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The Pythagorean formula is one of the most popular ways teuredhe true abil-
ity of a team. It is very easy to use, estimating a team’s wigrpercentage from
the runs they score and allow. This data is readily availablestandings pages;
no computationally intensive simulations are needed. Ndlynaccurate to within
a few games per season, it allows teams to determine how mughia worth in
different situations. This determination helps solve safithe most important eco-
nomic decisions a team faces: How much is a player worth,lwpligyers should be
pursued, and how much should they be offered. We discusothaifa and these
applications in detail, and provide a theoretical justifma, both for the formula as
well as simpler linear estimators of a team’s winning petage. The calculations
and modeling are discussed in detail, and when possiblepteufiroofs are given.
We analyze the 2012 season in detail, and see that the ddtemf@nd other recent
years support our modeling conjectures. We conclude witis@udsion of work in
progress to generalize the formula and increase its piregjbwerwithout needing
expensive simulations, though at the cost of requiring+bigyplay data.
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1 Introduction

In the classic movi®ther People’'s Money, New England Wire and Cable is a firm
whose parts are worth more than the whole. Danny Devito'sather, Larry the
Liguidator, recognizes this and tries to take over the camgpaith the intent on
breaking it up and selling it piecemeal. Gregory Peck playgy] the owner of the
firm, who gives an impassioned defense to the stockholderpaixy battle about
traditional values and the golden days ahead. In the clintatnclusion, Larry the
Liguidator responds to Jorgy’s speech which painted himaatless predator who
builds nothing and cares for no one but himself. Larry says

Who cares? I'll tell you. Me. I'm not your best friend. I'm yoonly friend. | don’t make

anything? I'm making you money. And lest we forget, that’s tinly reason any of you
became stockholders in the first place. You want to make movmy don't care if they

manufacture wire and cable, fried chicken, or grow tangsfiryou want to make money!
I’'m the only friend you've got. I'm making you money.

While his speech is significantly longer than this snipget dcene in general and
the lines above in particular highlight one of the most intaot problems in base-
ball, one which is easily forgotten. In the twenty-first aggtmassive computation
is possible. Data is available in greater quantities thar before; it can be ana-
lyzed, manipulated, and analyzed again thousands of tirmesand. We can search
for small connections between unlikely events. This is eigplg true in baseball,
as there has been an explosion of statistics that are stadéduoted, both among
the experts and practitioners as well as the everyday famtraditional metrics are
falling out of favor, being replaced by a veritable alphamip of acronyms. There
are so many statistics now, and so many possibilities toyaaathat good metrics
are drowned out in poor ones. We need to determine which oagsmmost.

In this chapter we assume a team’s goal is to win as many gaspessible
given a specified amount of money to spend on players aneédeil@ims. This is a
reasonable assumption from the point of view of general mearsa though it may
not be the owner’s goal (which could range from winning atalts to creating the
most profitable team). In this case, Devito’s character leag valuable advice: The
goal is to win games. We don't care if it's by winning shoot®02-10 in thirteen
innings, or by eking out a win in a 1-0 pitcher’s duel. We wamnivin games.

In this light, we see that sabermetrics is a dear friend. Bhiére are many items
we could study, we focus on the value of a run (both a run cdesatel a run saved).
We have a two-stage process. We need to determine how muicleeaat is worth
in terms of creating a run, and then we need to extract how rauchn is worth.
Obviously these are not constant values; a run is worth faermoa 2-1 game than
in a 10-1 match. We focus below entirely on the value of a rua this completely
ignore the first item above, namely how much each event darés to scoring.

Our metric for determining the worth of a run is Bill Jamestggorean Won-
Loss formula: If a team scores RS runs while allowing RA, tteir winning per-
centageis approximateﬁg?fﬂy. Hereyis an exponentwhose value can vary from
sport to sport (as well as from era to era within that spoginds initially tooky
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to be 2, which is the source of the name as the formula is regent of the sum
of squares from the Pythagorean theoré&luote that instead of using the total runs
scored and allowed we could use the average number per game, as such a change
rescal es the numerator and the denominator by the same amount.

In this chapter we discuss previous work providing a thécakjustification for
this formula, talk about future generalizations, and descits implications in one
of the most important economics problems confronted by @bmsteam: How
much is a given player worth? While much of this chapter hg®aped in journals,
we hope that by combining everything in one place and doiegcticulations in
full detail and in as elementary a way as possible that weindllease the visibil-
ity of this method, and provide support for the role of math&oal modeling in
sabermetrics.

Before delving into the derivation, it's worth remarkingwhy such a derivation
is important, and what it can teach us.An Enquiry Concerning Human Under-
standing (1772), David Hume wrote:

The contrary of every matter of fact is still possible, besgit can never imply a contra-
diction, and is conceived by the mind with the same facilitg aistinctness, as if ever so
conformable to reality. That the sun will not rise tomorraanb less intelligible a proposi-
tion, and implies no more contradiction, than the affirmmatithat it will rise. We should in
vain, therefore, attempt to demonstrate its falsehoode\iYelemonstratively false, it would
imply a contradiction, and could never be distinctly comediby the mind.

Hume’s warning complements our earlier quote, and can besuined by say-
ing that just because the sun rose yesterday we cannot centat it will rise
today. Sabermetricians frequently find quantities thateappo be well correlated
with desirable outcomes; however, there is a real dangerttleacorrelation will
not persist in the future as past performance is no guaranfeéure performance.
(This lesson has been painfully learned by many chartisialhStreet.) Thus we
must be careful in making decisions based on regressionstaedcalculations. If
we find a relationship, we want somgason to believe it will continue to hold.

We are therefore led to creating mathematical models wakarable assump-
tions; thus the point of this chapter is to develop predéectivathematical models to
complement inferential techniques. The advantage of fhpsaach is that we now
have a reason to believe the observed pattern will contiasieye can now point
to an explanation, a reason. We will find such a model for balkelhich has the
Pythagorean formula, initially a numerical observationJaynes that seemed to do
a good job year after year, as a consequence.

