LEADING DIGIT LAWS ON LINEAR LIE GROUPS

COREY MANACK AND STEVEN J. MILLER

ABSTRACT. We study the leading digit laws for the matrix entries ofreelir Lie group. For
non-compact, these laws generalize the following observations: (1nthrenalized Haar measure
of the Lie groupR™ is dz/z and (2) the scale invariance @k /= implies the distribution of the
digits follow Benford’s law. Viewing this scale invarianes left invariance of Haar measure, we
see either Benford or power law behavior in the significamdsmfone matrix entry of various such
G. WhenG is compact, the leading digit laws we obtain come as a corserguof digit laws for a
fixed number of components of a unit sphere. The sequencgibfals for the unit sphere exhibits
periodic behavior as the dimension tends to infinity.
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1. INTRODUCTION

1.1. Background. Given a positive number and a baseB > 1, we writex = Sp(z)B*®),
whereSg(x) € [1, B) is the significand and(z) € Z. The distribution ofSz(z) has interested
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researchers in a variety of fields for over a hundred yearfeasently it is not uniformly dis-
tributed over[1, B) but exhibits a profound bias. FProb(Sp(z) < s) = logg(s) we say the
systerﬁ follows Benford’s law, which implies the probability of adirdigit ofd < B — 1 is
logg(d+ 1) — logg(d) = logg(1 4+ 1/d); in particular, a sequence of numbers base 10 has a first
digit of 1 about 30% of the time, and 9 for only around 4.5% af #alues. This bias was first
observed by Newcomly [New] in the 1880s, and then rediscdvieyeBenford [Ben] nearly 50
years later.

Many systems follow Benford’s law; on the pure math side¢haslude the Fibonacci numbers
(and most solutions to linear recurrence relations) [BrDigfates of thedz + 1 map [KonMi,
[LagSo], and values aof-functions on the critical strip among many others; on thgliag side
examples range from voter and financial data [Meb,| Nig] toaherage error in floating point
calculations[[Knu]. See [BH3, Mil] for two recent books oretBubject, the latter describing
many of the applications from detecting fraud in taxes, i@sagroting and scientific research,
[BHZ, Did, [Hi1,[HiZ,[Pin,Rai] for some classic papers espogishe theory, and [BHI, Hu] for
online collections of articles on the subject.

Our purpose is to explore the distribution of leading digitsomponents chosen from some
random process. We concentrate on two related types ofsgsiehe first type consists of various
n x n matrix ensembles, which of course can be viewed as vectong lin R”*. The second are
components of a point uniformly chosen on a unit sphere, vtum out to imply results for some
of our matrix ensembles.

Following the work of Montgomery [Man], Odlyzkd [Odl, OdHatz-Sarnak [KaSal, KaSa2],
Keating-Snaith[KeSn1, KeSh2, KeSn3], Conrey-FarmertidgaRubinstein-Snaith [CFKRS], Tracy-
Widom [TW] and many others, random matrix ensembles in ggnand the classical compact
groups in particular, have been shown to successfully modatiety of number-theoretic objects,
from special values to distribution of zeros to moménis.some of these systems Benford’s law
has already been observed (such as valuésfahctions and characteristic polynomials of random
matrix ensembles i [KonMi], or values of Fourier coeffidiein [ARS]); thus our work can be
interpreted as providing another explanation for the geswa of Benford’s law. We first quickly
review some needed background material on Haar measur@ 68l definitions (8113), and then
state our results for compact groupsfin §1.4 and non-congpeaaps in ELb.

1.2. Haar Measure Review. Random matrix theory has enjoyed numerous successes @ver th
past few decades, successfully modeling a variety of sysfeom energy levels of heavy nu-
clei to zeros ofL-functions [BEMT-E,[FiMil,[Ha]. Early work in the subject osidered ensem-
bles where the matrix elements were drawn independentiy fxidixed probability distribution

p. This of course led to questions and conjectures on how warstatistics (such as spacings
between normalized eigenvalues) dependg.ofror example, while the density of normalized
eigenvalues in matrix ensembles (Wigner’'s semi-circle) lasas known for all ensembles where
the entries were chosen independently from nice distobsti the universality of the spacings
between adjacent normalized eigenvalues resisted prddfthis century (see, among others,

[ERSY,[ESY[TV1[TV2]).

1By a system: we mean either a sequence of numbers or a measurable fufmtiomich Prob(Sp(z) < s)
exists. This will be made precise in the next section
2For example, the Tracy-Widom distributions describe theaveor of the largest eigenvalues of many ensembles,
and frequently these control the behavior of the systemfMBES] for an example from random graphs and network
theory.
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Instead of choosing the matrix elements independently anthp to choose a probability dis-
tribution p, we can consider matrix groups where the Haar measure gézascanonical choice
for randomly choosing a matrix eleméh®n ann-dimensional Lie groug- there exists a unique,
non-trivial, countably additive measurewhich is left translation invariant (sp(¢F) = u(E)
over allg € G and Borel set&); u is called the Haar measure. If our space is compact we may
normalizeu so that it assigns a measureldb G and thus may be interpreted as a probability. See
815 of [HR] for more details on Haar measures and Lie groups.

