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The M&M Game began as a simple question asked by the sixth author’s curious four-
year-old son, Cam: If two people are born on the same day, do they die on the same
day? Of course, needing a way to explain randomness to children (two-year-old daugh-
ter Kayla was there as well), the three took the most logical next step and used M&M’S
and created the M&M Game (see Figure 1 for an illustration).

You and some friends start with some number of M&M’S. Everyone flips a fair
coin at the same time; if you get a head, you eat an M&M; if you get a tail, you
don’t. You continue tossing coins together until no one has any M&M’S left, and
whoever is the last person with an M&M lives longest and “wins”; if all run out
simultaneously, the game is a tie.

Figure 1 The first M&M Game; for young players, there is an additional complication in
that it matters which colors you have and the order you place them down.

We can reformulate Cam’s question on randomness as follows. If everyone starts
with the same number of M&M’S, what is the chance everyone eats their last M&M
at the same time? We’ll concentrate on two people playing with c (for Cam) and k
(for Kayla) M&M’S, though we encourage you to extend to the case of more people
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playing, possibly with a biased coin. In the course of our investigations, we’ll see some
nice results in combinatorics and see applications of memoryless processes, statistical
inference, and hypergeometric functions.

Recalling that the binomial coefficient
(n

r

) = n!
r !(n−r)! denotes the number of ways to

choose r objects from n when order doesn’t matter, we can compute the probability
P(k, k) of a tie when two people start with k M&M’S. If we let Pn(k, k) denote the
probability that the game ends in a tie with both people starting with k M&M’S after
exactly n moves, then

P(k, k) =
∞∑

n=k

Pn(k, k).

Note that we are starting the sum at k as it is impossible all the M&M’S are eaten in
fewer than k moves.

We claim that

Pn(k, k) =
(

n − 1

k − 1

) (
1

2

)n (
n − 1

k − 1

) (
1

2

)n

.

This formula follows from the following observation: If the game ends in a tie after
n tosses, then each person has exactly k − 1 heads in their first n − 1 tosses. As we
have a fair coin, each string of heads and tails of length n for a player has probability
(1/2)n . The number of strings for each person where the first n − 1 tosses have exactly
k − 1 heads, and the nth toss is a head (we need this as otherwise we do not have each
person eating their final M&M on the nth move) is

(n−1
k−1

)(1
1

)
. The

(1
1

)
reflects the fact

that the last toss must be a head. As there are two players, the probability that each
has their k th head after the nth toss is the product, proving the formula. We have thus
shown the following.

Theorem 1. The probability the M&M Game ends in a tie with two people using fair
coins and starting with k M&M’S is

P(k, k) =
∞∑

n=k

(
n − 1

k − 1

)(
1

2

)n (
n − 1

k − 1

)(
1

2

)n

=
∞∑

n=k

(
n − 1

k − 1

)2 1

22n
. (1)

While the above solves the problem, it is unenlightening and difficult to work with.
The first difficulty is that it involves an infinite sum over n. (In general, we need
to be careful and make sure any infinite sum converges; while we are safe here as
we are summing probabilities, we can elementarily prove convergence. Note

(n−1
k−1

) ≤
nk−1/(k − 1)!, and thus the sum is bounded by (k − 1)!−2

∑
n≥k n2k−2/22n; as the

polynomial n2k−2 grows significantly slower than the exponential factor 22n , the sum
rapidly converges.) Second, it is very hard to sniff out the k-dependence: If we double
k, what does that do to the probability of a tie? It is desirable to have exact, closed-
form solutions so we can not only quickly compute the answer for given values of the
parameter but also get a sense of how the answer changes as we vary those inputs. In
the sections below, we’ll look at many different approaches to this problem, most of
them trying to convert the infinite sum to a more tractable finite problem.

The basketball problem, memoryless games, and the geometric series
formula

A basketball game We can convert the infinite M&M Game sum, Equation (1), into
a finite sum as we have a memoryless game: The behavior of the system only depends
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on its state at a given moment in time and not on how we got there. There are many
examples where all that matters is the configuration, not the path taken to reach it. For
example, imagine a baseball game. If the lead-off hitter singles or walks, the net effect
is to have a runner on first, and the two results are (essentially) the same. For another
example, consider a game of Tic-Tac-Toe; what matters is where the X’s and O’s are
on the board, not the order they are placed.