The Pythagorean formula has a rich history; almost any sadteics book refer-
ences it at some point. It is necessary to limit our discussiojust some of its
aspects. As the economic consequences to a team from bedtlictive power
are clear, we concentrate on the mathematical issues. Kplesirging how math-
ematical models can lead to closed-form expressions, wtachsolve real world
problems, is our main goal. We begin §2 with some general comments on the
statistic. We describe a reasonable mathematical modékiméxt section, show
the Pythagorean formula is a consequence, and then givereematical proof in
84. In §5 we examine some consequences, in particular how much aeated or
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saved is worth at different production levels, andthwe analyze data from sev-
eral seasons to see how well our model and the formula do.\Wegkamine linear
predictors for a team’s winning percentage, and show how tbkow from lin-
earizing the Pythagorean formula. We end by discussingntjrongoing research
into generalizing the Pythagorean formula.

2 General Comments

Before discussing why the Pythagorean formula should leg it'st worth comment-
ing on the form it has, both in its present state and its dedck n Bill James1981
Baseball Abstract [6]. Remember it says that a team’s winning percentage shml
Ry, With v initially taken as 2 but now typically taken to be around 1.88e
is struck by how easy the formula is to state and to use, espeti the original
incarnation. All we need is to know the average number of amased and allowed,
and the ratio can be found on a simple calculator.

Of course, back in the "80s this wouldn't be entirely truesomeone watching at
home ify were not 2, though the additional algebra is slight and nehenoticeable
on modern calculators, computers and even phones. One gféhévalues of this
statistic is just how easy it is to calculate, which is onehaf teasons for its popu-
larity. You can easily approximate how much better you walddf you scored 10
more runs, or allowed 10 fewer, which we do later in Figure 2.6&h do this as we
have asimple, closed form expression for our winning percentage in terms of just
three parameters: average runs scored, average runsa/lamegan exponemt

This is very different than the multitude of Monte Carlo siations which try
to predict a team'’s record. These require detailed stistn batters and pitchers
and their interactions. Depending on how good and involtedalgorithm is, we
may need everything from how many pitches a batter sees p&aggnce to the
likelihood of a runner advancing from first to third on a smgjit to right field.
While this data is available, it takes time to simulate tlemds of games. Further,
every small change in a team requires an entirely new batsimaflations. With
the Pythagorean formula, we can immediately determinertipact of a playeif
we have a good measure of how many runs they will contribusaee.

Of course, as with most things in life there are trade-offhiléd/the closed-form
nature of the Pythagorean formula allows us to readily mesthe impact of play-
ers, it indicates a major defect that should be addressest:ddl is a complicated
game,; it is unlikely that all the subtleties and issues cadistdled into one simple
formula involving just three inputs. Admittedly, it is a neajchallenge to derive a
good formula to predict how many runs a player will give a teand we are ignor-
ing this issue in this chapter; however, it is improbabléd #ray formula as simple
as this can capture everything that matters. There are évesa extensions of the
Pythagorean formula; we discuss some of these in Seciiband8, as well as
outline a program currently being pursued to improve itsljotéve power.
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3 Pythagorean Formula: Model

There are many ways to model a baseball game. The more soptasgtthe model,
the more features can be captured, though added power céraeat. The cost
varies from increased run-time to requiring massively nuata. We give a very
simple model for a baseball game, and show the Pythagoreanlais a conse-
quence. Of course, the simplicity of our model strongly sig that it cannot be
the full story. We return to that issue §8, and content ourselves here with the sim-
ple case. The hope is that this simplified model of basebakigrtheless powerful
enough to capture the main features and yield a reasonabty/redictive statistic.
See the paper of Hammond, Johnson and Miller [4] for otheragghes to model-
ing baseball games and winning percentages. Specifidadly,lbok at James’ log5
method, which also appeared in his 1981 abstract [6]. Therstimates the prob-
ability a team with winning percentagebeats a team with winning percentdge
by %. Interestingly, the Pythagorean formula with exponenti®s by
takinga= RS/(RS+RA) anda= RA/(RS+ RA), with RS the average number of
runs scored and RA the average number of runs allowed.

The following model and derivation first appeared in work hg first author
in [8], who introduced using a Weibull distribution to modeh production. The
Weibull distribution is extensively used in statisticsisarg in many problems in
survival analysis (see [11] for a good description of the Miils properties and
applications). The reason a Weibull distribution is ablentoadel well so many dif-
ferent data sets is that it is a three parameter distributigth probability density
function

fxa,B.y) = L ((x—p)/a)y-tecpiar (1)
if x> B and 0 otherwise. Here, 8 andy are the three parameters of the distribu-
tion. The effect off is to shift the entire distribution along the real line; agsaly
it determines the starting point. In our investigatighsvill always be—1/2, for
reasons that will become clear. Nextiswhich adjusts the scale of the distribution
but not the shape; as increases the distribution becomes more spread out.

The reason that andf do not alter the shape of the distribution is that, for any
distribution with finite mean and variance, we can alwaysagsit to have mean
zero and variance 1 (or, more generally, any mean and angvaogariance). Thus
all a and do are adjust these two quantities. Ityighat is the most important,
as different values of lead to very different shapes. We illustrate this in Figure
1. For definiteness, we may rescale and assamel andf = 0; we see how the
distribution changes gsranges from 1 to 2.

We are now ready to state our model. After listing our assionptwe discuss
why these choices were made, and their reasonableRessmber, as remarked
earlier, that in the Pythagorean formula it makes no difference if we use the total
runs or the average per game, as rescaling changes the numerator and the denomi-
nator by the same multiplicative factor, and hence has no effect.
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Weibull density ag varies,a = 1 andg =0
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Fig. 1 The changing probabilities of a family of Weibulls with = 1, 3 =0, andy €
{1,1.25,1.5,1.75,2}; y= 1 corresponds to the exponential distribution, and inéngasresults in
the bump moving rightward.

Assumptions for modeling a baseball gameThe average number of runs
a team scores per game, denoted RS, and the average numiners cdl+
lowed per game, denoted RA, are random variables drawn @matmtly from
Weibull distributions with3 = —1/2 and the samg.

These assumptions clearly require discussion, as theyotaerright. The first
issue is that we are modeling runs scored and allowed byrogmis random vari-
ables and not discrete random variables. While earlier vottke field used dis-
crete random variables (especially geometric or Poisgba)difficulty with these
approachesis that it is hard to obtain tractable, closed éxpressions for the prob-
ability a team scores more runs than it allows and hence wigenze. The reason
is that calculus is unavailable in this case. Another wayubitds that while many
people have continued in mathematics to Calculus Il or B/one goes similarly
far in classes on summation. In general, we do not have gaatlias for sums, but
through calculus we do have nice expressions for integféhéle the model allows
for the Red Sox to beat the Yankegdo e, we must accept this if we want to be
able to use calculus.

