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Abstract

A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum
of non-consecutive Fibonacci numbers {Fn}∞n=1. Lekkerkerker [Lek] proved the average number of
summands for integers in [Fn, Fn+1) is n/(φ

2+1), with φ the golden mean. This has been generalized:
given nonnegative integers c1, c2, . . . , cL with c1, cL > 0 and recursive sequence {Hn}∞n=1 withH1 = 1,
Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 +1 (1 ≤ n < L) and Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L

(n ≥ L), every positive integer can be written uniquely as
∑

aiHi under natural constraints on the
ai’s, the mean and variance of the numbers of summands for integers in [Hn,Hn+1) are of size n, and
as n → ∞ the distribution of the number of summands converges to a Gaussian. Previous approaches
used number theory or ergodic theory. We convert the problem to a combinatorial one. In addition
to re-deriving these results, our method generalizes to other problems (in the sequel paper [BGM]
we show how this perspective allows us to determine the distribution of gaps between summands).
For example, it is known that every integer can be written uniquely as a sum of the ±Fn’s, such that
every two terms of the same (opposite) sign differ in index by at least 4 (3). The presence of negative
summands introduces complications and features not seen in previous problems. We prove that the
distribution of the numbers of positive and negative summands converges to a bivariate normal with
computable, negative correlation, namely −(21− 2φ)/(29 + 2φ) ≈ −0.551058.

1. Introduction

1.1. History. The Fibonacci numbers have intrigued mathematicians for hundreds of years.
One of their most interesting properties is the Zeckendorf decomposition. Zeckendorf [Ze]
proved that every positive integer can be written uniquely as a sum of non-consecutive
Fibonacci numbers (called the Zeckendorf decomposition), where the Fibonacci numbers1

are F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . . Lekkerkerker [Lek] extended this result and
proved that the average number of summands needed to represent an integer in [Fn, Fn+1)

is n
φ2+1

+ O(1) ≈ 0.276n, where φ =
√
5+1
2

is the golden mean. There is a related question:

how are the number of summands distributed about the mean for integers in [Fn, Fn+1)? This
is a very natural question to ask. Both the question and the answer are reminiscent of the
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Erdős-Kac Theorem [EK], which states that as n → ∞ the number of distinct prime divi-
sors of integers on the order of size n tends to a Gaussian with mean log log n and standard
deviation

√
log log n.

We first set some notation before describing the previous results.

Definition 1.1. We say a sequence {Hn}∞n=1 of positive integers is a Positive Linear Re-
currence Sequence (PLRS) if the following properties hold:

(1) Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L,

with L, c1 and cL positive.
(2) Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1.

We call a decomposition
∑m

i=1 aiHm+1−i of a positive integer N (and the sequence {ai}mi=1)
legal if a1 > 0, the other ai ≥ 0, and one of the following two conditions holds:

Condition 1. We have m < L and ai = ci for 1 ≤ i ≤ m.

Condition 2. There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (1.1)

as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}m−s−ℓ
i=1 (with bi = as+ℓ+i) is legal.

If
∑m

i=1 aiHm+1−i is a legal decomposition of N , we define the number of summands (of
this decomposition of N) to be a1 + · · ·+ am.

Informally, a legal decomposition is one where we cannot use the recurrence relation to
replace a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded; other authors [DG, Ste1] use the phrase G-ary decom-
position for a legal decomposition, and sum-of-digits function for the number of summands.
For example, if Hn+1 = 2Hn + 3Hn−1 + Hn−2, then H5 + 2H4 + 3H3 + H1 is legal, while
H5 + 2H4 + 3H3 +H2 is not (we can replace 2H4 + 3H3 +H2 with H5), nor is 7H5 + 2H2 (as
the coefficient of H5 is too large).

The following probabilistic language will be convenient for stating some of the results.

Definition 1.2 (Associated Probability Space to a Positive Linear Recurrence Sequence). Let
{Hn} be a PLRS. For each n, consider the discrete outcome space Ωn = {Hn, Hn + 1, Hn +
2, . . . , Hn+1 − 1} with probability measure Pn(A) =

∑
ω∈A

1
Hn+1−Hn

(A ⊂ Ωn); in other

words, each of the Hn+1 − Hn numbers is weighted equally. We define the random variable
Kn by setting Kn(ω) equal to the number of summands of ω ∈ Ωn in its legal decomposition.
Implicit in this definition is that each integer has a unique legal decomposition; we prove this in
Theorem 1.1, and thus Kn is well-defined. We denote the cardinality of Ωn by ∆n = Hn+1−Hn,
and we set pn,k equal to the number of elements in [Hn, Hn+1) whose generalized Zeckendorf
decomposition has exactly k summands; thus pn,k = ∆n · Prob(Kn = k).

