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The Pythagorean formula is one of the most popular ways to measure the true abil-
ity of a team. It is very easy to use, estimating a team’s winning percentage from
the runs they score and allow. This data is readily availableon standings pages;
no computationally intensive simulations are needed. Normally accurate to within
a few games per season, it allows teams to determine how much arun is worth in
different situations. This determination helps solve someof the most important eco-
nomic decisions a team faces: How much is a player worth, which players should be
pursued, and how much should they be offered. We discuss the formula and these
applications in detail, and provide a theoretical justification, both for the formula as
well as simpler linear estimators of a team’s winning percentage. The calculations
and modeling are discussed in detail, and when possible multiple proofs are given.
We analyze the 2012 season in detail, and see that the data forthat and other recent
years support our modeling conjectures. We conclude with a discussion of work in
progress to generalize the formula and increase its predictive powerwithout needing
expensive simulations, though at the cost of requiring play-by-play data.
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1 Introduction

In the classic movieOther People’s Money, New England Wire and Cable is a firm
whose parts are worth more than the whole. Danny Devito’s character, Larry the
Liquidator, recognizes this and tries to take over the company, with the intent on
breaking it up and selling it piecemeal. Gregory Peck plays Jorgy, the owner of the
firm, who gives an impassioned defense to the stockholders ata proxy battle about
traditional values and the golden days ahead. In the climatic conclusion, Larry the
Liquidator responds to Jorgy’s speech which painted him a heartless predator who
builds nothing and cares for no one but himself. Larry says

Who cares? I’ll tell you. Me. I’m not your best friend. I’m your only friend. I don’t make
anything? I’m making you money. And lest we forget, that’s the only reason any of you
became stockholders in the first place. You want to make money! You don’t care if they
manufacture wire and cable, fried chicken, or grow tangerines! You want to make money!
I’m the only friend you’ve got. I’m making you money.

While his speech is significantly longer than this snippet, the scene in general and
the lines above in particular highlight one of the most important problems in base-
ball, one which is easily forgotten. In the twenty-first century massive computation
is possible. Data is available in greater quantities than ever before; it can be ana-
lyzed, manipulated, and analyzed again thousands of times asecond. We can search
for small connections between unlikely events. This is especially true in baseball,
as there has been an explosion of statistics that are studiedand quoted, both among
the experts and practitioners as well as the everyday fan. The traditional metrics are
falling out of favor, being replaced by a veritable alphabetsoup of acronyms. There
are so many statistics now, and so many possibilities to analyze, that good metrics
are drowned out in poor ones. We need to determine which ones matter most.

In this chapter we assume a team’s goal is to win as many games as possible
given a specified amount of money to spend on players and related items. This is a
reasonable assumption from the point of view of general managers, though it may
not be the owner’s goal (which could range from winning at allcosts to creating the
most profitable team). In this case, Devito’s character has very valuable advice: The
goal is to win games. We don’t care if it’s by winning shoot-outs 12-10 in thirteen
innings, or by eking out a win in a 1-0 pitcher’s duel. We want to win games.

In this light, we see that sabermetrics is a dear friend. While there are many items
we could study, we focus on the value of a run (both a run created and a run saved).
We have a two-stage process. We need to determine how much each event is worth
in terms of creating a run, and then we need to extract how mucha run is worth.
Obviously these are not constant values; a run is worth far more in a 2-1 game than
in a 10-1 match. We focus below entirely on the value of a run. We thus completely
ignore the first item above, namely how much each event contributes to scoring.

Our metric for determining the worth of a run is Bill James’ Pythagorean Won-
Loss formula: If a team scores RS runs while allowing RA, thentheir winning per-
centage is approximately RSγ

RSγ+RAγ . Hereγ is an exponent whose value can vary from
sport to sport (as well as from era to era within that sport). James initially tookγ
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to be 2, which is the source of the name as the formula is reminiscent of the sum
of squares from the Pythagorean theorem.Note that instead of using the total runs
scored and allowed we could use the average number per game, as such a change
rescales the numerator and the denominator by the same amount.

In this chapter we discuss previous work providing a theoretical justification for
this formula, talk about future generalizations, and describe its implications in one
of the most important economics problems confronted by a baseball team: How
much is a given player worth? While much of this chapter has appeared in journals,
we hope that by combining everything in one place and doing the calculations in
full detail and in as elementary a way as possible that we willincrease the visibil-
ity of this method, and provide support for the role of mathematical modeling in
sabermetrics.

Before delving into the derivation, it’s worth remarking onwhy such a derivation
is important, and what it can teach us. InAn Enquiry Concerning Human Under-
standing (1772), David Hume wrote:

The contrary of every matter of fact is still possible, because it can never imply a contra-
diction, and is conceived by the mind with the same facility and distinctness, as if ever so
conformable to reality. That the sun will not rise tomorrow is no less intelligible a proposi-
tion, and implies no more contradiction, than the affirmation, that it will rise. We should in
vain, therefore, attempt to demonstrate its falsehood. Were it demonstratively false, it would
imply a contradiction, and could never be distinctly conceived by the mind.

Hume’s warning complements our earlier quote, and can be summarized by say-
ing that just because the sun rose yesterday we cannot conclude that it will rise
today. Sabermetricians frequently find quantities that appear to be well correlated
with desirable outcomes; however, there is a real danger that the correlation will
not persist in the future as past performance is no guaranteeof future performance.
(This lesson has been painfully learned by many chartists onWall Street.) Thus we
must be careful in making decisions based on regressions andother calculations. If
we find a relationship, we want somereason to believe it will continue to hold.

We are therefore led to creating mathematical models with reasonable assump-
tions; thus the point of this chapter is to develop predictive mathematical models to
complement inferential techniques. The advantage of this approach is that we now
have a reason to believe the observed pattern will continue,as we can now point
to an explanation, a reason. We will find such a model for baseball, which has the
Pythagorean formula, initially a numerical observation byJames that seemed to do
a good job year after year, as a consequence.

The Pythagorean formula has a rich history; almost any sabermetrics book refer-
ences it at some point. It is necessary to limit our discussion to just some of its
aspects. As the economic consequences to a team from better predictive power
are clear, we concentrate on the mathematical issues. Thus explaining how math-
ematical models can lead to closed-form expressions, whichcan solve real world
problems, is our main goal. We begin in§2 with some general comments on the
statistic. We describe a reasonable mathematical model in the next section, show
the Pythagorean formula is a consequence, and then give a mathematical proof in
§4. In §5 we examine some consequences, in particular how much a run created or
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saved is worth at different production levels, and in§6 we analyze data from sev-
eral seasons to see how well our model and the formula do. Nextwe examine linear
predictors for a team’s winning percentage, and show how they follow from lin-
earizing the Pythagorean formula. We end by discussing current, ongoing research
into generalizing the Pythagorean formula.