The next assumption is that these random variables are dravwn\eibull dis-
tributions. There are two reasons for this. One is that thiMliedistributions, due
to their shape parametgy are an extremely flexible family and are capable of fit-
ting many one-hump distributions (i.e., distributionsttga up and then go down).
The second, and far more important, is that calculationis thi Weibull are excep-
tionally tractable and lead to closed form expressionss Should be compared to
similar and earlier work of Hein Hundel [5], which the authearned of from the
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Wikipedia entryPythagorean expectation [10]. In particular, the meap, g , and

the variancmgﬁ‘y of the Weibull are readily computed:

Hapy = al (1+y H)+p
ogm = ol (1+2y ) —a? (1+ y’l)z. 2)

Herer (s) is the Gamma function, defined for the real pars pbsitive by
r(s) = / e Yustdu. (3)
0

The Gamma function is the continuous generalization of #utofial function, as
for n a non-negative integer we havén+ 1) = nl.

The reason Weibulls lead to such tractable calculationsasit X is a random
variable drawn from a Weibull with parametearsf andy, thenX/¥ is exponen-
tially distributed with parametem?. Therefore a simple change of variables leads
to simple integrals of exponentials, which can be done isadioform. Due to the
importance of this calculation, we give full details for tbemputation of the mean
in Appendix 9.1 (a similar calculation determines the vaci). The point is that
when there are several alternatives to use, certain chaigemore tractable and
should be incorporated. We discuss how to handle more detisti@butions while
preserving the all-important closed form nature of the soiuin 8.

The nextissue is our assumption tffat —1/2. This choice is to facilitate com-
parisons to the discrete scoring in baseball. Using the alsalculations for the
mean, if 8 andy are fixed we can determine so that the mean of our Weibull
matches the observed average runs scored (or allowed) pe. §le can use the
Method of Least Squares or the Method of Maximum Likelihoodind the best
fit parametersy, 3,y to the observed data. In doing so, we need to deal with the
fact that our data is discrete. By takiflg= —1/2, we are breaking the data into
bins[—3,3), [3,13), [11,23) and so on. Notice that theenters of these bins are,
respectively, 0, 1, 2,... This is no accident, and in fact is the reason we clfbas
we did. By takingB = —1/2 the possible integer scores are in thieldle of each
bin. If we took3 = 0, as might seem more natural, then these values would heat t
endpoints of the bins, which would cause issues in detengithie best fit values.

The final issue is that we are assuming runs scored and romgeallare indepen-
dent. This of course cannot be true, for the very simple re#isat baseball games
cannot end in a tie! Thus if we know the Orioles scored 5 rumsres the Red Sox,
then we know the Sox ended the game with some number othebthEmere are
a plethora of other obvious issues with this assumptiorgirgnfrom if you have a
large lead late in the game you might rest your better plagedstake a chance on
a weaker pitcher, to bringing in your closer to protect treglan a tight game. That
said, an analysis of the data shows that on average thess isancel each other
out, and that subject to being different the runs scored hoed behave as if they
are statistically independent. The interesting featume lie that we cannot use a
standard x c contingency table analysis as these two values cannot tze. ddus
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leads to an iterative procedure taking into account tisarsetural zeros (values of
the table that are inaccessible), which is described in Agpe9.2.

We end this section by describing the calculation that giglte Pythagorean
formula, and remarking on why we have chosen to model the witins Weibull
distributions. LetX be a random variable drawn from a Weibull with parameters

Ors,B = —1/2 andy, representing the number of runs a team scores on aver-
age. Similarly, lety be a random variable drawn from a Weibull with parameters
Ora, 3 = —1/2 andy, representing the number of runs a team allows on average.

Notice we have the samefor X andY, and we choosers and ara so that the
mean ofX is the observed average number of runs scored per game, R&hean
mean ofY is the observed average number of runs allowed per game, R&s T

RS- RA-B

m ) ORA = =77 (4)

a = .
" Fa+y

To determine our team’s winning percentage we just needltolede the probabil-
ity that X exceed¥':

Probx >Y) = [* [ f(cars By 1w Bty (9

For general probability densitiesthe above double integral is intractable (as
can be seen in Hundel's work, where he used the log-normizilaison). As we'll
see in the next section, the Weibull distribution leads tiy wémple integrals which
can be evaluated in closed form. This is not am accidentaljifous coincidence.
When first investigating this problem, Miller began by chiogsf’s that led to nice
double integrals which could be computed in closed formsttihe choice of the
Weibull came not from looking at the data but from lookinglat tntegration! The
first f Miller chose was an exponential distribution, which turnsto be a Weibull
with y = 1. Next, Miller chose a Rayleigh distribution, which is a \a@i with
y = 2. (As a number theorist working in random matrix theory, ethis often used
to model the energy levels of heavy nuclei, the Rayleighritistion was one Miller
encountered frequently in his research and reading, apib&pnates the spacings
between energy levels of heavy nuclei.) It was only after potimg the answer in
both these cases that Miller realized the two densitiestfitamice family, and did
the calculation for generad

4 Pythagorean Formula: Proof

We now finally prove the Pythagorean formula, which we firatesexplicitly as a
theorem. For completeness, we restate our assumptions.

