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ABSTRACT. A sum-dominant set is a finite sét of integers such thatd + A| > |A — A|. As a
typical pair of elements contributes one sum and two diffees, we expect sum-dominant sets to
be rare in some sense. In 2006, however, Martin and O’Brymowed that the proportion of sum-
dominant subsets df, ..., n} is bounded below by a positive constantras+ co. Hegarty then
extended their work and showed that for any prescrib@de Ny, the proportiorp?:¢ of subsets of
{0,...,n}thatare missing exactlysums in{0, ..., 2n} and exacth2d differencesin{—n,...,n}
also remains positive in the limit.

We consider the following question: are such sets, chaiaetbéby their sums and differences,
similarly ubiquitous in higher dimensional spaces? We gaire the integers in a growing interval
to the lattice points in a dilating polytope. Specificallgt P be a polytope irRP with vertices in
7P, and letp3Y now denote the proportion of subsetsigfzP) that are missing exactly sums in
L(nP) + L(nP) and exactly2d differences inL(nP) — L(nP). As it turns out, the geometry of
P has a significant effect on the limiting behaviorjf?. We define a geometric characteristic of
polytopes called local point symmetry, and show izt is bounded below by a positive constant as
n — oo if and only if P is locally point symmetric. We further show that the propmrtof subsets
in L(nP) that are missing exactly sums and at leagtd differences remains positive in the limit,
independent of the geometry Bf A direct corollary of these results is thatffis additionally point
symmetric, the proportion of sum-dominant subsets @fP) also remains positive in the limit.
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1. INTRODUCTION
Given afinite sefd C Z, we define the sumset + A and the difference set — A by
A+ A = {a1+ay:a,a9 € A},
A—A = {a; —ay:ay,as € A}, (1.1)

It is natural to compare the sizes df+ A and A — A as we varyA over a family of sets. As
addition is commutative while subtraction is not, a pair stidct elementsi;, a; € A generates
two differencesa; — a; anda, — a; but only one sunu; + a,. We thus expect that most of
the time, the size of the difference set is greater than thiéteosumset—that is, we expect most
setsA to bedifference-dominantlt is possible, however, to construct sets whose sumsets ha
more elements than their difference sets. Such sets asglsalin-dominanbr More Sums Than
Differences(MSTD) sets. The first example of an MSTD set was discovere@dayway in the
1960s: {0,2,3,4,7,11,12,14}. A set whose sumset has the same number of elements as its
difference set is calledalanced

We briefly review some of the key results in the field. In 2006rih and O’Bryant([MO]
showed that not only do MSTD sets exist, but there exist mattyeon in some sense. In particular,
they proved that the proportign, of subsets 00, 1,...,n} that are MSTD is bounded below by
a positive constant as — oo. They show that similar results hold as well for balanced and
difference-dominant sets. Hegarty |[He] then extended tlerk and showed that for any d €
Ny, the proportiorp::¢ of subsetsA C {0, 1,...,n} satisfying

HO,1,....2n}\(A+A)| =5, {-n—n+1....n—-1n}\(A-A4)] =2d (1.2

also remains bounded below by a positive constant in the.libaiter, in 2010, Zhad [Z] showed
that bothp,, andp:“ converge as — oo, with p,, approaching a limip ~ 4.5 x 10~%.

This previous work explored the behavior of sums and diffees of sets in the one-dimensional
latticeZ. In particular it was observed that sum-dominant, balapaed difference-dominant sets,
as well as sets with even greater constraints on missing andhslifferences, are all surprisingly
ubiquitous on the line. A natural question arises: are sethsmilarly common in other spaces?

In this paper, we extend the theory to sets in higher dimeaslattices, namelZ? for any D >
of Interesting new features and complications arise in higiraensions. Whereas on the line it
is natural to consider subsets of the integers in a growiteyval, in higher dimensions we can
begin to consider different geometries for our overall stibbsgion. A natural high-dimensional
analogue of the interval is a convex polytope. We examinairtiqular the additive behavior of the
lattice points in an arbitrary dilating)-dimensional convex polytope with lattice point vertices.

Let P be a convex polytope iRR” with vertices inZ”. For any setS c R”, let L(S) denote
the set of lattice points contained i that is, L(S) = S N ZP. Furthermore, let.S denote the
dilation of S by a factor ofn about the origin. In the spirit of Hegarty, we focus our atiitem to
the proportiorps? of subsetsA C L(nP) such that

|(L(nP) + L(nP))\ (A+ A)| = s, [(L(nP)—L(nP))\(A—-A)| = 2d, (1.3)

for any prescribed, d € Ny. In this paper we assume thatis fixed, and revert to the more
informal description that such subsets@re missing exactly sums and missing exactdy! differ-
ences. Studying missing sums and differences rather tleanuimber of sums and differences is
the natural generalization of the 1-dimensional resultsclwwe discuss at the end of this section
and in Sectiofil6.

Isee [DKMMW] for another generalization to sums and differesnof correlated random pairs of setZin
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The geometry of” has a significant effect on the limiting behaviorgf'. Before we state our
main results, we introduce some terminology that helps stingjuish between polytopes.

Definition 1.1. Let P be a convex polytope. Verticasandv of P are strictly antipodalif there
exist parallel supporting hyperplane; and H,, of P such that/,NP = {u} and HoNP = {v}.

Definition 1.2. Given a vertex of P, thesupporting con€’(v) at v is the set
v+ AP -v). (1.4)
A>0
Equivalently,C'(v) is the convex hull of the half-lines formed by extending thges ofP at v.
Definition 1.3. A polytopeP is point symmetridf there exists a poink such thatP = x — P.

Definition 1.4. A convex polytop# with m vertices idocally point symmetricf its vertices can
be partitioned intan /2 pairs of strictly antipodal vertices such that for each péir, v},

Cu) —u = v—C(v). (1.5)
Note we subtract the vertex above (iffu) — u andv — C'(v)) so that the supporting cones are
standardized with their apexes at the origin.
Example 1.5. Any point symmetric polytope is locally point symmetric.

Example 1.6. Consider the hexagoABC DEF' in Figure[l, whered and D, B and F, andC
and F’ form pairs of strictly antipodal vertices. A$B and DE, BC' and EF', andC'D and F A
form pairs of parallel edgesd BCDEF is locally point symmetric.

A B

E D

FIGURE 1. A locally point symmetric hexagon.

As it turns out, whetheP has local point symmetry determines whethgt remains positive in
the limit. We prove the following result.

Theorem 1.7. Let P be a convex polytope iR” with vertices inZ”, and lets, d € N, be given.
There exists a constamt, > 0 such that, for sufficiently large, at leastc, 4 - 2/L(")l of the
subsets of.(nP) have exactly missing sums and exactly missing differences if and only
is locally point symmetric.

We restrict ourselves to polytopes with lattice point vag$ because, as we will see, this al-
lows us to exploit results in the one-dimensional case. Thmmdea behind Theorem 1.7 is that
convex polytopes without local point symmetry (and thesesttute the vast majority of con-
vex polytopes) have many uniquely formed differences ag thiate byn. That is, there exist
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many differencek € L(nP) — L(nP) each of for which there exists a unique pair of elements
p,q € L(nP) that satisfiek = p — q. This makes it vanishingly unlikely asgrows that there is
a constant number of missing differences in the redionP) — L(nP).

On the other hand, we can weaken our condition on the numbasrissing differences and
obtain a positive proportion in the limit, independent of tieometry ofP.

Theorem 1.8.Let P be a convex polytope iR with vertices inZ”, and lets, d € N, be given.
There exists a constant, > 0 such that, for sufficiently large, at leastc, 4-2/L(*F)| of the subsets
of L(nP) have exactly missing sums and at lea&{ missing differences.

