
SETS CHARACTERIZED BY MISSING SUMS AND DIFFERENCES IN DILAT ING
POLYTOPES

THAO DO, ARCHIT KULKARNI, STEVEN J. MILLER, DAVID MOON, JAKE WELLENS,
AND JAMES WILCOX

ABSTRACT. A sum-dominant set is a finite setA of integers such that|A + A| > |A − A|. As a
typical pair of elements contributes one sum and two differences, we expect sum-dominant sets to
be rare in some sense. In 2006, however, Martin and O’Bryant showed that the proportion of sum-
dominant subsets of{0, . . . , n} is bounded below by a positive constant asn → ∞. Hegarty then
extended their work and showed that for any prescribeds, d ∈ N0, the proportionρs,dn of subsets of
{0, . . . , n} that are missing exactlys sums in{0, . . . , 2n} and exactly2d differences in{−n, . . . , n}
also remains positive in the limit.

We consider the following question: are such sets, characterized by their sums and differences,
similarly ubiquitous in higher dimensional spaces? We generalize the integers in a growing interval
to the lattice points in a dilating polytope. Specifically, letP be a polytope inRD with vertices in
Z
D, and letρs,dn now denote the proportion of subsets ofL(nP ) that are missing exactlys sums in

L(nP ) + L(nP ) and exactly2d differences inL(nP ) − L(nP ). As it turns out, the geometry of
P has a significant effect on the limiting behavior ofρs,dn . We define a geometric characteristic of
polytopes called local point symmetry, and show thatρs,dn is bounded below by a positive constant as
n → ∞ if and only if P is locally point symmetric. We further show that the proportion of subsets
in L(nP ) that are missing exactlys sums and at least2d differences remains positive in the limit,
independent of the geometry ofP . A direct corollary of these results is that ifP is additionally point
symmetric, the proportion of sum-dominant subsets ofL(nP ) also remains positive in the limit.
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1. INTRODUCTION

Given a finite setA ⊂ Z, we define the sumsetA + A and the difference setA− A by

A+ A = {a1 + a2 : a1, a2 ∈ A},

A−A = {a1 − a2 : a1, a2 ∈ A}. (1.1)

It is natural to compare the sizes ofA + A andA − A as we varyA over a family of sets. As
addition is commutative while subtraction is not, a pair of distinct elementsa1, a2 ∈ A generates
two differencesa1 − a2 anda2 − a1 but only one suma1 + a2. We thus expect that most of
the time, the size of the difference set is greater than that of the sumset—that is, we expect most
setsA to bedifference-dominant. It is possible, however, to construct sets whose sumsets have
more elements than their difference sets. Such sets are calledsum-dominantor More Sums Than
Differences(MSTD) sets. The first example of an MSTD set was discovered byConway in the
1960s: {0, 2, 3, 4, 7, 11, 12, 14}. A set whose sumset has the same number of elements as its
difference set is calledbalanced.

We briefly review some of the key results in the field. In 2006, Martin and O’Bryant [MO]
showed that not only do MSTD sets exist, but there exist many of them in some sense. In particular,
they proved that the proportionρn of subsets of{0, 1, . . . , n} that are MSTD is bounded below by
a positive constant asn → ∞. They show that similar results hold as well for balanced and
difference-dominant sets. Hegarty [He] then extended their work and showed that for anys, d ∈
N0, the proportionρs,dn of subsetsA ⊂ {0, 1, . . . , n} satisfying

|{0, 1, . . . , 2n} \ (A+ A)| = s, |{−n,−n + 1, . . . , n− 1, n} \ (A− A)| = 2d (1.2)

also remains bounded below by a positive constant in the limit. Later, in 2010, Zhao [Z] showed
that bothρn andρs,dn converge asn→ ∞, with ρn approaching a limitρ ≃ 4.5× 10−4.

This previous work explored the behavior of sums and differences of sets in the one-dimensional
latticeZ. In particular it was observed that sum-dominant, balanced, and difference-dominant sets,
as well as sets with even greater constraints on missing sumsand differences, are all surprisingly
ubiquitous on the line. A natural question arises: are such sets similarly common in other spaces?

In this paper, we extend the theory to sets in higher dimensional lattices, namelyZD for anyD >
0.1 Interesting new features and complications arise in higherdimensions. Whereas on the line it
is natural to consider subsets of the integers in a growing interval, in higher dimensions we can
begin to consider different geometries for our overall subset region. A natural high-dimensional
analogue of the interval is a convex polytope. We examine in particular the additive behavior of the
lattice points in an arbitrary dilatingD-dimensional convex polytope with lattice point vertices.

Let P be a convex polytope inRD with vertices inZD. For any setS ⊂ R
D, let L(S) denote

the set of lattice points contained inS; that is,L(S) = S ∩ Z
D. Furthermore, letnS denote the

dilation ofS by a factor ofn about the origin. In the spirit of Hegarty, we focus our attention to
the proportionρs,dn of subsetsA ⊂ L(nP ) such that

|(L(nP ) + L(nP )) \ (A + A)| = s, |(L(nP )− L(nP )) \ (A− A)| = 2d, (1.3)

for any prescribeds, d ∈ N0. In this paper we assume thatP is fixed, and revert to the more
informal description that such subsetsA are missing exactlys sums and missing exactly2d differ-
ences. Studying missing sums and differences rather than the number of sums and differences is
the natural generalization of the 1-dimensional results, which we discuss at the end of this section
and in Section 6.

1See [DKMMW] for another generalization to sums and differences of correlated random pairs of sets inZ.
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The geometry ofP has a significant effect on the limiting behavior ofρs,dn . Before we state our
main results, we introduce some terminology that helps us distinguish between polytopes.

Definition 1.1. Let P be a convex polytope. Verticesu andv of P are strictly antipodalif there
exist parallel supporting hyperplanes,H1 andH2, ofP such thatH1∩P = {u} andH2∩P = {v}.

Definition 1.2. Given a vertexv ofP , thesupporting coneC(v) at v is the set

v +
⋃

λ≥0

λ(P − v). (1.4)

Equivalently,C(v) is the convex hull of the half-lines formed by extending the edges ofP at v.

Definition 1.3. A polytopeP is point symmetricif there exists a pointx such thatP = x− P .

Definition 1.4. A convex polytopeP withm vertices islocally point symmetricif its vertices can
be partitioned intom/2 pairs of strictly antipodal vertices such that for each pair{u,v},

C(u)− u = v− C(v). (1.5)

Note we subtract the vertex above (inC(u)− u andv−C(v)) so that the supporting cones are
standardized with their apexes at the origin.

Example 1.5.Any point symmetric polytope is locally point symmetric.

Example 1.6. Consider the hexagonABCDEF in Figure 1, whereA andD, B andE, andC
andF form pairs of strictly antipodal vertices. AsAB andDE, BC andEF , andCD andFA
form pairs of parallel edges,ABCDEF is locally point symmetric.

A B

C

DE

F

FIGURE 1. A locally point symmetric hexagon.

As it turns out, whetherP has local point symmetry determines whetherρs,dn remains positive in
the limit. We prove the following result.

Theorem 1.7. LetP be a convex polytope inRD with vertices inZD, and lets, d ∈ N0 be given.
There exists a constantcs,d > 0 such that, for sufficiently largen, at leastcs,d · 2|L(nP )| of the
subsets ofL(nP ) have exactlys missing sums and exactly2d missing differences if and only ifP
is locally point symmetric.

We restrict ourselves to polytopes with lattice point vertices because, as we will see, this al-
lows us to exploit results in the one-dimensional case. The main idea behind Theorem 1.7 is that
convex polytopes without local point symmetry (and these constitute the vast majority of con-
vex polytopes) have many uniquely formed differences as they dilate byn. That is, there exist
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many differencesk ∈ L(nP ) − L(nP ) each of for which there exists a unique pair of elements
p,q ∈ L(nP ) that satisfiesk = p− q. This makes it vanishingly unlikely asn grows that there is
a constant number of missing differences in the regionL(nP )− L(nP ).

On the other hand, we can weaken our condition on the number ofmissing differences and
obtain a positive proportion in the limit, independent of the geometry ofP .

Theorem 1.8. LetP be a convex polytope inRD with vertices inZD, and lets, d ∈ N0 be given.
There exists a constantcs,d > 0 such that, for sufficiently largen, at leastcs,d ·2|L(nP )| of the subsets
ofL(nP ) have exactlys missing sums and at least2d missing differences.