Theorem 1 (Pythagorean Won-Loss Formula)Let the runs scored and runs al-
lowed per game be two independent random variables drawn from Weibull distribu-
tions with parameters (ars, 3,y) and (ara, B, y) respectively, where ars and ara
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are chosen so that the meansare RSand RA; in applications 3 = —1/2. Then

(RS—B)"

Won-Loss Percentag®S RA, 3,y) = RSB+ RA_B)V' (6)

Proof. Let X andY be independent random variables with Weibull distribusion
(ars, B,y) and(ara, 3,y) respectively, wher&X is the number of runs scored and
Y the number of runs allowed per game. Recall from (4) that

RS- B RA-P

ORrs F+y D) ORrA 7F(1+Tl) (7)

We need only calculate the probability thatexceedsf. Below we constantly
use the integral of a probability density is 1 (for exampiemioving from the second
to last to the final line). We have

00 .X
Prob(X >Y) = / B/ Bf(x;aRs,B,v)f(y;aRA,B,v)dde
Jx= =
0o g y—1 y-1
_ / /X L(ﬂ) o (0-B)/ars) Y (ﬂ) & (-B)/ara)’ gy iy
x=B Jy=p ORs aRs aRrA ORrA
o =) : -1
/ L(L)V o (/s / L(L)V & 0/ara) oy | o
x=0 ORs \ ORs y=0 ORA \ ORA

00 V71
/ A (L) e (/ars [1— g (o] i
x=0 ORs \ ORs

00 y—1
= 1_/ ¥ (L) e X0 dx. (8)
Jx=0 Ors \ ORs
where we have set
1 1 1 afhs+ aba ©
oy Y Ty T TV YV
a¥  ops  Opa OrsORrA

The above tells us that we are essentially integrating a neiwiW whose parameter
a is given by the above relation; expressions like this arernom(see for example
center of mass calculations, or adding resistors in pdyalleerefore

y e —1
Prob(X >Y) 1— a_y/ Yy (i)y eX/a)Y gy
0

aksJo ala
Ors
_ 1 aRsThA
Ohs Ohs+ ORa
y
— _Rs__ (10)
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Substituting the relations fargrs andara of (4) into (10) yields

(RS-B)Y
ProgfX >Y) = , 11
XY= Re= gy~ (RA—B)Y .
which completes the proof of Theorem 1, the Pythagoreandtam Q.E.D.

5 The Pythagorean Formula: Applications

Itis now time to apply our mathematical models and resultseéaentral economics
issue of this chapter: In each situation, how much is a rurth#oWe content our-
selves with answering this from the point of view of the seadtus if we score
runs and allowy, and we have a player who increases our run productics) byw
much is that worth? Similarly, how much would they be wortlthiéy prevented
runs from scoring?

We answer this question notin dollars, but in additional gamon or lost. Trans-
lating the number of wins per season into dollar amounts &saiiating and ob-
viously important question, which the interested readenisouraged to pursue. A
good resource is Nate Silver's chapter “Is Alex Rodrigueziaid” in Baseball
Between the Numbers: Why Everything You Know About the Game Is Wrong [9].
There are also numerous insightful blog posts, such as Rhib8um'’s “Sabermet-
ric Research: Saturday, April 24, 2010” (see [1]). In thigpter we concern our-
selves with determining the number of wins gained or lostichvithese and other
sources can convert to monetary amounts. As not all wins artthe same (going
from 65 to 75 wins doesn’t alter the fact that the season wasg but going from
85 wins to 95 wins almost surely punches your ticket to thggfa), it is essential
that we can determine changes from any state.

In Figure 2 we plot the addition wins per season with 1.83 ands= 10. We plot
around a league average of 700 runs scored per season, wiichssentially the
average in 2012 (ség). We lets= 10 as the common adage is every 10 additional
runs translates to one more win per season.

Not surprisingly, the more runs we score the more valuabdegating runs is
to scoring runs, and vice-versa; what is nice about the Bgitesan formula is that
it quantifies exactly what this trade-off is. To make it eastesee, in Figure 3 we
plot the difference in wins gained from scoring 10 more rungvins gained from
preventing 10 more runs. The plot is positive in the uppéréfion, indicating that
if our runs scored and allowed places us here then it is mdvabke to score runs;
in the lower right region the conclusion is the opposite.
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Fig. 2 The predicted number of additional wins wigk= 1.83: (left) scoring 10 more per season;
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(right) preventing 10 more per season. Lettigg(x,y;y) = x'/(x’ +yY), the left plot isZ?(x +
10,y;1.83) — Z(x,y;1.83), while the right is#?(x,y — 10;183) — Z2(x,y; 1.83).
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Fig. 3 The difference in the predicted number of additional winthwi = 1.83 from scoring
10 more per season versus preventing 10 more per seasangLettx,y; y) = XV /(x¥ +yY), the
difference is?(x+10,y;y) — Z(x,y — 10;y).

6 The Pythagorean Formula: Verification

We have two goals in this section. First, we want to show osuiaption of the runs
scored and allowed being drawn from independent Weibuliedasonable. Second,
we want to find the optimal value ¢f and check the conventional wisdom that the

Pythagorean formula is typically accurate to about four gamseason.
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There are many methods available for such analyses. Twolgnropues are the
Method of Least Squares, and the Method of Maximum Likelthdks the two give
similar results, we use the Method of Least Squares to atteckhdependence and
distributional questions, and the Method of Maximum Likeldod to estimatg and
the error in the formula.

6.1 Analysisof I ndependence and Distributional Assumptions

We use the Method of Least Squares to analyze the 30 teamsh ate ordered
by the number of overall season wins and by league, from ti& 8@ason to see
how closely our model fits the observed scoring patterns. Yflyp summarize
the procedure. For each team we fimgs, ara, 8 andy that minimize the sum of
squared errors from the runs scored data plus the sum ofextjearors from the
runs allowed data; instead of the Method of Least Squaresowtl @lso use the
Method of Maximum Likelihood (discussed in the next subise)t which would
return similar values. We always tae= —1/2 and lety vary among teams (though
we could also perform the analysis with the sayrfer all). We partition the runs
data into the bins

[.5,5), [5,15], [1525, ..., [85,95), [9.5115), [115x).  (12)

Let Bin(k) be thek™ data bin, RSps(k) (respectively RALs(k)) be the observed
number of games with runs scored (allowed) in B)nandA(a, B, y, k) be the area
under the Weibull distribution with parameters, 8,y) in Bin(k). Then for each
team we are searching for the valueg @ks, ara, y) that minimize

12
Y (RSups(k) — 162: A(dtrs, .5, y.K))?
k=1
12
+ Y (RAgpk) — 162-A(0tra, —.5.Y,K))? (13)
k=1

(the 162 is because the teams play 162 games in a season;aimahtes fewer
games, either due to a cancelled game or because we areiagaybther sport,
this number is trivially adjusted).

For each team we found the best Weibulls with paramdtegs, —.5,y) and
(ara,—.5,y) and then compared the number of wins, losses, and won-lossre
age predicted by our model with the recorded data. The seaudt summarized in
Table 1.