We first look at a related problem that’s simpler but illustrates the same point and
yields the famous geometric series formula. Imagine two of the greatest basketball
players of all time, Larry Bird of the Boston Celtics and Michael Jordan of the Chicago
Bulls, are playing a basketball game. The rules below are a slight modification of a
famous Superbowl ad, “The Showdown,” between the two where the first one to miss
gives up his claim to a bag of McDonald’s food to the other. In that commercial, the
two keep taking harder and harder shots; for our version, we’ll have them do the same
shot each time. Explicitly, the rules of their one-on-one game of hoops are as follows.

Bird and Jordan alternate shooting free throws, with Bird going first, and the
first player to make a basket wins. Assume Bird always makes a basket with
probability pB, while Jordan always gets a basket with probability pJ . If the
probability Bird wins is xB, what is xB?

Note that this is almost a simplified M&M Game: There is only one M&M, but the
players take turns flipping their coins. We’ll see, however, that it is straightforward to
modify the solution and solve our original problem.

Solution from the geometric series formula The standard way to solve our basket-
ball problem uses a geometric series. The probability that Bird wins is the sum of the
probabilities that he wins on his nth shot. We’ll see in the analysis below that it’s alge-
braically convenient to define r := (1 − pB)(1 − pJ ), which is the probability they
both miss. Let’s go through the cases. We assume that pB and pJ are not both zero;
if they were, then neither can hit a basket. Not only would this mean that our ranking
of them as two of the all-time greats is wrong, but the game will never end, and thus
there’s no need to do any analysis!

1. Bird wins on his 1st shot with probability pB .
2. Bird wins on his 2nd shot with probability (1 − pB)(1 − pJ )pB = r pB .
3. Bird wins on his nth shot with probability (1 − pB)(1 − pJ ) · (1 − pB)(1 − pJ ) · · ·

(1 − pB)(1 − pJ )pB = rn−1 pB .

To see this, if we want Bird to win on shot n, then we need to have him and Jordan
miss their first n − 1 shots, which happens with probability ((1 − pB)(1 − pJ ))

n−1

= rn−1, and then Bird hits his nth shot, which happens with probability pB . Thus,

Prob(Bird wins) = xB = pB + r pB + r 2 pB + r 3 pB + · · · = pB

∞∑
n=0

rn,

which is a geometric series. As we assumed pB and pJ are not both zero, r = (1 −
pB)(1 − pJ ) satisfies |r | < 1, and we can use the geometric series formula to deduce

xB = pB

1 − r
= pB

1 − (1 − pB)(1 − pJ )
.

We have made enormous progress. We converted our infinite series into a closed-
form expression, and we can easily see how the probability of Bird winning changes
as we change pB and pJ .
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Solution through memoryless game and the geometric series formula We now
give a second solution to the basketball game; instead of requiring the geometric series
formula as an input, we obtain it as a consequence of our arguments.

Recall the assumptions we made. The probability Bird makes a shot is pB , the
probability Jordan hits a basket is pJ , and the probability they both miss is r := (1 −
pB)(1 − pJ ). We can use this to compute xB , the probability Bird wins, in another
way. Before, we wrote xB as a sum over the probabilities that Bird won in n games.
Now, we claim that

Prob(Bird wins) = xB = pB + r xB .

To see this, note either Bird makes his first basket and wins (which happens with
probability pB) or he misses (with probability 1 − pB). If Bird is going to win, then
Jordan must miss his first shot, and this happens with probability 1 − pJ . Something
interesting happens, however, if both Bird and Jordan miss: We have reset our game to
its initial state! Since both have missed, it’s as if we just started playing the game
right now. Since both miss and Bird has the ball again, by definition, the proba-
bility Bird wins from this configuration is xB , and thus the probability he wins is
pB + (1 − pB)(1 − pJ )xB .

Solving for xB , the probability Bird beats Jordan is

xB = pB

1 − r
.