2 General Comments

Before discussing why the Pythagorean formula should be true, it’s worth comment-
ing on the form it has, both in its present state and its debut back in Bill James’1981
Baseball Abstract [6]. Remember it says that a team’s winning percentage should be

RSγ

RSγ+RAγ , with γ initially taken as 2 but now typically taken to be around 1.83. One
is struck by how easy the formula is to state and to use, especially in the original
incarnation. All we need is to know the average number of runsscored and allowed,
and the ratio can be found on a simple calculator.

Of course, back in the ’80s this wouldn’t be entirely true forsomeone watching at
home ifγ were not 2, though the additional algebra is slight and not even noticeable
on modern calculators, computers and even phones. One of thegreat values of this
statistic is just how easy it is to calculate, which is one of the reasons for its popu-
larity. You can easily approximate how much better you woulddo if you scored 10
more runs, or allowed 10 fewer, which we do later in Figure 2. We can do this as we
have asimple, closed form expression for our winning percentage in terms of just
three parameters: average runs scored, average runs allowed, and an exponentγ.

This is very different than the multitude of Monte Carlo simulations which try
to predict a team’s record. These require detailed statistics on batters and pitchers
and their interactions. Depending on how good and involved the algorithm is, we
may need everything from how many pitches a batter sees per appearance to the
likelihood of a runner advancing from first to third on a single hit to right field.
While this data is available, it takes time to simulate thousands of games. Further,
every small change in a team requires an entirely new batch ofsimulations. With
the Pythagorean formula, we can immediately determine the impact of a playerif
we have a good measure of how many runs they will contribute orsave.

Of course, as with most things in life there are trade-offs. While the closed-form
nature of the Pythagorean formula allows us to readily measure the impact of play-
ers, it indicates a major defect that should be addressed. Baseball is a complicated
game; it is unlikely that all the subtleties and issues can bedistilled into one simple
formula involving just three inputs. Admittedly, it is a major challenge to derive a
good formula to predict how many runs a player will give a team, and we are ignor-
ing this issue in this chapter; however, it is improbable that any formula as simple
as this can capture everything that matters. There are thus several extensions of the
Pythagorean formula; we discuss some of these in Sections§7 and§8, as well as
outline a program currently being pursued to improve its predictive power.
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3 Pythagorean Formula: Model

There are many ways to model a baseball game. The more sophisticated the model,
the more features can be captured, though added power comes at a cost. The cost
varies from increased run-time to requiring massively moredata. We give a very
simple model for a baseball game, and show the Pythagorean formula is a conse-
quence. Of course, the simplicity of our model strongly suggests that it cannot be
the full story. We return to that issue in§8, and content ourselves here with the sim-
ple case. The hope is that this simplified model of baseball isnevertheless powerful
enough to capture the main features and yield a reasonably good predictive statistic.
See the paper of Hammond, Johnson and Miller [4] for other approaches to model-
ing baseball games and winning percentages. Specifically, they look at James’ log5
method, which also appeared in his 1981 abstract [6]. There he estimates the prob-
ability a team with winning percentagea beats a team with winning percentageb
by a(1−b)

a(1−b)+(1−a)b . Interestingly, the Pythagorean formula with exponent 2 follows by

takinga = RS/(RS+RA) anda = RA/(RS+RA), with RS the average number of
runs scored and RA the average number of runs allowed.

The following model and derivation first appeared in work by the first author
in [8], who introduced using a Weibull distribution to modelrun production. The
Weibull distribution is extensively used in statistics, arising in many problems in
survival analysis (see [11] for a good description of the Weibull’s properties and
applications). The reason a Weibull distribution is able tomodel well so many dif-
ferent data sets is that it is a three parameter distribution, with probability density
function

f (x;α,β ,γ) =
γ
α

((x−β )/α)γ−1 e−((x−β )/α)γ
(1)

if x ≥ β and 0 otherwise. Hereα, β andγ are the three parameters of the distribu-
tion. The effect ofβ is to shift the entire distribution along the real line; essentially
it determines the starting point. In our investigationsβ will always be−1/2, for
reasons that will become clear. Next isα, which adjusts the scale of the distribution
but not the shape; asα increases the distribution becomes more spread out.

The reason thatα andβ do not alter the shape of the distribution is that, for any
distribution with finite mean and variance, we can always rescale it to have mean
zero and variance 1 (or, more generally, any mean and any positive variance). Thus
all α andβ do are adjust these two quantities. It isγ that is the most important,
as different values ofγ lead to very different shapes. We illustrate this in Figure
1. For definiteness, we may rescale and assumeα = 1 andβ = 0; we see how the
distribution changes asγ ranges from 1 to 2.

We are now ready to state our model. After listing our assumptions we discuss
why these choices were made, and their reasonableness.Remember, as remarked
earlier, that in the Pythagorean formula it makes no difference if we use the total
runs or the average per game, as rescaling changes the numerator and the denomi-
nator by the same multiplicative factor, and hence has no effect.
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Fig. 1 The changing probabilities of a family of Weibulls withα = 1, β = 0, and γ ∈
{1,1.25,1.5,1.75,2}; γ = 1 corresponds to the exponential distribution, and increasing γ results in
the bump moving rightward.

Assumptions for modeling a baseball game:The average number of runs
a team scores per game, denoted RS, and the average number of runs al-
lowed per game, denoted RA, are random variables drawn independently from
Weibull distributions withβ =−1/2 and the sameγ.

These assumptions clearly require discussion, as they cannot be right. The first
issue is that we are modeling runs scored and allowed by continuous random vari-
ables and not discrete random variables. While earlier workin the field used dis-
crete random variables (especially geometric or Poisson),the difficulty with these
approaches is that it is hard to obtain tractable, closed form expressions for the prob-
ability a team scores more runs than it allows and hence wins agame. The reason
is that calculus is unavailable in this case. Another way to put it is that while many
people have continued in mathematics to Calculus III or IV, no one goes similarly
far in classes on summation. In general, we do not have good formulas for sums, but
through calculus we do have nice expressions for integrals.While the model allows
for the Red Sox to beat the Yankeesπ to e, we must accept this if we want to be
able to use calculus.