The mean ofy over the 30 teams for the 2012 season is 1.70 with a standard
deviation of .11. This is slightly lower than the value in fiterature of 1.82. The
difference between the two methods is that our valug isfa consequence of our
model, whereas the 1.82 comes from assuming the Pythagomaula is valid and
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Team ObsW PredW Obs% Pred% Diff Games y
Washington Nationals 98 97.5 0.605 0.602 05 1.76
Cincinnati Reds 97 90.7 0.599 0.560 6.3 1.80
New York Yankees 95 96.0 0.586 0.593 -1.0 1.95
Oakland Athletics 94 89.8 0.580 0.554 42 1.54
San Francisco Giants 94 86.1 0.580 0.531 79 1.72
Atlanta Braves 94 89.4 0.580 0.552 46 1.51
Texas Rangers 93 91.0 0.574 0.562 2.0 1.69
Baltimore Orioles 93 83.1 0574 0.513 9.9 1.66
Tampa Bay Rays 90 90.9 0.556 0.561 -0.9 1.75
Los Angeles Angels 89 86.4 0.549 0.533 26 1.59
Detroit Tigers 88 94.7 0543 0.585 -6.7 1.89
St. Louis Cardinals 88 91.0 0.543 0.562 -3.0 1.66
Los Angeles Dodgers 86 879 0531 0.542 -1.9 1.65
Chicago White Sox 85 87.1 0.525 0.538 2.1 1.66
Milwaukee Brewers 83 85.0 0.512 0.525 -2.0 1.75
Philadelphia Phillies 81 76.7  0.500 0.474 43 1.72
Arizona Diamondbacks 81 84.8 0.500 0.524 -3.8 1.61
Pittsburgh Pirates 79 80.3 0.488 0.496 -1.3 1.63
San Diego Padres 76 74.7  0.469 0.461 1.3 1.65
Seattle Mariners 75 746  0.463 0.461 0.4 1.59
New York Mets 74 75.7  0.457 0.467 -1.7 1.63
Toronto Blue Jays 73 73.7 0451 0.455 -0.7 1.66
Kansas City Royals 72 74.8 0.444 0.462 -2.8 1.78
Boston Red Sox 69 73.6 0.426 0.455 -4.6 1.72
Miami Marlins 69 76.1 0.426 0.470 -7.1 174
Cleveland Indians 68 65.2 0.420 0.402 28 1.76
Minnesota Twins 66 65.8  0.407 0.406 0.2 191
Colorado Rockies 64 71.0 0.395 0.438 -7.0 1.79
Chicago Cubs 61 70.6  0.377 0.436 -9.6 1.58
Houston Astros 55 61.3 0.340 0.379 -6.3 1.61

Table 1 Results from best fit values from the Method of Least Squatieplaying the observed
and predicted number of wins, winning percentage, andrdifige in games won and predicted for
the 2012 season.

finding which exponent gives the best fit to the observed wigmiercentages. We
discuss ways to improve our modelga.

Comparing the predicted number of wins with the observedberrof wins, we
see that the mean difference between these quantities ig aba with a standard
deviation of about 4.61. This data is misleading, thoughhasmean difference is
small as these are signed quantities. It is thus better tmieeathe absolute value
of the difference between observed and predicted wins. dsingives an average
value of about 3.65 with a standard deviation around 2.78sistent with the em-
pirical result that the Pythagorean formula is usually aataito around four wins a
season.

We next examine each teansscore for the difference between the observed
and predicted runs scored and runs allowedz-t&st is appropriate here because
of the large number of games played by each team, a crucferalifce between
baseball and football. The critical value corresponding 5% confidence level
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is 1.96, while the value for the 99% level is 2.575. ThAscore (for runs scored)
for a given team is defined as follows. Let jgSdenote the observed average runs
scored, Rgedthe predicted average runs scored (from the best fit Wejlaghly the
standard deviation of the observed runs scored, and renteéhdre are 162 games
in a season. Then

RSobs— RS)red

RS T o VIE2

We see in Table 2 that both the runs scored and runs allavgtaltistics almost
always fall well below 1.96 in absolute value, indicatingttlthe parameters esti-
mated by the Method of Least Squares predict the observedvgst. We could
do a Bonferroni adjustment for multiple comparisons asdtee not independent
comparisons, which allows us to divide the confidence lelwgl30 (the number of
comparisons); this is a very conservative statistic. D@m@ncreases the thresholds
to approximately 2.92 and 3.38, to the point that all valuesia excellent agree-
ment with theory.

(14)

Team Obs RS Pred RSzstat Obs RA Pred RA zstat
Washington Nationals 451 454 -0.13 3.67 3.49 0.87
Cincinnati Reds 4.13 4.13 0.00 3.63 355 0.39
New York Yankees 4.96 5.02 -0.24 4.12 4.05 0.33
Oakland Athletics 4.40 4.48 -0.30 3.79 3.82 -0.15
San Francisco Giants 4.43 436 0.32 4.01 4.02 -0.05
Atlanta Braves 4.32 439 -0.27 3.70 3.76 -0.27
Texas Rangers 4.99 486 0.48 4.36 413 0.88
Baltimore Orioles 4.40 4,41 -0.09 4.35 426 0.35
Tampa Bay Rays 4.30 4.18 0.52 3.56 3.57 -0.04
Los Angeles Angels 4.73 4.84 -0.42 4.31 441 -0.38
Detroit Tigers 4.48 4.49 -0.03 4.14 3.66 2.03
St. Louis Cardinals 4.72 4,73 -0.05 4.00 4.01 -0.02
Los Angeles Dodgers 3.93 4.07 -0.67 3.69 3.63 0.29
Chicago White Sox 4.62 4.60 0.09 4.17 4,15 0.09
Milwaukee Brewers 4.79 4.89 -0.41 4.52 459 -0.30
Philadelphia Phillies 4.22 4.08 0.61 4.20 4.37 -0.82
Arizona Diamondbacks 4.53 459 -0.24 4.25 430 -0.26
Pittsburgh Pirates 4.02 4,12 -0.45 4.16 417 -0.04
San Diego Padres 4.02 4.09 -0.35 4.38 455 -0.76
Seattle Mariners 3.82 3.68 0.60 4.02 411 -0.44
New York Mets 4.01 4.06 -0.24 4.38 4.44 -0.26
Toronto Blue Jays 4.42 437 0.19 4.84 493 -0.35
Kansas City Royals 4.17 421 -0.17 4.60 4.63 -0.09
Boston Red Sox 453 433 0.79 4.98 4.87 0.40
Miami Marlins 3.76 3.96 -0.96 4.47 429 0.80
Cleveland Indians 4.12 4.06 0.22 5.22 5.21 0.00
Minnesota Twins 4.33 414 0.71 5.14 5.16 -0.12
Colorado Rockies 4.68 4.75 -0.29 5.49 5,53 -0.16
Chicago Cubs 3.78 3.89 -0.50 4.69 4.67 0.05
Houston Astros 3.60 357 0.13 4.90 5.04 -0.57