We are especially interested in the distribution of the ilegdigits in the(i, j)-th entry of a con-
nected linear Lie subgroup C GL(V'). For manyG the resulting behavior is easily determined
and follows immediately from the observation that a systehose density islogl—Bi on [1,B)
follows Benford’s law (see Definition 1.1 and Lemimal3.1). ékfintroducing some terminology
we state five cases which are immediately analyzed from ther Hiensity; Theoremh 112 is the
main result which interprets Haar measure from a matrix agxsition ofSL,,(R). Care must be
taken to separate the notion of the digit law for the compadtr@on-compact cases since many
non-compact: do not posses &-invariant probability measure. Thus we have two defingioh
leading digit law: for non-compact, we average the measure of significands over a neighborhood
of a specific one-parameter subgroup (see Definitian 1.3 foeaise statement). & is compact,
the Haar measure affords a global average over all matnweziés. In this light, one may think of
the non-compact digit law as a local law and the compact thgitas global law (see Definition
[1.8). A review of standard conventions and a list of the lirlga groups we study are given in
Appendix[A. Throughout the paper, we writeto mean the Haar measure 6handdg for the
Haar density or-.

1.3. Definitions.

Definition 1.1. Given a baseB € N, B > 1, adigit law is a probability density function) :
(1, B) — [0, 1]. A digit law satisfies & B, k) power law (for positiveé: # 1) if

BFL -1 1
Y(x) = Yr(r) = k= 1)B1 2~ (1.1)
andv is B-Benford if L
Y(x) = Pi(z) = logB 1 (1.2)

Definition 1.2. Given a connected, non-compact, locally compact Lie giGupith Lie algebra
L(G), and a subse$ C L(G) define theaubular neighborhood around S to be the set

U(S) = {X+Y | X €S, Y €L(G),Y LX,|Y|<e} (1.3)

The definition of the local version of digit law, stated negttechnical but captures the essence
of a leading digit law by averaging in the direction ofX according to the significands base
This definition has the advantage of producing digit lawsrfon-compact matrix groups which
are not amenable (e.§L2(R)).

Definition 1.3 (Local formulation of digit law ). Given a connected, non-compact, locally com-
pact Lie groupG with Lie algebralZ(G), a unit directionX € L(G) which generates a one-
parameter subgroup = x(t) = exp(tX) of G, a baseB > 1, a positive measurg on G and

3These are the ensembles that turn out to be most useful in eutnbory, not the ones arising from a fixed
distribution.
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probability density function) : [1, B) — [0, 1] we say thatG, p, =) satisfies the digit law if

S (exp(U([log B logBl
Prob(Sg(z) < s) = klggo 11_{% (exp (U0, Tog BHX 1/) a  (1.4)

wherek is a positive integer.

Remark 1.4. By the Baker-Campbell-Hausdorff formUudS], the averaging conditioffl.4) is
equivalent to

i T 2otmo Aexp(log B'X) exp(U ([0, log 5) X))
Prob(Sp(r) < s) = lim lim 1(exp(U([0. Flog B) X)) |

We typically takeu to be the left-invariant or right-invariant Haar measureanlf . is left-
invariant or bi-invariant,[(1]5) becomes

(1.5)

Prob(Sp(e) < s) = lim lim ~{CXPWUel0, 105 5):X)))

8% 8 i (exp(U.(0, klog B) X))’ (9

Remark 1.5. When a group7 decomposes as the product of simultaneously commuting one-
parameter subgroups (Theoremns 1.11 &nd11.10) The Haar medgwn G decomposes as a
product of measures along each one-parameter subgroumelsetinstances we refer to tjent
leading digit lawon G.

When G is compact, the Haar measuremay be normalized to be an invariant probability
measure oid-, affording a global definition of a digit law, stated next.

Definition 1.6 (Global formulation of digit law ). Fix a baseB > 1. LetG be a compact con-
nected Lie groupy a positive countably additive probability measureGnand f : G — R
measurable. We say thatr, 1, f) satisfies the digit law if

Prob(Sz(f / Y(x 1.7)

Recapitulating, the definition of the digit law for compagt(Definition [1.6) averages sig-
nificands from a measurable functigh: G — R over the entire groug-, whereas the non-
compact definition of the digit law (Definitidn_1.3) averadks significands over neighborhoods
of a one parameter subgroup@f since aG-invariant probability measure may not exist (i.€.,
not amenable).

1.4. Results (Compact Groups).Our results about the distribution of entries of compactgso
are a consequence of the following theorem about the coateirof points chosen uniformly on
spheres, which is also of independent interest. Write

S™(r) = {r e R"": |z| =1} (1.8)

for then-sphere of radius > 0, andS™ := S™(1) for the unit sphere. Belowrf is the standard

error function:
erf(z) = / (1.9)
f‘
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FIGURE 1. The distribution of the first digits bade = 10 (theory versus simu-
lation) of the first component of points uniformly chosen osphere withn com-
ponents. Top rown € {100,200, 500}. Bottom row:n € {10000, 20000, 50000}.
Notice the periodicity when increases by a factor d#? = 100.