The next assumption is that these random variables are drawnfrom Weibull dis-
tributions. There are two reasons for this. One is that the Weibull distributions, due
to their shape parameterγ, are an extremely flexible family and are capable of fit-
ting many one-hump distributions (i.e., distributions that go up and then go down).
The second, and far more important, is that calculations with the Weibull are excep-
tionally tractable and lead to closed form expressions. This should be compared to
similar and earlier work of Hein Hundel [5], which the authorlearned of from the
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Wikipedia entryPythagorean expectation [10]. In particular, the meanµα ,β ,γ and
the varianceσ2

α ,β ,γ of the Weibull are readily computed:

µα ,β ,γ = αΓ
(

1+ γ−1)+β

σ2
α ,β ,γ = α2Γ

(

1+2γ−1)−α2Γ
(

1+ γ−1)2
. (2)

HereΓ (s) is the Gamma function, defined for the real part ofs positive by

Γ (s) =
∫ ∞

0
e−uus−1du. (3)

The Gamma function is the continuous generalization of the factorial function, as
for n a non-negative integer we haveΓ (n+1) = n!.

The reason Weibulls lead to such tractable calculations is that if X is a random
variable drawn from a Weibull with parametersα,β andγ, thenX1/γ is exponen-
tially distributed with parameterαγ . Therefore a simple change of variables leads
to simple integrals of exponentials, which can be done in closed form. Due to the
importance of this calculation, we give full details for thecomputation of the mean
in Appendix 9.1 (a similar calculation determines the variance). The point is that
when there are several alternatives to use, certain choicesare more tractable and
should be incorporated. We discuss how to handle more general distributions while
preserving the all-important closed form nature of the solution in §8.

The next issue is our assumption thatβ =−1/2. This choice is to facilitate com-
parisons to the discrete scoring in baseball. Using the above calculations for the
mean, ifβ andγ are fixed we can determineα so that the mean of our Weibull
matches the observed average runs scored (or allowed) per game. We can use the
Method of Least Squares or the Method of Maximum Likelihood to find the best
fit parametersα,β ,γ to the observed data. In doing so, we need to deal with the
fact that our data is discrete. By takingβ = −1/2, we are breaking the data into
bins [− 1

2,
1
2), [

1
2,1

1
2), [1

1
2,2

1
2) and so on. Notice that thecenters of these bins are,

respectively, 0, 1, 2,. . .. This is no accident, and in fact is the reason we choseβ as
we did. By takingβ = −1/2 the possible integer scores are in themiddle of each
bin. If we tookβ = 0, as might seem more natural, then these values would lie at the
endpoints of the bins, which would cause issues in determining the best fit values.

The final issue is that we are assuming runs scored and runs allowed are indepen-
dent. This of course cannot be true, for the very simple reason that baseball games
cannot end in a tie! Thus if we know the Orioles scored 5 runs against the Red Sox,
then we know the Sox ended the game with some number other than5. There are
a plethora of other obvious issues with this assumption, ranging from if you have a
large lead late in the game you might rest your better playersand take a chance on
a weaker pitcher, to bringing in your closer to protect the lead in a tight game. That
said, an analysis of the data shows that on average these issues cancel each other
out, and that subject to being different the runs scored and allowed behave as if they
are statistically independent. The interesting feature here is that we cannot use a
standardr× c contingency table analysis as these two values cannot be equal. This
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leads to an iterative procedure taking into account thesestructural zeros (values of
the table that are inaccessible), which is described in Appendix 9.2.

We end this section by describing the calculation that yields the Pythagorean
formula, and remarking on why we have chosen to model the runswith Weibull
distributions. LetX be a random variable drawn from a Weibull with parameters
αRS,β = −1/2 and γ, representing the number of runs a team scores on aver-
age. Similarly, letY be a random variable drawn from a Weibull with parameters
αRA,β = −1/2 andγ, representing the number of runs a team allows on average.
Notice we have the sameγ for X andY , and we chooseαRS andαRA so that the
mean ofX is the observed average number of runs scored per game, RS, and the
mean ofY is the observed average number of runs allowed per game, RA. Thus

αRS =
RS−β

Γ (1+ γ−1)
, αRA =

RA−β
Γ (1+ γ−1)

. (4)

To determine our team’s winning percentage we just need to calculate the probabil-
ity that X exceedsY :

Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x;αRS,β ,γ) f (y;αRA,β ,γ)dy dx. (5)

For general probability densitiesf the above double integral is intractable (as
can be seen in Hundel’s work, where he used the log-normal distribution). As we’ll
see in the next section, the Weibull distribution leads to very simple integrals which
can be evaluated in closed form. This is not am accidental, fortuitous coincidence.
When first investigating this problem, Miller began by choosing f ’s that led to nice
double integrals which could be computed in closed form; thus the choice of the
Weibull came not from looking at the data but from looking at the integration! The
first f Miller chose was an exponential distribution, which turns out to be a Weibull
with γ = 1. Next, Miller chose a Rayleigh distribution, which is a Weibull with
γ = 2. (As a number theorist working in random matrix theory, which is often used
to model the energy levels of heavy nuclei, the Rayleigh distribution was one Miller
encountered frequently in his research and reading, as it approximates the spacings
between energy levels of heavy nuclei.) It was only after computing the answer in
both these cases that Miller realized the two densities fit into a nice family, and did
the calculation for generalγ.

4 Pythagorean Formula: Proof

We now finally prove the Pythagorean formula, which we first state explicitly as a
theorem. For completeness, we restate our assumptions.

Theorem 1 (Pythagorean Won-Loss Formula).Let the runs scored and runs al-
lowed per game be two independent random variables drawn from Weibull distribu-
tions with parameters (αRS,β ,γ) and (αRA,β ,γ) respectively, where αRS and αRA
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are chosen so that the means are RSand RA; in applications β =−1/2. Then

Won-Loss Percentage(RS,RA,β ,γ) =
(RS−β )γ

(RS−β )γ +(RA−β )γ . (6)

Proof. Let X andY be independent random variables with Weibull distributions
(αRS,β ,γ) and(αRA,β ,γ) respectively, whereX is the number of runs scored and
Y the number of runs allowed per game. Recall from (4) that

αRS =
RS−β

Γ (1+ γ−1)
, αRA =

RA−β
Γ (1+ γ−1)

. (7)

We need only calculate the probability thatX exceedsY . Below we constantly
use the integral of a probability density is 1 (for example, in moving from the second
to last to the final line). We have

Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x;αRS,β ,γ) f (y;αRA,β ,γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ
αRS