As mentioned above, studying missing sums and differences provides a more natural framework
in which to consider the additive behavior of high-dimensional sets. IfD = 1, and thereforeP
is an interval, then setting2d > s in the theorems above implies a positive lower bound on the
proportion of MSTD subsets ofL(nP ) asn → ∞; this is Hegarty’s generalization [He] of the
results of Martin and O’Bryant [MO]. The reason for this is that the overall set regionL(nP ) is
itself balanced, and thus having more sums than differencesis equivalent to having more missing
differences than missing sums. This is occasionally true inhigher dimensions as well. For example,
consider subsetsA of the squareSn := {(x, y) : x, y ∈ {0, . . . , n}}. We see thatA+A lives in the
squareSn + Sn = {(x, y) : x, y ∈ {0, . . . , 2n}} andA−A lives in the squareSn − Sn = {(x, y) :
x, y ∈ {−n, . . . , n}}, both regions having(2n+ 1)2 elements.

As our polytopeP varies, however, it is much more typical that the differenceset region
L(nP )− L(nP ) is larger than the sumset regionL(nP ) + L(nP ). If we now consider subsetsA
of the triangleTn := {(x, y) ∈ Z

2 : x ≥ 0, y ≥ 0, x + y ≤ n}, thenA + A lives insideTn + Tn,
which has2n2 + 3n + 1 elements, whileA − A lives insideTn − Tn, which has3n2 + 3n + 1
elements; see Figure 2. Observe that|Tn − Tn| − |Tn + Tn| = n2. Since we fix the number2d
of missing differences independently ofn, anyA ⊂ Tn that is missing exactly2d differences will,
for sufficiently largen, always result in a difference setA−A that has more elements than is even
possible in the sumsetA+ A.

Thus, Theorems 1.7 and 1.8 do not imply that the proportion ofMSTD subsets ofL(nP ) remains
positive in the limit. In future study, we may begin to examine MSTD sets in higher dimensions
by allowingd to depend onn—in the case of the triangle setTn, a subsetA ⊂ Tn missing exactly
s sums and exactly2d differences is MSTD if and only ifd > s + n2. We discuss this in more
detail in Section 6, and conjecture that the proportion of such subsets approaches0 if L(P ) is not
balanced. At the very least, Theorem 1.7 implies positive proportions of sum-dominant, balanced,
and difference-dominant subsets in the limit if we add the assumption thatL(P ) is balanced. It is
simple to show thatL(P ) is balanced ifP is point symmetric. Thus, we have

FIGURE 2. Left: T3 with 10 elements. Middle:T3+T3 with 28 elements. Right:T3−T3

with 37 elements.
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Corollary 1.9. Let P be a convex, point-symmetric polytope inRD with vertices inZD. There
exists a constantc > 0 such that, for sufficiently largen,

#{A ⊂ L(nP ) : A is sum-dominant} > c · 2|L(nP )|,

#{A ⊂ L(nP ) : A is difference-dominant} > c · 2|L(nP )|,

#{A ⊂ L(nP ) : A is balanced} > c · 2|L(nP )|. (1.6)

2. SUMS AND DIFFERENCES OFEDGE ELEMENTS

A key idea in past work on MSTD sets is the importance of fringeelements. For any setA ⊂
{0, . . . , n}, there are relatively few ways of forming sums near0 and2n and of forming differences
near−n andn. Such sums and differences are formed entirely by elements in A near0 andn—
the fringe elements. On the other hand, there are relativelymany ways of forming the respective
middle sums and middle differences, and thus they have high probability of being present as we
letA vary. Thus, the sizes ofA + A andA − A are predominantly affected by the elements ofA
in the fringe, and so it is possible to control the balance of sums and differences ofA by cleverly
fixing those fringe elements.

A similar idea extends to subsets of the lattice points in a polytope. In this case, the fringe ele-
ments are the points near the vertices of the polytope. In ourchosen fixing of the fringe, elements
along certain edges, or 1-faces, of the polytope play a particularly important role in controlling the
number of missing sums and differences. To that end, we establish in this section some ancillary
lemmas that highlight the behavior of sums and differences of edge elements.

Let P denote our given convex polytope inRD with vertices inZD. We begin with the obser-
vation that becauseP has lattice points as its vertices, the dilated polytopenP has at leastn + 1
lattice points along each edge. More specifically, if an edgeE of P containsbE + 1 lattice points
(wherebE ≥ 1 sinceE contains at least its two endpoints), then its dilated formnE in nP contains
nbE + 1 lattice points. Furthermore, thesenbE +1 lattice points are evenly spaced along the edge,
and thus form their own one-dimensional lattice structure.If nE has endpointsne1 andne2, then
we can define an injective affine transformationTnE : R → R

D by setting

TnE(x) = (ne2 − ne1)/(nbE) · x+ ne1 = (e2 − e1)/bE · x+ ne1 (2.1)

for all x ∈ R. NoteTnE forms a one-to-one correspondence between[0, nbE ] andL(nE). Thus,
when constructing a setA ⊂ L(nP ), we can ‘place’ an arbitrarily large, one-dimensional setS ⊂
[0, nbE ] along any edgenE by takingn to be sufficiently large and then settingA∩nE = TnE(S).

Lemmas 2.1 and 2.2 essentially state that for whatever one-dimensional sets are placed along
edges ofnP , we can find corresponding sumsets along edges innP + nP and, sometimes, corre-
sponding difference sets along edges innP − nP .

Lemma 2.1. LetQ be a convex polytope inRD with vertices inZD, let E be an edge ofQ, and
let A ⊂ L(Q). SupposeA ∩ E = TE(S), whereS ⊂ Z andTE : R → R

D is an injective affine
transformation. Then there exists an injective affine transformationTE+E : R → R

D such that

(A+ A) ∩ (E + E) = TE+E(S + S). (2.2)

Proof. We first show that

(A + A) ∩ (E + E) = (A ∩ E) + (A ∩ E). (2.3)

As (A ∩ E) + (A ∩ E) ⊂ (A + A) ∩ (E + E) is immediate, we need only show the forward
inclusion.
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Let k be a point inE + E. By the convexity ofE, there exists somee ∈ E such that2e = k.
Thus, for any pair of pointsa1, a2 ∈ A with a1 + a2 = k, we have that(a1 + a2)/2 = e. In
other words,a1, a2 ande are collinear withe halfway betweena1 anda2. LetH be a supporting
hyperplane ofQ such thatH ∩Q = E. Supposea1, a2 6∈ H. Sincee ∈ E ⊂ H, it must be thata1

anda2 are in different open half-spaces formed byH. But, sinceH supportsQ, then eithera1 or
a2 is not inQ—a contradiction. Thus we have thata1, a2 ∈ H, and thereforea1, a2 ∈ E. In other
words,(A + A) ∩ (E + E) ⊂ (A ∩ E) + (A ∩ E), and (2.3) follows.

We now prove the lemma. We can writeTE(x) =M(x) +b for all x ∈ R, whereM : R → R
D

is an injective linear transformation andb ∈ R
D is some translation vector. DefineT2E : R → R

D

such thatT2E(x) =M(x) + 2b for all x ∈ R. SinceM is injective and linear,T2E is injective and
affine. By (2.3),

(A+ A) ∩ 2E = (A ∩ E) + (A ∩ E)

= TE(S) + TE(S)

= (M(S) + b) + (M(S) + b)

= M(S + S) + 2b

= T2E(S + S), (2.4)

as desired. �

Lemma 2.2. Let Q be a locally point symmetric polytope inRD with vertices inZD, and let
A ⊂ L(Q). For a pair of strictly antipodal verticesv1 andv2, let E1 andE2 be parallel edges
such thatv1 ∈ E1 andv2 ∈ E2. SupposeA ∩ E1 = TE1

(S1) andA ∩ E2 = TE2
(S2), where

S1, S2 ⊂ Z andTE1
, TE2

: R → R
D are injective affine transformations with the same associated

linear transformation. Then there exists an injective affine transformationTE2−E1
: R → R

D with

(A−A) ∩ (E2 −E1) = TE2−E1
(S2 − S1). (2.5)

Proof. The proof proceeds similarly to that of Lemma 2.1. We begin byshowing that

(A− A) ∩ (E2 − E1) = (A ∩ E2)− (A ∩ E1). (2.6)

That(A∩E2)− (A∩E2) ⊂ (A−A)∩ (E2−E1) is immediate, so we need only show the forward
inclusion. Lete1 ∈ E1, e2 ∈ E2. It suffices to show that ift ∈ R

D ande1 + t, e2 + t ∈ Q, then
e1 + t ∈ E1 ande2 + t ∈ E2.

