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ABSTRACT. We study the leading digit laws for the matrix entries of a linear Lie groupG. For
non-compactG, these laws generalize the following observations: (1) thenormalized Haar measure
of the Lie groupR+ is dx/x and (2) the scale invariance ofdx/x implies the distribution of the
digits follow Benford’s law. Viewing this scale invarianceas left invariance of Haar measure, we
see either Benford or power law behavior in the significands from one matrix entry of various such
G. WhenG is compact, the leading digit laws we obtain come as a consequence of digit laws for a
fixed number of components of a unit sphere. The sequence of digit laws for the unit sphere exhibits
periodic behavior as the dimension tends to infinity.
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1. INTRODUCTION

1.1. Background. Given a positive numberx and a baseB > 1, we write x = SB(x)B
k(x),

whereSB(x) ∈ [1, B) is the significand andk(x) ∈ Z. The distribution ofSB(x) has interested
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researchers in a variety of fields for over a hundred years, asfrequently it is not uniformly dis-
tributed over[1, B) but exhibits a profound bias. IfProb(SB(x) ≤ s) = logB(s) we say the
system1 follows Benford’s law, which implies the probability of a first digit of d ≤ B − 1 is
logB(d + 1)− logB(d) = logB(1 + 1/d); in particular, a sequence of numbers base 10 has a first
digit of 1 about 30% of the time, and 9 for only around 4.5% of the values. This bias was first
observed by Newcomb [New] in the 1880s, and then rediscovered by Benford [Ben] nearly 50
years later.

Many systems follow Benford’s law; on the pure math side these include the Fibonacci numbers
(and most solutions to linear recurrence relations) [BrDu], iterates of the3x + 1 map [KonMi,
LagSo], and values ofL-functions on the critical strip among many others; on the applied side
examples range from voter and financial data [Meb, Nig] to theaverage error in floating point
calculations [Knu]. See [BH3, Mil] for two recent books on the subject, the latter describing
many of the applications from detecting fraud in taxes, images, voting and scientific research,
[BH2, Dia, Hi1, Hi2, Pin, Rai] for some classic papers espousing the theory, and [BH1, Hu] for
online collections of articles on the subject.

Our purpose is to explore the distribution of leading digitsof components chosen from some
random process. We concentrate on two related types of systems. The first type consists of various
n × n matrix ensembles, which of course can be viewed as vectors living in R

n2

. The second are
components of a point uniformly chosen on a unit sphere, which turn out to imply results for some
of our matrix ensembles.

Following the work of Montgomery [Mon], Odlyzko [Od1, Od2],Katz-Sarnak [KaSa1, KaSa2],
Keating-Snaith [KeSn1, KeSn2, KeSn3], Conrey-Farmer-Keating-Rubinstein-Snaith [CFKRS], Tracy-
Widom [TW] and many others, random matrix ensembles in general, and the classical compact
groups in particular, have been shown to successfully modela variety of number-theoretic objects,
from special values to distribution of zeros to moments.2 In some of these systems Benford’s law
has already been observed (such as values ofL-functions and characteristic polynomials of random
matrix ensembles in [KonMi], or values of Fourier coefficients in [ARS]); thus our work can be
interpreted as providing another explanation for the prevalence of Benford’s law. We first quickly
review some needed background material on Haar measures (§1.2) and definitions (§1.3), and then
state our results for compact groups in §1.4 and non-compactgroups in §1.5.

1.2. Haar Measure Review. Random matrix theory has enjoyed numerous successes over the
past few decades, successfully modeling a variety of systems from energy levels of heavy nu-
clei to zeros ofL-functions [BFMT-B, FiMil, Ha]. Early work in the subject considered ensem-
bles where the matrix elements were drawn independently from a fixed probability distribution
p. This of course led to questions and conjectures on how various statistics (such as spacings
between normalized eigenvalues) depends onp. For example, while the density of normalized
eigenvalues in matrix ensembles (Wigner’s semi-circle law) was known for all ensembles where
the entries were chosen independently from nice distributions, the universality of the spacings
between adjacent normalized eigenvalues resisted proof until this century (see, among others,
[ERSY, ESY, TV1, TV2]).

1By a systemx we mean either a sequence of numbers or a measurable functionfor which Prob(SB(x) ≤ s)
exists. This will be made precise in the next section

2For example, the Tracy-Widom distributions describe the behavior of the largest eigenvalues of many ensembles,
and frequently these control the behavior of the system; see[MNS] for an example from random graphs and network
theory.
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Instead of choosing the matrix elements independently and having to choose a probability dis-
tribution p, we can consider matrix groups where the Haar measure gives us a canonical choice
for randomly choosing a matrix element.3 On ann-dimensional Lie groupG there exists a unique,
non-trivial, countably additive measureµ which is left translation invariant (soµ(gE) = µ(E)
over allg ∈ G and Borel setsE); µ is called the Haar measure. If our space is compact we may
normalizeµ so that it assigns a measure of1 toG and thus may be interpreted as a probability. See
§15 of [HR] for more details on Haar measures and Lie groups.

We are especially interested in the distribution of the leading digits in the(i, j)-th entry of a con-
nected linear Lie subgroupG ⊂ GL(V ). For manyG the resulting behavior is easily determined
and follows immediately from the observation that a system whose density is 1

logB
1
x

on [1, B)
follows Benford’s law (see Definition 1.1 and Lemma 3.1). After introducing some terminology
we state five cases which are immediately analyzed from the Haar density; Theorem 1.12 is the
main result which interprets Haar measure from a matrix decomposition ofSLn(R). Care must be
taken to separate the notion of the digit law for the compact and non-compact cases since many
non-compactG do not posses aG-invariant probability measure. Thus we have two definitions of
leading digit law: for non-compactG, we average the measure of significands over a neighborhood
of a specific one-parameter subgroup (see Definition 1.3 for aprecise statement). IfG is compact,
the Haar measure affords a global average over all matrix elements. In this light, one may think of
the non-compact digit law as a local law and the compact digitlaw as global law (see Definition
1.6). A review of standard conventions and a list of the linear Lie groups we study are given in
Appendix A. Throughout the paper, we writeµ to mean the Haar measure onG anddg for the
Haar density onG.