We first review previous results and methods, and then describe our new perspective and
extensions. See [BCCSW, Ho, Ke, Len] for more on generalized Zeckendorf decompositions,
[GT] for a proof of Theorems 1.1 and 1.2, and [DG, FGNPT, GTNP, LT, Ste1] for a proof
and some generalizations of Theorem 1.3.
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Theorem 1.1 (Generalized Zeckendorf’s Theorem for PLRS). Let {Hn}∞n=1 be a Positive
Linear Recurrence Sequence. Then

(a) There is a unique legal decomposition for each positive integer N ≥ 0.
(b) There is a bijection between the set Sn of integers in [Hn, Hn+1) and the set Dn (of

cardinality Dn) of legal decompositions
∑n

i=1 aiHn+1−i.

Theorem 1.2 (Generalized Lekkerkerker’s Theorem for PLRS). Let {Hn}∞n=1 be a Positive
Linear Recurrence Sequence, let Kn be the random variable of Definition 1.2 and denote its
mean by µn. Then there exist constants C > 0, d and γ1 ∈ (0, 1) depending only on L and the
ci’s in the recurrence relation of the Hn’s such that

µn = Cn+ d+ o(γn
1 ). (1.2)

Theorem 1.3 (Gaussian Behavior for PLRS). Let {Hn}∞n=1 be a PLRS and let Kn be the
random variable of Definition 1.2. The mean µn and variance σ2

n of Kn grow linearly in n,
and (Kn − µn)/σn converges weakly to the standard normal N(0, 1) as n → ∞.

While the proof of Theorem 1.3 is technical in general, the special case L = 1 is straight-
forward, and suggests why the result holds. When L = 1, Hn = cn−1

1 . Thus our PLRS is just
the geometric series 1, c1, c

2
1, . . . , and a legal decomposition is just a base c1 expansion. Hence

every positive integer has a unique legal decomposition. Further, the distribution of the num-
ber of summands converges to a Gaussian by the Central Limit Theorem, as we essentially
have the sum of n− 1 independent, identically distributed discrete uniform random variables.

Previous approaches used number theory or ergodic theory, often requiring the analysis of
certain exponential sums. We recast this as a combinatorial problem. We are able to re-derive
the above results from a different perspective. Our method generalizes to other problems (in
a sequel paper [BGM] we use the combinatorial vantage to determine the distribution of gaps
between summands). For the main part of this paper, we concentrate on one particularly
interesting situation where features not present in previous works arise.

Definition 1.4. We call a sum of the ±Fn’s a far-difference representation if every two
terms of the same sign differ in index by at least 4, and every two terms of opposite sign differ
in index by at least 3.

Recently Alpert [Al] proved the analogue of Zeckendorf’s Theorem for the far-difference
representation. It is convenient to set

Sn =

{∑
0<n−4i≤n Fn−4i = Fn + Fn−4 + Fn−8 + · · · if n > 0

0 otherwise.
(1.3)

Theorem 1.5 (Generalized Zeckendorf’s Theorem for Far-Difference Representations). Every
integer has a unique far-difference representation. For each N ∈ (Sn−1 = Fn−Sn−3−1, Sn], the
first term in its far-difference representation is Fn, and the unique far-difference representation
of 0 is the empty representation.

Most previous results concern only one quantity, the number of summands. An exception
is [Ste2], where the standard Zeckendorf expansion (called the greedy expansion) and the
lazy expansion (which uses as many summands as possible) are simultaneously considered.
Steiner proves their joint distribution converges to a bivariate Gaussian with a correlation of
9 − 5φ ≈ .90983. Unlike the Zeckendorf expansions, the far-difference representations have
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both positive and negative summands, opening up the fascinating question of how the number
of each are related. We find a non-zero correlation between the two types of summands.