We first show that there exists a pair of parallel supporting hyperplanesH1 andH2 ofQ such that
H1 ∩Q = E1 andH2 ∩Q = E2. LetH1 be a supporting hyperplane ofQ such thatH1 ∩Q = E1,
and letH2 be the parallel hyperplane that containsE2. Suppose there exists some pointq ∈
(H2 ∩ Q) \ E2. By the convexity ofQ, we then have that the line segmentqv2 is also contained
in H2. Sinceqv2 cannot be parallel toE1, we have by the local point symmetry ofQ thatqv2

cannot be an edge ofQ—otherwise,H1 ∩Q should contain another edge besidesE1 that contains
v1 and is parallel toqv2. It is not hard to show then that there is some edge ofQ other thanE2

that is contained in the half-space ofH2 that does not containE1. By the local point symmetry
of Q, there must be some corresponding parallel edge ofQ other thanE1 that is contained in the
half-space ofH1 that does not containE2. As this is not the case, we have thatH2 ∩Q = E2.

Now letV1 denote the closed half-space formed byH1 that containsQ, andV2 the closed half-
space formed byH2 that containsQ. Note that if a translation vectort ∈ R

D does not lie inH1

(orH2), then eithere1 + t 6∈ V1 or e2 + t 6∈ V2. Thus ife1 + t, e2 + t ∈ Q, thent ∈ R
D must lie

in H1. Thene1 + t ∈ H1 ande2 + t ∈ H2. SinceH1 ∩Q = E1 andH2 ∩Q = E2, it follows that
e1 + t ∈ E1 ande2 + t ∈ E2, and thus (2.6) follows.
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We now prove the lemma. We can writeTE1
(x) =M(x) + b1 andTE2

(x) =M(x) + b2 for all
x ∈ R, whereM : R → R

D is an injective linear transformation andb1,b2 ∈ R
D are translation

vectors. DefineTE2−E1
: R → R

D such thatTE2−E1
(x) =M(x) + (b2 − b1) for all x ∈ R. Since

M is injective and linear,TE2−E1
is injective and affine. By (2.6),

(A− A) ∩ (E2 − E1) = (A ∩ E2)− (A ∩ E1)

= TE2
(S2)− TE1

(S1)

= (M(S2) + b2)− (M(S1) + b1)

= M(S2 − S1) + (b2 − b1)

= TE2−E1
(S2 − S1), (2.7)

as desired. �

Definition 2.3. Given a setS ∈ R
D, a difference vectork ∈ S − S is uniquely formedif there

exists a unique pair of elementss1, s2 ∈ S satisfyings1 − s2 = k.

The remainder of this section is devoted to proving Lemma 2.7, which asserts that there are
many (at least on the order ofn) uniquely formed differences innP − nP if P is not locally
point symmetric. By contrast, ifP is locally point symmetric, then the number of uniquely formed
differences innP − nP is constant, as we will show in Lemma 3.6.

Showing Lemma 2.7 requires a brief review of geometry. In thefollowing definitions, letQ be
a convex polytope inRD. Further assume thatQ is D-dimensional—that is, the smallest affine
subspace containingQ is R

D.

Definition 2.4. Given vectorsx1,x2, . . . ,xm ∈ R
D, a conical combinationof these vectors is a

vector of the formα1x1 + α2x2 + · · · + αmxm whereαi ≥ 0 for all 1 ≤ i ≤ m. Thepolyhedral
conegenerated by vectorsx1,x2, . . . ,xm is the set of all conical combinations ofx1,x2, . . . ,xm.

Definition 2.5. Letv be a vertex ofQ, and letn1, . . . ,nt denote outward-pointing normal vectors
of all facets ofQ that containv. Thenormal coneN(v) ofQ atv is the polyhedral cone generated
byn1, . . . ,nt.

Note that normal cones have their apexes at the origin ofR
d, while supporting cones have their

apexes at the vertices of the polytope.
SupposeQ has verticesv1,v2, . . . ,vm. The following properties of normal conesN(vi) are

easily verified:
(1) For each vertexvi, the normal coneN(vi) is the set of outward normal vectors (of arbitrary

length) to all supporting hyperplanes ofQ that containvi.
(2) Verticesvi andvj are strictly antipodal if and only if the interiors ofN(vi) and−N(vj)

have non-empty intersection.
(3) Fori 6= j, the interiors ofN(vi) andN(vj) are disjoint.
(4) Fori 6= j, the intersection ofN(vi) andN(vj) is either{0} or a facet of both cones.
(5)

⋃m
i=1N(vi) = R

D.
We now introduce a useful result that follows easily from thework of Nguyên and Soltan [NS].

We provide the details in Appendix A.

Lemma 2.6. LetQ be aD-dimensional polytope withm vertices inRD. ThenQ is locally point
symmetric if and only ifQ has exactlym/2 pairs of strictly antipodal vertices.

We are now ready to prove Lemma 2.7.
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Lemma 2.7. LetQ be a convex polytope inRD that is not locally point symmetric. Then there is
a vertexv and an edgeE ofQ such that, for alle ∈ E, the difference vectorsk = e− v and−k

are uniquely formed.

Proof. The difference vectorsk = e−v and−k are uniquely formed if and only if there exists no
non-zero vectort ∈ R

D such thate + t,v + t ∈ Q. To show that such a vertexv and an edgeE
exist, it suffices to show that there exists a pair of parallelsupporting hyperplanesH1 andH2 of Q
such thatH1 ∩ Q = {v} andH2 ∩ Q = E. This is clear because, for any translation by a vector
t ∈ R

D of v and somee ∈ E, we must have thatt is parallel toH1 andH2 if e + t andv + t are
to remain in the closed space bounded byH1 andH2. ButH1 ∩Q = {v}, and therefore it must be
thatt = 0 if v + t ∈ Q. See Figure 3 for an illustration.

First assume thatQ isD-dimensional, withm vertices. AsQ is not locally point symmetric, and
every vertex of a convex polytope is strictly antipodal withat least one other vertex, it follows by
Lemma 2.6 that the number of pairs of strictly antipodal vertices is strictly greater thanm/2. Then
there exists some vertexv of Q that is strictly antipodal with at least two other vertices.Let u1

andu2 denote two such vertices. By property (2) above, the interiors ofN(v) and−N(u1) have
non-empty intersection, as do the interiors ofN(v) and−N(u2). For the sake of contradiction,
suppose thatN(v) is contained in−N(u1). Reflection through the origin is injective, and the
interiors ofN(u1) andN(u2) are disjoint by property (3) above, so it follows that the interiors of
N(v) and−N(u2) are disjoint—a contradiction. Thus,N(v) cannot be contained in−N(u1).

As the interiors ofN(v) and−N(u1) still have non-empty intersection, it is not hard to show
that the interior of some facetF of −N(u1) has non-empty intersection with the interior ofN(v).
Now note thatF is also a facet of the cone−N(u′) for some vertexu′ that is connected tou1 by
an edge—we letE denote this edge. Further note thatF is set of (inward-pointing) normal vectors
of supporting hyperplanesH of Q that satisfyH ∩ Q = E. In other words, there exist parallel
supporting hyperplanesH1 andH2 of Q such thatH1 ∩Q = {v} andH2 ∩Q = E, as desired.

If Q is notD-dimensional—that is, the dimension of the affine hull ofQ is someD′ < D—then
we can define some injective affine transformationT : aff(Q) → R

D′

from the affine hull ofQ

v

E

e

k

H1

H2

FIGURE 3. A quadrilateralQ that is not locally point symmetric. The parallel linesH1

andH2 supportQ precisely atv and atE, respectively. For any non-zero translation vector
t, eitherv+ t 6∈ Q or e+ t 6∈ Q, and the difference vectork = e− v is uniquely formed.
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to R
D′

. As affine transformations preserve parallel lines, the image polytopeQ′ = T (Q) is also
not locally point symmetric. It is not hard to show that a difference vectorq′

1 − q′
2 ∈ Q′ − Q′ is

uniquely formed if and only ifT−1(q′
1) − T−1(q′

2) ∈ Q − Q is uniquely formed. Thus, we can
prove the lemma forQ by applying the argument above toQ′. �

3. MIDDLE SUMS AND DIFFERENCES

Let k < n/2, letA ⊂ {0, . . . , n}, and define setsL := A ∩ [0, k] andU := A ∩ [n− k, n]. It is
easy to see that

(A+ A) ∩ ([0, k] ∪ [2n− k, 2n]) ⊂ (L+ L) ∪ (U + U),

(A−A) ∩ ([−n,−n + k] ∪ [n− k, n]) ⊂ (L− U) ∪ (U − L). (3.1)

In other words, the sums and differences within radiusk of the endpoints of the potential sumset
and potential difference set, respectively, are formed entirely by the fringe elements within radius
k of the endpoints of the base set{0, . . . , n}. Martin and O’Bryant exploit this idea in [MO] by
fixing the fringe ofA such thatA+ A necessarily has more elements at its ends than doesA− A.
They then show that with high probability, all ‘middle’ sumsand differences are present in the
sumset and difference set.