1.3. Definitions.

Definition 1.1. Given a baseB ∈ N, B > 1, a digit law is a probability density functionψ :
[1, B) → [0, 1]. A digit lawψ satisfies a(B, k) power law (for positivek 6= 1) if

ψ(x) = ψk(x) :=
Bk−1 − 1

(k − 1)Bk−1

1

xk
, (1.1)

andψ isB-Benford if

ψ(x) = ψ1(x) :=
1

logB

1

x
. (1.2)

Definition 1.2. Given a connected, non-compact, locally compact Lie groupG with Lie algebra
L(G), and a subsetS ⊂ L(G) define thetubular neighborhood around S to be the set

Uǫ(S) = {X + Y | X ∈ S, Y ∈ L(G), Y ⊥ X, |Y | < ǫ}. (1.3)

The definition of the local version of digit law, stated next,is technical but captures the essence
of a leading digit law by averagingµ in the direction ofX according to the significands baseB.
This definition has the advantage of producing digit laws fornon-compact matrix groups which
are not amenable (e.g.SL2(R)).

Definition 1.3 (Local formulation of digit law ). Given a connected, non-compact, locally com-
pact Lie groupG with Lie algebraL(G), a unit directionX ∈ L(G) which generates a one-
parameter subgroupx = x(t) = exp(tX) of G, a baseB > 1, a positive measureµ onG and

3These are the ensembles that turn out to be most useful in number theory, not the ones arising from a fixed
distribution.
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probability density functionψ : [1, B) → [0, 1] we say that(G, µ, x) satisfies the digit lawψ if

Prob(SB(x) ≤ s) = lim
k→∞

lim
ǫ→0

∑k−1
l=0 µ(exp(Uǫ([logB

l, logBls)X))

µ(exp(Uǫ([0, logBk)X)))
=

∫ s

0

ψ(t) dt (1.4)

wherek is a positive integer.

Remark 1.4. By the Baker-Campbell-Hausdorff formula[VS], the averaging condition(1.4) is
equivalent to

Prob(SB(x) ≤ s) = lim
k→∞

lim
ǫ→0

∑k−1
l=0 µ(exp(logB

lX) exp(Uǫ([0, log s)X)))

µ(exp(Uǫ([0, k logB)X)))
. (1.5)

We typically takeµ to be the left-invariant or right-invariant Haar measure onG. If µ is left-
invariant or bi-invariant, (1.5) becomes

Prob(SB(x) ≤ s) = lim
k→∞

lim
ǫ→0

kµ(exp(Uǫ([0, log s)X)))

µ(exp(Uǫ([0, k logB)X)))
. (1.6)

Remark 1.5. When a groupG decomposes as the product of simultaneously commuting one-
parameter subgroups (Theorems 1.11 and 1.10) The Haar measure dg on G decomposes as a
product of measures along each one-parameter subgroup. In these instances we refer to thejoint
leading digit lawonG.

WhenG is compact, the Haar measureµ may be normalized to be an invariant probability
measure onG, affording a global definition of a digit law, stated next.

Definition 1.6 (Global formulation of digit law ). Fix a baseB > 1. LetG be a compact con-
nected Lie group,µ a positive countably additive probability measure onG and f : G → R

measurable. We say that(G, µ, f) satisfies the digit lawψ if

Prob(SB(f(g)) < s) =

∫ s

1

ψ(x) dx. (1.7)

Recapitulating, the definition of the digit law for compactG (Definition 1.6) averages sig-
nificands from a measurable functionf : G → R over the entire groupG, whereas the non-
compact definition of the digit law (Definition 1.3) averagesthe significands over neighborhoods
of a one parameter subgroup ofG, since aG-invariant probability measure may not exist (i.e.,G
not amenable).

1.4. Results (Compact Groups).Our results about the distribution of entries of compact groups
are a consequence of the following theorem about the coordinates of points chosen uniformly on
spheres, which is also of independent interest. Write

Sn(r) := {x ∈ R
n+1 : |x| = r} (1.8)

for then-sphere of radiusr > 0, andSn := Sn(1) for the unit sphere. Belowerf is the standard
error function:

erf(x) :=
2√
π

∫ x

0

e−t2dt. (1.9)
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FIGURE 1. The distribution of the first digits baseB = 10 (theory versus simu-
lation) of the first component of points uniformly chosen on asphere withn com-
ponents. Top row:n ∈ {100, 200, 500}. Bottom row:n ∈ {10000, 20000, 50000}.
Notice the periodicity whenn increases by a factor ofB2 = 100.

Theorem 1.7.Consider the sequence of spheresSnB2ℓ

, ℓ ∈ N. For
√

n
2

1
B
> 4,

lim
ℓ→∞

Prob(a < SB(x1) < b, x ∈ SnB2ℓ

) =

∞
∑

i=−∞

[

erf

(
√

n

2

b

Bi

)

− erf

(
√

n

2

a

Bi

)]

. (1.10)

For fixedn ∈ N, it follows that the leading digit law ofx1 in SnB2ℓ

, asℓ→ ∞, tends to the digit
law Fn : [1, B) → [0, 1) whose cumulative distribution function is given by

Fn(x) :=
∞
∑

i=−∞

[

erf

(
√

n

2

x

Bi

)

− erf

(
√

n

2

1

Bi

)]

. (1.11)

AsFn(x) = FnB2(x) for anyn ∈ N, the leading digit law ofx1 in Sk, k → ∞, falls into the
periodic cycle ofB2 − 1 limiting digit lawsFn, 1 ≤ n < B2 as defined in(1.11).