Theorem 1.6 (Generalized Lekkerkerker’s Theorem and Gaussian Behavior for Far-Difference
Representations). Let Kn and Ln be random variables denoting the number of positive and
negative summands in the far-difference representation for integers in (Sn−1, Sn]. As n → ∞,

E[Kn] =
1
10
n+ 371−113

√
5

40
+ o(1), and is

√
5+1
4

= φ
2
greater than E[Ln]; the variance of both is of

size 15+21
√
5

1000
n and the joint distribution of the standardized random variables converges weakly

to a bivariate Gaussian with negative correlation 10
√
5−121
179

= −21−2φ
29+2φ

≈ −0.551; and Kn + Ln

and Kn − Ln are independent.

1.2. Sketch of Proofs. By recasting the problem as a combinatorial one and using generating
functions, we are able to re-derive and extend the previous results in the literature. The key
techniques in our proof are generating functions, partial fractional expansions, differentiating
identities and the method of moments. Unfortunately, in order to be able to handle a general
Positive Linear Recurrence Sequence, the arguments become quite technical due to the fact
that we cannot exploit any special properties of the coefficients of the recurrence relations, but
rather must prove certain technical lemmas for any choice of the ci’s. We therefore quickly
look at the special case of the Fibonacci numbers, as this highlights the main ideas of the
method without many of the technicalities.2 In the rest of the paper, we provide details only
for the results about far-difference representations, as the other results have been proved by
other techniques. The reader interested in the details of applying our method to the known
cases, or some of the standard algebra omitted below, should see [MW] for the details.

We first derive a recurrence relation for the pn,k’s, which in this case is the number of integers
in [Fn, Fn+1) with precisely k summands in their legal decomposition (see Definition 1.2). We
find pn+1,k+1 = pn,k+1 + pn,k. Multiplying both sides of this equation by xkyn, summing over
n, k > 0, and calculating the initial values of the pn,k’s, namely p1,1, p2,1 and p2,2, we obtain a
formula for the generating function

∑
n,k>0 pn,kx

kyn:

G (x, y) :=
∑
n,k>0

pn,kx
kyn =

xy

1− y − xy2
. (1.4)

By partial fraction expansion, we write the right-hand side as

− y

y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
,

where y1(x) and y2(x) are the roots of 1−y−xy2 = 0. Rewriting 1
y−yi(x)

as −(1− y
yi(x)

)−1 and

using a power series expansion, we are able to compare the coefficients of yn of both sides of
(1.4). This gives an explicit formula for g(x) =

∑
k>0 pn,kx

k. Note that

g(1) =
∑
k>0

pn,k,

2 The proof can be simplified further for the Fibonacci numbers, as the key quantity pn,k equals
(
n−k
k−1

)
/Fn−1,

which by Stirling’s formula tends to the density of a normal random variable; see [KKMW] for details.
Unfortunately this approach does not generalize, as the formulas for pn,k become far more involved.
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which is Fn+1 − Fn by definition. Further, we have

g′(1) =
∑
k>0

kpn,k = E[Kn](Fn+1 − Fn) = E[Kn]g(1).

Therefore, once we determine g(1) and g′(1), we know E[Kn].
Letting µn = E[Kn], we define the random variable K ′

n = Kn − µn. We immediately
obtain an explicit, closed form expression for hn(x) = g(x) − µn. Arguing as above we find
hn(1) = Fn+1 − Fn and h′

n(1) = E[K ′
n]hn(1). Furthermore, we get

(xh′
n(x))

′
= E[K ′

n
2
]hn(1),

(
x (xh′

n(x))
′)′

= E[K ′
n
3
]hn(1), . . . , (1.5)

which allows us to compute the moments of K ′
n.

Let σn denote the variance of Kn (which is of course also the variance of K ′
n), and recall that

the 2mth moment of the standard normal is (2m−1)!! = (2m−1)(2m−3) · · · 1. To show that
Kn converges to being normally distributed with mean µn and variance σn, it suffices to show
that the 2mth moment of K ′

n/σn converges to (2m − 1)!! and the odd moments converge to
0. We are able to prove this through (1.5), which are repeated applications of differentiating
identities to our partial fraction expansion of the generating function.

We prove the Gaussian behavior for the far-difference representation in Section 2. We
conclude with some natural problems to consider.