The same idea extends to higher-dimensional convex polytopes. Given an arbitrary convex
polytopeQ and somer > 0, define sets

Br(Q) := {q ∈ L(Q) : d(q,v) ≤ r for some vertexv of Q},

Mr(Q) := L(Q) \Br(Q), (3.2)

whered(·, ·) denotes the Euclidean metric. In words,Br(Q) is the set of lattice points contained
in the union of balls of radiusr centered at the vertices ofQ, whileMr(Q) consists of all other
‘middle’ lattice points. It is easy to show that for anyA ⊂ L(nP ),

(A + A) ∩Br(nP + nP ) ⊂ (A ∩Br(nP )) + (A ∩ Br(nP )),

(A− A) ∩ Br(nP − nP ) ⊂ (A ∩Br(nP ))− (A ∩Br(nP )). (3.3)

Thus, we can precisely control the fringe of the sumset and difference set—(A+A)∩Br(nP+nP )
and(A− A) ∩Br(nP − nP )—by carefully fixingA ∩Br(nP ), the fringe ofA. Importantly, we
chooser independently of the dilation factorn, fixing a constant number of points asn grows.

We refer to any other possible sum—that is, an element ofMr(nP +nP )—as amiddle sum, and
any other possible difference—that is, an element ofMr(nP − nP )—as amiddle difference. If
we can show that all middle sums and all middle differences are present with positive probability,
then we have a positive proportion of subsetsA ⊂ L(nP ) that satisfy some precise condition on
the cardinalities of their sumsets and difference sets. Thepurpose of this section is to show that
this is true if the fringe is large enough and, in the case of middle differences, if and only ifP is
locally point symmetric.

Proposition 3.1. Let 0 < p+ < 1 be given. Then there exists somer > 0 such that for all
sufficiently largen, the following holds: LetFr ⊂ Br(nP ), and letA be uniformly randomly
chosen from all subsetsS ⊂ L(nP ) such thatS ∩ Br(nP ) = Fr. ThenMr(nP + nP ) ⊂ A + A
with probability at leastp+.

Proof. We begin with a lemma bounding the probability that any individual middle sum is missing.
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Lemma 3.2. Let r > 0, and fix a fringe setFr ⊂ Br(nP ). LetA be chosen uniformly at random
from all subsetsS ⊂ L(nP ) such thatS ∩ Br(nP ) = Fr, and letk ∈ Mr(nP + nP ). Then, for
some constantc > 0 independent ofn,

P[k 6∈ A+ A] ≤ c

(

3

4

)|L(nP∩(k−nP ))|/2

. (3.4)

Proof. The proof is similar to that of Lemma 5 in Martin and O’Bryant [MO]. Suppose we have
x,y ∈ nP such thatx + y = k. Thenx = k − y ∈ k − nP , and similarlyy ∈ k − nP . Then
L(nP ∩ (k− nP )) can be partitioned into distinct pairs of lattice points that add up tok, and the
singleton{k/2} if k/2 is a lattice point. The probability thatk is missing inA + A is then the
product of the independent probabilities that in each pair,at least one point is missing. Suppose
that in our fixed fringe setFr, exactlyl points are fixed as missing. Then at mostl pairs contribute
a probability of1, and the remaining pairs contribute a probability of at most3/4. Whenk/2 is
not a lattice point, there are|L(nP ∩ (k− nP ))| /2 pairs total, which gives

P[k 6∈ A+ A] ≤

(

3

4

)|L(nP∩(k−nP ))|/2−l

. (3.5)

Thus, we may takec = (3/4)−l and the lemma follows. In the case wherek/2 is a lattice point, a
similar argument gives the same bound. �

By the union bound, the probability that at least one middle sum is missing is at most the sum
of the probabilities that each individual middle sum is missing. Thus, to prove Proposition 3.1, it
suffices to show

∑

k∈Mr(nP+nP )

c

(

3

4

)|L(nP∩(k−nP ))|/2

< 1− p+ (3.6)

for sufficiently largen andr.
In the one-dimensional case, this amounts to making a tail ofa geometric series as small as

desired, which is done in [MO]. Unfortunately, inD dimensions, the shapenP ∩ (k − nP ) can
get quite complicated, and we must do more work. The key idea is that whenk is close to a vertex
of nP +nP , the shapenP ∩ (k−nP ) is a parallelotope, which is quite simple. Conversely, when
k is not close to a vertex ofnP + nP , we are saved by the fact thatnP ∩ (k− nP ) is large, so we
do not need to be careful about counting its lattice points. See Figure 4 for an illustration.

To evaluate the sum in (3.6), we partitionMr(nP + nP ) into two sets, a ‘center’ setC and an
‘intermediate’ setI. Fix someεC > 0. We defineC as all pointsk ∈Mr(nP + nP ) such that

|L(nP ∩ (k− nP ))| > 2 log3/4

(

εC/c

L(nP + nP )

)

. (3.7)

The right hand side is constructed so that by Lemma 3.2,

P[k 6∈ A+ A] <
εC

|L(nP + nP )|
(3.8)

for all k ∈ C. We conclude that the sum ofP[k 6∈ A + A] over allk in C is at mostεC, because
C ⊆ L(nP + nP ).

We defineI to consist of the remaining points; that is, all pointsk ∈Mr(nP + nP ) such that

|L(nP ∩ (k− nP ))| ≤ 2 log3/4

(

εC/c

|L(nP + nP )|

)

. (3.9)
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FIGURE 4. A triangleT = △ABC with its sumsetT + T = △ADE. On the left, the
sumk is relatively far from the vertices ofT + T . Thus, while the shape of the intersection
T ∩ (k− T ) is hard to control, it fortunately contains many lattice points. On the right, the
sumk is relatively close to a vertex ofT + T , and henceT ∩ (k− T ) is a parallelotope.

Note that the right hand side isΘ(log n), while |L(nP + nP )| is Θ(nD). Intuitively, the above
definition suggests that all pointsk ∈ I should lie close to the vertices ofnP + nP , in order to
make|L(nP ∩ (k − nP )| small. The setI will be located in between the fringe setFr and the
center setC. Sincelog n/n → 0 asn → ∞, the intersection polytopenP ∩ (k − nP ) will be a
parallelotope for allk ∈ I, for n large. We formalize this idea in the following lemma.

Lemma 3.3. There exists a constantt > 0 such thatI is contained in the union of balls of radius
t logn around the vertices ofnP + nP for all n.

Proof. To highlight the dependence ofI onn, we writeI(n). Assume for the sake of contradiction
this lemma is false. Then for eacht, there is somen such thatI(n) is not contained in the union
of balls of radiust log n centered at the vertices of2nP . In particular, lettingt take on the value of
every positive integerm, we have the following: For each positive integerm there existskm and
nm such thatkm ∈ I(nm) butkm has distance greater thanm log n from each vertex of2nP .

For the next step, it is useful to visualize the polytopeP as fixed, and rather than dilatingP by
a factor ofn, we shrink the underlying lattice by a factor ofn.

Consider the sequencek′
m = km/m. Note that this sequence lies inside the polytopeP + P ,

which is closed and bounded, so there is a convergent subsequencek′
mi

. Letk′ denote the limit of
this subsequence.

Step 1.We claim thatk′ must be a vertex ofP + P ; that is,P ∩ (k′ − P ) is just one point (the
pointk′/2, a vertex of bothP andk′ − P ).

Consider the convex polytopeP ∩ (k′ − P ), and suppose that it is not just a point. Then it is a
d′-dimensional polytope where0 < d′ ≤ D, and furthermore it must lie in ad′-face ofP (and of
k′ − P ). SinceP has lattice point vertices, ad′-face ofP containsΘ(nd′) lattice points. (Recall
thatP stays fixed and the lattice shrinks.)