We plot the behavior for a representative set ofn from Theorem 1.7 in Figure 1.
We use Theorem 1.7 to analyze the digits of entries of compactgroupsG. We shall see in the

case whenG = On(R) or Un(C), pi,j is a projection ofG onto the(i, j)-th component andµ is
Haar, the digit law of(G, µ, pi,j) is a consequence of digit laws from a point drawn at random from
a unit sphere.

Theorem 1.8. The leading digit law in the(i, j) component ofOn(R) (or the real or imaginary
part of entries inUn(C)) with respect to Haar measure equals the leading digit law ofx1 in Sn−1

with respect to the uniform measure.

In particular, the asymptotic periodicity phenomenon for spheres (Theorem 1.7) is also observed
in an entry ofOn(R); numerical simulations in this case yield identical behavior as in Figure 1.

1.5. Results (Non-Compact Case).The following theorems are a representative sample of what
can be proved using the local definition (1.3) of digit law.
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Theorem 1.9.LetG = U be the group of real-valued upper triangular matrices:

U =























a1,1 a1,2 . . . a1,n
0 a2,2 . . . a2,n
...

...
. . .

...
0 0 . . . ann









, ai,i ∈ R/{0}















. (1.12)

The leading digit law ofai,i for the left-invariant Haar densitydgL is

• B-Benford for all basesB > 1 wheni = j = 1,
• a (B, k) power law wheni = j = k and2 ≤ k ≤ n,
• uniform for1 ≤ i < j ≤ n.

The leading digit law ofai,i for the right-invariant Haar densitydgR is

• B-Benford for all basesB > 1 wheni = j = n,
• a (B, n− k) power law wheni = j = k and2 ≤ k ≤ n,
• uniform for1 < i < j ≤ n.

Theorem 1.10.LetD be the group of real-valued diagonal matrices:

D =











a1,1 . . . 0
...

. . .
...

0 . . . an,n



 , ai,i ∈ R/{0}







. (1.13)

For eachi between1 and n, the leading digit law ofai,i with respect to the bi-invariant Haar
densitydg isB-Benford for all basesB > 1.

Theorem 1.11.LetD1 be the group of real-valued, determinant1 diagonal matrices:

D1 =











a1,1 . . . 0
...

. . .
...

0 . . . an,n



 ,
∏

ai,i = 1







; (1.14)

For eachi between1 and n, the leading digit law ofai,i with respect to the bi-invariant Haar
densitydg isB-Benford for all basesB > 1.

Our next result concerns the distribution of digits in a single entry ofSLn(R). We first set some
notation. Denote byL, U,D1 ⊂ G the subgroups of unipotent lower triangular matrices, unipotent
upper triangular matrices, and the determinant1 diagonal matrices ofSLn(R) respectively. Each
g ∈ G can be uniquely expressed as the productg = lud wherel ∈ L, u ∈ U, d ∈ D1. Notice that
each subgroupL, U,D1 is topologically closed inSLn(R) and hence is a Lie subgroup ofG. If
l, u, d1 are the Lie algebras ofL, U,D1 respectively, thenl, u, d1 have the vector space bases (which
we review in Appendix A)

l = spR({Ei,j}i>j), u = spR({Ei,j}i<j), d1 = spR(Ei,i −Ei+1,i+1)1≤i≤n−1, (1.15)

whereEi,j is then× n matrix with1 in the(i, j) position and zeroes elsewhere.

Theorem 1.12.LetCc(G) be the set of compactly supported continuous functions onG, dg be the
normalized Haar density onSLn(R), φ ∈ Cc(G). Then

∫

G

φ(g) dg =

∫

l

∫

u

∫

D1

φ(exp(X) exp(Y )a) dadX dY, (1.16)
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wheredX, dY are the Lebesgue measures onl, u, and

da =

n−1
∏

i=1

dai,i
ai,i

(1.17)

is the Haar density onD1. Consequently, the joint distribution of diagonal components is a product
ofB-Benford measures.

The next corollary follows immediately from the bi-invariance ofdg onSLn(R):

Corollary 1.13. Let P,Q ∈ SLn(R) be even order permutation matrices. ForA ∈ SLn(R), the
joint distribution of the diagonal components ofPAQ is a product ofB-Benford measures.

In other words, the joint distribution ofn components is a product ofB-benford measures if
there is an even permutation of the rows and columns which sends then components to the diagonal
components. Lastly, we obtain results on the behavior of determinants of matrices fromGLn(R)

+.

Theorem 1.14.The leading digit law on the determinants ofGLn(R) isB-Benford.

For other results related to Benford’s law and matrices, see[B–], who prove that as the size of
matrices with entries i.i.d.r.v. from a nice fixed distribution tends to infinity, the leading digits of
then! terms in the determinant expansion converges to Benford’s law. Also see [BH3] for results
arising from powers of fixed matrices.

1.6. Outline of Paper. We prove Theorem 1.7 in §2, and give some additional consequences,
including Theorem 1.8. We then turn to the non-compact casesin §3. After first proving our
results for upper triangular and diagonal matrices, we derive Theorem 1.12 on components of
SLn(R) in §3.2 (see also Appendix B for a more geometric proof in two dimensions), which we
immediately use to deduce the digit law on determinants, Theorem 1.14. We then end with some
concluding remarks and thoughts on future research.

2. PROOF OFCOMPACT RESULTS

2.1. Preliminaries. A key ingredient in determining the limiting behavior is Stirling’s formula
(see [AS]): Forz sufficiently large with| arg z| < π,

Γ(z) ∼ e−zzz−1/2(2π)1/2(1 +O(1/z)). (2.1)

For r > 0, recallSn(r) is the sphere of radiusr in Rn+1, with Sn = Sn(1) the unit sphere.
Denote byVn(r) andSn(r) the volume and surface area of then-sphere.