2. Far-difference Representation

We now apply the generating function approach to study the distributions of the numbers of
positive and negative summands in the far-difference representation of integers (see Definition
1.4), proving that as n → ∞ these two random variables converge to a bivariate Gaussian
with a computable, negative correlation. We do not need to prove that a generalization of
Zeckendorf’s theorem holds for far-difference representations, as this was done by Alpert [Al]
(see Theorem 1.5).

2.1. Generating Function of the Probability Density. Let pn,k,l (n > 0) be the number
of far-difference representations of integers in (Sn−1, Sn] with k positive summands and l
negative summands, and setDn = Sn−Sn−1. We have the following formula for the generating

function Ĝ (x, y, z) =
∑

n>0,k>0,l≥0 pn,k,lx
kylzn.

Theorem 2.1. We have

Ĝ (x, y, z) =
xz + xyz4

1− z − (x+ y)z4 − xyz6 − xyz7
. (2.1)

Proof. We first derive the recurrence relation

pn,k,l = pn−1,k,l + pn−4,k−1,l + pn−3,l,k−1, n ≥ 5, (2.2)

by a combinatorial approach. Next we get the generating function. To achieve that, we need
a recurrence relation with all terms of form pn−n0,k−k0,l−l0 with n0, k0 and l0 constant. We
solve this by using the proceeding recurrence relation with repeated substitutions.

Let us prove (2.2) first. Clearly, pn,k,l = 0 if k ≤ 0 or l < 0. For every far-difference
representation N =

∑m
j=1 ajFij ∈ [Sn−1 + 1, Sn], N

′ :=
∑m

j=2 ajFij is also a far-difference

representation. Theorem 1.5 states that i1 = n and a1 = 1, therefore N ′ ∈ [Sn−1+1−Fn, Sn−
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Fn]. From (1.3) and the recurrence for the Fn’s it readily follows that Sn−1+1−Fn = −Sn−3.
Thus pn,k,l is the number of far-difference representations of integers in [−Sn−3, Sn−4] with
k − 1 positive summands and l negative summands.

Let n ≥ 5. We have two cases: (k − 1, l) ̸= (0, 0) and (k − 1, l) = (0, 0). We do the first
as the second follows similarly. Since (k − 1, l) ̸= (0, 0), N ′ = N − a1Fi1 ̸= 0. Let N(J, k, l)
be the number of far-difference representations of integers in the interval J with k positive
summands and l negative summands. Thus

pn,k,l = N((0, Sn−4], k − 1, l) +N([−Sn−3, 0), k − 1, l)

= N((0, Sn−4], k − 1, l) +N((0, Sn−3], l, k − 1) =
n−4∑
i=1

pi,k−1,l +
n−3∑
i=1

pi,l,k−1,

which implies the claim by telescoping.

Let n ≥ 9. By further straightforward manipulations (see [MW] for the details) we find

pn,k,l = 2pn−1,k,l − pn−2,k,l + pn−4,k−1,l + pn−4,k,l−1 − pn−5,k−1,l

− pn−5,k,l−1 + pn−6,k−1,l−1 − pn−8,k−1,l−1, n ≥ 9. (2.3)

The claimed formula for Ĝ (x, y, z) now follows by straightforward algebra. �

To show that Kn and Ln are asymptotically bivariate Gaussian, it suffices to prove the
Gaussian behavior of aKn + bLn for any a, b with (a, b) ̸= (0, 0). Note that the coefficient of

zn in Ĝ (x, y, z) is
∑

k>0,l≥0 pn,k,lx
kyl; we denote this by ⟨zn⟩Ĝ (x, y, z). Setting (x, y) = (wa, wb)

and using differentiating identities will give the moments of aKn + bLn.
We first prove a generalized Lekkerkerker’s Theorem and Gaussian behavior for aKn+ bLn,

which is a slight generalization of Theorem 1.6. This suffices to deduce Theorem 1.6 as
cov(Kn,Ln) =

1
4
var(Kn + Ln)− 1

4
var(Kn − Ln).