Theorem 1.7.Consider the sequence of sphef#$™, ¢ € N. For \/gé > 4,

- . n b\ (e
élgéloProb(a < Sp(xy) <bjxeS") = Z [erf( 5 Bi) erf (\/;BZ)} . (1.120)

1=—00

For fixedn € N, it follows that the leading digit law of, in S"2*, as¢ — oo, tends to the digit
law £}, : [1, B) — [0, 1) whose cumulative distribution function is given by

Fo(z) = i {erf (\/%) — erf (\/géﬂ (1.11)

1=—00

As F,(r) = F,p=(x) for anyn € N, the leading digit law ofr; in S*, k — oo, falls into the
periodic cycle ofB? — 1 limiting digit laws F,, 1 < n < B? as defined ifl.11)

We plot the behavior for a representative set dfom Theoreni_1]7 in Figurld 1.

We use Theoreiin 1.7 to analyze the digits of entries of compactpsG. We shall see in the
case wherG = O, (R) or U, (C), p; ; is a projection ofG onto the(i, j)-th component ang is
Haar, the digit law of G, 1, p; ;) is a consequence of digit laws from a point drawn at random fro
a unit sphere.

Theorem 1.8. The leading digit law in théi, j) component 0O,,(R) (or the real or imaginary
part of entries inU,,(C)) with respect to Haar measure equals the leading digit law;afh 5™~
with respect to the uniform measure.

In particular, the asymptotic periodicity phenomenon falieres (Theorefn 1.7) is also observed
in an entry ofO,,(R); numerical simulations in this case yield identical bebais in Figuréll.

1.5. Results (Non-Compact Case)The following theorems are a representative sample of what

can be proved using the local definition {1.3) of digit law.
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Theorem 1.9.Let G = U be the group of real-valued upper triangular matrices:

a171 CI,172 Ce a'l,n
0 Az9o ... A2n

U = . . . . y Ai i c R/{O} . (112)
0 0 ... apn

The leading digit law of;; ; for the left-invariant Haar densityg;, is

e B-Benford for all base®3 > 1 wheni = j =1,
e a (B, k) power law when = j = kand2 < k < n,
e uniform forl <i < j <n.

The leading digit law of;; ; for the right-invariant Haar densitygy is

e B-Benford for all base®3 > 1 wheni = j = n,
e a(B,n — k) power law when = j = kand2 < k <mn,
e uniform forl < i < 57 <n.

Theorem 1.10.Let D be the group of real-valued diagonal matrices:
a1 .- 0
0 ... anp
For each: betweenl and n, the leading digit law ofu; ; with respect to the bi-invariant Haar
densitydg is B-Benford for all base®3 > 1.
Theorem 1.11.Let D, be the group of real-valued, determinantdiagonal matrices:
ary ... 0
D, = ST 7Hai,i =1,; (1.14)
0 ... anpn
For each: betweenl and n, the leading digit law ofu; ; with respect to the bi-invariant Haar
densitydg is B-Benford for all base#? > 1.

Our next result concerns the distribution of digits in a &rentry of SL,,(R). We first set some
notation. Denote by., U, D; C G the subgroups of unipotent lower triangular matrices, otapt
upper triangular matrices, and the determinadtagonal matrices ofL,,(R) respectively. Each
g € G can be uniquely expressed as the produetiud wherel € L,u € U,d € D;. Notice that
each subgroug,, U, D, is topologically closed ir5L, (R) and hence is a Lie subgroup 6f If
[,u, 0, are the Lie algebras df, U, D, respectively, theh u, 9, have the vector space bases (which
we review in Appendik A)

[ = spr({Eij}tisj), w = spr({Eijti<j), 01 = spr(Eii — Eiyrit1)1<i<n—1, (1.15)
whereF; ; is then x n matrix with 1 in the (4, j) position and zeroes elsewhere.

Theorem 1.12.LetC.(G) be the set of compactly supported continuous functions,aty be the
normalized Haar density o8L,,(R), ¢ € C.(G). Then

/ng(g // Dlgbexp )exp(Y)a) dadX dY, (1.16)



whered X, dY are the Lebesgue measureslom, and
n—1 da“
da = bt 1.17
- I (1.17)

i=1

is the Haar density o;. Consequently, the joint distribution of diagonal compatses a product
of B-Benford measures.

The next corollary follows immediately from the bi-invamize ofdg on SL,,(R):

Corollary 1.13. Let P, € SL,(R) be even order permutation matrices. Fare SL,,(R), the
joint distribution of the diagonal components B is a product ofB-Benford measures.

In other words, the joint distribution of components is a product @¢-benford measures if
there is an even permutation of the rows and columns whiatisstdien components to the diagonal
components. Lastly, we obtain results on the behavior afrdghants of matrices froL,,(R)*.

Theorem 1.14.The leading digit law on the determinants®@L,,(R) is B-Benford.

For other results related to Benford’s law and matrices[Beg who prove that as the size of
matrices with entries i.i.d.r.v. from a nice fixed distrilaut tends to infinity, the leading digits of
then! terms in the determinant expansion converges to Benfoadis Also see [BHB] for results
arising from powers of fixed matrices.