(

x−β
αRS

)γ−1

e−((x−β )/αRS)
γ γ

αRA

(

y−β
αRA

)γ−1

e−((y−β )/αRA)
γ
dy dx

=

∫ ∞

x=0

γ
αRS

(

x
αRS

)γ−1

e−(x/αRS)
γ

[

∫ x

y=0

γ
αRA

(

y
αRA

)γ−1

e−(y/αRA)
γ
dy

]

dx

=
∫ ∞

x=0

γ
αRS

(

x
αRS

)γ−1

e−(x/αRS)
γ
[

1− e−(x/αRA)
γ
]

dx

= 1−
∫ ∞

x=0

γ
αRS

(

x
αRS

)γ−1

e−(x/α)γ
dx, (8)

where we have set
1

αγ =
1

αγ
RS

+
1

αγ
RA

=
αγ

RS+αγ
RA

αγ
RSαγ

RA

. (9)

The above tells us that we are essentially integrating a new Weibull whose parameter
α is given by the above relation; expressions like this are common (see for example
center of mass calculations, or adding resistors in parallel). Therefore

Prob(X > Y ) = 1− αγ

αγ
RS

∫ ∞

0

γ
α

( x
α

)γ−1
e(x/α)γ

dx

= 1− αγ

αγ
RS

= 1− 1

αγ
RS

αγ
RSαγ

RA

αγ
RS+αγ

RA

=
αγ

RS

αγ
RS+αγ

RA

. (10)
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Substituting the relations forαRS andαRA of (4) into (10) yields

Prob(X > Y ) =
(RS−β )γ

(RS−β )γ +(RA−β )γ , (11)

which completes the proof of Theorem 1, the Pythagorean formula. Q.E.D.

5 The Pythagorean Formula: Applications

It is now time to apply our mathematical models and results tothe central economics
issue of this chapter: In each situation, how much is a run worth? We content our-
selves with answering this from the point of view of the season. Thus if we scorex
runs and allowy, and we have a player who increases our run production bys, how
much is that worth? Similarly, how much would they be worth ifthey preventeds
runs from scoring?

We answer this question not in dollars, but in additional games won or lost. Trans-
lating the number of wins per season into dollar amounts is a fascinating and ob-
viously important question, which the interested reader isencouraged to pursue. A
good resource is Nate Silver’s chapter “Is Alex Rodriguez Overpaid” in Baseball
Between the Numbers: Why Everything You Know About the Game Is Wrong [9].
There are also numerous insightful blog posts, such as Phil Birnbaum’s “Sabermet-
ric Research: Saturday, April 24, 2010” (see [1]). In this chapter we concern our-
selves with determining the number of wins gained or lost, which these and other
sources can convert to monetary amounts. As not all wins are worth the same (going
from 65 to 75 wins doesn’t alter the fact that the season was a bust, but going from
85 wins to 95 wins almost surely punches your ticket to the playoffs), it is essential
that we can determine changes from any state.

In Figure 2 we plot the addition wins per season withγ = 1.83 ands=10. We plot
around a league average of 700 runs scored per season, which was essentially the
average in 2012 (see§7). We lets = 10 as the common adage is every 10 additional
runs translates to one more win per season.

Not surprisingly, the more runs we score the more valuable preventing runs is
to scoring runs, and vice-versa; what is nice about the Pythagorean formula is that
it quantifies exactly what this trade-off is. To make it easier to see, in Figure 3 we
plot the difference in wins gained from scoring 10 more runs to wins gained from
preventing 10 more runs. The plot is positive in the upper left region, indicating that
if our runs scored and allowed places us here then it is more valuable to score runs;
in the lower right region the conclusion is the opposite.
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Fig. 2 The predicted number of additional wins withγ = 1.83: (left) scoring 10 more per season;
(right) preventing 10 more per season. LettingP(x,y;γ) = xγ/(xγ + yγ ), the left plot isP(x+
10,y;1.83)−P(x,y;1.83), while the right isP(x,y−10;1.83)−P(x,y;1.83).
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Fig. 3 The difference in the predicted number of additional wins with γ = 1.83 from scoring
10 more per season versus preventing 10 more per season. Letting P(x,y;γ) = xγ/(xγ + yγ ), the
difference isP(x+10,y;γ)−P(x,y−10;γ).

6 The Pythagorean Formula: Verification

We have two goals in this section. First, we want to show our assumption of the runs
scored and allowed being drawn from independent Weibulls isreasonable. Second,
we want to find the optimal value ofγ, and check the conventional wisdom that the
Pythagorean formula is typically accurate to about four games a season.
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There are many methods available for such analyses. Two popular ones are the
Method of Least Squares, and the Method of Maximum Likelihood. As the two give
similar results, we use the Method of Least Squares to attackthe independence and
distributional questions, and the Method of Maximum Likelihood to estimateγ and
the error in the formula.

6.1 Analysis of Independence and Distributional Assumptions

We use the Method of Least Squares to analyze the 30 teams, which are ordered
by the number of overall season wins and by league, from the 2012 season to see
how closely our model fits the observed scoring patterns. We briefly summarize
the procedure. For each team we findαRS,αRA,β andγ that minimize the sum of
squared errors from the runs scored data plus the sum of squared errors from the
runs allowed data; instead of the Method of Least Squares we could also use the
Method of Maximum Likelihood (discussed in the next subsection), which would
return similar values. We always takeβ =−1/2 and letγ vary among teams (though
we could also perform the analysis with the sameγ for all). We partition the runs
data into the bins

[−.5, .5), [.5,1.5], [1.5,2.5], . . . , [8.5,9.5), [9.5,11.5), [11.5,∞). (12)

Let Bin(k) be thekth data bin, RSobs(k) (respectively RAobs(k)) be the observed
number of games with runs scored (allowed) in Bin(k), andA(α,β ,γ,k) be the area
under the Weibull distribution with parameters(α,β ,γ) in Bin(k). Then for each
team we are searching for the values of(αRS,αRA,γ) that minimize

12

∑
k=1

(RSobs(k)−162·A(αRS,−.5,γ,k))2

+
12

∑
k=1

(RAobs(k)−162·A(αRA,−.5,γ,k))2 (13)

(the 162 is because the teams play 162 games in a season; if a team has fewer
games, either due to a cancelled game or because we are analyzing another sport,
this number is trivially adjusted).

For each team we found the best Weibulls with parameters(αRS,−.5,γ) and
(αRA,−.5,γ) and then compared the number of wins, losses, and won-loss percent-
age predicted by our model with the recorded data. The results are summarized in
Table 1.