Theorem 2.2. For any real numbers (a, b) ̸= (0, 0), we have
(a) The mean of aKn + bLn is

a+ b

10
n+

371− 113
√
5

40
a+

361− 123
√
5

40
b+ o(γ̂n

a,b) for some γ̂a,b ∈ (0, 1), (2.4)

(b) The variance of aKn + bLn is
√
5− 1

200

[
10

(
a2 + b2

)
− 20−

√
5

5
(a+ b)2

]
n+ qa,b + o(τ̂na,b) for some τ̂a,b ∈ (0, 1), (2.5)

with qa,b constant depending on only a and b; further, the joint distribution of the standardized
random variables of aKn + bLn converges weakly to a Gaussian; in other words, Kn and Ln

are asymptotically bivariate Gaussian as n → ∞.

2.2. Generalized Lekkerkerker’s Theorem. As the mean is a crucial input in the proof
of Gaussian behavior, we isolate this calculation first.
Proof of Theorem 2.2(a). Denote ĝ(w) the coefficient of zn in Ĝ (wa, wb, z), i.e.,

ĝ(w) =
∑

k>0,l≥0

pn,k,lw
ak+bl. (2.6)
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As pn,k,l/ĝ(1) is the probability that aKn + bLn equals ak + bl, ĝ(x)/ĝ(1) is the probability
generating function of the random variable aKn + bLn, and thus

µn := E[aKn + bLn] =
ĝ′(1)

ĝ(1)
=

ĝ′(1)

D1

(2.7)

(since ĝ(1) =
∑

k>0,l≥0 pn,k,l = Dn). Therefore the proof of Part (a) reduces to finding ĝ′(1).

Let Âw(z) be the denominator of Ĝ (wa, wb, z), namely

Âw(z) = 1− z − (wa + wb)z4 − wa+bz6 − wa+bz7,

and e1(w), e2(w), . . . , e7(w) the roots of Âw(z) (i.e., regarding Âw(z) as function of z). We
want to write 1

Âw(z)
as a linear combination of the 1

z−ei(w)
’s, i.e., the partial fraction expansion,

as we can use power series expansion to find ĝ(w), the coefficient of zn in Ĝ (wa, wb, z). In
fact, we have the following proposition.

Proposition 2.3. There exists ε ∈ (0, 1) such that for any w ∈ Iε = (1− ε, 1 + ε),

(a) The 7 roots of Âw(z) are nonzero and distinct.
(b) There exists a root e1(w) such that |e1(w)| < 1 and |e1(w)| < |ei(w)|, 1 < i ≤ 7.
(c) Each root ei(w) (1 ≤ i ≤ 7) is continuous and ℓ-times differentiable for any ℓ ≥ 1, and

e′i(w) = −
(
awa−1 + bwb−1

)
e4i (w) + (a+ b)wa+b−1[e6i (w) + e7i (w)]

1 + 4(wa + wb)e3i (w) + 6wa+be5i (w) + 7wa+be6i (w)
. (2.8)

(d) 1

Âw(z)
= − 1

wa+b

7∑
i=1

1

(z − ei(w))
∏

j ̸=i (ej(w)− ei(w))
. (2.9)

Proof. Clearly, 0 is not a root of Âw(z). When w = 1, we have

Â1(z) = 1− z − 2z4 − z6 − z7 = −(z2 + z − 1)(z2 + 1)(z3 + 1). (2.10)

Thus Â1(z) has no multiple roots; moreover, except
√
5−1
2

, any other root z of Â(z) satisfies

|z| ≥ 1 > |
√
5−1
2

|. Hence (a), (b) hold for w = 1.

Note that when w ̸= 0, the leading coefficient of Âw(z) is nonzero, and the coefficients

of Â(z) are polynomials in one variable and hence continuous, thus the roots of Âw(z) are
continuous with respect to w (see Appendix A of [MW]). Since (a), (b) hold for w = 1, they
also hold for a sufficiently small neighborhood Iε of 1. Parts (c) and (d) follow from algebraic
manipulations (see Appendix E of [MW] for the details). �

Assume w ∈ Iε. Combining (2.1) and Proposition 2.3(d), we get

Ĝ (wa, wb, z) = −(z + wbz4)
7∑

i=1

1

wb(z − ei(w))
∏

j ̸=i (ej(w)− ei(w))
,

which yields

ĝ(w) =
7∑

i=1

w−b + e3i (w)

eni (w)
∏

j ̸=i (ej(w)− ei(w))
.
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Let

q̂i(w) =
w−b + e3i (w)

w
∏

j ̸=i (ej(w)− ei(w))
, α̂i(w) =

1

ei(w)
and ĝi(w) = wq̂i(w)α̂

n
i (w). (2.11)