1.6. Outline of Paper. We prove Theorerh 1.7 in (82, and give some additional consegse
including Theoreni_118. We then turn to the non-compact cas@3. After first proving our
results for upper triangular and diagonal matrices, wevdefiheoreni_1.12 on components of
SL,(R) in §3.2 (see also Appendix B for a more geometric proof in twoehsions), which we
immediately use to deduce the digit law on determinantspfidra[1.14. We then end with some
concluding remarks and thoughts on future research.

2. PROOF OFCOMPACT RESULTS

2.1. Preliminaries. A key ingredient in determining the limiting behavior is 18tig’s formula
(seel[AS)): For: sufficiently large with| arg z| < ,

T(z) ~ e 227 V22m)12(1 + O(1/2)). (2.1)

Forr > 0, recall S"(r) is the sphere of radiusin R"*!, with S* = S"(1) the unit sphere.
Denote byV,,(r) andS,(r) the volume and surface area of thesphere.

Lemma 2.1. Let z; be the first component of a point chosen at random f&6m We have, for
1<a<b< B, that

Prob(a < Sp(z1) <b) = %W f: /;Bii(l — 2227 ey (2.2)

Proof. Pick a pointz € S™ uniformly at random, and let; be the first component af. We are in-
terested in the leading digit distribution of. By symmetry, the distribution for other components
is similar. Notice forr € R™*! with first component; that for0 < a < 1

{v: 2, =a}nN 8" = 5"} <m> . (2.3)
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Approximating the surface area in the stfip < x; < b,z € S™} by a frustum, it follows for

n > 0 that
fab \/1;——:2%5”_1 (\/ 1-— l’%) dl'l
Sn(1) '

(r) = “V,(r) and from the closed form solution

(2.4)

Prob(a < x; < b,z € S") =

!

By the familiar relationshi,,(r) =V,

n

( ) ﬂ.(n-l-l)/QTn-i-l

Valr) = =77 (2.5)
I (2 +1)

we find

f;ﬁ&hl <\/1 —x%) dxy
Sn(1)
nj, 111, Ve <\/1—:c1> dx,
B (n+ 1)V, (1)
b nl'(n/2 4+ 3/2) b oyt g
= ﬁ(n+1)r(n/z+1)/<1 ) dan

LT g
= U7 T2 /a“ ) (2.6)

Next, fix a, b to satisfyl < a < b < B. By symmetry, we may double the digit distribution in the
positive half-space; > 0 to get

Prob(a < x; < b,z € S") =

Prob(a < Sp(z1) < b,z € S") = %W i/bj_z(l — 22 dry, (2.7)
1 JaB™

which completes the proof. O

Example 2.2. We write down the digit distribution of, in S™ for smalln. For the circleS!, we
have

f; \/11_—$%So <\/1 - x%) dxy

Si(1)

I

= — / dl’l
T Ja 1-— .CL’%
arcsin(b) — arcsin(a)

= : (2.8)

™

Prob(a < x; < b,z € S') =

so the digit law forS* is

2 — . a
Prob(a < Sg(z;) < b,x € S*) = = ; (arcsm ( ) — arcsin (E)) : (2.9)

8
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The leading digit distribution fo5? is uniform with respect to any base, made evident from the

calculation
ff \/11_—fo1 (\/1 — x%) dxy

Prob(a < x; < b,z € S?) =

Sa(1)
B ff 2mdry
N 41
b—a
= 5 (2.10)
which implies
Prob(a < Sg(z1) < b,z € S?) = g__al (2.11)
Using Stirling’s formula[(Z11), we next prove an asymptagsult for the digit distribution on

S™.

Lemma 2.3.FixabaseB > 1andl < a < b < B. Letz; andz be asin Lemma?Z.1. As— oo,
the difference betwedprob(a < Sp(z;) < b) and

o0 n_ b oo

2 2 B 2 nb n a

—= - = f{ /== | —erf|/=— 2.12
;ﬁ s e dx ;[er( 232) er (\/QB’)} ( )

tends to zero.

Proof. Leta, b € R satisfyl < a < b < B. From Lemma&2]1 we have
a2 T(n/2+1/2) = /b'Bi 2\n/2—1
Prob(a < Sg(z1) < b,z € S") = N AVEYD) > " (1—2?) de. (2.13)
By Stirling’s approximation[{2]1)
['(n/2+41/2) n
RN A e A 1 2.14
and the change of variables= y+/2/n anddx = dy+/2/n we have

Prob(a < Sp(z) <b) = ([ )\FZ/fB( n/Q)H/H %dy
(D) EE L () e

for sufficiently largen. Further, the Dominated Convergence Theorem and the ra@oiaydf the
sum overi shows that the difference betweén (2.15) and

Vig
\FZ/ eV dy (2.16)

tends to zero a8 — oo, completing the proof. O
9



2.2. Proofs of Theoremd 1.7 an@ 118 Our first main result now immediately follows.

Proof of Theoreri I17Equation [1.ID) follows from Lemnia2.3. Straightforwardetira yields
(L.11). O