The mean ofγ over the 30 teams for the 2012 season is 1.70 with a standard
deviation of .11. This is slightly lower than the value in theliterature of 1.82. The
difference between the two methods is that our value ofγ is a consequence of our
model, whereas the 1.82 comes from assuming the Pythagoreanformula is valid and
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Team Obs W Pred W Obs % Pred % Diff Games γ
Washington Nationals 98 97.5 0.605 0.602 0.5 1.76
Cincinnati Reds 97 90.7 0.599 0.560 6.3 1.80
New York Yankees 95 96.0 0.586 0.593 -1.0 1.95
Oakland Athletics 94 89.8 0.580 0.554 4.2 1.54
San Francisco Giants 94 86.1 0.580 0.531 7.9 1.72
Atlanta Braves 94 89.4 0.580 0.552 4.6 1.51
Texas Rangers 93 91.0 0.574 0.562 2.0 1.69
Baltimore Orioles 93 83.1 0.574 0.513 9.9 1.66
Tampa Bay Rays 90 90.9 0.556 0.561 -0.9 1.75
Los Angeles Angels 89 86.4 0.549 0.533 2.6 1.59
Detroit Tigers 88 94.7 0.543 0.585 -6.7 1.89
St. Louis Cardinals 88 91.0 0.543 0.562 -3.0 1.66
Los Angeles Dodgers 86 87.9 0.531 0.542 -1.9 1.65
Chicago White Sox 85 87.1 0.525 0.538 -2.1 1.66
Milwaukee Brewers 83 85.0 0.512 0.525 -2.0 1.75
Philadelphia Phillies 81 76.7 0.500 0.474 4.3 1.72
Arizona Diamondbacks 81 84.8 0.500 0.524 -3.8 1.61
Pittsburgh Pirates 79 80.3 0.488 0.496 -1.3 1.63
San Diego Padres 76 74.7 0.469 0.461 1.3 1.65
Seattle Mariners 75 74.6 0.463 0.461 0.4 1.59
New York Mets 74 75.7 0.457 0.467 -1.7 1.63
Toronto Blue Jays 73 73.7 0.451 0.455 -0.7 1.66
Kansas City Royals 72 74.8 0.444 0.462 -2.8 1.78
Boston Red Sox 69 73.6 0.426 0.455 -4.6 1.72
Miami Marlins 69 76.1 0.426 0.470 -7.1 1.74
Cleveland Indians 68 65.2 0.420 0.402 2.8 1.76
Minnesota Twins 66 65.8 0.407 0.406 0.2 1.91
Colorado Rockies 64 71.0 0.395 0.438 -7.0 1.79
Chicago Cubs 61 70.6 0.377 0.436 -9.6 1.58
Houston Astros 55 61.3 0.340 0.379 -6.3 1.61

Table 1 Results from best fit values from the Method of Least Squares,displaying the observed
and predicted number of wins, winning percentage, and difference in games won and predicted for
the 2012 season.

finding which exponent gives the best fit to the observed winning percentages. We
discuss ways to improve our model in§8.

Comparing the predicted number of wins with the observed number of wins, we
see that the mean difference between these quantities is about -.52 with a standard
deviation of about 4.61. This data is misleading, though, asthe mean difference is
small as these are signed quantities. It is thus better to examine the absolute value
of the difference between observed and predicted wins. Doing so gives an average
value of about 3.65 with a standard deviation around 2.79, consistent with the em-
pirical result that the Pythagorean formula is usually accurate to around four wins a
season.

We next examine each team’sz-score for the difference between the observed
and predicted runs scored and runs allowed. Az-test is appropriate here because
of the large number of games played by each team, a crucial difference between
baseball and football. The critical value corresponding toa 95% confidence level
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is 1.96, while the value for the 99% level is 2.575. Thez-score (for runs scored)
for a given team is defined as follows. Let RSobs denote the observed average runs
scored, RSpred the predicted average runs scored (from the best fit Weibull), σobs the
standard deviation of the observed runs scored, and remember there are 162 games
in a season. Then

zRS =
RSobs−RSpred

σobs/
√

162
. (14)

We see in Table 2 that both the runs scored and runs allowedz-statistics almost
always fall well below 1.96 in absolute value, indicating that the parameters esti-
mated by the Method of Least Squares predict the observed data well. We could
do a Bonferroni adjustment for multiple comparisons as these are not independent
comparisons, which allows us to divide the confidence levelsby 30 (the number of
comparisons); this is a very conservative statistic. Doingso increases the thresholds
to approximately 2.92 and 3.38, to the point that all values are in excellent agree-
ment with theory.

Team Obs RS Pred RSz-stat Obs RA Pred RA z-stat
Washington Nationals 4.51 4.54 -0.13 3.67 3.49 0.87
Cincinnati Reds 4.13 4.13 0.00 3.63 3.55 0.39
New York Yankees 4.96 5.02 -0.24 4.12 4.05 0.33
Oakland Athletics 4.40 4.48 -0.30 3.79 3.82 -0.15
San Francisco Giants 4.43 4.36 0.32 4.01 4.02 -0.05
Atlanta Braves 4.32 4.39 -0.27 3.70 3.76 -0.27
Texas Rangers 4.99 4.86 0.48 4.36 4.13 0.88
Baltimore Orioles 4.40 4.41 -0.09 4.35 4.26 0.35
Tampa Bay Rays 4.30 4.18 0.52 3.56 3.57 -0.04
Los Angeles Angels 4.73 4.84 -0.42 4.31 4.41 -0.38
Detroit Tigers 4.48 4.49 -0.03 4.14 3.66 2.03
St. Louis Cardinals 4.72 4.73 -0.05 4.00 4.01 -0.02
Los Angeles Dodgers 3.93 4.07 -0.67 3.69 3.63 0.29
Chicago White Sox 4.62 4.60 0.09 4.17 4.15 0.09
Milwaukee Brewers 4.79 4.89 -0.41 4.52 4.59 -0.30
Philadelphia Phillies 4.22 4.08 0.61 4.20 4.37 -0.82
Arizona Diamondbacks 4.53 4.59 -0.24 4.25 4.30 -0.26
Pittsburgh Pirates 4.02 4.12 -0.45 4.16 4.17 -0.04
San Diego Padres 4.02 4.09 -0.35 4.38 4.55 -0.76
Seattle Mariners 3.82 3.68 0.60 4.02 4.11 -0.44
New York Mets 4.01 4.06 -0.24 4.38 4.44 -0.26
Toronto Blue Jays 4.42 4.37 0.19 4.84 4.93 -0.35
Kansas City Royals 4.17 4.21 -0.17 4.60 4.63 -0.09
Boston Red Sox 4.53 4.33 0.79 4.98 4.87 0.40
Miami Marlins 3.76 3.96 -0.96 4.47 4.29 0.80
Cleveland Indians 4.12 4.06 0.22 5.22 5.21 0.00
Minnesota Twins 4.33 4.14 0.71 5.14 5.16 -0.12
Colorado Rockies 4.68 4.75 -0.29 5.49 5.53 -0.16
Chicago Cubs 3.78 3.89 -0.50 4.69 4.67 0.05
Houston Astros 3.60 3.57 0.13 4.90 5.04 -0.57

Table 2 Method of Least Squares:z-tests for best fit runs scored and allowed.
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To further demonstrate the quality of the fit, in Figure 4 we compare the best fit
Weibulls with the Pittsburgh Pirates (who were essentiallya .500 team and thus in
the middle of the pack). The fit is excellent .
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Fig. 4 Comparison of the best fit Weibulls for runs scored (left) andallowed (right) for the 2012
Pittsburgh Pirates against the observed distribution of scores.