As mentioned above, studying missing sums and differenmesdes a more natural framework
in which to consider the additive behavior of high-dimemnsilbsets. IfD = 1, and therefore”
is an interval, then settingd > s in the theorems above implies a positive lower bound on the
proportion of MSTD subsets af(nP) asn — oo; this is Hegarty’s generalization [He] of the
results of Martin and O’Bryant [MO]. The reason for this isthhe overall set regioh(nP) is
itself balanced, and thus having more sums than differeisagguivalent to having more missing
differences than missing sums. This is occasionally tririgher dimensions as well. For example,
consider subsetd of the square,, := {(z,y) : x,y € {0,...,n}}. We see thatl + A lives in the
squareS,, + S, = {(x,y) : z,y € {0,...,2n}} andA — A lives in the squaré,, — S,, = {(z,y) :
x,y € {—n,...,n}}, both regions havin@2n + 1) elements.

As our polytopeP varies, however, it is much more typical that the differeises region
L(nP) — L(nP) is larger than the sumset regi@inP) + L(nP). If we now consider subset$
of the triangleT}, := {(z,y) € Z*> : 2 > 0,y > 0,2 +y < n}, thenA + A lives insideT,, + T,,,
which has2n? + 3n + 1 elements, whiled — A lives insideT,, — T,,, which has3n? + 3n + 1
elements; see Figufeé 2. Observe tfat— T,| — |T,, + T,,| = n?. Since we fix the numbeld
of missing differences independentlymfany A C T, that is missing exactlgd differences will,
for sufficiently largen, always result in a difference sét— A that has more elements than is even
possible in the sumset + A.

Thus, Theorens 1.7 ahd 1.8 do not imply that the proportiod®TD subsets of.(nP) remains
positive in the limit. In future study, we may begin to exaeMSTD sets in higher dimensions
by allowingd to depend om—in the case of the triangle s€&}, a subsed C T,, missing exactly
s sums and exactlgd differences is MSTD if and only iffl > s + n2. We discuss this in more
detail in Sectiofl6, and conjecture that the proportion ehssubsets approache# L(P) is not
balanced. At the very least, Theorem] 1.7 implies positiopprtions of sum-dominant, balanced,
and difference-dominant subsets in the limit if we add trsuagption that’(P) is balanced. It is
simple to show that ( P) is balanced ifP is point symmetric. Thus, we have

FIGURE 2. Left: T3 with 10 elements. MiddleT; + T3 with 28 elements. RightTs — T3
with 37 elements.
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Corollary 1.9. Let P be a convex, point-symmetric polytopeR#® with vertices inZ”. There
exists a constant > 0 such that, for sufficiently large,

#{A C L(nP) : Ais sum-dominant > ¢ 2/LP),
#{A C L(nP) : Ais difference-dominaft > ¢ - 2/L*P)l,
#{A C L(nP) : Ais balanced > c.2/"®P. (1.6)

2. SUMS AND DIFFERENCES OFEDGE ELEMENTS

A key idea in past work on MSTD sets is the importance of frieggments. For any set C
{0,...,n}, there are relatively few ways of forming sums néand2» and of forming differences
near—n andn. Such sums and differences are formed entirely by elememsnear0 andn—
the fringe elements. On the other hand, there are relatimelyy ways of forming the respective
middle sums and middle differences, and thus they have higibability of being present as we
let A vary. Thus, the sizes of + A andA — A are predominantly affected by the elementsiof
in the fringe, and so it is possible to control the balanceuofis and differences of by cleverly
fixing those fringe elements.

A similar idea extends to subsets of the lattice points inlgtppe. In this case, the fringe ele-
ments are the points near the vertices of the polytope. Itloosen fixing of the fringe, elements
along certain edges, or 1-faces, of the polytope play aquaatily important role in controlling the
number of missing sums and differences. To that end, we lestab this section some ancillary
lemmas that highlight the behavior of sums and differen¢esige elements.

Let P denote our given convex polytope R’ with vertices inZ”. We begin with the obser-
vation that becaus® has lattice points as its vertices, the dilated polytopehas at least + 1
lattice points along each edge. More specifically, if an efigd P containsbz + 1 lattice points
(wherebg > 1 sinceFE contains at least its two endpoints), then its dilated fatthin n P contains
nbg + 1 lattice points. Furthermore, thesér + 1 lattice points are evenly spaced along the edge,
and thus form their own one-dimensional lattice structifre.E’ has endpointae; andne,, then
we can define an injective affine transformatigy, : R — R” by setting

TnE(ZL’) = (ne2 — nel)/(nbE) ‘T +ne; = (82 — el)/bE - T+ ney (21)

for all x € R. NoteT,,z forms a one-to-one correspondence betwi@enbz] andL(nE). Thus,

when constructing a set C L(nP), we can ‘place’ an arbitrarily large, one-dimensional Set

[0, nbg] along any edge £ by takingn to be sufficiently large and then settidg\nE = T, 5(5).
Lemmad 211 and 2.2 essentially state that for whatever onergional sets are placed along

edges of. P, we can find corresponding sumsets along edges’in- nP and, sometimes, corre-

sponding difference sets along edges.in— nP.

Lemma 2.1. Let Q be a convex polytope iR” with vertices inZ”, let E be an edge of), and
let A C L(Q). Supposed N E = Tg(S), whereS C Z and Ty : R — R” is an injective affine
transformation. Then there exists an injective affine tfarmation, » : R — R” such that

(A+A)N(E+E)=Tr(S+9). (2.2)
Proof. We first show that
(A+A)N(E+E)=(ANE)+ (ANE). (2.3)

As(ANE)+ (ANE) C (A+ A)N (£ + E) is immediate, we need only show the forward
inclusion.
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Letk be a pointinE + E. By the convexity of~, there exists some € F such thate = k.
Thus, for any pair of pointa;,a; € A with a; + a; = k, we have thata; + a;)/2 = e. In
other wordsa,, a, ande are collinear withe halfway betweem; anda,. Let H be a supporting
hyperplane of) such thatd N Q) = E. Supposey;,a, € H. Sincee € E C H, it must be that,
anda, are in different open half-spaces formed By But, sinceH supports), then either; or
a, Is not in()—a contradiction. Thus we have that, a; € H, and therefora;, a, € E. In other
words,(A+ A)N(E+E) C (ANE)+ (AN E), and[Z.3) follows.

We now prove the lemma. We can wrifg (x) = M(x) + b for all z € R, whereM : R — RP
is an injective linear transformation ahdc R” is some translation vector. Defifig; : R — R”
such thatlyz(xz) = M(x) + 2b for all x € R. SinceM is injective and linear]; is injective and

affine. By [2.3),
(A+A)N2E = (ANE)+ (ANE)
= Tr(S)+Tg(S)
= (M(S)+b)+ (M(S)+Db)
= M(S+S5)+2b
= Thp(S+59), (2.4)
as desired. m

Lemma 2.2. Let Q be a locally point symmetric polytope iR” with vertices inZ”, and let
A C L(Q). For a pair of strictly antipodal vertices; andv,, let £, and E, be parallel edges
such thatv; € E; andvsy € E,. Supposed N Ey = Tg,(S1) and AN Ey = Tg,(Ss), where
S1,8, C Z andTg,, T, : R — RP are injective affine transformations with the same assediat
linear transformation. Then there exists an injective affimansformatioriy, 5, : R — R with

(A=A)N(E2 — E1) = Tp,—p, (52 — 51). (2.5)
Proof. The proof proceeds similarly to that of Lemmal2.1. We begistgwing that

That(ANE,) — (ANE;y) C (A—A)N(E, — Ey) is immediate, so we need only show the forward
inclusion. Lete; € E, e, € F,. It suffices to show that if € R” ande; +t,e, +t € Q, then
e +tekE; andeg+t € Fs.