As this must equal the infinite series expansion from the previous subsection, we
deduce the geometric series formula:

pB

1 − r
= pB

∞∑
n=0

rn therefore
∞∑

n=0

rn = 1

1 − r
.

Remark. We have to be a bit careful. It’s important to keep track of assumptions.
In our analysis, r = (1 − pB)(1 − pJ ) with 0 ≤ pB, pJ ≤ 1, and at least one of pB

and pJ is positive (if both were zero the game would never end). Thus, we have only
proved the geometric series formula if 0 ≤ r < 1; we encourage you to find a way to
pass to all |r | < 1.

Let’s look closely at what we’ve done in this subsection. The key observation was
to notice that we have a memoryless game. We now show how to similarly convert the
solution to the M&M Game, Equation (1), into an equivalent finite sum.

Memoryless M&M Games

Setup. Remember (Equation (1)) that we have an infinite sum for the probability of
a tie with both people starting with k M&M’S:

P(k, k) =
∞∑

n=k

(
n − 1

k − 1

)(
1

2

)n−1 1

2
·
(

n − 1

k − 1

)(
1

2

)n−1 1

2
.

It’s hard to evaluate this series as we have an infinite sum and a squared binomial
coefficient whose top is changing. We want to convert it to something where we have
more familiarity. From the hoops game, we should be thinking about how to obtain
a finite calculation. The trick there was to notice we had a memoryless game, and all
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that mattered was the game state, not how we reached it. For our problem, we’ll have
many tosses of the coins, but in the end, what matters is where we are, not the string
of heads and tails that got us there.

Let’s figure out some way to do this by letting k = 1. In this case, we can do the
same thing we did in the hoops game and boil the problem down into cases. There are
four equally likely scenarios each time we toss coins, so the probability of each event
occurring is 1/4 or 25%.

1. Both players eat.
2. Cam eats an M&M, but Kayla does not.
3. Kayla eats an M&M, but Cam does not.
4. Neither eat.

These four possibilities lead to the infinite series in Equation (1), as we calculate the
probability the game ends in n tosses. It turns out one of the four events is not needed,
and if we remove it, we can convert to a finite game.

Similar to the hoops game, we have another memoryless game. If Cam and Kayla
both get tails and therefore don’t eat their M&Ms, then it’s as if the coin toss never
happened. We can therefore ignore the fourth possibility. If you want, another way
to look at this is that if we toss two tails, then there is no change in the number of
M&M’S for either kid, and thus we may pretend such a toss never happened. This
allows us to remove all the tosses of double tails, and now after each toss at least
one player, possibly both, have fewer M&M’S. As we start with a finite number of
M&M’S, the game terminates in a finite number of moves. Thus, instead of viewing
our game as having four alternatives with each toss, there are only three, and they all
happen with probability 1/3:

1. both players eat;
2. Cam eats an M&M, but Kayla does not;
3. Kayla eats an M&M, but Cam does not.

Notice that after each toss the number of M&M’S is decreased by either 1 or 2,
so the game ends after at most 2k − 1 tosses.

Solution We now replace the infinite sum of Equation (1) with a finite sum. Each
of our three possibilities happens with probability 1/3. Since the game ends in a tie,
the final toss must be double heads with both eating, and each must eat exactly k − 1
M&M’S in the earlier tosses. Let n denote the number of times both eat before the final
toss (which again we know must be double heads); clearly, n ∈ {0, 1, . . . , k − 1}. We
thus have n + 1 double heads, and thus Cam and Kayla must each eat k − (n + 1) =
k − n − 1 times when the other doesn’t eat.

We see that, in the case where there are n + 1 double heads (with the last toss being
double heads), the total number of tosses is

(n + 1) + (k − n − 1) + (k − n − 1) = 2k − n − 1.