Lemma 2.1. Let x1 be the first component of a point chosen at random fromSn. We have, for
1 ≤ a ≤ b ≤ B, that

Prob(a < SB(x1) < b) =
2√
π

Γ(n/2 + 1/2)

Γ(n/2)

∞
∑

i=1

∫ bB−i

aB−i

(1− x21)
n/2−1 dx1. (2.2)

Proof. Pick a pointx ∈ Sn uniformly at random, and letx1 be the first component ofx. We are in-
terested in the leading digit distribution ofx1. By symmetry, the distribution for other components
is similar. Notice forx ∈ Rn+1 with first componentx1 that for0 < a < 1

{x : x1 = a} ∩ Sn = Sn−1
(√

1− a2
)

. (2.3)
7



Approximating the surface area in the strip{a < x1 < b, x ∈ Sn} by a frustum, it follows for
n > 0 that

Prob(a < x1 < b, x ∈ Sn) =

∫ b

a
1√
1−x2

1

Sn−1

(

√

1− x21

)

dx1

Sn(1)
. (2.4)

By the familiar relationshipSn(r) = V
′

n(r) =
n+1
r
Vn(r) and from the closed form solution

Vn(r) =
π(n+1)/2rn+1

Γ
(

n+1
2

+ 1
) , (2.5)

we find

Prob(a < x1 < b, x ∈ Sn) =

∫ b

a
1√
1−x2

1

Sn−1

(

√

1− x21

)

dx1

Sn(1)

=
n
∫ b

a
1

1−x2
1

Vn−1

(

√

1− x21

)

dx1

(n+ 1)Vn(1)

=
1√
π

nΓ(n/2 + 3/2)

(n+ 1)Γ(n/2 + 1)

∫ b

a

(1− x21)
n/2−1 dx1

=
1√
π

Γ(n/2 + 1/2)

Γ(n/2)

∫ b

a

(1− x21)
n/2−1 dx1. (2.6)

Next, fix a, b to satisfy1 ≤ a < b ≤ B. By symmetry, we may double the digit distribution in the
positive half-spacex1 > 0 to get

Prob(a < SB(x1) < b, x ∈ Sn) =
2√
π

Γ(n/2 + 1/2)

Γ(n/2)

∞
∑

i=1

∫ b·B−i

a·B−i

(1− x21)
n/2−1 dx1, (2.7)

which completes the proof. �

Example 2.2. We write down the digit distribution ofx1 in Sn for smalln. For the circleS1, we
have

Prob(a < x1 < b, x ∈ S1) =

∫ b

a
1√
1−x2

1

S0

(

√

1− x21

)

dx1

S1(1)

=
1

π

∫ b

a

1
√

1− x21
dx1

=
arcsin(b)− arcsin(a)

π
, (2.8)

so the digit law forS1 is

Prob(a < SB(x1) < b, x ∈ S1) =
2

π

∞
∑

i=1

(

arcsin

(

b

Bi

)

− arcsin
( a

Bi

)

)

. (2.9)
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The leading digit distribution forS2 is uniform with respect to any base, made evident from the
calculation

Prob(a < x1 < b, x ∈ S2) =

∫ b

a
1√
1−x2

1

S1

(

√

1− x21

)

dx1

S2(1)

=

∫ b

a
2πdx1

4π

=
b− a

2
, (2.10)

which implies

Prob(a < SB(x1) < b, x ∈ S2) =
b− a

B − 1
. (2.11)

Using Stirling’s formula (2.1), we next prove an asymptoticresult for the digit distribution on
Sn.

Lemma 2.3. Fix a baseB > 1 and1 ≤ a < b < B. Letx1 andx be as in Lemma 2.1. Asn→ ∞,
the difference betweenProb(a < SB(x1) < b) and

∞
∑

i=1

2√
π

∫

√
n
2

b

Bi

√
n
2

a

Bi

e−x2

dx =

∞
∑

i=1

[

erf

(
√

n

2

b

Bi

)

− erf

(
√

n

2

a

Bi

)]

(2.12)

tends to zero.

Proof. Let a, b ∈ R satisfy1 ≤ a < b < B. From Lemma 2.1 we have

Prob(a < SB(x1) < b, x ∈ Sn) =
2√
π

Γ(n/2 + 1/2)

Γ(n/2)

∞
∑

i=1

∫ b·B−i

a·B−i

(1− x2)n/2−1 dx. (2.13)

By Stirling’s approximation (2.1)

Γ(n/2 + 1/2)

Γ(n/2)
=

√

n

2
+O(1) (2.14)

and the change of variablesx = y
√

2/n anddx = dy
√

2/n we have

Prob(a < SB(x1) < b) =

(
√

n

2
+O(1)

)

2√
π

∞
∑

i=1

∫

√
n
2

b

Bi

√
n
2

a

Bi

(

1− y2

n/2

)n/2−1
√

2

n
dy

=

(

1 +O

(

1√
n

))

2√
π

∞
∑

i=1

∫

√
n
2

b

Bi

√
n
2

a

Bi

(

1− y2

n/2

)n/2−1

dy (2.15)

for sufficiently largen. Further, the Dominated Convergence Theorem and the rapid decay of the
sum overi shows that the difference between (2.15) and

2√
π

∞
∑

i=1

∫

√
n
2

b

Bi

√
n
2

a

Bi

e−y2 dy (2.16)

tends to zero asn→ ∞, completing the proof. �
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2.2. Proofs of Theorems 1.7 and 1.8.Our first main result now immediately follows.