We need a few additional results before proving Thedrer lleBnmal 2.8 can be generalized
to the firstk components of a randomly selected point S* C R"*!. We consider the first
k componentsey, ...,z (k < n + 1). Similar to the analysis above, a poift,, as, . . ., a;)
which lies in the open unit disk* has the remaining — k£ + 1 components lying in & — k
sphere of radiug/1 — a? — - - - — a?. Rotational symmetry in the — k + 1 components affords a
parameterization of the surface elemést, of S™ by D* as

dSy(z1,...,25) = Sn_k(\/l—x% —xk) dSk(x1, ..., xy)

dSn(l'l,...,l‘k) = Sn_k (\/1 —:L'% — e —x%) \/ 3 x2 dx (217)

wheredr = dxdxzs - - - duy,.

Lemma 2.4. For any bases,

lim
n—oo

n . 2 bi\/g —x?
Prob(|a| < |z1] < |ba], ..., |ak| < |xg| < |bg|, x € S™) — HT/ e " dx
i1 VT Jai /5

— 0. (2.18)

Proof. Similar to Lemma 2.3, we may reduce to the case when the baynigon z; are positive.
By symmetry and substitution df (2J17),

Prob(a; <z <by,...,ax < 2 < by, z € S™)

k
=2 / dS(l’l,...,.Tk)
a1<r1<by ap<xp<bg

b b 1
Sh— \/1—x2—-~-—x2) dry - --dx
k( 1 k \/I—x%—---—xz k 1

an—k+1 o bk \/ 1
- - 1— oo — 2 dre -~ -d
(n+ 1)V, (1) / / ; o Tk V1-22—- -2l o o

b1 b
- (%) (n/2n£2kj/L21fl/2 / / (1—af = —ap) "2 day - day. (2.19)

Stirling’s approximation[{2]1) gives

I'(n/241/2) - k/2 e
T(n/2—k/2+1/2) <§) + O(n*?7), (2.20)

and the change of variables = y;/\/n/2, 1 <1i < k complete the proof. O
10



Corollary 2.5. For any baseB

koo w0
2 [ViE
lim |Prob(a; < Sp(x1) <by,...,ar < Sp(wg) < bg,x € S") — H g / te e dx
nreo s VTIN5 E

= 0. (2.21)

S

In particular, the joint leading digit distribution of therfit X components is asymptotically periodic
in n, with period B2, tending to one of théB? — 1)* limiting distributions

ﬁFn(xj) =11 i {erf (@%) —erf( gé)} (2.22)

j=1 j=1li=—o00
withl < n < B2,

Next we show that the leading digit distribution in thej) entry of O,,(R) (w.r.t. Haar mea-
sure) is equal to the first entry of the sphére ! with respect to uniform. Thus, the asymptotic
periodicity phenomenon for spheres (Lenimd 2.3, 2.4) agpadhe digit laws for a fixed number
entries inO,,(R), so long as all entries lie in the same row or column.

Proof of Theorerh 118As O,,(R) contains every permutation matrix € GL,, (R) there exist per-
mutation matrices?, ) € GL,(R) such thatPAQ € O,(R) sends thdi, j) entry to the(1,1)
entry. By invariance ofg, it suffices to prove the claim for th@, 1) component 0D,,(R). Recall
that any matrixA € O,(R) satisfiesA”A = I, so that the columns afl form an orthonor-
mal basis ofR”. We may therefore embed,,(R) in the product of: copies of(n — 1)-spheres
Sn=l % ... x §"~1. Consider the construction of a matrix @, (R) one column at a time from
left to right. The first columnr; can be selected arbitrarily fro"~!. The second column,
is a vector selected in the cross-section formed by the gaihal plane ta:; in S"~! and this
cross-section is isometric t8" 2 x {0}. In general, théth column is selected from the hyper-
plane orthogonal to vectors, ..., c;_; in S"~!, a set that is isometric t8" % x {(0,...,0)} (k
times). Since th®,,(R)-action on a subset C O,,(R) preserves the Haar measureffthere is a
measure-preserving transformation between a basis ofdhe ieasurable subsets@f(R) and
the measurable subsets x A, x --- x A4, C S" 1 x 8" 2 x ... x S” where each componeSft
is equipped with the uniform measure. Therefore, the digitin the(1, 1) component 0D, (R)
equals the digit law of™~! with the uniform measure. The leading digit law follows.
Analogous digit laws for the real and imaginary parts in adixeimber of entries ifJ,,(C)
are immediate, sincg,,(C) contains every permutation matrix and the first columit/pfC) is a
point onS?" 1, O

3. PROOF OFNON-COMPACT RESULTS

3.1. Proofs for Upper Triangular and Diagonal Matrices. The starting point of our investiga-
tions is the following lemma on the multiplicative group afgitive real numbers.