LetA be the affined′-dimensional subspace containingP ∩ (k′ − P ). Relative toA, the point
k′/2 is in the interior ofP ∩(k′−P ), with some positive distanceǫ to all its bounding faces. So let
B ⊂ A be ad′-dimensional ball centered atk′/2 with fixed radiusǫ/2, so thatB ⊂ P ∩ (k′ − P ).
ThenB containsΘ(nd′) lattice points.
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We now show thatB ⊂ P ∩ (k′
mi

−P ) for i large. The fact thatk′
mi

→ k′ asi→ ∞ is sufficient
for this. First, consider any hyperplaneH making an angleθ with A, and supposeH is translated
normally by a distance at mostǫ. Then the intersectionH∩A is translated alongA by a distance at
mostǫ/ sin θ. In particular, among all bounding hyperplanes ofk′−P , there is a minimum nonzero
angleθmin made withA, so that wheneverk′ is translated by at mostδ = ǫ/(2 sin θmin), the bound-
ing faces ofP ∩ (k′ −P )∩A are translated by at mostǫ/2. Finally, for i large,|k′

mi
− k′| < δ, so

B ⊂ P ∩ (k′
mi

− P ), as desired. SinceB containsΘ(nd′) lattice points, this directly contradicts
thatkmi

∈ I(n), which says that|L(P ∩ (k′
mi

−P ))| = O(logn). Thusk′ must in fact be a vertex
of P + P , so thatP ∩ (k′ − P ) = {k′/2}.

Step 2.Recall thatk′/2 is a vertex ofP . For i large,k′
mi

is so close tok′ thatP ∩ (k′
mi

−P ) =
C(k′/2) ∩ (k′

mi
− C(k′/2)), whereC(k′/2) denotes the supporting cone ofP at k′/2. In other

words, fori large, only the local shape ofP at k′/2 matters: the only hyperplanes determining
P ∩ (k′

mi
− P ) are those ofP atk′/2 and the corresponding hyperplanes ink′

mi
− P .

This means that the shapeP ∩ (k′
mi

− P ) is quite simple, and the number of its lattice points
will be easy to analyze. SupposeP ∩ (k′

mi
− P ) is ad′-dimensional polytope. Pickd′ edges of

P at k′, extend them to rays fromk′, and call their convex hullP ′. ThenP ′ ∩ (k′
mi

− P ′) is a
parallelotope—as simple a shape as we could hope for. Furthermore, that parallelotope is a subset
of P ∩ (k′

mi
− P ), so it also hasO(logn) lattice points. Since each of thesed′ edges has a lattice

structure, the edges have lengthO(logn) as well, so the diameter of the parallelotope isO(logn).
Thus|k′

mi
− k′| is indeedO(logn). �

Now we evaluate the sum in (3.6) over pointsk ∈ I. We sum around one vertex ofnP + nP
at a time. Letv be the current vertex, and letIv be the portion ofI that lies in the ball of radius
t logn aboutv.

Sincelog n/n→ 0 asn→ ∞, for n large we have(nP +nP )∩Bv = C(v)∩Bv, whereC(v)
denotes the supporting cone ofnP + nP atv. Henceforth, assumen is this large. Now the only
relevant portion ofnP + nP is a neighborhood ofv; that is, whenk ∈ Iv,

nP ∩ (k− nP ) = C(v) ∩ (k− C(v)). (3.10)

To show that the sum in (3.6) is small, we show that the sum

∑

k∈L(C(v))

c

(

3

4

)|L(C(v)∩(k−C(v)))|/2

(3.11)

converges. Because the terms are positive, it suffices to bound this sum above. The reason we want
to prove convergence is that our final step will be to bound (3.6) by an arbitrarily small tail of this
sum (recall that we will be cutting out a constant fixed fringeregion of radiusr aroundv, and we
can maker as large as desired).

Recall thatC(v) is the convex hull of rays fromv corresponding to edges ofP . ThenC(v)
is the union of convex hulls ofD-tuples of those rays. Since there are finitely manyD-tuples, it
suffices to show that the sum is bounded in each such region.

Let R be one such region, the convex hull ofD rational-slope rays fromv. We wish to show
that

∑

k∈L(R)

c

(

3

4

)|L(C(v)∩(k−C(v)))|/2

(3.12)
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converges. SinceR ⊂ C(v),

|L(R ∩ (k− R))| < |L(C(v) ∩ (k− C(v)))|, (3.13)

so it suffices to show that

SR :=
∑

k∈L(R)

c

(

3

4

)|L(R∩(k−R))|/2

(3.14)

converges. This is easier, becauseR ∩ (k− R) is simply a parallelotope for anyk ∈ L(R).
By induction onD the sum over any facet ofR converges, because a facet ofR is the convex

hull of D − 1 rays fromv, and the base caseD = 1 amounts to a geometric series. Now that the
boundary ofR has been dealt with, it remains to sum over the lattice pointsin the interior ofR,
which we shall denoteR◦. Whenk is in the interior,R ∩ (k − R) has non-zero volume. In fact,
in the interior, there is a positive constantc1 (depending onR) allowing us to bound the number of
lattice points below by the volume. That is, for allk ∈ L(R◦),

c1|R ∩ (k− R)| < |L(R ∩ (k−R))|. (3.15)

Using this upper bound, it suffices to show the convergence of

S ′
R :=

∑

k∈L(R◦)

c

(

3

4

)c1|R∩(k−R)|

. (3.16)

We can upper bound the resulting sum further. LetT be a rational affine transformation that
mapsR onto the first orthant. BecauseT increases the volumes in the exponents by at most a
constant factorc2, applyingT gives us the new upper bound

S ′
R ≤

∑

k∈T (L(R◦))

c

(

3

4

)c1|T (R)∩(k−T (R))|/c2

. (3.17)

Now, notice thatT (L(R◦)) is a subset of the latticeT (Zd) whose points all have positive (ratio-
nal) coordinates. Thus, for some rationalq > 0, we haveL(R◦) ⊂ qND and we may further bound
the sum above by

S ′
R ≤

∑

k∈qND

c

(

3

4

)c1|T (R)∩(k−T (R))|/c2

. (3.18)

Let x = (3/4)c1/c2. SinceT (R) is equal to the first orthant,T (R) ∩ (k − T (R)) is simply a
rectangular cell with opposite vertices0 andk, so our sum in (3.18) is equal to

S ′′
R := qD

∑

(k1,k2,...,kD)∈Nd

xk1k2···kD . (3.19)

To show that this sum converges, we may rewrite the sum as

S ′′
R = qD

∑

m∈N

ψ(m)xm, (3.20)

whereψ(m) is the number of ways of writingm as the ordered product ofD positive integers.
However,ψ(m) is clearly bounded bymD, so sincex < 1 the sum converges as desired.

Since the upper bound converges, our original sum

∑

k∈L(C(v))

(

3

4

)|L(nP∩(k−nP ))|/2

(3.21)
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also converges. It follows that by making the constant fixed fringe radiusr large enough, we can
force the tail sum

∑

k∈(C(v)\Br(nP+nP ))

(

3

4

)|L(nP∩(k−nP ))|/2

(3.22)

to be smaller than anyεIv . SinceIv lies inL(C(v) \Br(nP + nP )), the sum overk ∈ Iv is also
smaller thanεIv . Thus if we letεI be the sum ofεIv over all verticesv of nP +nP , the probability
that at least one middle sum is missing is at mostεC + εI . In particular, if we chooseεC andεI so
thatεC + εI < 1− p+, we have at least a constant positive probabilityp+ that all middle sums are
present, as desired. This concludes the proof of Proposition 3.1. �

We now examine the presence of middle differences.

Proposition 3.4. Let 0 < p− < 1. SupposeP is locally point symmetric. There exists some
r > 0 such that for all sufficiently largen, the following holds: LetFr ⊂ Br(nP ), and letA
be uniformly randomly chosen from all subsetsS ⊂ L(nP ) such thatS ∩ Br(nP ) = Fr. Then
Mr(nP − nP ) ⊂ A− A with probability at leastp−.

Proof. The proof is largely identical to the proof of Proposition 3.1. We highlight the relevant
differences here. In the course of the proof we state and prove two useful lemmas.

First of all, when considering sums, the pairs of points inL(nP ) that sum up to somek ∈
L(nP ) + L(nP ) are pairwise disjoint. Thus, the probabilities that at least one point is missing
from each pair are independent, so it is easy to the bound the probability thatk is missing in
A+ A. The same does not hold for differences, however, when a differencek ∈ L(nP )− L(nP )
is small enough such thatx,x+k,x+2k ∈ L(nP ) for somex ∈ L(nP ). Fortunately, as in [MO],
the probability that such a small difference is missing is sotiny that a crude bound is sufficient.

Lemma 3.5. Let r > 0, and fix a fringe setFr ⊂ Br(nP ). LetA be chosen uniformly at random
from all subsetsS ⊂ L(nP ) such thatS ∩ Br(nP ) = Fr, and letk ∈ Mr(nP − nP ) be large.
Then, for some constantc > 0 independent ofn,

P[k 6∈ A− A] ≤ c

(

3

4

)|L(nP∩(nP−k)|/2

. (3.23)

Proof. Define random variablesXj by settingXj = 1 if j ∈ A andXj = 0 otherwise. We have
k 6∈ A− A if and only ifXjXj+k = 0 for all j ∈ L(nP ∩ (nP − k)).