We now come to the most important part of the analysis, testing the assumptions
that the runs scored and allowed are given by independent Weibulls. We do this in
two stages. We first see how well the Weibulls do fitting the data, and whether or not
the runs scored and allowed are statistically independent (other than the restriction
that they are not equal). We describe the analysis first, and then present the results in
Table 3. As the independence test is complicated by the presence of structural zeros
(unattainable values), we provide a detailed description here for the benefit of the
reader.

The first column in Table 3 is aχ2 goodness of fit test to determine how closely
the observed data follows a Weibull distribution with the estimated parameters, us-
ing the same bins as before. Our test statistic is

12

∑
k=1

(RSobs(k)−162·A(αRS,−.5,γ,k))2

162·A(αRS,−.5,γ,k)

+
12

∑
k=1

(RAobs(k)−162·A(αRA,−.5,γ,k))2

162·A(αRA,−.5,γ,k)
. (15)

This test has 20 degrees of freedom, which corresponds to critical values of 31.41
(95% level) and 37.57 (99% level). Of course, as we have multiple comparisons we
should again perform a Bonferroni adjustment. We divide thesignificance levels by
30, the number of comparisons, and thus the values increase to 43.67 and 48.75. Al-
most all the teams are now in range, with the only major outliers being the Yankees
and the Rays, the two playoff teams from the American League East.

We now turn to the final key assumption, the independence of runs scored and
runs allowed, by doing aχ2 test for independence. This test involves creating a
contingency table with the requirement that each row and column has at least one
non-zero entry. As the Miami Marlins had no games with 10 runsscored, we had to



16 Steven J Miller, Taylor Corcoran, Jennifer Gossels, Victor Luo and Jaclyn Porfilio

slightly modify our choice of bins to

[0,1), [1,2), . . . , [9,11), [11,∞); (16)

as we are using the observed run data from games, we can have our bins with left
endpoints at the integers.

We have an 11× 11 contingency table. As runs scored cannot equal runs al-
lowed in a game (games cannot end in a tie), we are forced to have zeroes along
the diagonal. The constraint on the values of runs scored andruns allowed leads to
an incomplete two-dimensional contingency table with(11−1)2−11= 89 degrees
of freedom. We briefly review the theory of such tests with structural zeros in Ap-
pendix 9.2. The critical values for aχ2 test with 89 degrees of freedom are 113.15
(95% level) and 124.12 (99% level). Table 3 shows that all chi-square values for the
teams in the 2012 season fall below the 99% level, indicatingthat runs scored and
runs allowed are behaving as if they are statistically independent. The fits are even
better if we use the Bonferroni adjustments, which are 133.26 and 141.56.

6.2 Analysis of γ and Games Off

Given a dataset and a statistical model, the method of maximum likelihood is a
technique that computes the parameters of the model that make the observed data
most probable. Maximum likelihood estimators have the desirable property of be-
ing asymptotically minimum variance unbiased estimators.Based on the statistical
model in question, one constructs the likelihood function.For our model, if we have
B bins then the likelihood function is given by

L(αRS,αRA,−.5,γ) =

(

162
RSobs(1), . . . ,RSobs(B)

) B

∏
k=1

A(αRS,−.5,γ,k)RSobs(k)

·
(

162
RAobs(1), . . . ,RAobs(B)

) B

∏
k=1

A(αRA,−.5,γ,k)RAobs(k). (17)

The maximum likelihood estimators are found by determiningthe values of the
parametersαRS, αRA andγ that maximize the likelihood function. In practice one
typically maximizes the logarithm of the likelihood because it is both equivalent to
and computationally easier than maximizing the likelihoodfunction directly.

Using our model, we calculated the maximum likelihood estimators for each
team. Figure 5 displays the average values of the parameterγ for each season from
2007 to 2012, with error bars indicating the standard deviation. Note that the stan-
dard deviation of theγ values for each season are similar to each other, with 2010
having the largest deviation. The mean value ofγ is about 1.69 with a standard
deviation of .03.

Using the maximum likelihood estimators, we then calculated the predicted num-
ber of games won for each team and compared this to the observed numbers. The
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Team RS+RAχ2: 20 d.f. Independenceχ2: 109 d.f
Washington Nationals 53.80 101.07
Cincinnati Reds 33.69 107.11
New York Yankees 64.02 82.82
Oakland Athletics 22.34 87.85
San Francisco Giants 14.37 89.57
Atlanta Braves 32.34 101.07
Texas Rangers 26.49 93.46
Baltimore Orioles 11.90 98.29
Tampa Bay Rays 66.35 120.25
Los Angeles Angels 28.10 105.73
Detroit Tigers 38.76 98.96
St. Louis Cardinals 36.32 117.21
Los Angeles Dodgers 31.70 123.33
Chicago White Sox 20.61 121.33
Milwaukee Brewers 49.51 98.02
Philadelphia Phillies 19.19 93.78
Arizona Diamondbacks 23.91 78.44
Pittsburgh Pirates 13.46 103.85
San Diego Padres 17.62 92.87
Seattle Mariners 9.79 113.13
New York Mets 42.88 95.66
Toronto Blue Jays 13.09 86.81
Kansas City Royals 22.51 102.39
Boston Red Sox 22.43 99.18
Miami Marlins 43.64 121.32
Cleveland Indians 26.62 83.28
Minnesota Twins 50.40 115.04
Colorado Rockies 24.30 85.79
Chicago Cubs 40.06 90.72
Houston Astros 41.16 80.48

Table 3 Results from best fit values from the Method of Least Squares for 2012, displaying the
quality of the fit of the Weibulls to the observed scoring data, and testing the independence of runs
scored and allowed.

average absolute value of this difference is shown for each year in Figure 6, with
error bars indicating the standard deviation. The mean of the absolute value of the
games off by is approximately 3.81, with a standard deviation of about .94; these
numbers are in-line with the conventional wisdom that the Pythagorean formula is
typically accurate to about 4 games per season.