Proof of Theorem 1.7.Equation (1.10) follows from Lemma 2.3. Straightforward algebra yields
(1.11). �

We need a few additional results before proving Theorem 1.8.Lemma 2.3 can be generalized
to the firstk components of a randomly selected pointx ∈ Sn ⊂ Rn+1. We consider the first
k componentsx1, . . . , xk (k < n + 1). Similar to the analysis above, a point(a1, a2, . . . , ak)
which lies in the open unit diskDk has the remainingn − k + 1 components lying in an − k
sphere of radius

√

1− a21 − · · · − a2k. Rotational symmetry in then− k+1 components affords a
parameterization of the surface elementdSn of Sn byDk as

dSn(x1, . . . , xk) = Sn−k

(

√

1− x21 − · · · − x2k

)

dSk(x1, . . . , xk)

dSn(x1, . . . , xk) = Sn−k

(

√

1− x21 − · · · − x2k

)

1
√

1− x21 − · · · − x2k
dx (2.17)

wheredx = dx1dx2 · · · dxk.

Lemma 2.4. For any baseB,

lim
n→∞

∣

∣

∣

∣

∣

Prob(|a1| ≤ |x1| < |b1|, . . . , |ak| ≤ |xk| < |bk|, x ∈ Sn) −
k
∏

i=1

2√
π

∫ bi
√

n
2

ai
√

n
2

e−x2

dx

∣

∣

∣

∣

∣

= 0. (2.18)

Proof. Similar to Lemma 2.3, we may reduce to the case when the boundsai, bi onxi are positive.
By symmetry and substitution of (2.17),

Prob(a1 < x1 < b1, . . . , ak < xk < bk, x ∈ Sn)

= 2k
∫

a1<x1<b1,...,ak<xk<bk

dS(x1, . . . , xk)

=
2k

Sn(1)

∫ b1

a1

· · ·
∫ bk

ak

Sn−k

(

√

1− x21 − · · · − x2k

)

1
√

1− x21 − · · · − x2k
dxk · · · dx1

=
2k(n− k + 1)

(n+ 1)Vn(1)

∫ b1

a1

· · ·
∫ bk

ak

Vn−k

(

√

1− x21 − · · · − x2k

)

1
√

1− x21 − · · · − x2k
dxk · · · dx1

=

(

2√
π

)k
Γ(n/2 + 1/2)

Γ(n/2− k/2 + 1/2)

∫ b1

a1

· · ·
∫ bk

ak

(1− x21 − · · · − x2k)
(n−k−1)/2 dxk · · ·dx1. (2.19)

Stirling’s approximation (2.1) gives

Γ(n/2 + 1/2)

Γ(n/2− k/2 + 1/2)
=
(n

2

)k/2

+ O(nk/2−ǫ), (2.20)

and the change of variablesxi = yi/
√

n/2, 1 ≤ i ≤ k complete the proof. �
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Corollary 2.5. For any baseB

lim
n→∞

∣

∣

∣

∣

∣

Prob(a1 < SB(x1) < b1, . . . , ak ≤ SB(xk) < bk, x ∈ Sn)−
k
∏

j=1

∞
∑

i=1

2√
π

∫

√
n
2

bj

Bi

√
n
2

aj

Bi

e−x2

dx

∣

∣

∣

∣

∣

= 0. (2.21)

In particular, the joint leading digit distribution of the firstk components is asymptotically periodic
in n, with periodB2, tending to one of the(B2 − 1)k limiting distributions

k
∏

j=1

Fn(xj) =

k
∏

j=1

∞
∑

i=−∞

[

erf

(
√

n

2

xj
Bi

)

− erf

(
√

n

2

1

Bi

)]

(2.22)

with 1 ≤ n < B2.

Next we show that the leading digit distribution in the(i, j) entry ofOn(R) (w.r.t. Haar mea-
sure) is equal to the first entry of the sphereSn−1 with respect to uniform. Thus, the asymptotic
periodicity phenomenon for spheres (Lemma 2.3, 2.4) appears in the digit laws for a fixed number
entries inOn(R), so long as all entries lie in the same row or column.

Proof of Theorem 1.8.As On(R) contains every permutation matrixP ∈ GLn(R) there exist per-
mutation matricesP,Q ∈ GLn(R) such thatPAQ ∈ On(R) sends the(i, j) entry to the(1, 1)
entry. By invariance ofdg, it suffices to prove the claim for the(1, 1) component ofOn(R). Recall
that any matrixA ∈ On(R) satisfiesATA = I, so that the columns ofA form an orthonor-
mal basis ofRn. We may therefore embedOn(R) in the product ofn copies of(n − 1)-spheres
Sn−1 × · · · × Sn−1. Consider the construction of a matrix inOn(R) one column at a time from
left to right. The first columnc1 can be selected arbitrarily fromSn−1. The second columnc2
is a vector selected in the cross-section formed by the orthogonal plane toc1 in Sn−1 and this
cross-section is isometric toSn−2 × {0}. In general, theith column is selected from the hyper-
plane orthogonal to vectorsc1, . . . , ci−1 in Sn−1, a set that is isometric toSn−i × {(0, . . . , 0)} (k
times). Since theOn(R)-action on a subsetA ⊂ On(R) preserves the Haar measure ofA, there is a
measure-preserving transformation between a basis of the Haar measurable subsets ofOn(R) and
the measurable subsetsA1 ×A2 × · · · ×An ⊂ Sn−1 × Sn−2 × · · · × S0 where each componentSi

is equipped with the uniform measure. Therefore, the digit law in the(1, 1) component ofOn(R)
equals the digit law ofSn−1 with the uniform measure. The leading digit law follows.

Analogous digit laws for the real and imaginary parts in a fixed number of entries inUn(C)
are immediate, sinceUn(C) contains every permutation matrix and the first column ofUn(C) is a
point onS2n−1. �

3. PROOF OFNON-COMPACT RESULTS

3.1. Proofs for Upper Triangular and Diagonal Matrices. The starting point of our investiga-
tions is the following lemma on the multiplicative group of positive real numbers.