In the first 2k − n − 2 tosses, we must choose n to be double heads, then of the remain-
ing (2k − n − 2) − n = 2k − 2n − 2) tosses before the final toss we must choose
k − n − 1 to be just heads for Cam, and then the remaining k − n − 1 tosses before
the final toss must all be just heads for Kayla. These choices explain the presence
of the two binomial factors. As each toss happens with probability 1/3, this explains
those factors; note we could have just written (1/3)2k−n−1, but we prefer to highlight
the sources. We have thus shown the following result.
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Theorem 2. The probability the M&M Game ends in a tie with two people using fair
coins and starting with k M&M’S is

P(k, k) =
k−1∑
n=0

(
2k − n − 2

n

)(
1

3

)n (
2k − 2n − 2

k − n − 1

)(
1

3

)k−n−1 (
1

3

)k−n−1 1

3
. (2)

Viewing data

Plotting Before turning to additional ways to solve the problem, it’s worthwhile to
pause for a bit and discuss how to view data and use results for small expressions
involving k; this finite sum is certainly easier to use than the infinite sum in Equation
(1), and we plot it in Figure 2 (left).

While Equation (2) gives us a nice formula for finite computations, it’s hard to see
the k dependence. An important skill to learn is how to view data. Frequently, rather
than plotting the data as given, it’s better to do a log–log plot. What this means is that,
instead of plotting the probability of a tie as a function of k, we plot the logarithm of
the probability of a tie against the logarithm of k. We do this in Figure 2 (right).

Probability of a tie log(Probability of a tie)
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Figure 2 Left: the probability of a tie for k ≤ 1000. Right: log–log plot.

Notice that the plot here looks very linear. Lines are probably the easiest functions
to extrapolate, and if this linear relationship holds, we should be able to come up with
a very good prediction for the logarithm of the probability (and hence, by exponenti-
ating, obtain the probability). We do this in the next subsection.

Statistical inference Let’s predict the answer for large values of k from smaller ones.
The sixth named author gave a talk on this at the 110th meeting of the Association of
Teachers of Mathematics in Massachusetts in March 2013, which explains the preva-
lence of 110 and 220 below.

Figure 3 (left) gives the log-log plot for k ≤ 110, while the right is for 50 ≤ k ≤
110. Using the Method of Least Squares with P(k) the probability of a tie when we
start with k M&M’S, we find a predicted best fit line of

log (P(k))) ≈ −1.42022 − 0.545568 log k, or P(k) ≈ 0.2412/k .5456.

This predicts a probability of a tie when k = 220 of about 0.01274, but the answer
is approximately 0.0137. While we are close, we are off by a significant amount. (In
situations like this, it is better to look at not the difference in probabilities, which is
small, but the percentage we are off; here, we differ by about 10%.)
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Figure 3 The probability of a tie. Left: k ≤ 110. Right: 50 ≤ k ≤ 110.

Why are we so far off? The reason is that small values of k are affecting our predic-
tion more than they should. If we have a main term in the log–log plot that is linear,
it will eventually dominate lower order terms, but those lower order terms could have
a sizable effect for low k. Thus, it’s a good idea to ignore the smaller values when
extrapolating our best fit line; in Figure 3 (right), we now go from k = 50 to 110. Our
new best fit line is

log (P(k)) ≈ −1.58261 − 0.50553 log k, or P(k) ≈ 0.205437/k .50553.

Using this formula, we predict 0.01344 for k = 220, which compares very favorably
to the true answer of 0.01347.

Recurrences, hypergeometric functions, and the OEIS

The M&M recurrence Even though we have a finite sum for the probability of a
tie (Equation 2), finding that formula required some knowledge of combinatorics and
binomial coefficients. We give an alternate approach that avoids these ideas. Our first
approach assumes we’re still clever enough to notice that we have a memoryless game,
and then we remark afterward how we would have found the same formula even if we
didn’t realize this.

We need to consider a more general problem. We always denote the number of
M&M’S Cam has with c, and Kayla with k; we frequently denote this state by (c, k).
Then we can rewrite the three equally likely scenarios, each with probability 1/3, as
follows:

• (c, k) −→ (c − 1, k − 1) (double heads and both eat),
• (c, k) −→ (c − 1, k) (Cam gets a head, and Kayla a tail),
• (c, k) −→ (c, k − 1) (Cam gets a tail, and Kayla a head).