Lemma 3.1. LetR™ be the multiplicative group of positive real numbers withaddensitydz /.
Then(R*, dz/x, x) is B-Benford for all bases3 > 1.
11



Proof. As the Lie algebrd (R*) = R of R* is one dimensional, the perpendicular subspade to
is{0}. Thus, for any € [1, B), one had/([0, log s)X) = [0, log s) X, whence[(116) becomes

k[7d k1
Prob(Sp(X) <s) = lim 7% z/@ — lim 8% _ logp s. (3.1)
B
k—00 fl dl’/l’ k—o00 k;logB 0

Our first three theorems in the non-compact setting followapplying Lemmd_3J1 to non-
compactG whose Haar density decompose as a product of densities anatrex components;
the digit laws are then easily determined from the local fdation of digit law [1.6).

Proof of Theorerh 119The left-invariant Haar measure éhhas density

dgL = H daw (3.2)

a11a22 nn i<j

and the right-invariant Haar measure@rhas density

dgr = — da;;, (3.3)
a’fla22 Ll E ’
whereda;; is the Lebesgue density dhin both cases. All leading digit laws follow. O

Proof of Theoreri 1.10The bi-invariant Haar measure @his
1
dg = ———— dCll,lda2,2 o 'dan,m (3.4)

110A22 * *Ann

whereda, ; is the Lebesgue measure Bn The digit laws follow. O

Proof of Theorerh 1.11D; is diffeomorphic to the graph of

1
(0117 e aa'n—l,n—l) = (3.5)

11022+ Ap—1n—1

and hence is diffeomorphic to an open sub-manifol®6f!. The bi-invariant Haar measure on
D, is thus

1
dg = da,llda,gg s dam, (36)

11022 * * - Ap—1,n—1
whereda;; is the Lebesgue measure &n The digit laws follow. O

The explicit formulations of Haar densities in Theordmg IL.90,[T.11 can be found in [HR]
815.

3.2. Proof of Theorems[1.1P2 and_I.14Recall L, U, D, are the subgroups ¢fL,,(R) of lower
triangular, upper triangular, and diagonal determiriamiatrices, with Lie algebrasu, 0, respec-
tively (see AppendikA).

Proof of Theorerh 1.12We decompose the density @ with respect to the matrix decomposition
SL,(R) = LUD,. To accomplish this task, we pigk € G and calculate the Jacobiantatinder
the change to exponential coordinates

9(X,)Y,Z) =goexpXexpYexpZ (X eLY eu, Z €0 (3.7)
12



As a function, g is a local isomorphism from a neighborhood iof[ x 1t x 9; onto a neighborhood
U of go. [VS] §2.10. To calculate the Jacobian we compute direatiderivatives. To this end, if
we let

g(t) = g(tX,Y,Z) = goexptXexpYexpZ (3.8)
be a curve through, in the direction ofX € [, then
g (t) = go(exptX)X expYexp Z. (3.9)
Therefore
g ) (t) = (goexptXexpY expZ) tgo(exptX)XexpY exp Z
= Ad((expY exp Z) ) (X) = e 2dZe2dY ¥ (3.10)
Similarly, if

h(t) = hW(X,tY,Z) = goexp X exptYexpZ (X € ,Y €u,Z € 0y) (3.11)
is a curve througlg, in the direction ofY” € u, then
R(t) 'R (t) = (goexp X exptY exp Z) 'go(exp X)(exptY)Y exp Z
= Ad((exp Z)"H(Y) (3.12)

Lastly, if k(¢) is a curve througly, in the direction ofZ, thenk(t)~'k/(t) = Z. By left-invariance
of dg, the Jacobian ajf, with respect to the coordinate bases,af, 9, is given by the block matrix

[Ad((exp Y exp Z)~1)(X)], 0 0
* [Ad(exp Z)1(Y)], ; : (3.13)

where[Ad((exp Y exp Z)7!)(X)]; are the terms of the vectdrd((exp Z exp Y)~1)(X) which lie
in the subspaceand[Ad((exp Z)~!)(X)], are the terms oAd((exp Z)~')(X) which lie inu. It
follows that the volume element aroupgldecomposes as

dg = | det Ad(u™")|| det Ad(d™)|| det Ad((d)™").| da dX dY (3.14)

with v = exp(Y) € U, d = exp(Z) € D;. Notice that[(3.1B) independent gf. We compute
(3.12) explicity, by first observing thatd(d—!) acts by scalar multiplication os1,,. In particular,
each matrix®; ;,i # j in sl,, is an eigenvector ahd(d—') with eigenvaluel; ;/d, ;. Therefore, in
the coordinate basigr; ; }i-,; of u we have

d.;
d —1 — 7] .
et Ad(d™Y), H N (3.15)
1<i<j<n 7
In the coordinate basigt; ;}.-; of [ we have
dz’i
detAd(d") = [] = (3.16)
1<isjn G
<i<j<n
and
det Ad(u™"), = id. (3.17)
Thus, the decomposition @ in (3.14) becomes
dg = dadX dY (3.18)

and the densitya was determined in Theordm 1111, completing the proof of Té@al.12. O
13



AppendixXB provides a geometric proof of Theorlem 1.12 baseti@area of hyperbolic sectors.