Then ĝ(w) =
∑7

i=1 wq̂i(w)α̂
n
i (w) =

∑7
i=1 ĝi(w). Since ei(w) is nonzero and ℓ-times differen-

tiable for all ℓ and i, so are q̂i(w) and α̂i(w). Further, it follows from Proposition 2.3(b) that
|α̂1(w)| > 1 and |α̂1(w)| > |α̂i(w)|, 1 < i ≤ 7. Hence for fixed ℓ, we have

ĝ(ℓ)(w) = ĝ
(ℓ)
1 (w) +

7∑
i=2

[wq̂i(w)α̂
n
i (w)]

(ℓ) = ĝ
(ℓ)
1 (w) + o(γ̂n

ℓ (w))α̂
n
1 (w) (2.12)

for some γ̂ℓ(w) ∈ (0, 1). Taking w = 1 yields

ĝ(ℓ)(1) = ĝ
(ℓ)
1 (1) + o(γ̂n

ℓ )α̂
n
1 (1), (2.13)

where γ̂ℓ = γ̂ℓ(1) ∈ (0, 1). Applying (2.11), (2.12) and (2.13) with ℓ = 1, by (2.7) µ̂n is of the
form

µ̂n = Ĉa,bn+ d̂a,b + o(γ̂n
a,b), (2.14)

with

Ĉa,b =
α̂′
1(1)

α̂1(1)
= −e′1(1)

e1(1)
and d̂a,b = 1 +

q̂′1(1)

q̂1(1)
. (2.15)

Here we used the definition that α̂1(w) = 1/e1(w) (see 2.11).

Setting w = 1 in (2.8) and using e1(1) = Φ (with Φ = (
√
5 − 1)/2), we get Ĉa,b =

−e′1(1)/e1(1) = (a+ b)/10. It is harder to calculate d̂a,b, but still tractable. We prove

d̂a,b =
371− 113

√
5

40
a+

361− 123
√
5

40
b.

Recall from (2.11) that

q̂1(w) =
w−b + e31(w)

wÊ(w)
with E(w) :=

∏
j ̸=1

(ej(w)− e1(w)) ,

Thus

d̂a,b = 1 +
q̂′1(1)

q̂1(1)
= 1 +

−bw−b−1 + 3e21(w)e
′
1(w)

w−b + e31(w)
− Ê(w) + wÊ ′(w)

wÊ(w)
.

Setting x = 1 and using e1(1) = Φ and e′1(1) = −(a+ b)Φ/10, we get

d̂a,b =
−b− 3

10
(a+ b)Φ3

1 + Φ3
− Ê ′(1)

Ê(1)
= −

√
5 + 1

4
b− 9− 3

√
5

40
(a+ b)− Ê ′(1)

Ê(1)
. (2.16)

Thus it remains to evaluate Ê(1) and Ê ′(1). Consider Âw(e
′ + e1(w)):

Âw(e
′+e1(w)) = 1−e′−e1(w)−(wa+wb)(e′+e1(w))

4−wa+b(e′+e1(w))
6−wa+b(e′+e1(w))

7.
(2.17)

On the other hand, we have

Âw(e
′ + e1(w)) = −wa+b

∏
j ̸=1

(e′ + e1(w)− ej(w)). (2.18)
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Comparing the coefficients of e′ in (2.17) and (2.18) gives

Ê(w) =
∏
j ̸=1

(e1(w)− ej(w)) = w−(a+b) + 4(w−b + w−a)e31(w) + 6e51(w) + 7e61(w). (2.19)

Setting w = 1, we get

Ê(1) = 1 + 8Φ3 + 6Φ5 + 7Φ6 = 10Φ2.

Differentiating both sides of (2.19) yields

Ê ′(x) = (a+ b)w−(a+b+1) − 4
(
aw−a−1 + bw−b−1

)
e31(w) + 30e41(w)e

′
1(w) + 42e51(w)e

′
1(w).