7 The Pythagorean Formula: Linearization

The Pythagorean formula is not the only predictor used, though it is one of the earli-
est and most famous. A popular alternative is a linear statistic. For example, Michael
Jones and Linda Tappin [7] state that a good estimate for a team’s winning percent-
age is.500+B(RS−RA), where RS and RA are runs scored and allowed, and B is
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Fig. 5 Average value ofγ from the Method of Maximum Likelihood.
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Fig. 6 Average absolute value of the difference between the observed and predicted number of
wins from the Method of Maximum Likelihood.

a small positive constant whose average in their studies wasaround 0.00065.Note
here there is a difference if we use total runs or average runs per game, as we no
longer have a ratio. We can of course use average runs per game, but that would
require rescaling B; thus, for the rest of this section, we work in total runs.

While their formula is simpler to use, computers are handling all the calcula-
tions anyway and thus the savings over the Pythagorean formula is not significant.
Further, by applying a Taylor series expansion to the Pythagorean formula we ob-
tain not only this linear predictor, but also find an interpretation of B in terms ofγ
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and the average runs scored by teams. We give a simple proof using multivariable
calculus; see Appendix 9.3 for an alternative proof that only requires one variable
calculus. The multivariable argument was first given in [3] by Steven J. Miller and
Kevin Dayaratna; the one-dimensional argument is from an unpublished appendix.

Given a multivariable functionf (x,y), if (x,y) is close to(a,b) then f (x,y) is
approximately the first order Taylor series about the point(a,b):

f (a,b)+
∂ f
∂x

(a,b)(x− a)+
∂ f
∂y

(a,b)(y− b). (18)

We take

f (x,y) =
xγ

xγ + yγ , (a,b) = (Rtotal,Rtotal), (19)

where Rtotal is the average of the total runs scored in the league. After some algebra
we find

∂ f
∂x

(x,y) =
γxγ−1yγ

(xγ + yγ)2 ,
∂ f
∂x

(Rtotal,Rtotal) =
γ

4Rtotal
, (20)

which is also− ∂ f
∂y (Rtotal,Rtotal). Taking (x,y) = (RS,RA), the first order Taylor

series expansion becomes

f (Rtotal,Rtotal)+
γ

4Rtotal
(RS−Rtotal)−

γ
4Rtotal

(RA−Rtotal)

= .500+
γ

4Rtotal
(RS−RA). (21)

Thus, not only do we obtain a linear estimator, but we have a theoretical pre-
diction for the all-important slope B, namely that B= γ/(4Rtotal). See the paper
by Dayaratna and Miller [3] for a detailed analysis of how well this ratio fits B.
We content ourselves here with remarking that in 2012 the twoleagues combined
to score 21,017 runs (seehttp://www.baseball-almanac.com/hitting/hiruns4.shtml),
for an average of 4.32449 runs per game per team, or an averageof 700.567
runs per team. Using 1.83 forγ and 700.567 for Rtotal, we predict B should
be about 0.000653, agreeing beautifully with Jones and Tappin’s findings (see
http://www.sciencedaily.com/releases/2004/03/040330090259.htm).

8 The Future of the Pythagorean Formula

In the last section we saw how to use calculus to linearize thePythagorean formula
and obtain simpler estimators. Of course, linearizing the Pythagorean formula is not
the only extension (and, as we are throwing away information, it is clearly not the
optimal choice). In current research, the author and his students are exploring more
accurate models for teams. There are two disadvantages to this approach. The first
is that the resulting formula will almost surely be more complicated than the current
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one, and the second is that more information will be requiredthan the aggregate
scoring.

These restrictions, however, are not severe. As computers are doing all the calcu-
lations anyway, it is preferable to have a more accurate formula at the cost of addi-
tional computations that will never be noticed. The second item is more severe. The
formulas under development will not be computable from the information available
on common standings pages, but instead will requireinning by inning data. Thus
these statistics will not be computable by the layperson reading the sports page;
however, this is true about most advanced statistics. For example, it is impossible to
calculate the win probability added for a player without going through each moment
of a game.

We therefore see that these additional requirements are perfectly fine for appli-
cations. Teams are concerned with making optimal decisions, and the new data re-
quired is readily available to them (and in many cases to the average fan who can
write a script program to cull it from publicly available websites). The current ex-
panded version of the Pythagorean formula will include the following three ingre-
dients, all of which are easily done with readily available data.

1. Write the distribution for runs scored and allowed as a linear combinations of
Weibulls.

2. Adjust the value of a run scored and allowed based on the ballpark.
3. Discount runs scored and allowed from a team’s statisticsbased on the game

state.

The reason runs scored and allowed are modeled by Weibulls isthat these lead
to tractable, closed form integration. We can still performthe integration if instead
each distribution is replaced with a linear combination of Weibulls; this is similar
in spirit to the multitude of weights that occur in numerous other statistics, and
will lead to a weighted sum of Pythagorean expressions for the winning percentage.
An additional topic to be explored is allowing for dependencies between runs scored
and allowed, but this is significantly harder and almost surely will lead to non-closed
form solutions. It is highly desirable to have a closed form solution, as then we can
estimate the value of a player by substituting their contributions into the formula
and avoid the need for intense simulations.

The second change is trivial and easily done; certain ballparks favor pitchers
while others favor hitters. The difficulty in scoring a run atFenway Park is not the
same as scoring one in Yankee Stadium, and thus ballpark effects should be used to
adjust the values of the runs.

Finally, anyone who has turned on the TV during election night knows that cer-
tain states are called quickly after polls closed; the preliminary poll data is enough
to predict with incredible accuracy what will happen. If a team has a large lead late
in the game, they often rest their starters or use weaker pitchers, and thus the runs
scored and allowed data here is not as indicative of a team’s ability as earlier in the
game. For example, in 2005 Mike Remlinger was traded to the Red Sox. In his first
two games he allowed 5 runs to score (2 earned) while recording no outs; his ERA
for the season to date was 5.45 and his win probability added was slightly negative.
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On August 16 the Sox and the Tigers were tied after 9 due to an Ortiz home-run in
the ninth.1 Ortiz had a three run shot the following inning, part of a 7 runoffensive
at the start of the tenth. With a seven run lead, this should not have been a critical
situation, and Remlinger entered the game to pitch the bottom of the tenth. After re-
tiring the first two batters, two walks and an infield single later it was bases loaded.
Monroe then homered to make it 10-7, but Remlinger rallied and retired Inge. There
were two reasons Papelbon was not brought in for the tenth. The first is that back
then Papelbon was a starter (and in fact started that game!).More importantly, how-
ever, with a 7 run lead and just one inning to play, the leverage of the situation was
low. Thus it is inappropriate to treat all runs equally. Thismistake occurs in other
sports; for example, when the Pythagorean formula is applied in football practition-
ers frequently do not adjust for the fact that at the end of theseason certain teams
have already locked up their playoff seed and are resting starters.