We first show that there exists a pair of parallel supportiyyghplanedi; and H, of () such that
H,NQ = FE;andH,; N Q = E,. Let H; be a supporting hyperplane @fsuch thatd; N Q = F,
and let H, be the parallel hyperplane that contaifs. Suppose there exists some pointe
(Hy N Q) \ E,. By the convexity oy, we then have that the line segmef; is also contained
in Hy,. Sinceqv, cannot be parallel td’;, we have by the local point symmetry 6f thatqv,
cannot be an edge ¢J—otherwise,/ H; N ) should contain another edge besidgghat contains
v, and is parallel tayv,. It is not hard to show then that there is some edg€ afther thank,
that is contained in the half-space Hf, that does not contaif;. By the local point symmetry
of @, there must be some corresponding parallel edge other thanZ; that is contained in the
half-space off{; that does not contaifi,. As this is not the case, we have tliat N Q = Es.

Now let V; denote the closed half-space formed#abythat containg), andV; the closed half-
space formed by, that containg). Note that if a translation vectar ¢ R” does not lie inf;
(or Hy,), then eithee; +t € V, ore, +t ¢ V,. Thusife, +t, e, +t € Q, thent € RP must lie
in Hy. Thene; +t € Hy ande; +t € Hy. SinceH; N Q = E; andH, N Q = Es, it follows that
e, +t € E, ande, + t € E,, and thus[(2]6) follows.
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We now prove the lemma. We can wriig, (x) = M (z) + by andTg,(z) = M(x) + b, for all
r € R, whereM : R — RP is an injective linear transformation ahd, b, ¢ R” are translation
vectors. Definds, g, : R — R? such thatl, g, (z) = M(z) + (b, — by) for all z € R. Since
M is injective and linearT i, g, is injective and affine. By (216),

(A—A)N(Ey— Ey) = (ANEy) — (AN EY)
= Tp,(S2) — Tp, (51)
(M(S2) + by) — (M(S1) + by)
M(Sy — S1) + (by — by)
Tg, g (S2 — S1), (2.7)
as desired. m

Definition 2.3. Given a setS € R”, a difference vectok € S — S is uniquely formedf there
exists a unique pair of elemendg s, € S satisfyings; — s, = k.

The remainder of this section is devoted to proving Lemima ®Hhich asserts that there are
many (at least on the order af uniquely formed differences inP — nP if P is not locally
point symmetric. By contrast, iP is locally point symmetric, then the number of uniquely fean
differences imP — nP is constant, as we will show in LemrhaB.6.

Showing Lemma& 2]7 requires a brief review of geometry. Inftlewing definitions, letQ be
a convex polytope iiR”. Further assume th&} is D-dimensional—that is, the smallest affine
subspace containing is R”.

Definition 2.4. Given vectors;, x,, ..., x,, € R”, a conical combinatiorof these vectors is a
vector of the formu;x; + asxs + - - + a,, %, Wherea; > 0 forall 1 < i < m. Thepolyhedral
conegenerated by vectors;, x», . . ., X, IS the set of all conical combinations ®f, x,, . . ., x,,.

Definition 2.5. Letv be a vertex of), and letn,, . . . , n, denote outward-pointing normal vectors
of all facets ofp that containv. Thenormal coneV(v) of ) atv is the polyhedral cone generated
byn,..., n,.

Note that normal cones have their apexes at the origi‘pfvhile supporting cones have their
apexes at the vertices of the polytope.
Suppos&y has vertices/;, vo, ..., v,,. The following properties of normal coné$(v;) are
easily verified:
(1) For each vertex;, the normal conéV(v;) is the set of outward normal vectors (of arbitrary
length) to all supporting hyperplanes@fthat containv;.
(2) Verticesv; andv; are strictly antipodal if and only if the interiors of (v;) and—N(v;)
have non-empty intersection.
(3) Fori # j, the interiors ofN (v;) and N (v;) are disjoint.
(4) Fori # j, the intersection o (v;) and N (v;) is either{0} or a facet of both cones.
(5) UL, N(vi) = R,
We now introduce a useful result that follows easily fromwwk of Nguyén and Soltan [NS].
We provide the details in AppendiX A.

Lemma 2.6. Let Q be aD-dimensional polytope with: vertices inR”. Thenq is locally point
symmetric if and only i€) has exactlyn /2 pairs of strictly antipodal vertices.

We are now ready to prove Lemimal2.7.
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Lemma 2.7. Let Q be a convex polytope iR” that is not locally point symmetric. Then there is
a vertexv and an edgé’ of @@ such that, for alle € F, the difference vectois = e — v and—k
are uniquely formed.

Proof. The difference vectork = e — v and—k are uniquely formed if and only if there exists no
non-zero vectot € R” such thaee + t, v +t € . To show that such a vertaxand an edge”
exist, it suffices to show that there exists a pair of paralligiporting hyperplanel; and H, of )
such thatid; N @ = {v} andH, N Q) = E. This is clear because, for any translation by a vector
t € R” of v and some: € E, we must have thatis parallel toH, andH, if e + t andv + t are

to remain in the closed space boundedhyand H,. But H; N () = {v}, and therefore it must be
thatt = 0if v +t € Q. See Figuré]3 for an illustration.

First assume thap is D-dimensional, withm vertices. Ag) is not locally point symmetric, and
every vertex of a convex polytope is strictly antipodal watieast one other vertex, it follows by
Lemmd 2.6 that the number of pairs of strictly antipodaliees is strictly greater tham /2. Then
there exists some vertexof () that is strictly antipodal with at least two other verticé®t u;
andu, denote two such vertices. By property (2) above, the inteidd N (v) and—N(u;) have
non-empty intersection, as do the interiorsofv) and —N(u.). For the sake of contradiction,
suppose thafV(v) is contained in—N(u;). Reflection through the origin is injective, and the
interiors of N(u;) and N (u,) are disjoint by property (3) above, so it follows that theenrs of
N(v) and—N(uy) are disjoint—a contradiction. Thus/(v) cannot be contained ir N (u,).

As the interiors ofN(v) and—N(u;) still have non-empty intersection, it is not hard to show
that the interior of some facét of — N (u;) has non-empty intersection with the interior/éfv).
Now note thatF' is also a facet of the cone N (u’) for some vertexa’ that is connected ta; by
an edge—we let’ denote this edge. Further note tttais set of (inward-pointing) normal vectors
of supporting hyperplanel of ) that satisfyH N Q = E. In other words, there exist parallel
supporting hyperplane; and H, of () such thatd; N @ = {v} andH, N Q = E, as desired.

If @ is not D-dimensional—that is, the dimension of the affine hultois someD’ < D—then
we can define some injective affine transformation aff(Q) — R”’ from the affine hull ofQ

H>

H,y

FIGURE 3. A quadrilateral@ that is not locally point symmetric. The parallel lin&g
and H, support() precisely atv and atE, respectively. For any non-zero translation vector
t, eitherv +t € Q ore +t ¢ @, and the difference vectd = e — v is uniquely formed.
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to RP". As affine transformations preserve parallel lines, thegenpolytope)’ = 7'(Q) is also
not locally point symmetric. It is not hard to show that a eiifince vectoq, — ¢, € Q' — Q' is
uniquely formed if and only i’ ~*(q}) — T7*(q5) € Q@ — Q is uniquely formed. Thus, we can
prove the lemma fo€) by applying the argument abovedp. U

3. MIDDLE SUMS AND DIFFERENCES

Letk < n/2,letA C {0,...,n}, and define sets := AN [0, k] andU := AN [n — k,n]. Itis
easy to see that

(A+A)N([0,kJU2n —Ek,2n]) € (L+L)U(U+U),
(A=A)N([-n,—n+klU[n—kn)) c (L-U)UU - L). (3.1)

In other words, the sums and differences within radiuwd the endpoints of the potential sumset
and potential difference set, respectively, are formedadptby the fringe elements within radius
k of the endpoints of the base st ..., n}. Martin and O'Bryant exploit this idea in [MO] by
fixing the fringe ofA such thatd + A necessarily has more elements at its ends than dees!.
They then show that with high probability, all ‘middle’ suraad differences are present in the
sumset and difference set.