Setting x = 1 and plugging in e1(1) = Φ and e′1(1) = −(a+ b)Φ/10 yields

Ê ′(1)

Ê(1)
=

29
√
5− 95

10
(a+ b). (2.20)

Plugging (2.20) into (2.16) yields

d̂a,b =
371− 113

√
5

40
a+

361− 123
√
5

40
b. (2.21)

This completes the proof of Theorem 2.2(a). �

2.3. Gaussian Behavior. We prove Mn = aKn + bLn converges weakly to a Gaussian by
calculating its centralized moments and using Markov’s Method of Moments. Its variance is
a special case, and is determined below. Note that the proof of Theorem 2.2(a) yielded

E[aKn + bLn] = Ĉa,bn+ d̂a,b + o(γ̂n
a,b) and var(aKn + bLn) = ĥ′(1)n+ q̂′′1(1)+ o(τ̂na,b) (2.22)

with

Ĉa,b = −e′1(1)

e1(1)
, d̂a,b = 1 +

q̂′1(1)

q̂1(1)
, ĥ(w) = −we′1(w)

e1(w)
− Ĉa,b

and constants γ̂a,b, τ̂a,b ∈ (0, 1) and q̂′′1(1) depending on only a and b.
Let σ̂n be the standard deviation of Mn = aKn + bLn. First we centralize and normalize

M to M(c)
n = (Mn − µ̂n)/σ̂n. Thus it suffices to show that M(c)

n converges to the standard
normal. According to Markov’s Method of Moments, we only need to show that each moment

of M(c)
n tends to that of the standard normal distribution, which is equivalent to the following.

Theorem 2.4. Let µ̂n(m) be the mth moment of Mn − µ̂n, then for any integer u ≥ 1,

µ̂n(2u− 1)

σ̂2u−1
n

→ 0 and
µ̂n(2u)

σ̂2u
n

→ (2u− 1)!!, as n → ∞. (2.23)

In the proof, we first point out that it suffices to prove the same result for Mn − µ̃n with
µ̃n = Ĉa,bn+ d̂a,b and Ĉa,b, d̂a,b defined in (2.15). Then we show that the mth moment µ̃n(m)
of Mn − µ̂n equals g̃m(1)/Dn for polynomials g̃m(x) with

g̃0(x) =
∑
k,l

pn,k,lw
ak+bl−µ̃n−1 =

ĝ(x)

xµ̃n+1
, g̃j+1(x) = (xg̃j(x))

′, j ≥ 1. (2.24)

By Definitions (2.6) and (2.24), we prove by induction that the main term of g̃m(1) is
α̂n
1 (x)x

−µ̃n
∑m

i=0 fi,m(x)n
i for some functions fi,m(x)’s and thus conclude that µ̃n(m) = 1

q1(1)∑m
i=0 fi,m(1)n

i+o(τnm) for some τm ∈ (0, 1). Finally, we evaluate the fi,m(1)’s to obtain (2.23).
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We now give the proof. We will interrupt the proof to prove some simple, needed results.
Noting that µ̂n = µ̃n+o(γn

1 ) by (2.14), by simple approximations (see Appendix E.2 of [MW])

µ̂n(m) = µ̃n(m) + o(βn
m) (2.25)

for some βm ∈ (0, 1). In the special case of m = 2, we have σ̂2
n = µ̂n(2) = µ̃n(2) + o(τnm),

therefore (2.23) is equivalent to

µ̃n(2u− 1)

µ̃
u− 1

2
n (2)

→ 0 and
µ̃n(2u)

µ̃u
n(2)

→ (2u− 1)!!, as u → ∞. (2.26)

We calculate the moments µ̃n(m). By (2.24)

g̃1(x) = (xg̃0(x))
′ so g̃1(1) =

∑
k,l

pn,k,l(ak + bl − µ̃n)x
ak+bl−µ̃n−1

g̃2(x) = (xg̃1(x))
′ so g̃2(1) = µ̃n(2)Dn, (2.27)

and since g̃0(x)/Dm is the probability generating function of Mn −µn, we have for general m
that

g̃m(x) =
∑
k,l

pn,k,l(ak + bl − µ̃n)
mxak+bl−µ̃n−1 and g̃m(1) = µ̃n(m)Dn. (2.28)

Returning to the proof of Theorem 2.4, denote

g̃0,i(x) =
q̂i(x)α̂

n
i (x)

xµ̃n
, and g̃j+1,i(x) = (xg̃j,i(x))