The hope is that incorporating these and other modificationswill result in a more
accurate Pythagorean formula. Though it will not be as easy to use, it will still be
computable with known data and not require any simulations,and almost surely
provide a better evaluation of a player’s worth to their team.
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9 Appendix

9.1 Calculating the Mean of a Weibull

Letting µα ,β ,γ denote the mean off (x;α,β ,γ), we have

µα ,β ,γ =

∫ ∞

β
x · γ

α

(

x−β
α

)γ−1

e−((x−β )/α)γ
dx

=

∫ ∞

β
α

x−β
α

· γ
α

(

x−β
α

)γ−1

e−((x−β )/α)γ
dx + β . (22)

1 The data below is fromhttp://www.baseball-reference.com/players/gl.cgi?id=remlimi01&t=p&year=2005
andhttp://scores.espn.go.com/mlb/boxscore?gameId=250816106.
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We change variables by settingu =
(

x−β
α

)γ
. Then du = γ

α

(

x−β
α

)γ−1
dx and we

have

µα ,β ,γ =
∫ ∞

0
αuγ−1 · e−udu + β

= α
∫ ∞

0
e−uu1+γ−1 du

u
+ β

= αΓ (1+ γ−1) + β . (23)

9.2 Independence test with structural zeros

We describe the iterative procedure needed to handle the structural zeros. A good
reference is Bishop and Fienberg [2].

Let Bin(k) be thekth bin used in the chi-squared test for independence. For each
team’s incomplete contingency table, letOr,c be the observed number of games
where the number of runs scored is in Bin(r) and runs allowed is in Bin(c). As
games cannot end in a tie, we haveOr,r = 0 for all r.

We construct the expected contingency table with entriesEr,c using an iterative
process to find the maximum likelihood estimators for each entry. For 1≤ r,c ≤ 12,
let

E(0)
r,c =

{

1 if r 6= c
0 if r = c,

(24)

and let
Xr,+ = ∑

c
Or,c, Xc,+ = ∑

r
Or,c. (25)

We then have that

E(ℓ)
r,c =

{

E(ℓ−1)
r,c Xr,+/∑c E(ℓ−1)

r,c if ℓ is odd

E(ℓ−1)
r,c Xc,+/∑r E(ℓ−1)

r,c if ℓ is even.
(26)

The values ofEr,c can be found by taking the limit asℓ→ ∞ of E(ℓ)
r,c , and typically

the convergence is rapid. The statistic

∑
r,c

r 6=c

(Er,c −Or,c)
2

Er,c
(27)

follows a chi-square distribution with(11−1)2−11= 89 degrees of freedom.
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9.3 Linearizing Pythagoras

Unlike the argument in§7, we do not assume knowledge of multivariable calcu-
lus and derive the linearization using just single variablemethods. The calculations
below are of interest in their own right, as they highlight good approximation tech-
niques.

We assume there is some exponentγ such that the winning percentage, WP, is

WP =
RSγ

RSγ +RAγ , (28)

with RS and RA the total runs scored and allowed. We multiply the right hand side
by (1/RSγ)/(1/RSγ) and write RAγ as RSγ − (RSγ −RAγ ), and find

WP =
1

1+ RAγ

RSγ
=

(

1+
RAγ

RSγ

)−1

=

(

1+
RSγ − (RSγ −RAγ)

RSγ

)−1

=

(

1+1− RSγ −RAγ

RSγ

)−1

=

(

2 ·
(

1− RSγ −RAγ

2RSγ

))−1

=
1
2

(

1− RSγ −RAγ

2RSγ

)−1

; (29)

notice we manipulated the algebra to pull out a 1/2, which indicates an average
team; thus the remaining factor is the fluctuations about average.

We now use the geometric series formula, which says that if|r|< 1 then

1
1+ r

= 1+ r+ r2+ r3+ · · · . (30)

We letr = (RSγ −RAγ )/2RSγ ; since runs scored and runs allowed should be close
to each other, the difference of theirγ powers divided by twice the number of runs
scored should be small. Thusr in our geometric expansion should be close to zero,
and we find

WP =
1
2

(

1+
RSγ −RAγ

2RSγ +

(

RSγ −RAγ

2RSγ

)2

+

(

RSγ −RAγ

2RSγ

)3

+ · · ·
)

≈ .500+
RSγ −RAγ

4RSγ . (31)

We now make some approximations. We expect RSγ −RAγ to be small, and thus
RSγ−RAγ

2RS should be small. This means we only need to keep the constant and linear
terms in the expansion. Note that if we only kept the constantterm, there would be
no dependence on points scored or allowed!
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We need to do a little more analysis to obtain a formula that islinear in RS−RA.
Let Rtotal denote the average number of runs scored per team in the league. We can
write RS= Rave+ xs and RA= Rave+ xa, where it is reasonable to assumexs and
xa are small relative to Rtotal. The Mean Value Theorem from Calculus says that if
f (x) = (Rtotal+ x)γ , then

f (xs)− f (xa) = f ′(xc)(xs − xa), (32)

wherexc is some intermediate point betweenxs andxa. As f ′(x) = γ(Rtotal+ x)γ−1,
we find

RSγ −RAγ = f (xs)− f (xa) = f ′(xc)(xs − xa) = γ(Rtotal+ xc)
γ−1(RS−RA),

(33)

asxs − xa = RS−RA. Substituting this into (31) gives

WP ≈ .500+
γ(Rtotal+ xc)

γ−1(RS−RA)
4RSγ = .500+

γ(Rtotal+ xc)
γ−1

4RSγ (RS−RA).

(34)

We make one final approximation. We replace the factors of Rtotal+ xc in the
numerator and RSγ in the denominator with Rγtotal, the league average, and reach

WP ≈ .500+
γ

4Rtotal
(RS−RA). (35)

Thus the simple linear approximation model reproduces the result from multivari-
able Taylor series, namely that the interesting coefficientB should be approximately
γ/(4Rtotal).
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