The same idea extends to higher-dimensional convex pagtofsiven an arbitrary convex
polytope@ and some: > 0, define sets

B.(Q) := {q€ L(Q) : d(q,v) < r for some vertex of @)},
M (Q) = L(Q)\ B:(Q), (3.2)

whered(-, -) denotes the Euclidean metric. In words,(Q) is the set of lattice points contained
in the union of balls of radius centered at the vertices &f, while A,.(Q) consists of all other
‘middle’ lattice points. It is easy to show that for adyC L(nP),

(A+ A)NB.(nP+nP) C (AN B.(nP))+ (AN B,(nP)),
(A—A)NB,(nP—-nP) C (AN B,(nP)) — (AN B.(nP)). (3.3)

Thus, we can precisely control the fringe of the sumset affierdince set{A+ A)NB,.(nP+nP)
and(A — A) N B.(nP — nP)—by carefully fixingA N B,(nP), the fringe ofA. Importantly, we
chooser independently of the dilation facter, fixing a constant number of points agrows.

We refer to any other possible sum—that is, an elemenf,@f. P +n P)—as amiddle sumand
any other possible difference—that is, an elementfHfnP — nP)—as amiddle difference If
we can show that all middle sums and all middle differencegaesent with positive probability,
then we have a positive proportion of subséts- L(nP) that satisfy some precise condition on
the cardinalities of their sumsets and difference sets. pilipose of this section is to show that
this is true if the fringe is large enough and, in the case afdie differences, if and only iP is
locally point symmetric.

Proposition 3.1. Let 0 < p* < 1 be given. Then there exists some> 0 such that for all
sufficiently largen, the following holds: Letr, C B,(nP), and let A be uniformly randomly
chosen from all subsets C L(nP) such thatS N B,.(nP) = F,. ThenM,(nP +nP) C A+ A
with probability at leasp™.

Proof. We begin with a lemma bounding the probability that any irdinal middle sum is missing.



10 DO, KULKARNI, MILLER, MOON, WELLENS, AND WILCOX

Lemma 3.2. Letr > 0, and fix a fringe sef’,. C B,.(nP). Let A be chosen uniformly at random
from all subsetsS C L(nP) such thatS N B,(nP) = F,, and letk € M,(nP + nP). Then, for
some constant > 0 independent of,

1 (3.4)
Proof. The proof is similar to that of Lemma 5 in Martin and O’'BryaM®]. Suppose we have
x,y € nP such thatk +y = k. Thenx = k —y € k — nP, and similarlyy € k — nP. Then
L(nP N (k —nP)) can be partitioned into distinct pairs of lattice pointstthdd up tok, and the
singleton{k/2} if k/2 is a lattice point. The probability th&t is missing inA + A is then the
product of the independent probabilities that in each @aiteast one point is missing. Suppose
that in our fixed fringe sef;., exactlyl points are fixed as missing. Then at mbpairs contribute

a probability of1, and the remaining pairs contribute a probability of at n¥gdt Whenk/2 is
not a lattice point, there até.(nP N (k —nP))| /2 pairs total, which gives

3\ |LPA(k=nP))|/2
Pk & A+ A §c<—) )

3\ [L(nP(k—nP))| /21
Pk A+ Al < <1> : (3.5)

Thus, we may take = (3/4)~! and the lemma follows. In the case wh&& is a lattice point, a

similar argument gives the same bound. U

By the union bound, the probability that at least one middi® $s missing is at most the sum
of the probabilities that each individual middle sum is rimigs Thus, to prove Propositidn 3.1, it

suffices to show
Z ¢ §
4

keM,(nP+nP)

for sufficiently largen andr.

In the one-dimensional case, this amounts to making a tal géometric series as small as
desired, which is done in [MO]. Unfortunately, in dimensions, the shape” N (k — nP) can
get quite complicated, and we must do more work. The key islé@at wherk is close to a vertex
of nP +nP, the shapeP N (k —nP) is a parallelotope, which is quite simple. Conversely, when
k is not close to a vertex of P + nP, we are saved by the fact thaf N (k — nP) is large, so we
do not need to be careful about counting its lattice poinég Hguré ¥ for an illustration.

To evaluate the sum il (3.6), we partitidd. (n P + nP) into two sets, a ‘center’ s&t and an
‘intermediate’ set’. Fix somez > 0. We defineC' as all pointsk € M, (nP + nP) such that

|L(nPA(k—nP))|/2
) < 1-—p* (3.6)

60/0
|[L(nP N (k—nP))| > 2logs, (L(nP—l—nP)) : (3.7)
The right hand side is constructed so that by Lerhma 3.2,
Ec

for all k € C'. We conclude that the sum Bfk ¢ A + A] over allk in C' is at most, because
C C L(nP+nP).
We definel to consist of the remaining points; that is, all poikts M, (nP + nP) such that

IL(nP N (k—nP))| < 2log, (%) . (3.9)
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FIGURE 4. AtriangleT = AABC with its sumsefl’ + T = AADE. On the left, the
sumk is relatively far from the vertices af + T'. Thus, while the shape of the intersection
T n(k —T)is hard to control, it fortunately contains many latticergei On the right, the
sumk is relatively close to a vertex &f + 7', and hencd’ N (k — T') is a parallelotope.

Note that the right hand side 8(logn), while |L(nP + nP)| is ©(n?). Intuitively, the above
definition suggests that all poinks € [ should lie close to the vertices ofP + nP, in order to
make|L(nP N (k — nP)| small. The sef will be located in between the fringe s&t and the
center set’. Sincelogn/n — 0 asn — oo, the intersection polytopeP N (k — nP) will be a
parallelotope for alk € I, for n large. We formalize this idea in the following lemma.

Lemma 3.3. There exists a constanht> 0 such that/ is contained in the union of balls of radius
tlog n around the vertices of P + n P for all n.

Proof. To highlight the dependence bbnn, we write/(n). Assume for the sake of contradiction
this lemma is false. Then for ea¢hthere is some: such that/(n) is not contained in the union
of balls of radiug log n centered at the vertices ®f P. In particular, letting take on the value of
every positive integem, we have the following: For each positive integerthere existk,, and
n,, such thak,, € I(n,,) butk,, has distance greater thanlog n from each vertex o2nP.

For the next step, it is useful to visualize the polytdpas fixed, and rather than dilatirigby
a factor ofn, we shrink the underlying lattice by a factorof

Consider the sequendg, = k,,/m. Note that this sequence lies inside the polytépe P,
which is closed and bounded, so there is a convergent sulaseek], . Letk’ denote the limit of
this subsequence.

Step 1.We claim thatk’ must be a vertex oP + P; thatis,P N (k' — P) is just one point (the
pointk’/2, a vertex of both? andk’ — P).

Consider the convex polytope N (k' — P), and suppose that it is not just a point. Then itis a
d'-dimensional polytope wheie < d’ < D, and furthermore it must lie in &-face of P (and of
k' — P). SinceP has lattice point vertices, &@-face of P containsO(n) lattice points. (Recall
that P stays fixed and the lattice shrinks.)