Lemma 3.1. LetR+ be the multiplicative group of positive real numbers with Haar densitydx/x.
Then(R+, dx/x, x) isB-Benford for all basesB > 1.
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Proof. As the Lie algebraL(R+) = R of R+ is one dimensional, the perpendicular subspace toR

is {0}. Thus, for anys ∈ [1, B), one hasUǫ([0, log s)X) = [0, log s)X, whence (1.6) becomes

Prob(SB(X) ≤ s) = lim
k→∞

k
∫ s

1
dx/x

∫ Bk

1
dx/x

= lim
k→∞

k log s

k logB
= logB s. (3.1)

�

Our first three theorems in the non-compact setting follow byapplying Lemma 3.1 to non-
compactG whose Haar density decompose as a product of densities on thematrix components;
the digit laws are then easily determined from the local formulation of digit law (1.6).

Proof of Theorem 1.9.The left-invariant Haar measure onU has density

dgL =
1

a11a
2
22 · · · annn

∏

i<j

daij (3.2)

and the right-invariant Haar measure onU has density

dgR =
1

an11a
n−1
22 · · · ann

∏

i<j

daij , (3.3)

wheredaij is the Lebesgue density onR in both cases. All leading digit laws follow. �

Proof of Theorem 1.10.The bi-invariant Haar measure onD is

dg =
1

a1,1a2,2 · · · ann
da1,1da2,2 · · · dan,n, (3.4)

wheredai,i is the Lebesgue measure onR. The digit laws follow. �

Proof of Theorem 1.11.D1 is diffeomorphic to the graph of

(a11, . . . , an−1,n−1) 7→ 1

a11a22 · · · an−1,n−1
(3.5)

and hence is diffeomorphic to an open sub-manifold ofRn−1. The bi-invariant Haar measure on
D1 is thus

dg =
1

a11a22 · · · an−1,n−1
da11da22 · · ·dann, (3.6)

wheredaii is the Lebesgue measure onR. The digit laws follow. �

The explicit formulations of Haar densities in Theorems 1.9, 1.10, 1.11 can be found in [HR]
§15.

3.2. Proof of Theorems 1.12 and 1.14.RecallL, U,D1 are the subgroups ofSLn(R) of lower
triangular, upper triangular, and diagonal determinant1 matrices, with Lie algebrasl, u, d1 respec-
tively (see Appendix A).

Proof of Theorem 1.12.We decompose the density ofdg with respect to the matrix decomposition
SLn(R) = LUD1. To accomplish this task, we pickg0 ∈ G and calculate the Jacobian at0 under
the change to exponential coordinates

g(X, Y, Z) = g0 expX exp Y expZ (X ∈ l, Y ∈ u, Z ∈ d1) (3.7)
12



As a function, g is a local isomorphism from a neighborhood of0 in l×u×d1 onto a neighborhood
U of g0. [VS] §2.10. To calculate the Jacobian we compute directional derivatives. To this end, if
we let

g(t) = g(tX, Y, Z) = g0 exp tX exp Y expZ (3.8)

be a curve throughg0 in the direction ofX ∈ l, then

g′(t) = g0(exp tX)X expY expZ. (3.9)

Therefore

g−1(t)g′(t) = (g0 exp tX exp Y expZ)−1g0(exp tX)X expY expZ

= Ad((expY expZ)−1)(X) = e− adZe− ad YX (3.10)

Similarly, if

h(t) = h(X, tY, Z) = g0 expX exp tY expZ (X ∈ l, Y ∈ u, Z ∈ d1) (3.11)

is a curve throughg0 in the direction ofY ∈ u, then

h(t)−1h′(t) = (g0 expX exp tY expZ)−1g0(expX)(exp tY )Y expZ

= Ad((expZ)−1)(Y ) (3.12)

Lastly, if k(t) is a curve throughg0 in the direction ofZ, thenk(t)−1k′(t) = Z. By left-invariance
of dg, the Jacobian atg0 with respect to the coordinate bases ofl, u, d1 is given by the block matrix





[Ad((exp Y expZ)−1)(X)]l 0 0
∗ [Ad(expZ)−1(Y )]u 0
∗ ∗ idd1



 , (3.13)

where[Ad((exp Y expZ)−1)(X)]l are the terms of the vectorAd((expZ exp Y )−1)(X) which lie
in the subspacel and[Ad((expZ)−1)(X)]u are the terms ofAd((expZ)−1)(X) which lie inu. It
follows that the volume element aroundg0 decomposes as

dg = | detAd(u−1)l|| detAd(d−1)l|| detAd((d)−1)u| da dX dY (3.14)

with u = exp(Y ) ∈ U , d = exp(Z) ∈ D1. Notice that (3.13) independent ofg0. We compute
(3.14) explicity, by first observing thatAd(d−1) acts by scalar multiplication onsln. In particular,
each matrixEi,j , i 6= j in sln is an eigenvector ofAd(d−1) with eigenvaluedj,j/di,i. Therefore, in
the coordinate basis{Ei,j}i<j of u we have

detAd(d−1)u =
∏

1≤i<j≤n

dj,j
di,i

. (3.15)

In the coordinate basis{Ei,j}i>j of l we have

detAd(d−1)l =
∏

1≤i<j≤n

di,i
dj,j

(3.16)

and
det Ad(u−1)l = idl. (3.17)

Thus, the decomposition ofdg in (3.14) becomes

dg = da dX dY (3.18)

and the densityda was determined in Theorem 1.11, completing the proof of Theorem 1.12. �
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Appendix B provides a geometric proof of Theorem 1.12 based on the area of hyperbolic sectors.