If we let xc,k denote the probability the game ends in a tie when we start with Cam
having c M&M’S and Kayla having k, we can use the above to set up a recurrence
relation (see [3] for a brief introduction to recurrence relations). How so? Effectively,
on each turn, we move from (c, k) in exactly one of the three ways enumerated above.
Now, we can use simpler game states to figure out the probability of a tie when we start
with more M&Ms, as in each of the three cases we have reduced the total number of
M&M’S by at least one. We thus find that the recurrence relation satisfied by {xc,k} is

xc,k = 1

3
xc−1,k−1 + 1

3
xc−1,k + 1

3
xc,k−1 = xc−1,k−1 + xc−1,k + xc,k−1

3
. (3)



204 MATHEMATICS MAGAZINE

This cannot be the full story—we need to specify initial conditions. A little thought
says x0,0 must be 1 (if they both have no M&M’S then it must be a tie), while xc,0 = 0
if c > 0, and similarly, x0,k = 0 if k > 0 (as in these cases, exactly one of them has an
M&M, and thus the game cannot end in a tie).

We have made tremendous progress. We use these initial values and the recur-
rence relation (3) to determine xc,k . Unfortunately, we cannot get a simple closed form
expression, but we can easily compute the values by recursion. A good approach is to
compute all xc,k where c + k equals sum fixed sum s. We’ve already done the cases
s = 0 and s = 1, finding x0,0 = 1, x0,1 = x1,0 = 0.

We now move to s = 2. We need only find x1,1, as we know x2,0 = x0,2 = 0. Using
the recurrence relation, we find

x1,1 = x0,0 + x0,1 + x1,0

3
= 1 + 0 + 0

3
= 1

3
.

Next is the case when the indices sum to 3. Of course, x0,3 = x3,0 = 0, so all we
need are x1,2 and x2,1 (which by symmetry are the same). We find

x2,1 = x1,2 = x1,1 + x2,0 + x0,2

3
= 1/3 + 0 + 0

3
= 1

9
.

We can continue to s = 4, and after some algebra easily obtain

x2,2 = x1,1 + x2,1 + x1,2

3
= 5

27
.

If we continued on with these calculations, we would find that x3,3 = 11
81 , x4,4 = 245

2187 ,
x5,5 = 1921

19863 , x6,6 = 575
6561 , x7,7 = 42635

531441 , and x8,8 = 355975
4782969 . The beauty of this recursion

process is that we have a sure-fire way to figure out the probability of a tie at different
states of the M&M game. We leave it as an exercise to the interested reader to compare
the computational difficulty of finding x100,100 by the recurrence relation versus by the
finite sum of Equation (2).

We end with one final comment on this approach. We can recast this problem as
one in counting weighted paths on a graph. We count the number of paths from (0, 0)

to (n, n) where a path with m steps is weighted by (1/3)m , and the permissible steps
are (1, 0), (0, 1), and (1, 1). In Figure 4, we start with (c, k) = (4, 4) and look at all
the possible paths that end in (0, 0).

Remark. If we hadn’t noticed it was a memoryless game, we would have found

xc,k = 1

4
xc−1,k−1 + 1

4
xc−1,k + 1

4
xc,k−1 + 1

4
xc,k .

Straightforward algebra returns us to our old recurrence, equation (3):

xc,k = 1

3
xc−1,k−1 + 1

3
xc−1,k + 1

3
xc,k−1.

This means if we did not notice initially that there was a memoryless process, doing
the algebra suggests there is one!

Hypergeometric functions We end our tour of solution approaches with a method
that actually prefers the infinite sum to the finite one, hypergeometric functions (see,
for example, [1, 2]). These functions arise as the solution of a particular linear second
order differential equation:

x(1 − x)y′′(x) + [c − (1 − a + b)x]y′(x) − aby(x) = 0.
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Figure 4 The M&M game when k = 4.

This equation is useful because every other linear second order differential equation
with three singular points (in the case they are at 0, 1, and ∞) can be transformed into
it. As this is a second order differential equation, there should be two solutions. One is

y(x) = 1 + abx

c · 1!
+ a(a + 1)b(b + 1)x2

c(c + 1) · 2!