Let A be the affinel’-dimensional subspace containifg) (k' — P). Relative toA, the point
k’/2is in the interior ofP N (k' — P), with some positive distanago all its bounding faces. So let
B C A be ad’-dimensional ball centered kt/2 with fixed radius/2, so thatB ¢ PN (k' — P).
Then B containsd(n) lattice points.
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We now show thad ¢ Pn(k;, — P) forilarge. The fact that;, — k' asi — oo is sufficient
for this. First, consider any hyperplalﬁémaklng an anglé with A and supposé/ is translated
normally by a distance at mostThen the intersectio N A is translated along by a distance at
moste/ sin 6. In particular, among all bounding hyperplanekbf P, there is a minimum nonzero
angled,,,;, made withA, so that whenevdt' is translated by at most= ¢/(2 sin 6,,,;,), the bound-
ing faces ofP N (k' — P) o —kK|<é,s0
B c Pn(kl, — P), as desired. SincB containsO(n?) lattice points, this directly contradicts
thatk,,, € I(n), which says thatZ.(P N (k;, — P))| = O(logn). Thusk’ mustin fact be a vertex
of P+ P, sothatP N (k' — P) = {k'/2}.

Step 2.Recall thatk’ /2 is a vertex ofP. Fori large k;,. is so close t&’ thatP N (k;,. — P) =
Ck'/2)n (k,, — C(k'/2)), whereC(k'/2) denotes the supporting cone Bfatk’/2. In other
words, fori large, only the local shape d? atk’/2 matters: the only hyperplanes determining
PN (k;, — P)arethose of” atk’/2 and the corresponding hyperplanekip — P.

This means that the shagen (k;, — P) is quite simple, and the number of its lattice points
will be easy to analyze. Suppogen (k;, — P) is ad’-dimensional polytope. PicK edges of
P atk/, extend them to rays frork’, and call their convex hulP’. ThenP' N (k;, — P')is a
parallelotope—as simple a shape as we could hope for. Fartre, that parallelotope is a subset
of PN (k;, — P), soitalso ha$)(logn) lattice points. Since each of thegeedges has a lattice
structure, the edges have lengiflogn) as well, so the diameter of the parallelotop®idogn).
Thus|k;, — K| is indeedO(logn). O

Now we evaluate the sum in_(3.6) over poilkts I. We sum around one vertex of° + nP
at a time. Letv be the current vertex, and |t be the portion off that lies in the ball of radius
tlogn aboutv.

Sincelog n/n — 0 asn — oo, for n large we havgnP +nP)N B, = C(v) N By, whereC(v)
denotes the supporting coneP + nP atv. Henceforth, assumeis this large. Now the only
relevant portion of. P + n P is a neighborhood o¥; that is, wherk € [,

nPnN(k—nP) = C(v)Nn(k—-C(v)). (3.10)

To show that the sum in(3.6) is small, we show that the sum

(3 LCEING~C(v))] /2
T (3.11)
4)

)

keL(C(v

converges. Because the terms are positive, it suffices toddihis sum above. The reason we want
to prove convergence is that our final step will be to bolin@)(By an arbitrarily small tail of this
sum (recall that we will be cutting out a constant fixed frimggion of radius aroundv, and we
can make- as large as desired).

Recall thatC'(v) is the convex hull of rays fronrv corresponding to edges &f. ThenC'(v)
is the union of convex hulls ab-tuples of those rays. Since there are finitely manyuples, it
suffices to show that the sum is bounded in each such region.

Let R be one such region, the convex hull bfrational-slope rays fronv. We wish to show

that
>

) IL(C(v)N(k=C(v)))I/2
keL(R)

(3.12)
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converges. Sinc& C C(v),

ILIRN (k= R))| < [L(C(v)N(k—C(v)))l, (3.13)
so it suffices to show that
3 |L(RN(k—R))|/2
Sp= > ¢ <Z) (3.14)
keL(R)

converges. This is easier, becaute (k — R) is simply a parallelotope for arly € L(R).

By induction onD the sum over any facet gt converges, because a facetiis the convex
hull of D — 1 rays fromv, and the base cade = 1 amounts to a geometric series. Now that the
boundary ofR has been dealt with, it remains to sum over the lattice pamtke interior ofR,
which we shall denot&°. Whenk is in the interior,R N (k — R) has non-zero volume. In fact,
in the interior, there is a positive constanidepending ork) allowing us to bound the number of
lattice points below by the volume. That is, for kle L(R°),

alRN(k—-R)| < |L(RN(k—R))|. (3.15)
Using this upper bound, it suffices to show the convergence of

3\ AN R)
Spo= Y C(Z) . (3.16)
)

keL(R°

We can upper bound the resulting sum further. Tebe a rational affine transformation that
mapsRi onto the first orthant. Becauge increases the volumes in the exponents by at most a
constant factor,, applyingT’ gives us the new upper bound

3 a|T(R)N(k=T(R))|/c2
s 3 of)

kET(L(R®))

(3.17)

Now, notice thafl'(L(R°)) is a subset of the latticE(Z?) whose points all have positive (ratio-
nal) coordinates. Thus, for some ratiopat 0, we haveL(R°) C ¢N” and we may further bound

the sum above b
Y 3 alT(R)N(k—T(R))|/c2
SR < Y ¢ <Z) . (3.18)

kegND
Letz = (3/4)/*. SinceT(R) is equal to the first orthant(R) N (k — T(R)) is simply a
rectangular cell with opposite verticeandk, so our sum in[(3.18) is equal to
Spo=q" > alerhn (3.19)
(k’hk’Q ..... kJD)ENd
To show that this sum converges, we may rewrite the sum as
Sk = ¢" ) d(m)a™, (3.20)
meN

where)(m) is the number of ways of writing: as the ordered product @ positive integers.
However,)(m) is clearly bounded by:”, so sincer < 1 the sum converges as desired.
Since the upper bound converges, our original sum

Z 3 |L(nPN(k—nP))|/2
4

keL(C(v))

(3.21)
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also converges. It follows that by making the constant fixewe radius- large enough, we can

force the tail sum
3\ |LPA(k=nP))|/2
> <1> (3.22)

ke(C(v)\Br(nP+nP))
to be smaller than any;, . Sincel, liesin L(C(v) \ B.(nP + nP)), the sum ovek € [, is also
smaller tharx,. Thus if we let:; be the sum o, over all verticess of nP +nP, the probability
that at least one middle sum is missing is at m@s# ;. In particular, if we chooses ande; so
thatec + 7 < 1 — p™, we have at least a constant positive probabijlitythat all middle sums are
present, as desired. This concludes the proof of Propo&tib. O

We now examine the presence of middle differences.

Proposition 3.4. Let0 < p~ < 1. SupposeP is locally point symmetric. There exists some
r > 0 such that for all sufficiently large, the following holds: Let, C B.(nP), and letA

be uniformly randomly chosen from all subsétsC L(nP) such thatS N B.(nP) = F,. Then
M,.(nP —nP) C A— A with probability at leasp—.

Proof. The proof is largely identical to the proof of Propositiodl.3.We highlight the relevant
differences here. In the course of the proof we state andeww useful lemmas.

First of all, when considering sums, the pairs of pointd.imP) that sum up to somk €
L(nP) + L(nP) are pairwise disjoint. Thus, the probabilities that at teaee point is missing
from each pair are independent, so it is easy to the boundritbpility thatk is missing in
A+ A. The same does not hold for differences, however, when erdiftek € L(nP) — L(nP)
is small enough such that x + k, x+2k € L(nP) for somex € L(nP). Fortunately, as in [MO],
the probability that such a small difference is missing isispthat a crude bound is sufficient.