First supposek is small such thatk ∈ 1
2
(nP − nP ), and supposek = (k1, k2, . . . , kD). Define

Gn :=

{

(x1, . . . , xD) ∈ L(nP ∩ (nP − k)) :

⌊

x1
k1

⌋

is even

}

, (3.24)

Hn :=

{

(x1, . . . , xD) ∈ L(nP ∩ (nP − k)) :

⌊

x1
k1

⌋

is odd

}

, (3.25)

Jn :=

{

Gn if |Gn| > |Hn|

Hn if |Hn| ≥ |Gn|.
(3.26)

It is possible thatJn is Gn or Hn depending onn, hence the subscript notation. It is clear that
x + k 6∈ Jn for anyx ∈ Jn, and therefore the random variablesXjXj+k are pairwise independent
across allj ∈ Jn. As |Gn|+ |Hn| = |L(nP ∩ (nP − k))|, it is further clear that

|Jn| ≥
1

2
|L(nP ∩ (nP − k))|. (3.27)
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Q− k

Q

k

v

u

FIGURE 5. A locally point symmetric polytopeQ with strictly antipodal verticesu and
v, a difference vectork ∈ Q − Q, and the translated polytopeQ − k. The difference
k is close to the uniquely formed differencev − u, and hence the intersection polytope
Q ∩ (Q− k) is a parallelotope.

Thus, if our fixed fringeFr is missing exactlyl points, then we have that

P[XjXj+k = 0 for all j ∈ L(nP ∩ (nP − k))] ≤ P[XjXj+k = 0 for all j ∈ Jn]

=
∏

j∈Jn

P[XjXj+k = 0]

≤

(

3

4

)|Jn|−l

≤

(

3

4

)|L(nP∩(nP−k)|/2−l

. (3.28)

Now supposek 6∈ 1
2
(nP − nP ). Then there exists noj ∈ L(nP ) such thatj, j + k, j + 2k ∈

L(nP ). That is, the random variablesXjXj+k are pairwise independent across allj ∈ L(nP ∩
(nP − k)). Then

P[XjXj+k = 0 for all j ∈ L(nP ∩ (nP − k))] =
∏

j∈L(nP∩(nP−k))

P[XjXj+k = 0]

≤

(

3

4

)|L(nP∩(nP−k))|/2−l

. (3.29)

In both cases, we can setc = (3/4)−l and the lemma follows. �

We define the regionsI andC in the same way as in the sumset case. In the difference set case,
we analyzenP ∩ (nP − k) where in the sumset case we analyzednP ∩ (k− nP ).

The other aspect of the difference set case that deserves discussion is the difference set analogue
of Lemma 3.3—that there exists a constantt > 0 such thatI is contained in the union of balls of
radiust logn around the vertices ofnP − nP for all n. The reason the same proof carries through
is that in any locally point symmetric polytopeQ, the only uniquely formed differences are the
differences between strictly antipodal vertices, and these differences are in one-to-one correspon-
dence with the vertices ofQ−Q. When a differencek ∈ Q−Q is close to one of these uniquely
formed differences,Q ∩ (Q− k) is a parallelotope due to local point symmetry. See Figure 5 for
an illustration.
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To be precise, in Step 1 of the proof for the sumset case, we show thatP ∩ (k′ − P ) is just one
point, and immediately conclude thatk′ is a vertex ofP + P . Making the same conclusion takes
some more work in the difference set case, which we do in the following lemma.

Lemma 3.6. Let Q be a locally point symmetric polytope, and letk ∈ Q − Q. The following
statements are equivalent:

(i) Q ∩ (Q− k) consists of a single point, i.e.,k is a uniquely formed difference inQ−Q.
(ii) k is a vertex of the polytopeQ−Q.

(iii) k = u− v for strictly antipodal verticesu andv ofQ.

Proof. In the proof of this lemma, we use the following facts about supporting cones which are not
hard to prove:

(1) Verticesvi andvj are strictly antipodal if and only ifC(vi)− vi andC(vj)− vj intersect
only at the origin.

(2) Let A be a face ofQ of dimensionk (a k-face), and leta be given in the interior ofA
(relative to thek-dimensional affine space containingA). If x is in the supporting cone of
some vertex ofA, thena+ ǫx ∈ Q for ǫ small.

First, we show (i)=⇒ (ii). Let u andv be the unique points inQ that satisfyk = u−v. Suppose
thatu lies in ak-faceA andv lies in anl-faceB, whereA andB are chosen so thatk andl are
minimal. Note thatk andl may range from0 toD.

Suppose there exist verticesa ∈ A andb ∈ B that are not strictly antipodal. ThenC(a) − a

andC(b) − b have an intersection containing some nonzero vectorx. Then forǫ small,a + ǫx
andb + ǫx both lie inQ, sou + ǫx andv + ǫx both lie inQ. Thus, the differencek = u − v is
not uniquely formed.

Thus every vertex inA must be strictly antipodal to every vertex inB. Since the vertices ofQ
are partitioned into strictly antipodal pairs,A andB must both be 0-faces; that is,A = {u} and
B = {v}, andu andv are strictly antipodal vertices as desired.

Next, we show (ii)=⇒ (iii). Let u,v ∈ Q such thatk = u− v. Observe that a pointv ∈ Q is
a vertex ofQ if and only if, for any non-zero translation vectort, v + t ∈ Q impliesv − t 6∈ Q.
The same statement holds for the polytopeQ − Q. If u is not a vertex ofQ, then we have that
u + t,u − t ∈ Q for some non-zerot. But then this implies thatk + t = (u + t) − v and
k− t = (u− t)− v are both contained inQ−Q, which contradicts thatk is a vertex ofQ−Q.
Applying the same argument tov, we get thatu andv must both be vertices ofQ.

Now supposeu andv are not strictly antipodal vertices. We show thatk+ t,k− t ∈ Q−Q for
some non-zerot, which contradicts thatk is a vertex ofQ − Q. Let v′ denote the unique vertex
that is strictly antipodal withv. For some smallǫ > 0, definet = ǫ(v′ − u). Clearly,u+ t ∈ Q,
sok+t = (u+t)−v is contained inQ−Q. Now consider the pointv+t. If v+t 6∈ Q, and thus
the half-line formed by extending outt from v is not contained in the supporting coneC(v), then
asQ is locally point symmetric the parallel half-line formed byextending out fromv′ the vector
u−v′ is not contained inC(v′)—a contradiction. Thusk−t = u− (v+t) is contained inQ−Q,
which also forms a contradiction. Thus,u andv must be strictly antipodal vertices.

Finally, we show (iii) =⇒ (i). LetH1 andH2 be parallel supporting hyperplanes meetingQ at
{u} and{v}, respectively. Ifu′ 6= u is a point inQ, thenu′ −k lies on the side ofH2 oppositeQ,
so it cannot lie inQ. Thusk is a uniquely formed difference inQ. �

The rest of the proof of Proposition 3.1 carries over to the difference set case with trivial modi-
fications. �
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4. PROOF OFTHEOREM 1.7

We begin by showing that the proportionρs,dn of subsetsA ⊂ L(nP ) missing exactlys sums and
exactly2d differences approaches0 if P is not locally point symmetric. By Lemma 2.7, there exists
a vertexnv and an edgenE of nP such that for alle ∈ nE, the difference vectorsk = e − nv
and−k are uniquely formed. Recall thatnE has at leastn+1 lattice points. Then, ifA is missing
exactly2d differences, at leastn + 1 − d of the lattice points innE must be present. Thus, for
n > 2d− 1, we see that

ρs,dn ≤

(

n+ 1

d

)(

1

2

)n+1−d

= Θ

(

nd

2n

)

, (4.1)

which approaches0 asn→ ∞.
We now handle the main case whenP is locally point symmetric. For some radiusr, we aim to

construct a fringe setFr ⊂ Br(nP ) such that, for all setsA that satisfyA ∩ Br(nP ) = Fr,

Br(nP + nP ) \ (A + A) = s, (4.2)

Br(nP − nP ) \ (A− A) = 2d. (4.3)

If P is 1-dimensional (a line segment), we simply place appropriate fringe sets at its ends as in
[He]. Now supposeP ism-dimensional form ≥ 2. We can take a pair of strictly antipodal vertices
nv1 andnv2 of nP , and a pair of parallel edgesnE1 andnE2 such thatnv1 ∈ nE1 andnv2 ∈ nE2.
SupposenE1 andnE2 containnbE1

+ 1 andnbE2
+ 1 lattice points, respectively. As discussed

in the beginning of Section 2, there exist injective affine transformationsTnE1
, TnE2

: R → R
D

that form one-to-one correspondences between[0, nbE1
] andL(nE1), and between[0, nbE2

] and
L(nE2), respectively. We can also specify thatTnE1

(0) = nv1 andTnE2
(nbE2

) = nv2. It is easily
seen thatTnE1

andTnE2
have the same associated linear transformation.