Proof of Theorerh 1.14Let GL,,(R)* be the group of all invertible. x n matrices with positive
determinant. The map
f: GL,(R)* — RT x SL,(R) (3.19)

given by f(g) = (det(g), (det(g))~/"g) is a Lie isomorphism. Commutativity between the sub-
groupsR* (embedded irGL, (R)™ as scalar matrices) arftl.,,(R) admits a decomposition of
the Haar density (up to positive constant)ds = r~'drdh wheredh is the Haar density on
SL,(R). O

4. CONCLUSIONS ANDFUTURE WORK

Our results can serve as a means for detecting underlyinghsymes of a physical system. For
example, imagine we are trying to construct matrices from ohthe classical compact groups
according to Haar measure (seée [Mez] for a description of twodo this). We can use our digit
laws as a test of whether or not we are simulating the matdog®ctly. Our results should also
generalize to other groups of matrices, including those tielels other than the reals. Theorems
[1.9,[1.11[1.70, and 1.1 2 found digit laws in matrix entriee@ncompact Lie groups. A general
treatment of digit laws via Haar decompositions should &egossible through the theory of
modular functions, which we leave as future research.

APPENDIXA. LINEAR LIE GROUPS

For a vector spac& over a fieldF' of characteristid), a Lie groupG C GL(V) is a group
equipped with a differentiable structure such that groupgtiplication and inversion are differ-
entiable. The Lie algebra(G) may be naturally identified with the tangent spd¢éG) to the
identity. The exponential magxp : L(G) — G maps alingX € L(G),t € F,X € L(G)
through.X to its unique one parameter subgrawp(t.X). Let E;; be then x n matrix with 1 in
the (7, j) entry and zeroes elsewhere.

We study the following linear Lie groups.

e The general linear grou@L,,(R) of matrices of nonzero determinant and its Lie algebra
gl,,(R) of all n x n matrices.

e The special linear groupL,,(R) = {A € GL,(V) | det A = 1} and its Lie algebra
s, (R) = {X € gl,(R) | trX = 0} of traceless matrices. The proof of Theolem L.12 uses
the vector space decompositiel) = [ + 9, + u, where

[ = spang({E;;}is;)
u = SpanR({EZJ}Z<])
01 = spang(Ei; — Eit1i41)1<i<n—1; (A.1)

hereE; ; is then x n matrix with 1 in the(z,j) position and zeroes elsewhere.

e The groupD C GL,(R) of diagonal matrices with nonzero diagonal entries and i¢s L
algebrap of diagonal matrices with entries .

e The groupD,(R) C GL,(R) of diagonal matrices with determinaht The Lie algebra of
D, is comprised of traceless diagonal matrices with entriés which we denote by;.

e The group of upper triangular matrice§R) C GL,(R) with nonzero diagonal entries

and its Lie algebra of upper triangular matrices with entrieslit
14



e The space of lower triangular matrice§R) € G'L,(R) with nonzero diagonal entries and
its Lie algebrd of lower triangular matrices with entries i

e The orthogonal groupd,,(R) = {4 € GL,(R) | ATA = I'} and its Lie algebra,, (R) =
{X € M,(R) | FT + F = 0} of skew symmetric matrices.

e The unitary groudJ,,(C) = {U € GL,(C) | U*U = I} and its Lie algebra,, = {WW €
M, (C) | W+ W=* = 0} of skew-Heritian matrices.

The complex lie group&L,,(C), O, (C), U(C), L(C), D(C), D;(C) are defined analogously.

APPENDIX B. HAAR MEASURE ONSL;(RR) IS B-BENFORD IN EACH COMPONENT

The goal of this section is to provide a geometric proof ofdeen1.12 in two dimensions. We
start with a useful, classical result.

Lemma B.1. The area of the hyperbolic cone
Clla,0){(t,t/z) 1t €[0,1], 0 < a <z <b} (B.1)
is equal tolog(b) — log(a).

Proof. The region under the curvg/x has aredog(b) — log(a) = log(b/a), and one can form the
sector from this region by first attaching the triangle withreers(0, 0), (a, 0), (a,1/a) and then
removing the triangle with corne(s, 0), (b,0), (b, 1/b). Both triangles have area2. O

As a quick corollary to LemmaBl.1, we determine the leadirgitdaw for the hyperbola? —
w? = 1 in each coordinate. The measure of a hyperbolicsaassigns the area of the cone $n

Corollary B.2. For the hyperbola? — w? = 1 in R? we have

b+\/b2—1)+log<a— a? —1

Prob(a<v<b):%<log< )) (1<a<b<B),

a++va?—1 b— Vb2 —1
(B.2)
and
1 b+ Vb2 +1 —a++Va?+1
Prob(a <w <b) == |1 —— | +1 e 1<a<b< B).
rob(a < w < b) 2<Og<a+ a2+1> Og<—b+ —bz+1>> (1<a )
(B.3)

Consequently, the digit law in thé" andv™ coordinates aré3-Benford for all basess > 1.