Lemma 3.5. Letr > 0, and fix a fringe sef,. C B,.(nP). Let A be chosen uniformly at random
from all subsetsS C L(nP) such thatS N B,.(nP) = F,, and letk € M, (nP — nP) be large.
Then, for some constant> 0 independent of,

3\ [LmPA(nP—k)|/2
) (3.23)

Proof. Define random variableX; by settingX; = 1if j € A andX; = 0 otherwise. We have
k¢ A— Aifand only if X; X, = 0forallj € L(nP N (nP — k)).
First supposé is small such thak € 2(nP — nP), and supposk = (ki, ks, ..., kp). Define

G, = {(xl, ...,xp) € L(nPN (nP —k)): L%J is even}, (3.24)

H, = {(xl, ....xp) € L(nP N (nP —k)) : {%J is odd} , (3.25)

1
3.26
H, i [H,] > (G, (3.26)

It is possible that/,, is GG,, or H,, depending om, hence the subscript notation. It is clear that
x +k ¢ J, foranyx € J,, and therefore the random variablEsX;. , are pairwise independent
across alj € J,. As|G,| + |H,| = |L(nP N (nP — k))|, itis further clear that

I {Gn it |Gl > |Hl

7| > %|L(nPﬁ(nP—k))|. (3.27)
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FIGURE 5. A locally point symmetric polytop&) with strictly antipodal verticess and

v, a difference vectok € @ — @, and the translated polytopg@ — k. The difference
k is close to the uniquely formed differenee— u, and hence the intersection polytope
Q N (Q — k) is a parallelotope.

Thus, if our fixed fringeF. is missing exactly points, then we have that

]P[Xij+k = ( for a”j c L(nP N (nP — k))] < P[Xij+k = ( for a”j € Jn]
= ] PIX; X5 = 0]

J€Jn

3\ |nl-1
< —
< (1

3\ [L(PN(@P—k)| /21
< (1) ) (3.28)

Now suppos& ¢ %(nP — nP). Then there exists npe L(nP) such thaj,j + k,j + 2k €
L(nP). That is, the random variables; X;., are pairwise independent acrossjalt L(nP N
(nP —k)). Then

P[X;X; = Oforallj € L(nP N (nP —k))| = 11 P[X;X; 11 = O]

JeEL(nPN(nP-Kk))

3\ | PA(nP k)| /21
< [ = . 3.29
< (3) (3.29)
In both cases, we can set= (3/4)~! and the lemma follows. O

We define the regionsandC' in the same way as in the sumset case. In the difference st cas
we analyzen P N (nP — k) where in the sumset case we analyzédn (k — nP).

The other aspect of the difference set case that desenesdian is the difference set analogue
of Lemma3.B—that there exists a constant 0 such that/ is contained in the union of balls of
radiust log n around the vertices of P — n P for all n. The reason the same proof carries through
is that in any locally point symmetric polytoge, the only uniquely formed differences are the
differences between strictly antipodal vertices, anddltferences are in one-to-one correspon-
dence with the vertices @ — Q. When a differenck € Q — @ is close to one of these uniquely
formed differencesp) N (Q — k) is a parallelotope due to local point symmetry. See Figuer5 f
an illustration.
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To be precise, in Step 1 of the proof for the sumset case, we 8taa P N (k' — P) is just one
point, and immediately conclude thiatis a vertex ofP + P. Making the same conclusion takes
some more work in the difference set case, which we do in th@dmg lemma.

Lemma 3.6. Let ) be a locally point symmetric polytope, and lete Q — Q. The following
statements are equivalent:

() @ N (Q — k) consists of a single point, i.&k,is a uniquely formed difference @ — Q.
(i) kis a vertex of the polytop@ — Q.
(i) k = u — v for strictly antipodal vertices1 andv of Q.

Proof. In the proof of this lemma, we use the following facts abouygsarting cones which are not
hard to prove:

(1) Verticesv; andv; are strictly antipodal if and only if’(v;) — v; andC(v,) — v, intersect
only at the origin.

(2) Let A be a face of) of dimensionk (a k-face), and leta be given in the interior ofd
(relative to thek-dimensional affine space containidd. If x is in the supporting cone of
some vertex of4, thena + ex € @ for e small.

First, we show (i)=> (ii). Let u andv be the unique points i@ that satisfyk = u — v. Suppose
thatu lies in ak-face A andv lies in anl-face B, whereA and B are chosen so thatand! are
minimal. Note that and/ may range front to D.

Suppose there exist verticasc A andb € B that are not strictly antipodal. Thefi(a) — a
andC'(b) — b have an intersection containing some nonzero vectorhen fore small,a + ex
andb + ex both lie in@Q, sou + ex andv + ex both lie inQ. Thus, the differenck = u — v is
not uniquely formed.

Thus every vertex iM must be strictly antipodal to every vertex i Since the vertices ap
are partitioned into strictly antipodal paird,and B must both be O-faces; that i4, = {u} and
B = {v}, andu andv are strictly antipodal vertices as desired.

Next, we show (ii)=> (iii). Let u,v € @) such thak = u — v. Observe that a point € Q) is
a vertex of() if and only if, for any non-zero translation vectgrv + t € @ impliesv —t ¢ Q.
The same statement holds for the polyt@pe- Q. If u is not a vertex of)), then we have that
u+t,u—t € @ for some non-zera. But then this implies thak +t = (u+t) — v and
k —t = (u—t) — v are both contained i®) — @, which contradicts that is a vertex of@) — Q.
Applying the same argument tqg we get thaix andv must both be vertices @}.

Now supposear andv are not strictly antipodal vertices. We show thkat t, k —t € () — @ for
some non-zero, which contradicts thdk is a vertex ofQ — ). Let v’ denote the unique vertex
that is strictly antipodal wittv. For some smalt > 0, definet = ¢(v' — u). Clearly,u +t € @,
sok+t = (u+t)—vis contained ir) — ). Now consider the point +t. If v+t ¢ @, and thus
the half-line formed by extending otiffrom v is not contained in the supporting coiév ), then
as( is locally point symmetric the parallel half-line formed bytending out fromv’ the vector
u— Vv’ is not contained it (v’)—a contradiction. ThuR —t = u— (v+t) is contained irQ — Q,
which also forms a contradiction. Thusandv must be strictly antipodal vertices.

Finally, we show (iii) = (i). Let H; and H, be parallel supporting hyperplanes meetingt
{u} and{v}, respectively. Ifu’ # uis a pointin@, thenu’ — k lies on the side of{, opposite?,
so it cannot lie in). Thusk is a uniquely formed difference if. 0

The rest of the proof of Proposition 8.1 carries over to tlfedince set case with trivial modi-
fications. O
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4. PROOF OFTHEOREM[L.7

We begin by showing that the proportiph? of subsetsA C L(nP) missing exactlys sums and
exactly2d differences approachésf P is not locally point symmetric. By Lemnia 2.7, there exists
a vertexnv and an edge £ of nP such that for ale € nE, the difference vectork = e — nv
and—k are uniquely formed. Recall that” has at least + 1 lattice points. Then, ifd is missing
exactly2d differences, at least + 1 — d of the lattice points imE must be present. Thus, for

n > 2d — 1, we see that
1 1 n+1—d nd
A N —e( 4.1
2RIt o(™). @)

which approache8 asn — oc.
We now handle the main case wheris locally point symmetric. For some radiuswe aim to
construct a fringe seft, C B,.(nP) such that, for all setd that satisfyA N B,.(nP) = F,,

B,(nP+nP)\ (A+ A) = s, (4.2)
B,(nP —nP)\ (A— A) = 2d. (4.3)

If P is 1-dimensional (a line segment), we simply place appatpiiringe sets at its ends as in
[He]. Now supposé’ is m-dimensional form > 2. We can take a pair of strictly antipodal vertices
nvi; andnvy of nP, and a pair of parallel edged”; andn E; such thativ; € nFE; andnv, € nFs.
SupposenE; andnkFE, containnbg, + 1 andnbg, + 1 lattice points, respectively. As discussed
in the beginning of Sectio 2, there exist injective affirensformationd’, z,, T,,, : R — RP
that form one-to-one correspondences betw@enbg, | and L(nE, ), and between0, nbg,| and
L(nkE,), respectively. We can also specify thats, (0) = nv, and7},g,(nbg,) = nvs. Itis easily
seen thaf},z;, and7, z, have the same associated linear transformation.