Table 2 Method of Least Squareg:tests for best fit runs scored and allowed.
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To further demonstrate the quality of the fit, in Figure 4 wenpare the best fit
Weibulls with the Pittsburgh Pirates (who were essentiall$00 team and thus in
the middle of the pack). The fit is excellent .

———

L
15 20

L L
10 15 20

Fig. 4 Comparison of the best fit Weibulls for runs scored (left) aidwed (right) for the 2012
Pittsburgh Pirates against the observed distribution afesc

We now come to the most important part of the analysis, tgstia assumptions
that the runs scored and allowed are given by independertui&eiWe do this in
two stages. We first see how well the Weibulls do fitting thedand whether or not
the runs scored and allowed are statistically independ¢né( than the restriction
that they are not equal). We describe the analysis first,lsmgresent the results in
Table 3. As the independence test is complicated by the pces# structural zeros
(unattainable values), we provide a detailed descriptiene lor the benefit of the
reader.

The first column in Table 3 is g2 goodness of fit test to determine how closely
the observed data follows a Weibull distribution with théreated parameters, us-
ing the same bins as before. Our test statistic is

12 (RSyps(K) — 162- A(ars, —.5, 1,K))?

2

=1 162-A(GR3,—.5, Y, k)
12 (RAobs(K) — 162- A(aRa, —.5,,K))?

2

K= 162-A(GRA,—.5, Y, k)

(15)

This test has 20 degrees of freedom, which correspondsticatialues of 31.41
(95% level) and 37.57 (99% level). Of course, as we have pialiomparisons we
should again perform a Bonferroni adjustment. We dividesibaificance levels by
30, the number of comparisons, and thus the values incred$8:67 and 48.75. Al-
most all the teams are now in range, with the only major autleeing the Yankees
and the Rays, the two playoff teams from the American Leagqst.E

We now turn to the final key assumption, the independencersf sgored and
runs allowed, by doing ? test for independence. This test involves creating a
contingency table with the requirement that each row andrnonlhas at least one
non-zero entry. As the Miami Marlins had no games with 10 mewed, we had to
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slightly modify our choice of bins to
[07 1)7 [1, 2), ..., [9, 11), [11, 00); (16)

as we are using the observed run data from games, we can ha@mswvith left
endpoints at the integers.

We have an 11x 11 contingency table. As runs scored cannot equal runs al-
lowed in a game (games cannot end in a tie), we are forced ® r&wes along
the diagonal. The constraint on the values of runs scoredwarslallowed leads to
an incomplete two-dimensional contingency table with— 1)° — 11= 89 degrees
of freedom. We briefly review the theory of such tests witlustural zeros in Ap-
pendix 9.2. The critical values for 2 test with 89 degrees of freedom are 113.15
(95% level) and 124.12 (99% level). Table 3 shows that alisthiare values for the
teams in the 2012 season fall below the 99% level, indicahiagruns scored and
runs allowed are behaving as if they are statistically irmthejent. The fits are even
better if we use the Bonferroni adjustments, which are 13arl 141.56.

6.2 Analysis of y and Games Off

Given a dataset and a statistical model, the method of mawitikelihood is a
technique that computes the parameters of the model that thekobserved data
most probable. Maximum likelihood estimators have therdes property of be-
ing asymptotically minimum variance unbiased estimatBesed on the statistical
model in question, one constructs the likelihood functfeor.our model, if we have
B bins then the likelihood function is given by

162 B .
I - Sk
L(oRrs, 0rA, —-5,Y) <RS)bS(1)7""RS)bs(B))kljllA(aRS 5,y,k)
162 B
' Aara, .5, y, k) RAslk), .
<RAobs(l),...,RA0bS(B)>ﬂ (aRrA ¥, K) (17)

The maximum likelihood estimators are found by determirimgvalues of the
parametersirs, ara andy that maximize the likelihood function. In practice one
typically maximizes the logarithm of the likelihood becauitis both equivalent to
and computationally easier than maximizing the likelihfmakction directly.

Using our model, we calculated the maximum likelihood eatons for each
team. Figure 5 displays the average values of the parapéteeach season from
2007 to 2012, with error bars indicating the standard dmnaiNote that the stan-
dard deviation of they values for each season are similar to each other, with 2010
having the largest deviation. The mean valueydé about 1.69 with a standard
deviation of .03.

Using the maximum likelihood estimators, we then calcwalalte predicted num-
ber of games won for each team and compared this to the olosewsbers. The
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Team RS+RAx%: 20 d.f. Independencg?: 109 d.f
Washington Nationals 53.80 101.07
Cincinnati Reds 33.69 107.11
New York Yankees 64.02 82.82
Oakland Athletics 22.34 87.85
San Francisco Giants 14.37 89.57
Atlanta Braves 32.34 101.07
Texas Rangers 26.49 93.46
Baltimore Orioles 11.90 98.29
Tampa Bay Rays 66.35 120.25
Los Angeles Angels 28.10 105.73
Detroit Tigers 38.76 98.96
St. Louis Cardinals 36.32 117.21
Los Angeles Dodgers 31.70 123.33
Chicago White Sox 20.61 121.33
Milwaukee Brewers 49.51 98.02
Philadelphia Phillies 19.19 93.78
Arizona Diamondbacks 23.91 78.44
Pittsburgh Pirates 13.46 103.85
San Diego Padres 17.62 92.87
Seattle Mariners 9.79 113.13
New York Mets 42.88 95.66
Toronto Blue Jays 13.09 86.81
Kansas City Royals 22.51 102.39
Boston Red Sox 22.43 99.18
Miami Marlins 43.64 121.32
Cleveland Indians 26.62 83.28
Minnesota Twins 50.40 115.04
Colorado Rockies 24.30 85.79
Chicago Cubs 40.06 90.72
Houston Astros 41.16 80.48

Table 3 Results from best fit values from the Method of Least Square2012, displaying the
quality of the fit of the Weibulls to the observed scoring datad testing the independence of runs
scored and allowed.

average absolute value of this difference is shown for e&en yn Figure 6, with

error bars indicating the standard deviation. The meaneftisolute value of the
games off by is approximately 3.81, with a standard deuiatibabout .94; these
numbers are in-line with the conventional wisdom that ththBgorean formula is
typically accurate to about 4 games per season.

