of,, = (a,bla™, b?, abab) chosen
uniformly at random. We first give a proof for the dihedral giposubcase of Theorem
[L.7 by using the previous lemmas. Before we do so we need suitse The first looks
at the probability of a rotation elemernit & a') not being in the sumset. The second
looks at the probability of a reflection elemédit = a'b) not being in the sumset. We
denote the set of all rotation elements Byand the set of all reflection elements by

(3.9)

U

Lemma 3.6. Let S be a uniformly chosen random subset®f, and letk € D,,, such
thatk = a’. ThenP(k ¢ S+ 5) < (3/4)"?(¢/2)" andP(k ¢ S — S) < (¢/2)*".

Proof. An element of the formu can be written as a product of two rotationga?
wherez + y = 14, or the product of two reflections"ba¥b wherex — y = i. Since
the set of rotations and the set of reflections can be viewegcdE groups the proofs
follow immediately from Lemmals 3.1 ahd B.3. O

Lemma 3.7. Let.S be a uniformly chosen random subset&f, and letk € D,,, such
thatk = a’b. ThenP(k ¢ S+ S) < (3/4)" andP(k ¢ S — S) < (3/4)".

Proof. Since an element of the fornib can be written as a product of a rotation and a
reflection the proof follows immediately from Lemimal3.2. O

Theorem 3.8. Let S be a uniformly random subset @f,,,. Then, as: approaches
infinity, P(]S + S| = |S — S|) approaches 1.

Proof. The proof follows immediately from applying the union boued_emmag 316
and3.Y. O

Note that by Theorem 1.1 we know that the percentage of sumrded and difference-
dominated sets goes to zero at an exponential rate. Howkwerlook at any fixedD,,
we conjecture that the number of sum-dominated subsets@&egrthan the number of
difference-dominated subsets. For the first few dihedraligs (up toD;s) Figure[2
shows an exhaustive comparison of the subsei$,pf Figure 2 also includes a sample
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FIGURE 2. Relative number of sum-dominated sets (larger values) ve
sus difference-dominated sets (lower values) in dihedralgs.

statistic for larger dihedral groups. Note that it is haradoatinue a complete enumer-
ation.

As Figure 2 suggests, sum-dominated sets are more likelydeaa than difference-
dominated sets. Lef = R U F whereR is the set of rotations ity and ' is the set
of reflections inS. From Table_ll we note that the difference in what contribtibes
the sumsets and difference setdis- R which contributes to the difference set and
F'— R andR + R which contributes to the sumset. It is due to this that thezax@ore
sum-dominated sets than difference-dominated sets.

Set |Rotations in the Set |Reflections in the Set
S R F

S+S R+R, F+F R+F,—R+F

S-S R—R, F+F R+ F

TABLE 1. How elements contribute to the size®f- S versusS — S.

4. CONCLUSION

We have shown that finite groups behave differently than begers in the sense
that almost all subsets are balanced. The reason is tha §roups do not have a
fringe. As a result, in finite groups almost all sumsets affiéidince sets are equal to
the entire group. The dihedral group case also hints at tperitance of the size of the
commutator subgroup and the number of order two elements.elsy to see that the
size of the sumset is greater when the commutator subgrapati while the size of
the difference set is lower due to the greater amount of dvdeelements.

A natural question to ask is what would happen if we no longeigit each subset
equally. When each subset is chosen with uniform probghihién the probability of
the subset being balanced is equal tdhowever, inZ/nZ, if we take subsets of the
first half of the group (i.e0, 1, ..., [ 4]) then the sumsets and differece sets behave like
they would inZ. Thus, the percentage of balanced groups is closer towould be
interesting to explore where the phase transition occurs.

Another question to ask is what happens when we look at nehaalinfinite groups.
One difficulty is how we approach subsets of infinite groups.dxample, if we look at
(7./27) we have two different ways to limit the size of the subset. Pusibility is to
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requireS to be a subset of a finite subgroup. This would allow for anegasimputation
of the limiting behavior, though we would have to determine probability it lives in
each finite subgroup.
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