As shown in the proof of Theorem 8 in [He], for some> 0 andn > 27/, there exist sets
Lsq C [0,7"] andUs 4 C [nbg, — r', nbg,] such that

10,7]\ (Lsa + Lea)| + |[2nbp, — 7', 2nbp,] \ (Usa + Usa)l = s (4.4)
and
HnbEQ — 7’/, nbEQ] \ (U&d — Ls,d)‘ = d (45)

Now definer = max{r*,r~, '}, wherer™ andr~ are the constants given by Propositibns 3.1 and
[34. LetB.(nP) denote the set

Br(np) \ (TnE1([O> T,]) U TnE2([nbE2 - rlv nbEQ]))? (46)
and set
Fr = Inp (Ls,d) U TnEQ(Us,d) U B;(’NJP) (47)

That is, we placé., ; on one end ofi E; andU;, 4 on one end of. E,, and fill in all other points of
B,.(nP). See Figurél6 for an illustration.

Now let A be uniformly randomly chosen from all subsgts™ L(nP) such thatS N B, (nP) =
F,.. We see that

AﬂnEl = TnEl(Sl>7 AﬁnEz = TnEQ(Sg), (48)
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FIGURE 6. A locally point symmetric hexagon. The fringe g€t lives within the balls
of radiusr centered about the vertices. The one-dimensional frintge/sg; andU; 4 are
placed on corresponding parallel edgds, andn F» of the strictly antipodal verticegv,

andnvs.

for some sets);, S, € Z such thatS; N[0, 7] = L, g andSy N [nbg, — 1, nbg,| = U, 4. By Lemma
2.1, there exist injective affine transformatiohis;, ;. , The,+ne, : R — RP such that
(A+A)N(nEy+nEy) = Thptng, (S1+ 51),
(A+ AN (nEy +nkEs) = Thpyine,(S2+ 52). (4.9)
It is easy to show that, then,
(A+A) N Lopyans ([0,7]) = Topyns ((S1+51) N [0,77])

- TnE1+nE1((Ls,d + Ls,d) N [07 T,])a (410)
and similarly
(A + A) N TnE2+nE2([2nbE2 - 7‘/, QHbEz]) = TnE2+nE2((Us,d + Us,d) N [2nbE2 - 7‘/, QHbEz])
(4.11)

It follows from (4.4) thatA + A is missing a total of exactly sums in the regions,,z, 1.z, ([0, 7'])
andTnE2+nE2([nbE2 - ’f’/, nbE2])

Similarly, by Lemmd 2R, there exists an injective affinesfarmation’},z, .z, : R — R
such that

(A—A)N(nEy —nkEy) = Thg,—ne, (S2 — S1), (4.12)
and we can show that
(A= A)NThgy—ng ([nbg, — 1", nbg,]) = Thpy—ng, (Usa — Lsa) N [nbg, — 1, nbg,]). (4.13)
It follows by (4.5) thatA — A is missing exactl2d differences in the regions, s, .z, ([nbg, —
', nbg,]) and—T, g, g, ([nbE, — 7', nbE,]).

Finally, it is not hard to show that all other elementsBp(nP + nP) and B,.(nP — nP) are
present, that is,

B, (nP + nP) \ (TnEl-i-nEl ([07 T,]) U TnE2+nE2([2nbE2 - ’I“/, 2nbE2])) CA+ A>

BT(HP — TLP) \ (TnE2_nE1([nbE2 - r/,nbEQ]) U —TnE2_nE1([nbE2 - r’,nbEQ])) C A—A.
(4.14)
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Thus, we satisfy( (4]2) an@ (4.3).

Letp* > 1/2andp~ > 1/2. By Proposition§ 311 arid 3.4, we have thgt(nP +nP) C A+ A
with probabilities at least™, and thatM,.(nP — nP) C A — A with probability at leasp—, where
pT andp are fixed independent af It follows thatM,.(nP+nP) C A+ AandM,(nP—nP) C
A — A with positive probability independent of. Thus, a positive proportion of the subsets
and thus a positive proportion of all subsetd.¢f. P), have exactly missing sums and exactlyl
missing differences. ]

5. PROOF OFTHEOREMI[L.8

Similarly to as in the proof of Theorefmn 1.7, the main task icémstruct a fringe sek, C
B,.(nP) for some radiug such that, for all setd that satisfyA N B,.(nP) = F,,

B,(nP+nP)\ (A+A) = s, B.(nP—nP)\(A—A) > 2d. (5.1)

Once we construct;., the proof concludes identically. The difference here & thecause we
do not assume local point symmetry i) we are no longer guaranteed the existence of ‘distant’
parallel edges, and thus cannot use Lerhmh 2.2 to controluimder of missing differences. On
the other hand, we do not need to limit the number of missiffgréinces so long as there are at
least2d of them. This allows us to use Lemmal2.7 to our advantage.

If P is locally point symmetric, then we simply construct as in the proof of Theorei 1.7.
Now supposeP is not locally point symmetric. Letv andnFE; denote, respectively, the vertex
and edge returned by Lemrhal2.7 when it is applied &) and letn £y, denote some other edge
of nP that is distinct frommE. If nE; andnFE, contain, respectivelypby, + 1 andnbg, + 1
lattice points, then IeT,z,, T, : R — R denote the injective affine transformations that form
one-to-one correspondences betw@embg, | and L(nE;), and betweeri0, nbg,| and L(nE,),
respectively.

As shown in the proof of Theorem 8 in [He], for some> 0 andn > 27/, there exist sets
L, C [0,7")andUg C [nbg, — 1, nbg,] such that

[[0, 7]\ (Lso + Lso)| + |[2nbg, — 7', 2nbg,] \ (Uso + Uso)| = s. (5.2)
Further define
R; = [0,d—1]U2d,3d — 1], (5.3)

and observe tha0, 3d — 1] C Ry + R,.
Definer = max{r™,r~,7’,3d — 1}, wherer™ andr~ are the constants given by Propositions
3.1 and 3.4, respectively. Define

B;(TLP) = BT(nP) \ (TnEl([(]? 3d — 1]) U TnE2([07 T/]) U TnEz([nbE2 - T/v nbE2]))7 (54)
and set

That is, we place&?, on one end of. £y, L, on one end oh E,, andU, on the other end of E>,
and fill in all other points ofB,.(nP). See Figurél7 for an illustration.

Now let A be uniformly randomly chosen from all subséts- L(nP) satisfyingS N B, (nP) =
F,.. We see that

AﬂnEl = TnEl(Sl>7 AﬂnEg = TnE2(SQ) (56)
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FIGURE 7. A quadrilateral that is not locally point symmetric. Agathe fringe setF,
lives within the balls of radius centered about the vertices. The one-dimensional fringe
setR, is placed on edge F, and setd.; andU; are placed on opposite ends of edds,.

for some setsS;, S; € Z such thatS; N [0,3d — 1] = Ry, S2 N [0,7] = Ls, and Sy N [nbg, —
' nbg,| = U,. By LemmdZ2.1, there exists an injective affine transforoveti,z, ., : R — RY
such that

(A+A) N (nEy+nEs) = Thp,inp,(S2+ Sa). (5.7)
It is easy to show that, then,
(A+ A) N Ty ine,([0,7]) = Thupyine, ((Ls + L) N [0,7']) (5.8)
and

(A -+ A) N TnE2+nE2([2nbE2 - 7’/, 2nbE2]) = TnE2+nE2<(Us + Us) N [2nbE2 - 7’/, 2nbE2])
(5.9)