7 The Pythagorean Formula: Linearization

The Pythagorean formula is not the only predictor used,dghdtis one of the earli-
est and most famous. A popular alternative is a linear satfor example, Michael
Jones and Linda Tappin [7] state that a good estimate foma’deginning percent-
age is.500+ B(RS— RA), where RS and RA are runs scored and allowed, and B is
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Maximum Likelihood Estimate
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Fig. 5 Average value off from the Method of Maximum Likelihood.
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Fig. 6 Average absolute value of the difference between the obdeamd predicted number of
wins from the Method of Maximum Likelihood.

a small positive constant whose average in their studiesanasd 0.00065\ote

here there is a difference if we use total runs or average runs per game, as we no
longer have a ratio. We can of course use average runs per game, but that would
require rescaling B; thus, for the rest of this section, wekvwo total runs.

While their formula is simpler to use, computers are handéii the calcula-
tions anyway and thus the savings over the Pythagorean fainsnot significant.
Further, by applying a Taylor series expansion to the Pyahean formula we ob-
tain not only this linear predictor, but also find an intetpt®n of B in terms ofy
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and the average runs scored by teams. We give a simple priogf mslltivariable
calculus; see Appendix 9.3 for an alternative proof thay eafjuires one variable
calculus. The multivariable argument was first given in [3]Steven J. Miller and
Kevin Dayaratna; the one-dimensional argument is from goublished appendix.

Given a multivariable functiorf(x,y), if (X,y) is close to(a,b) then f(x,y) is
approximately the first order Taylor series about the p@ri):

of of
f(a,b)+&(a,b)(x—a)jLa—y(a,b)(y—b). (18)
We take
xY
f(xy) = mv (a,b) = (Riotal; Reotal) (19)

where Rotq is the average of the total runs scored in the league. Afteesalgebra
we find
0_1‘
X

yYolyy o af y
Xy) = ———, —(Rotal, R = ,
( y) ( total total) T=3

(XY 4y¥)2" 9x
Whi_ch is alsofg—;(Rtotathotao. Taking (x,y) = (RS RA), the first order Taylor
series expansion becomes

(20)

Y y
f (Riotal; Reotal) + —=— (RS— Riotal) — RA—R
( total total) 4Rt0tal( total) 4Rt0tal( total)
— 500+ - (RS—RA). 1)

otal

Thus, not only do we obtain a linear estimator, but we haveearttical pre-
diction for the all-important slope B, namely thatBy/(4Rotal). See the paper
by Dayaratna and Miller [3] for a detailed analysis of how Wthls ratio fits B.
We content ourselves here with remarking that in 2012 theléagues combined
to score 21,017 runs (sédtp://www.baseball-almanac.com/hitting/hiruns4nsht
for an average of 4.32449 runs per game per team, or an avefage0.567
runs per team. Using 1.83 for and 700.567 for Ry, Wwe predict B should
be about 0.000653, agreeing beautifully with Jones and im&pfindings (see
http://www.sciencedaily.com/releases/2004/03/04038@59.htn.

8 The Future of the Pythagorean Formula

In the last section we saw how to use calculus to linearizéthibagorean formula
and obtain simpler estimators. Of course, linearizing tb&yorean formula is not
the only extension (and, as we are throwing away informaitde clearly not the

optimal choice). In current research, the author and hidestts are exploring more
accurate models for teams. There are two disadvantagess taggproach. The first
is that the resulting formula will almost surely be more cdisgied than the current
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one, and the second is that more information will be requihech the aggregate
scoring.

These restrictions, however, are not severe. As computednéng all the calcu-
lations anyway, it is preferable to have a more accurateditarat the cost of addi-
tional computations that will never be noticed. The secomahiis more severe. The
formulas under development will not be computable from tffermation available
on common standings pages, but instead will requingng by inning data. Thus
these statistics will not be computable by the laypersodingathe sports page;
however, this is true about most advanced statistics. Fomele, it is impossible to
calculate the win probability added for a player withoutrgpihrough each moment
of a game.

We therefore see that these additional requirements afecgigrfine for appli-
cations. Teams are concerned with making optimal decisemsthe new data re-
quired is readily available to them (and in many cases to Wleeage fan who can
write a script program to cull it from publicly available wates). The current ex-
panded version of the Pythagorean formula will include tiWing three ingre-
dients, all of which are easily done with readily availabd¢ad

1. Write the distribution for runs scored and allowed as adincombinations of
Weibulls.

2. Adjust the value of a run scored and allowed based on teaokl

3. Discount runs scored and allowed from a team’s statistiacsed on the game
state.

The reason runs scored and allowed are modeled by Weibuhstishese lead
to tractable, closed form integration. We can still perfaha integration if instead
each distribution is replaced with a linear combination aibMlls; this is similar
in spirit to the multitude of weights that occur in numeroubey statistics, and
will lead to a weighted sum of Pythagorean expressions fowtinning percentage.
An additional topic to be explored is allowing for dependesbetween runs scored
and allowed, but this is significantly harder and almostlgurél lead to non-closed
form solutions. It is highly desirable to have a closed footuon, as then we can
estimate the value of a player by substituting their contidns into the formula
and avoid the need for intense simulations.

The second change is trivial and easily done; certain badfptavor pitchers
while others favor hitters. The difficulty in scoring a runrenway Park is not the
same as scoring one in Yankee Stadium, and thus ballpat&#kould be used to
adjust the values of the runs.