As shown in the proof of Theorem 8 in [He], for somer′ > 0 andn > 2r′, there exist sets
Ls,d ⊂ [0, r′] andUs,d ⊂ [nbE2

− r′, nbE2
] such that

|[0, r′] \ (Ls,d + Ls,d)|+ |[2nbE2
− r′, 2nbE2

] \ (Us,d + Us,d)| = s (4.4)

and

|[nbE2
− r′, nbE2

] \ (Us,d − Ls,d)| = d. (4.5)

Now definer = max{r+, r−, r′}, wherer+ andr− are the constants given by Propositions 3.1 and
3.4. LetB′

r(nP ) denote the set

Br(nP ) \ (TnE1
([0, r′]) ∪ TnE2

([nbE2
− r′, nbE2

])), (4.6)

and set

Fr := TnE1
(Ls,d) ∪ TnE2

(Us,d) ∪ B
′
r(nP ). (4.7)

That is, we placeLs,d on one end ofnE1 andUs,d on one end ofnE2, and fill in all other points of
Br(nP ). See Figure 6 for an illustration.

Now letA be uniformly randomly chosen from all subsetsS ⊂ L(nP ) such thatS ∩Br(nP ) =
Fr. We see that

A ∩ nE1 = TnE1
(S1), A ∩ nE2 = TnE2

(S2), (4.8)
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nv2

nv1

rLs,d

Us,d

nE1

nE2

FIGURE 6. A locally point symmetric hexagon. The fringe setFr lives within the balls
of radiusr centered about the vertices. The one-dimensional fringe setsLs,d andUs,d are
placed on corresponding parallel edgesnE1 andnE2 of the strictly antipodal verticesnv1

andnv2.

for some setsS1, S2 ∈ Z such thatS1∩ [0, r′] = Ls,d andS2∩ [nbE2
− r′, nbE2

] = Us,d. By Lemma
2.1, there exist injective affine transformationsTnE1+nE1

, TnE2+nE2
: R → R

D such that

(A+ A) ∩ (nE1 + nE1) = TnE1+nE1
(S1 + S1),

(A+ A) ∩ (nE2 + nE2) = TnE2+nE2
(S2 + S2). (4.9)

It is easy to show that, then,

(A+ A) ∩ TnE1+nE1
([0, r′]) = TnE1+nE1

((S1 + S1) ∩ [0, r′])

= TnE1+nE1
((Ls,d + Ls,d) ∩ [0, r′]), (4.10)

and similarly

(A+ A) ∩ TnE2+nE2
([2nbE2

− r′, 2nbE2
]) = TnE2+nE2

((Us,d + Us,d) ∩ [2nbE2
− r′, 2nbE2

]).
(4.11)

It follows from (4.4) thatA+A is missing a total of exactlys sums in the regionsTnE1+nE1
([0, r′])

andTnE2+nE2
([nbE2

− r′, nbE2
]).

Similarly, by Lemma 2.2, there exists an injective affine transformationTnE2−nE1
: R → R

D

such that

(A−A) ∩ (nE2 − nE1) = TnE2−nE1
(S2 − S1), (4.12)

and we can show that

(A− A) ∩ TnE2−nE1
([nbE2

− r′, nbE2
]) = TnE2−nE1

((Us,d − Ls,d) ∩ [nbE2
− r′, nbE2

]). (4.13)

It follows by (4.5) thatA − A is missing exactly2d differences in the regionsTnE2−nE1
([nbE2

−
r′, nbE2

]) and−TnE2−nE1
([nbE2

− r′, nbE2
]).

Finally, it is not hard to show that all other elements inBr(nP + nP ) andBr(nP − nP ) are
present, that is,

Br(nP + nP ) \ (TnE1+nE1
([0, r′]) ∪ TnE2+nE2

([2nbE2
− r′, 2nbE2

])) ⊂ A + A,

Br(nP − nP ) \ (TnE2−nE1
([nbE2

− r′, nbE2
]) ∪ −TnE2−nE1

([nbE2
− r′, nbE2

])) ⊂ A− A.
(4.14)
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Thus, we satisfy (4.2) and (4.3).
Let p+ > 1/2 andp− > 1/2. By Propositions 3.1 and 3.4, we have thatMr(nP +nP ) ⊂ A+A

with probabilities at leastp+, and thatMr(nP − nP ) ⊂ A−A with probability at leastp−, where
p+ andp− are fixed independent ofn. It follows thatMr(nP +nP ) ⊂ A+A andMr(nP −nP ) ⊂
A − A with positive probability independent ofn. Thus, a positive proportion of the subsetsA,
and thus a positive proportion of all subsets ofL(nP ), have exactlys missing sums and exactly2d
missing differences. �

5. PROOF OFTHEOREM 1.8

Similarly to as in the proof of Theorem 1.7, the main task is toconstruct a fringe setFr ⊂
Br(nP ) for some radiusr such that, for all setsA that satisfyA ∩ Br(nP ) = Fr,

Br(nP + nP ) \ (A+ A) = s, Br(nP − nP ) \ (A−A) ≥ 2d. (5.1)

Once we constructFr, the proof concludes identically. The difference here is that because we
do not assume local point symmetry inP , we are no longer guaranteed the existence of ‘distant’
parallel edges, and thus cannot use Lemma 2.2 to control the number of missing differences. On
the other hand, we do not need to limit the number of missing differences so long as there are at
least2d of them. This allows us to use Lemma 2.7 to our advantage.

If P is locally point symmetric, then we simply constructFr as in the proof of Theorem 1.7.
Now supposeP is not locally point symmetric. Letnv andnE1 denote, respectively, the vertex
and edge returned by Lemma 2.7 when it is applied tonP , and letnE2 denote some other edge
of nP that is distinct fromnE. If nE1 andnE2 contain, respectively,nbE1

+ 1 andnbE2
+ 1

lattice points, then letTnE1
, TnE2

: R → R
D denote the injective affine transformations that form

one-to-one correspondences between[0, nbE1
] andL(nE1), and between[0, nbE2

] andL(nE2),
respectively.

As shown in the proof of Theorem 8 in [He], for somer′ > 0 andn > 2r′, there exist sets
Ls ⊂ [0, r′] andUs ⊂ [nbE2

− r′, nbE2
] such that

|[0, r′] \ (Ls,0 + Ls,0)|+ |[2nbE2
− r′, 2nbE2

] \ (Us,0 + Us,0)| = s. (5.2)

Further define

Rd := [0, d− 1] ∪ [2d, 3d− 1], (5.3)

and observe that[0, 3d− 1] ⊂ Rd +Rd.
Definer = max{r+, r−, r′, 3d − 1}, wherer+ andr− are the constants given by Propositions

3.1 and 3.4, respectively. Define

B′
r(nP ) := Br(nP ) \ (TnE1

([0, 3d− 1]) ∪ TnE2
([0, r′]) ∪ TnE2

([nbE2
− r′, nbE2

])), (5.4)

and set

Fr := TnE1
(Rd) ∪ TnE2

(Ls) ∪ TnE2
(Us) ∪ B

′
r(nP ). (5.5)

That is, we placeRd on one end ofnE1, Ls on one end ofnE2, andUs on the other end ofnE2,
and fill in all other points ofBr(nP ). See Figure 7 for an illustration.

Now letA be uniformly randomly chosen from all subsetsS ⊂ L(nP ) satisfyingS∩Br(nP ) =
Fr. We see that

A ∩ nE1 = TnE1
(S1), A ∩ nE2 = TnE2

(S2) (5.6)
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nv

nE1

nE2

Ls

Us

Rd

r

FIGURE 7. A quadrilateral that is not locally point symmetric. Again,the fringe setFr

lives within the balls of radiusr centered about the vertices. The one-dimensional fringe
setRd is placed on edgenE1, and setsLs andUs are placed on opposite ends of edgenE2.

for some setsS1, S2 ∈ Z such thatS1 ∩ [0, 3d − 1] = Rd, S2 ∩ [0, r′] = Ls, andS2 ∩ [nbE2
−

r′, nbE2
] = Us. By Lemma 2.1, there exists an injective affine transformationTnE2+nE2

: R → R
D

such that

(A+ A) ∩ (nE2 + nE2) = TnE2+nE2
(S2 + S2). (5.7)

It is easy to show that, then,

(A+ A) ∩ TnE2+nE2
([0, r′]) = TnE2+nE2

((Ls + Ls) ∩ [0, r′]) (5.8)

and

(A+ A) ∩ TnE2+nE2
([2nbE2

− r′, 2nbE2
]) = TnE2+nE2

((Us + Us) ∩ [2nbE2
− r′, 2nbE2

]).
(5.9)

It follows from (5.2) thatA+A is missing a total of exactlys sums in the regionsTnE2+nE2
([0, r′])

andTnE2+nE2
([2nbE2

− r′, 2nbE2
]).