Proof of Theorem 1.14.Let GLn(R)
+ be the group of all invertiblen × n matrices with positive

determinant. The map
f : GLn(R)

+ → R
+ × SLn(R) (3.19)

given byf(g) = (det(g), (det(g))−1/ng) is a Lie isomorphism. Commutativity between the sub-
groupsR+ (embedded inGLn(R)

+ as scalar matrices) andSLn(R) admits a decomposition of
the Haar density (up to positive constant) asdg = r−1drdh wheredh is the Haar density on
SLn(R). �

4. CONCLUSIONS AND FUTURE WORK

Our results can serve as a means for detecting underlying symmetries of a physical system. For
example, imagine we are trying to construct matrices from one of the classical compact groups
according to Haar measure (see [Mez] for a description of howto do this). We can use our digit
laws as a test of whether or not we are simulating the matricescorrectly. Our results should also
generalize to other groups of matrices, including those over fields other than the reals. Theorems
1.9, 1.11, 1.10, and 1.12 found digit laws in matrix entries of noncompact Lie groups. A general
treatment of digit laws via Haar decompositions should alsobe possible through the theory of
modular functions, which we leave as future research.

APPENDIX A. L INEAR L IE GROUPS

For a vector spaceV over a fieldF of characteristic0, a Lie groupG ⊂ GL(V ) is a group
equipped with a differentiable structure such that group multiplication and inversion are differ-
entiable. The Lie algebraL(G) may be naturally identified with the tangent spaceTe(G) to the
identity. The exponential mapexp : L(G) → G maps a linetX ∈ L(G), t ∈ F,X ∈ L(G)
throughX to its unique one parameter subgroupexp(tX). LetEij be then × n matrix with 1 in
the(i, j) entry and zeroes elsewhere.

We study the following linear Lie groups.

• The general linear groupGLn(R) of matrices of nonzero determinant and its Lie algebra
gln(R) of all n× n matrices.

• The special linear groupSLn(R) = {A ∈ GLn(V ) | detA = 1} and its Lie algebra
sln(R) = {X ∈ gln(R) | trX = 0} of traceless matrices. The proof of Theorem 1.12 uses
the vector space decompositionsln = l+ d1 + u, where

l = spanR({Ei,j}i>j)

u = spanR({Ei,j}i<j)

d1 = spanR(Ei,i − Ei+1,i+1)1≤i≤n−1; (A.1)

hereEi,j is then× n matrix with1 in the(i, j) position and zeroes elsewhere.
• The groupD ⊂ GLn(R) of diagonal matrices with nonzero diagonal entries and its Lie

algebrad of diagonal matrices with entries inR.
• The groupD1(R) ⊂ GLn(R) of diagonal matrices with determinant1. The Lie algebra of
D1 is comprised of traceless diagonal matrices with entries inR which we denote byd1.

• The group of upper triangular matricesU(R) ⊂ GLn(R) with nonzero diagonal entries
and its Lie algebrau of upper triangular matrices with entries inR.
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• The space of lower triangular matricesL(R) ⊂ GLn(R) with nonzero diagonal entries and
its Lie algebral of lower triangular matrices with entries inR.

• The orthogonal group:On(R) = {A ∈ GLn(R) | ATA = I} and its Lie algebraon(R) =
{X ∈Mn(R) | F T + F = 0} of skew symmetric matrices.

• The unitary groupUn(C) = {U ∈ GLn(C) | U∗U = I} and its Lie algebraun = {W ∈
Mn(C) |W +W ∗ = 0} of skew-Heritian matrices.

The complex lie groupsGLn(C), On(C), U(C), L(C), D(C), D1(C) are defined analogously.

APPENDIX B. HAAR MEASURE ONSL2(R) IS B-BENFORD IN EACH COMPONENT

.
The goal of this section is to provide a geometric proof of Theorem 1.12 in two dimensions. We

start with a useful, classical result.

Lemma B.1. The area of the hyperbolic cone

C([a, b]){(t, t/x) : t ∈ [0, 1], 0 < a ≤ x ≤ b} (B.1)

is equal tolog(b)− log(a).

Proof. The region under the curve1/x has arealog(b)− log(a) = log(b/a), and one can form the
sector from this region by first attaching the triangle with corners(0, 0), (a, 0), (a, 1/a) and then
removing the triangle with corners(0, 0), (b, 0), (b, 1/b). Both triangles have area1/2. �

As a quick corollary to Lemma B.1, we determine the leading digit law for the hyperbolav2 −
w2 = 1 in each coordinate. The measure of a hyperbolic arcS assigns the area of the cone onS.

Corollary B.2. For the hyperbolav2 − w2 = 1 in R2 we have

Prob(a < v < b) =
1

2

(

log

(

b+
√
b2 − 1

a +
√
a2 − 1

)

+ log

(

a−
√
a2 − 1

b−
√
b2 − 1

))

(1 ≤ a < b < B),

(B.2)
and

Prob(a < w < b) =
1

2

(

log

(

b+
√
b2 + 1

a +
√
a2 + 1

)

+ log

(

−a +
√
a2 + 1

−b+
√
b2 + 1

))

(1 ≤ a < b < B).

(B.3)
Consequently, the digit law in theuth andvth coordinates areB-Benford for all basesB > 1.

Proof. Under the change of coordinatesv = x + y, w = x − y, the hyperbola is the graph of
y = 1/(4x). By Lemma B.1, the measure of the hyperbolic arcs lying in theregion−a < v < a is
easily determined to be

1

2

(

log(a+
√
a2 − 1)− log(a−

√
a2 − 1)

)

. (B.4)

Similarly, the measure of the two hyperbolic arcs lying in the region−a < w < a is

1

2

(

log(a +
√
a2 + 1)− log(−a +

√
a2 + 1)

)

, (B.5)

and the first part of the corollary follows. We now show that the digit law in thevth coordinate is
B-Benford for all basesB > 1; the hyperbola relation immediately yields the claim for the other
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coordinate. From Definition 1.3 we see

Prob(a < SB(v) < b) = lim
k→∞

∑k
ℓ=1

1
2

(

log

(

b·Bℓ+
√

(b·Bℓ)2−1

a·Bk+
√

(a·Bℓ)2−1

)

+ log

(

a·Bℓ−
√

(a·Bℓ)2−1

b·Bℓ−
√

(b·Bℓ)2−1

))

∑k
ℓ=1

1
2

(

log

(

Bℓ+1+
√

(B2ℓ+2)−1

Bℓ+
√

B2ℓ−1

)

+ log

(

Bℓ−

√
B2ℓ−1

Bℓ+1−

√
B2ℓ+2−1

)) .