Finally, anyone who has turned on the TV during election higtows that cer-
tain states are called quickly after polls closed; the prglary poll data is enough
to predict with incredible accuracy what will happen. If arrehas a large lead late
in the game, they often rest their starters or use weakehngris¢c and thus the runs
scored and allowed data here is not as indicative of a tedmlis/aas earlier in the
game. For example, in 2005 Mike Remlinger was traded to tlteRex. In his first
two games he allowed 5 runs to score (2 earned) while reaprirouts; his ERA
for the season to date was 5.45 and his win probability addedslightly negative.
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On August 16 the Sox and the Tigers were tied after 9 due to &n Ilyme-run in
the ninth! Ortiz had a three run shot the following inning, part of a 7 offiensive
at the start of the tenth. With a seven run lead, this shouldhaee been a critical
situation, and Remlinger entered the game to pitch the mottfithe tenth. After re-
tiring the first two batters, two walks and an infield singletat was bases loaded.
Monroe then homered to make it 10-7, but Remlinger ralliedir@tired Inge. There
were two reasons Papelbon was not brought in for the tenth fifs$t is that back
then Papelbon was a starter (and in fact started that galhet® importantly, how-
ever, with a 7 run lead and just one inning to play, the leveiaghe situation was
low. Thus it is inappropriate to treat all runs equally. Thisstake occurs in other
sports; for example, when the Pythagorean formula is agppli€ootball practition-
ers frequently do not adjust for the fact that at the end ofsdreeson certain teams
have already locked up their playoff seed and are restimtessa

The hope is that incorporating these and other modificatithsesult in a more
accurate Pythagorean formula. Though it will not be as easisé, it will still be
computable with known data and not require any simulatians, almost surely
provide a better evaluation of a player’s worth to their team
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9 Appendix

9.1 Calculating the Mean of a Weibull
Letting uq ., denote the mean df(x; a, B,y), we have

e Y (X=BY T ey
“O”B’V_/pxa<a) e dx

o o N
_ / aﬁg(ﬁ) e B/ gy | p. 22)
s

a a

1 The data below is frorhttp://www.baseball-reference.com/players/gl.cgi?amlimio1&t=p&year=2005
andhttp://scores.espn.go.com/mlb/boxscore?gameld=28081
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-1
We change variables by setting= (%)y Then di= £ (%)y dx and we
have

Hapy = /o au’" e du + B

o0 ~10du
= a/ eluT— 4+
Jo u

= al(1+y™% + B. (23)

9.2 Independence test with structural zeros

We describe the iterative procedure needed to handle thetstal zeros. A good
reference is Bishop and Fienberg [2].

Let Bin(k) be thek" bin used in the chi-squared test for independence. For each
team’s incomplete contingency table, [Bf: be the observed number of games
where the number of runs scored is in Binand runs allowed is in Bimj. As
games cannot end in a tie, we ha¥g = 0 for all r.

We construct the expected contingency table with entjgsusing an iterative
process to find the maximum likelihood estimators for eat¢hyeRor 1<r,c < 12,

let f
1ifr#£c
EY = {0 ifric (24)
and let
Xy = Zor,Ca Xt = Zor,c- (25)
c T
We then have that
0 _ Er(,/'cil)xm/ZcEr(ffl> if £is odd
Ere =\ 2y (1) ) (26)
Erc "Xe+/YrErc 7 if Liseven

The values oE; ¢ can be found by taking the limit &s— o of Er(f‘c), and typically

the convergence is rapid. The statistic

B 2
Z (Erc - ?r,c) @7)

r4c

follows a chi-square distribution witfl.1 — 1)° — 11= 89 degrees of freedom.
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9.3 Linearizing Pythagoras

Unlike the argument ig7, we do not assume knowledge of multivariable calcu-
lus and derive the linearization using just single variab&thods. The calculations
below are of interest in their own right, as they highlighbdapproximation tech-
niques.

We assume there is some expongatich that the winning percentage, WP, is

RY
WP = RS +RAY’ (28)
with RS and RA the total runs scored and allowed. We multipé/right hand side
by (1/RY)/(1/RY) and write RA' as RS — (RS — RAY), and find

1 RAV 1 RY — (RY —RAY)\ !
RY —RAV\ *

()

1 RY —RAY\ 1!
= 5( ‘W) ? (29)

notice we manipulated the algebra to pull out a 1/2, whichicetegs an average
team; thus the remaining factor is the fluctuations abouteaye
We now use the geometric series formula, which says that4f 1 then

1 2,3
— =1 30
Tor i+ (30)
We letr = (RS — RAY) /2RY'; since runs scored and runs allowed should be close
to each other, the difference of thgipowers divided by twice the number of runs
scored should be small. Thusn our geometric expansion should be close to zero,
and we find

wp = L1, R¥—RA" (RY_RAY > [RY —RAY 3+
2 2RY 2RY 2RY
RY — RAY
~ 500+ ———. 31
TR 1)
We now make some approximations. We expect RRAY to be small, and thus
R _RA” should be small. This means we only need to keep the consteriirear

terms in the expansion. Note that if we only kept the congtamt, there would be
no dependence on points scored or allowed!
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We need to do a little more analysis to obtain a formula thitéar in RS- RA.
Let Ryta denote the average number of runs scored per team in theeleéagucan
write RS= Rave+ Xs and RA= Rae+ Xa, Where it is reasonable to assumeand
Xa are small relative to 5. The Mean Value Theorem from Calculus says that if
f(X) = (Riota+X)Y, then

f(xs) = f(xa) = f'(%)(%—Xa), (32)

wherex. is some intermediate point betwegyandx,. As f/(x) = y(Riotai+X)" 1,
we find

RY —RAY = f(xs)— f(Xa) = f'(X)(Xs—Xa) = V(Riota+ %)’ 1(RS—RA),

(33)
asXs — Xa = RS— RA. Substituting this into (31) gives
~ Y(Reotal + %) 1 (RS—RA) _ Y(Riotal + Xc)¥
WP ~ .500+ 4IRS = .500+ IRS (RS—RA).
(34)

We make one final approximation. We replace the factorsgfR X in the
numerator and RSn the denominator with B, the league average, and reach

4
4 Rtotal

Thus the simple linear approximation model reproducesésalt from multivari-
able Taylor series, namely that the interesting coeffidiestiould be approximately

V/ (4Reotal)-

WP ~ 500+ (RS—RA). (35)
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