As A is missingd lattice points along the edgenE1, it follows from Lemma 2.7 thatA − A is
missing at least2d differences. LetTnE1+nE1

: R → R
D be the injective affine transformation

returned by Lemma 2.1 when applied to edgenE1; because[0, 3d− 1] ⊂ Rd + Rd, we can show
in a similar manner to the argument above thatA + A is not missing any sums in the region
TnE1+nE1

([0, 3d− 1]).
Finally, it is not hard to show that all other elements inBr(nP + nP ) are present. That is, all

points in the set

Br(nP + nP ) \ (TnE1+nE1
([0, 3d− 1]) ∪ TnE2+nE2

([0, r′]) ∪ TnE2+nE2
([2nbE2

− r′, 2nbE2
]))

(5.10)

are present inA+A. The proof concludes identically as in the proof of Theorem 1.7 from here. �
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6. FUTURE DIRECTIONS

There are several natural directions in which to proceed from here. One conjecture is that
the proportionρs,dn converges ifP is locally point symmetric. Zhao [Z] proved this in the one-
dimensional case, and with some work his arguments might be extended to arbitraryD-dimensional
polytopes. This would likely involve modifying Zhao’s notion of a semi-rich set so that it is defined
in terms of the supporting cone for each vertex of the polytope.

Another problem is to consider the proportionρn of MSTD subsets ofL(nP ) for an arbitrary
polytopeP , which we discuss here in some detail. As mentioned in the introduction, neither
Theorem 1.7 nor Theorem 1.8 implies thatρn is bounded below by a positive constant asn→ ∞.
This is due to the fact thatL(nP ) is usually not balanced, such thatL(nP )−L(nP ) is much larger
thanL(nP ) + L(nP ). In particular, the ratio|L(nP ) − L(nP )|/|L(nP ) + L(nP )| is essentially
constant asn grows, and so we have that|L(nP )−L(nP )|−|L(nP )+L(nP )| grows on the order
of nD. Reformulating the problem in terms of missing sums and differences, we see that a subset
A ⊂ L(nP ) must be missing∼ nD differences for it even possibly to be MSTD.

There are some factors that, upon first glance, suggest that there may be many such subsets. If
P is not locally point symmetric (and therefore not balanced), then Lemma 2.7 shows that there
are many uniquely formed differences inL(nP ) − L(nP ). In other words, though the potential
difference set is large in size, it is very fragile in that many of its differences are missing with high
probability. For example, consider the lattice points of the tetrahedronnT in R

3 determined by
verticesA = (−n, 0, 0), B = (n, 0, 0), C = (0,−n, n), andD = (0, n, n). By boundingnT with
supporting planesz = 0 andz = n, we see that any difference between a point in edgeAB and a
point in edgeCD is uniquely formed. Similarly, we have that any difference formed byA and a
point on the face△BCD is uniquely formed. As this holds for any difference vector formed by a
vertex and a point on the opposite face, or by points on skew edges ofnT , we see that the presence
of the boundary points ofnT have a significant impact on the size of the difference set—inthis
sense, the natural fringe extends to the entire boundary ofnT rather than being restricted to the
balls centered about the vertices.

However, even if we make the strong imposition that a subsetA ⊂ L(nT ) is missing all bound-
ary points ofnT , this still would not amount to the necessary∼ n3 missing differences. Each
vertex forms around∼ n2 uniquely formed differences with points on the opposite face, and each
of the∼ n points on the edges ofnT forms∼ n unique differences with points on the opposite
skew edge. This suggests that subsetsA ⊂ L(nT ) whose difference set is even within the range of
the potential sumset become vanishingly rare asn grows.

The tetrahedron is, in a sense, very far from being locally point symmetric. The reason is that for
each vertexv, there are hyperplanes that support the tetrahedron precisely atv and the opposite
faceF . Consider now the following locally point symmetric hexagon H, depicted in Figure 8.
We can compute that|L(H) + L(H)| = 181 and |L(H) − L(H)| = 187, and the difference
in these cardinalities grows quadratically as we take dilations ofH. In this case, however, the
difference set is much more robust. BecauseH is locally point symmetric, we have no uniquely
formed differences except those formed by pairs of strictlyantipodal vertices. Thus, we are forced
to impose even stronger conditions on missing points in a subsetA ⊂ L(nH) for it to miss the
required∼ n2 differences.

From these considerations in combination with Corollary 1.9, we make the following conjecture:

Conjecture 6.1. Let P be polytope inRD with vertices inZD. Then the proportionρn of MSTD
subsets ofL(nP ) approaches0 asn→ ∞ if and only ifL(P ) is not balanced.



22 DO, KULKARNI, MILLER, MOON, WELLENS, AND WILCOX

FIGURE 8. Locally point symmetric hexagonH

This raises the question of how to characterize polytopesP for whichL(P ) is not balanced. We
know that ifP is point symmetric, thenL(P ) is balanced, but does the converse hold true? Or
perhaps there exists someP , locally point symmetric but not point symmetric, for whichL(P ) is
balanced. Does this imply thatL(nP ) is also balanced for alln?

Finally, it is interesting to examine how the limiting proportions ofρn andρs,dn (assuming they
exist) change as we vary our polytopeP . For example, ifP is a rectangle inR2, how do they
change as we vary the ratio of side lengths? What happens as weincrease the number of sides?
How do the limiting proportions change as we vary the dimension D? Do ρn andρs,dn exhibit
monotonic growth with the dilation factorn, as computations suggest whenP is an interval (see
[MO])? We hope to investigate these questions theoretically and numerically in a future paper.

APPENDIX A. NUMBER OF PAIRS OF STRICTLY ANTIPODAL VERTICES

We show that Lemma 2.6 follows from the work of Nguyên and Soltan [NS]. We restate Lemma
2.6 here for the reader’s convenience.

Lemma A.1. LetQ be aD-dimensional polytope withm vertices inRD. ThenQ is locally point
symmetric if and only ifQ has exactlym/2 pairs of strictly antipodal vertices.

Let s(Q) denote the number of pairs of strictly antipodal vertices ina convex polytopeQ. The
following theorems come from Theorems 1 and 3 of [NS].

Theorem A.2. For a convex polygonQ ⊂ R
2 withm vertices,

s(Q) = m− k, (A.1)

wherek (0 ≤ k ≤ ⌊m/2⌋) is the number of pairs of parallel sides inQ.

Theorem A.3. For a convexD-dimensional polytopeQ ⊂ R
D,m ≥ D + 1,D ≥ 3,

s(Q) ≥ ⌈m/2⌉. (A.2)

For an evenm, the equalitys(Q) = ⌈m/2⌉ holds if and only ifm ≥ 2D and the vertices ofQ can
be divided intom/2 pairs such that for each pair{u,v},

C(u)− u = v− C(v). (A.3)

For an oddm, the equalitys(Q) = ⌈m/2⌉ holds if and only ifm ≥ 4D − 1 and some(m− 3)/2
pairwise disjoint subsets of the form{u,v} can be chosen from the vertex set such that

C(u)− u = v − C(v) (A.4)
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for each of them, and the remaining three verticesx,y, z satisfy the relation

(C(x)− x) ∩ (C(y)− y) = z− C(z). (A.5)

LetQ be aD-dimensional polytope withm vertices inRD. If D = 1, thenQ is an interval and
satisfies Lemma A.1. IfD ≥ 3, then Lemma A.1 follows immediately from Theorem A.3.

It remains to show Lemma A.1 in the caseD = 2. By Theorem A.2, it suffices to show thatQ is
locally point symmetric if and only ifQ has exactlym/2 pairs of parallel sides. As showing this is
easy, we sketch the idea here. The forward implication is immediate. Now supposeQ has exactly
m/2 pairs of parallel sides, and further supposeQ has verticesv1,v2, . . . ,vm in clockwise order.
We can show that for any pair of parallel sidesE = vivi+1 andF = vjvj+1 of Q, there exist
supporting linesL1 andL2 such thatL1 ∩Q = E andL2 ∩Q = F . From there, we can show that
vi andvj are strictly antipodal, andvi+1 andvj+1 are strictly antipodal. ThatQ is locally point
symmetric follows easily from there.
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