It follows from (5.2) thatA + A is missing a total of exactly sums in the regions,, s, 1z, ([0, 7'])
andTnE2+nE2([2nbE2 — 7”/, 2nbE2])

As A is missingd lattice points along the edgel, it follows from Lemmd 2.l thatl — A is
missing at leas®d differences. Leftl},x, 1.z, : R — R be the injective affine transformation
returned by Lemmg 2.1 when applied to edde ; becauseg0, 3d — 1] C R, + R4, We can show
in a similar manner to the argument above tHat- A is not missing any sums in the region
TnE1+nE1 ([07 3d — 1])

Finally, it is not hard to show that all other elementsBp(nP + nP) are present. That is, all
points in the set

B, (’ILP + HP) \ (TnEH-nEl ([07 3d — 1]) U TnE2+nE2<[07 T/]) U TnE2+nE2([2nbE2 - Tlv 2nbE2]))
(5.10)

are presentiml+ A. The proof concludes identically as in the proof of Theokeffdom here. O]
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6. FUTURE DIRECTIONS

There are several natural directions in which to proceethfhere. One conjecture is that
the proportionp®¢ converges ifP is locally point symmetric. Zhao [Z] proved this in the one-
dimensional case, and with some work his arguments mightteaéed to arbitrary)-dimensional
polytopes. This would likely involve modifying Zhao’s noti of a semi-rich set so that it is defined
in terms of the supporting cone for each vertex of the pokgtop

Another problem is to consider the proportippn of MSTD subsets of.(nP) for an arbitrary
polytope P, which we discuss here in some detail. As mentioned in th@dloiction, neither
Theorem_1.J7 nor Theorelm 1.8 implies thgtis bounded below by a positive constantiass oo.
This is due to the fact thdt(n P) is usually not balanced, such that: P) — L(nP) is much larger
thanL(nP) + L(nP). In particular, the ratidL(nP) — L(nP)|/|L(nP) + L(nP)| is essentially
constant as grows, and so we have thdt(nP) — L(nP)|—|L(nP)+ L(nP)| grows on the order
of n. Reformulating the problem in terms of missing sums ancediffices, we see that a subset
A C L(nP) must be missing- n? differences for it even possibly to be MSTD.

There are some factors that, upon first glance, suggestida may be many such subsets. If
P is not locally point symmetric (and therefore not balancéad@n Lemma 217 shows that there
are many uniquely formed differences ininP) — L(nP). In other words, though the potential
difference set is large in size, it is very fragile in that manits differences are missing with high
probability. For example, consider the lattice points @& thtrahedromT in R? determined by
verticesA = (—n,0,0), B = (n,0,0), C = (0, —n,n), andD = (0,n,n). By boundingnT" with
supporting planes = 0 andz = n, we see that any difference between a point in edégeand a
point in edgeC' D is uniquely formed. Similarly, we have that any differenoenfied byA and a
point on the faceA\ BC' D is uniquely formed. As this holds for any difference vectanfied by a
vertex and a point on the opposite face, or by points on skge@edfnT', we see that the presence
of the boundary points af 7" have a significant impact on the size of the difference setthis
sense, the natural fringe extends to the entire boundarny ofather than being restricted to the
balls centered about the vertices.

However, even if we make the strong imposition that a sudset L (nT") is missing all bound-
ary points ofnT’, this still would not amount to the necessaryn® missing differences. Each
vertex forms around- n? uniquely formed differences with points on the oppositefand each
of the ~ n points on the edges ofl" forms ~ n unique differences with points on the opposite
skew edge. This suggests that subsets L(nT) whose difference set is even within the range of
the potential sumset become vanishingly rare gsows.

The tetrahedron is, in a sense, very far from being localigt®ymmetric. The reason is that for
each vertex, there are hyperplanes that support the tetrahedron pheesv and the opposite
face I'. Consider now the following locally point symmetric hexagt, depicted in Figurél8.
We can compute thdt.(H) + L(H)| = 181 and|L(H) — L(H)| = 187, and the difference
in these cardinalities grows quadratically as we take iditgt of /. In this case, however, the
difference set is much more robust. Becausés locally point symmetric, we have no uniquely
formed differences except those formed by pairs of stratiyypodal vertices. Thus, we are forced
to impose even stronger conditions on missing points in @etub C L(nH) for it to miss the
required~ n? differences.

From these considerations in combination with CorollaBy fve make the following conjecture:

Conjecture 6.1. Let P be polytope ifR” with vertices inZ”. Then the proportiom,, of MSTD
subsets of.(nP) approache$) asn — oo if and only if L(P) is not balanced.
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FIGURE 8. Locally point symmetric hexagofl

This raises the question of how to characterize polytdpés which L(P) is not balanced. We
know that if P is point symmetric, therd.(P) is balanced, but does the converse hold true? Or
perhaps there exists somit locally point symmetric but not point symmetric, for whi¢kiP) is
balanced. Does this imply thatn P) is also balanced for all?

Finally, it is interesting to examine how the limiting prations of p, and p$¢ (assuming they
exist) change as we vary our polytope For example, ifP is a rectangle irR?, how do they
change as we vary the ratio of side lengths? What happens axmase the number of sides?
How do the limiting proportions change as we vary the dimemgd? Do p,, and p:¢ exhibit
monotonic growth with the dilation factar, as computations suggest whens an interval (see
[MO])? We hope to investigate these questions theorefieaitl numerically in a future paper.

APPENDIXA. NUMBER OF PAIRS OF STRICTLY ANTIPODAL VERTICES

We show that Lemmia 2.6 follows from the work of Nguyén and 8o[NS]. We restate Lemma
[2.8 here for the reader’s convenience.

Lemma A.1. Let ) be aD-dimensional polytope with: vertices inR”. Then( is locally point
symmetric if and only i€) has exactlyn /2 pairs of strictly antipodal vertices.

Let s(Q)) denote the number of pairs of strictly antipodal verticea tonvex polytopé&). The
following theorems come from Theorems 1 and 3 of [NS].

Theorem A.2. For a convex polygo) C R? with m vertices,

s(Q) = m—k, (A.1)
wherek (0 < k < |m/2]) is the number of pairs of parallel sides ¢
Theorem A.3. For a convexD-dimensional polytop&® c R?, m > D+ 1, D > 3,

Q) = [m/2]. (A.2)

For an evenn, the equalitys(@)) = [m/2] holds if and only ifm > 2D and the vertices af) can
be divided intan/2 pairs such that for each paifu, v},

Cu) —u = v—-C(v). (A.3)

For an oddm, the equalitys(Q)) = [m/2] holds if and only ifn > 4D — 1 and somém — 3)/2
pairwise disjoint subsets of the forpa, v} can be chosen from the vertex set such that

Cu)—u = v-0C(v) (A.4)
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for each of them, and the remaining three vertigesg, z satisfy the relation
(Cx)—x)N(C(y) —y) = z—C(z). (A.5)

Let Q be aD-dimensional polytope with: vertices inR”. If D = 1, then( is an interval and
satisfies Lemm@aAll. ID > 3, then LemmaAll follows immediately from Theorém A.3.

It remains to show Lemnia A.1 in the caBe= 2. By Theoreni A.2, it suffices to show th@tis
locally point symmetric if and only i€) has exactlyn /2 pairs of parallel sides. As showing this is
easy, we sketch the idea here. The forward implication isecdhiate. Now suppos@ has exactly
m/2 pairs of parallel sides, and further suppdgéas vertices;, vo, . . ., v, in clockwise order.
We can show that for any pair of parallel sides= v;v,;;7 and F' = v,;v, 7 of (), there exist
supporting lined.; and L, such that.,; N = E andL, N Q = F. From there, we can show that
v; andv; are strictly antipodal, ane;,; andv;,, are strictly antipodal. Tha® is locally point
symmetric follows easily from there.
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