+ a(a + 1)(a + 2)b(b + 1)(b + 2)x3

c(c + 1)(c + 2) · 3!
+ · · · , (4)

so long as c is not a nonpositive integer; we denote this solution by 2 F1(a, b; c; z).
By choosing appropriate values of a, b, and c, we recover many special functions.
Wikipedia lists three nice examples:

log(1 + x) = x 2 F1(1, 1; 2; −x)

(1 − x)−a = 2 F1(a, 1; 1; x)

arcsin(x) = x 2 F1(1/2, 1/2; 3/2; x2). (5)

By introducing some notation, we can write the series expansion more concisely.
We define the Pochhammer symbol by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = (a + n − 1)!

(a − 1)!

(where the last equality holds for integer a; for real a, we need to interpret the factorial
as its completion, the Gamma function). Our solution becomes

2 F1(a, b, c; x) =
∞∑

n=0

(a)n(b)nxn

(c)nn!
.

Note the factorials in the above expression suggest that there should be connections
between hypergeometric functions and products of binomial coefficients. In this nota-
tion, the 2 represents the number of Pochhammer symbols in the numerator, the 1 the
number of Pochhammer symbols in the denominator, and the a, b, and c are what
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we evaluate the symbols at (the first two are the ones in the numerator, the last the
denominator). One could of course consider more general functions, such as

s Ft({ai }, {b j }; x) =
∞∑

n=0

(a1)n · · · (as)nxn

(b1)n · · · (bt)nn!
.

The solution 2 F1(a, b, c; x) is called a hypergeometric function, and if you look
closely at it while recalling the infinite sum solution to the M&M Game you might see
the connection. After some algebra where we convert the binomial coefficients in the
infinite sum solution of Equation (1) to the falling factorials that are the Pochhammer
symbols, we find the following closed form solution.

Theorem 3. The probability the M&M Game ends in a tie with two people using fair
coins and starting with k M&M’S is

P(k, k) = 2 F1(k, k, 1; 1/4)4−k . (6)

It is not immediately clear that this is progress; after all, it looks like we’ve just given
a fancy name to our infinite sum. Fortunately, special values of hypergeometric func-
tions are well studied (see, for example, [1, 2]), and a lot is known about their behavior
as a function of their parameters. We encourage the interested reader to explore the
literature and discover how “useful” the above is.

OEIS If we use our finite series expansion of Equation (2) or the recurrence relation
of Equation (3), we can easily calculate the probability of a tie for some small k. We
give the probabilities for k up to 8 in Table 1. In addition, we also give 32k−1 P(k, k)

as multiplying by 32k−1 clears the denominators and allows us to use the On-Line
Encyclopedia of Integer Sequences (OEIS, http://oeis.org/).

TABLE 1: Probability of a tie.

k P(k, k) 32k−1 P(k, k)

1 1/3 1
2 5/27 5
3 11/81 33
4 245/2187 245
5 1921/19683 1921
6 575/6561 15525
7 42635/531441 127905
8 355975/4782969 1067925

Thus, to the M&M Game with two players, we can associate the integer sequence 1,
5, 33, 245, 1921, 15,525, 127,905, 1,067,925, . . . . We plug that into the OEIS and find
that it knows that sequence: A084771 (see http://oeis.org/A084771, and note
that the first comment on this sequence is that it equals the number of paths in the
graph we discussed).

Conclusion and further questions

We’ve seen many different ways of solving the M&M Game, each leading to a different
important aspect of mathematics. We leave the reader with some additional questions
to pursue using the techniques from this and related articles.

http://oeis.org/
http://oeis.org/A084771
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How long do we expect a game to take? What would happen to the M&M problem
if we increased the number of players? What if all of the players started with different
numbers of M&M’S? What if the participants used biased coins?

In one of the first games ever played, starting with five M&M’S Kayla tossed five
consecutive heads, losing immediately; years later, she still talks about that memorable
performance. There is a lot known about the longest run of heads or tails in tosses of
a fair (or biased) coin (see, for example, [4]). We can ask related questions here. What
is the expected longest run of heads or tails by any player in a game? What is the
expected longest run of tosses where all players’ coins have the same outcome?
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