Proof. Under the change of coordinates= = + y,w = = — y, the hyperbola is the graph of
y = 1/(4x). By LemmdB.1, the measure of the hyperbolic arcs lying imrdggon—a < v < a is
easily determined to be

% <log(a +Va?—1)—log(a — Va? — 1)) . (B.4)
Similarly, the measure of the two hyperbolic arcs lying ia thgion—a < w < a is

1

5 <log(a + Va2 +1) —log(—a+ vVa?+ 1)) , (B.5)

and the first part of the corollary follows. We now show tha tfigit law in thev™ coordinate is

B-Benford for all base®? > 1; the hyperbola relation immediately yields the claim fog tither
15



coordinate. From Definition 1.3 we see

.t BOY2_ aB'—+/(a-B2—

Z’Ezlé<log<bB.+‘/(bB) 1)+log< Bl—\/(a-BY) 1))
) a-Bb+y/(a-B%)2-1 b-B—/(b-B)2—1

Prob(a < Sp(v) <b) = lim :

k=00 g Bt+1y,/(B2+2)_1 Bt—\/B20—1

S () e )

Bé—‘,-\/B%—l Bé+1_ B26+2_1
(B.6)

Notice the summand in the numerator[of (B.6) convergésc®/a) ask — oo and the denomina-
tor converges ttog(B) ask — co. Thus the limit of the ratio of the sums converge$og; (b/a),
implying thev™ coordinate isB-Benford for all base® > 1. O

LemmdB.1 states that the Haar measure of alsetR™* is equal to the area of the cong A)
on A. Generalizing this observation §i.,(R) forms the basis of the proof of our next result.

Theorem B.3. The(1, 1) component ofL,(R) with Haar measure i$3-Benford.

Proof. Let 1 be a Haar measure i, (R), A the Lebesgue measure BA. Write SL,(R) as

{{z cbi} :ad—bc:l}. (B.7)

{Z Z} € SLa(R)

as a point on the graph= (1 + bc)/a. Given a Haar measurable subgetC SL,(R) construct
the cone o4, C(A) C R*, by

C(A) = {tz |t € [0,1],x € A}; (B.8)

C(A)is Lebesgue measurable. By embeddiigis2 x 2 square matrices one sees thatihe(R )-
action onR* leaves) invariant. By uniqueness of Haar (see 815[of [HR]) the Haaasuee of
A C SL,(R) equals the volume of the cori& A) C R* up to positive constant. We give a series
of statements that simplify the proof but create no loss ofegality. Clearly(G, i, p11) is B-
Benford if and only if(G, cu, p1.1) is B-Benford (for every basé& > 1) in the (1,1) entry. We
take the Haar measure 6i.,(R) as the Lebesgue measure on cofés) C R*. Leta;; = a;
notice that: = 0 is a zero measure subsefofWe treat a matrix elemente SLy(R) as a point on
the graph ofl = (1 + bc)/a. By symmetry, it suffices to prove the theorem wher SL,(R)*.
We may further restricl to lie on the graph off = (1 + bc)/a defined over a rectangular domain
D = [1,z) x [—¢, €] x [—¢,€|. Up to positive constanfy(A) = u(graph(d)) = A(C(graph(d))) is
the volume of the cone consisting of aII line segments batviiee origin and points on the graph
of d. Consider the solid := S(graph(d)) bounded below by the graph @fwhose volume is

/// (Hbc) da db de. (B.9)

We wish to relate\(C'(graph(d))) to A(S(graph(d))). By our restriction to positive coordinates,
we see thadl is decreasing along each ray emanating from the origin inextion of D. As we are
assumingraph(d) > 0 on D, A\(C(graph(d)) can be found by appending fothe three pyramidal
regions whose bases are the th3edimensional facets of, given by

SN{a=1},5N{b=—€},SN{c=—€}, (B.10)
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then removing the pyramids whose bases are the three facets

Sn{a=z},SN{b=c¢€},SN{c=¢}. (B.11)
The apex for alb pyramids is the origin. Thus
A(C(graph(d))) = A(S)+AMC(SN{a=1})) = MCE(SN{a=x}))

FMOS N b= —e)) = MCO(S N {b=e}))
MC(SN{c=—€})) = MC(SN{c=¢}). (B.12)

Recall that the-dimensional volume of a pyramid 154 the volume of the base times the height
of its perpendicular, and the volume of the base of each pgremsimply the double integral over
the appropriate slice. Thus

M(C(graph(d ///Hbcd db de
// 1+bcdcdb %// 1+bcdcdb
E1—ec
e [ S
f/ L= be 6// L5 b da, (B.13)
4/, J_ 4/, J_. a

Of the seven terms listed ih (BI13), notice that the secortithind terms cancel. The five
integrals that remain are separable, with the same limitgegration oru. Further, the fourth and
sixth terms are equal as are the fifth and seventh terms. foney& we let'(¢) be the quantity

/_E/_E (14 be) dbde
(/_E( (l—ec)—e(1+ec))dc)

dc da

4

+i (/ (e(1 = be) — (1 + be)) db) | (B.14)

then R
p(exp(Uc([0,2)X))) = MC(graph(d))) = F(e) /j%da = log(x)F(e). (B.15)

By Definition[1.3,
Prob(Sgp(a) < z) = % = logp(x), (B.16)
which is independent af Lettinge — 0 proves the theorem. O
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