(B.6)

Notice the summand in the numerator of (B.6) converges tolog(b/a) ask → ∞ and the denomina-
tor converges tolog(B) ask → ∞. Thus the limit of the ratio of the sums converges tologB(b/a),
implying thevth coordinate isB-Benford for all basesB > 1. �

Lemma B.1 states that the Haar measure of a setA ⊂ R+ is equal to the area of the coneC(A)
onA. Generalizing this observation toSL2(R) forms the basis of the proof of our next result.

Theorem B.3. The(1, 1) component ofSL2(R) with Haar measure isB-Benford.

Proof. Let µ be a Haar measure onSL2(R), λ the Lebesgue measure onR4. WriteSL2(R) as
{[

a b
c d

]

: ad− bc = 1

}

. (B.7)

Treat an element
[

a b
c d

]

∈ SL2(R)

as a point on the graphd = (1 + bc)/a. Given a Haar measurable subsetA ⊂ SLn(R) construct
the cone onA, C(A) ⊂ R4, by

C(A) = {tx | t ∈ [0, 1], x ∈ A}; (B.8)

C(A) is Lebesgue measurable. By embeddingR4 as2×2 square matrices one sees that theSL2(R)-
action onR4 leavesλ invariant. By uniqueness of Haar (see §15 of [HR]) the Haar measure of
A ⊂ SLn(R) equals the volume of the coneC(A) ⊂ R4 up to positive constant. We give a series
of statements that simplify the proof but create no loss of generality. Clearly(G, µ, p1,1) is B-
Benford if and only if(G, cµ, p1,1) is B-Benford (for every baseB > 1) in the (1, 1) entry. We
take the Haar measure onSL2(R) as the Lebesgue measure on conesC(A) ⊂ R4. Let a11 = a;
notice thata = 0 is a zero measure subset ofµ. We treat a matrix elementx ∈ SL2(R) as a point on
the graph ofd = (1 + bc)/a. By symmetry, it suffices to prove the theorem whenA ⊂ SLn(R)

+.
We may further restrictA to lie on the graph ofd = (1 + bc)/a defined over a rectangular domain
D = [1, x)× [−ǫ, ǫ]× [−ǫ, ǫ]. Up to positive constant,µ(A) = µ(graph(d)) = λ(C(graph(d))) is
the volume of the cone consisting of all line segments between the origin and points on the graph
of d. Consider the solidS := S(graph(d)) bounded below by the graph ofd whose volume is

λ(S) =

∫ ∫ ∫

D

(

1 + bc

a

)

da db dc. (B.9)

We wish to relateλ(C(graph(d))) toλ(S(graph(d))). By our restriction to positive coordinates,
we see thatd is decreasing along each ray emanating from the origin in a direction ofD. As we are
assuminggraph(d) > 0 onD, λ(C(graph(d)) can be found by appending toS the three pyramidal
regions whose bases are the three3-dimensional facets ofS, given by

S ∩ {a = 1}, S ∩ {b = −ǫ}, S ∩ {c = −ǫ}, (B.10)
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then removing the pyramids whose bases are the three facets

S ∩ {a = x}, S ∩ {b = ǫ}, S ∩ {c = ǫ}. (B.11)

The apex for all6 pyramids is the origin. Thus

λ(C(graph(d))) = λ(S) + λ(C(S ∩ {a = 1}))− λ(C(S ∩ {a = x}))
+ λ(C(S ∩ {b = −ǫ}))− λ(C(S ∩ {b = ǫ}))
+ λ(C(S ∩ {c = −ǫ}))− λ(C(S ∩ {c = ǫ})). (B.12)

Recall that the4-dimensional volume of a pyramid is1/4 the volume of the base times the height
of its perpendicular, and the volume of the base of each pyramid is simply the double integral over
the appropriate slice. Thus

λ(C(graph(d))) =

∫ ∫ ∫

D

1 + bc

a
da db dc

+
1

4

∫ ǫ

−ǫ

∫ ǫ

−ǫ

1 + bc

1
dc db− x

4

∫ ǫ

−ǫ

∫ ǫ

−ǫ

1 + bc

x
dc db

+
ǫ

4

∫ x

1

∫ ǫ

−ǫ

1− ǫc

a
dc da− ǫ

4

∫ x

1

∫ ǫ

−ǫ

1 + ǫc

a
dc da

+
ǫ

4

∫ x

1

∫ ǫ

−ǫ

1− bǫ

a
db da− ǫ

4

∫ x

1

∫ ǫ

−ǫ

1 + bǫ

a
db da. (B.13)

Of the seven terms listed in (B.13), notice that the second and third terms cancel. The five
integrals that remain are separable, with the same limits ofintegration ona. Further, the fourth and
sixth terms are equal as are the fifth and seventh terms. Therefore, if we letF (ǫ) be the quantity

F (ǫ) =

∫ ǫ

−ǫ

∫ ǫ

−ǫ

(1 + bc) db dc

+
1

4

(
∫ ǫ

−ǫ

(ǫ(1− ǫc)− ǫ(1 + ǫc)) dc

)

+
1

4

(
∫ ǫ

−ǫ

(ǫ(1− bǫ)− ǫ(1 + bǫ)) db

)

, (B.14)

then

µ(exp(Uǫ([0, x)X))) = λ(C(graph(d))) = F (ǫ)

∫ x

1

1

a
da = log(x)F (ǫ). (B.15)

By Definition 1.3,

Prob(SB(a) < x) =
log(x)F (ǫ)

log(B)F (ǫ)
= logB(x), (B.16)

which is independent ofǫ. Lettingǫ→ 0 proves the theorem. �
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