′ (2.29)

for x ∈ Iε if 1 < i ≤ 7 and for x ∈ Iε ∪ {1} if i = 1. By Definition (2.29) and using (2.24) and
the same approach as in proving (2.12), there is a τj ∈ (0, 1) such that

∀x ∈ Iε : g̃j(x) =
L∑
i=1

g̃j,i(x) = g̃j,1(x) + o(τnj )α̂
n
1 (x). (2.30)

Denoting g̃j,1(x) by Fj(x), then

F0(x) = q̂1(x)α̂
n
1 (x)x

−µ̃n and Fj+1(x) = (xFj(x))
′. (2.31)

Note that q̂1(x) and α̂1(x) are ℓ-times differentiable for all ℓ. Thus when j = 0, we get

F1(x) = (xF0(x))
′ = α̂n

1 (x)x
−µ̃n [h(x)q̂1(x)n+ d′q̂1(x) + xq̂′1(x)] , (2.32)

where h(x) and d′ are defined as

h(x) =
xα̂′

1(x)

α̂1(x)
− Ĉa,b and d′ = 1− d̂a,b = − q̂′1(1)

q̂1(1)
(2.33)

(see (2.15) for the definition of d̂a,b). By (2.15), we have

h(1) = 0. (2.34)

Moreover, since α̂1(x) is ℓ-times differentiable at 1 and α̂1(1) ̸= 0, we have

h(x) is ℓ−times differentiable at 1 for any ℓ ≥ 1. (2.35)

From (2.31) and (2.32), we observe that Fm(x) can be written as a product of α̂n
1 (x)x

−µ̃n

and a sum of other functions of n and x. In fact, we have the following.
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Proposition 2.5. For any m ≥ 0,
(a) We have Fm(x) is of the form

Fm(x) = α̂n
1 (x)x

−µ̃n

m∑
i=0

fi,m(x)n
i, (2.36)

where the fi,m’s are functions of x and α̂1(x) but independent of n.
(b) The fi,m’s are ℓ-times differentiable at x ∈ Iε for any ℓ ≥ 1.
(c) Define

fi,m(x) = 0 if i > m or i < 0 or m < 0, (2.37)

then for m > 0, we have the following recurrence relation:

fi,m(x) = h(x)fi−1,m−1(x) + d′fi,m−1(x) + xf ′
i,m−1(x). (2.38)

Proof. We proceed by induction on m. We first do m = 0 and 1 for all three cases. (a) holds
because of (2.31) and (2.32). Further, (2.31) and (2.32) give the expressions of f0,0, f0,1 and
f1,1:

f0,0(x) = q̂1(x), f0,1(x) = d′q̂1(x) + xq̂′1(x), f1,1(x) = h(x)q̂1(x). (2.39)

Thus they are differentiable ℓ-times at x ∈ Iε for any ℓ ≥ 1. Hence (b) holds for m = 0 and
1. Finally, with (2.39), it is easy to verify that (c) holds for m = 0 and 1.

Standard algebra and induction gives (a). For (b) and (c), we find

fm+1,m+1(x) = h(x)fm,m(x)

fi,m+1(x) = h(x)fi−1,m(x) + d′fi,m(x) + xf ′
i,m(x), 1 ≤ i ≤ m

f0,m+1(x) = d′f0,m(x) + xf ′
0,m(x). (2.40)

By Definition (2.37), we can combine (2.40) into one recurrence relation (2.38) (with m re-
placed by m + 1). With this recurrence relation, (2.35) and the induction hypothesis of (b)
for m, we see that (b) also holds for m+ 1, completing the proof. �
Proposition 2.6. We have

µ̃n(m) =
1

q̂1(1)

m∑
i=0

fi,m(1)n
i + o(τnm) for some τm ∈ (0, 1).

Proof. This follows from (2.28), (2.30), (2.7), (2.13) with ℓ = 0, the definition Fm(x) = g̃m,1(x)
and Proposition 2.5, and some straightforward algebra. �

From Proposition 2.6, we see that the main term of µ̃n(m) only depends on q̂1(1) and the
fi,m(1)’s. Note that to prove (2.26), it suffices to find the main term of µ̃n(m). Thus the
problem reduces to finding the fi,m(1)’s. We first calculate the variance, namely µ̃n(2).

Proposition 2.7. The variance of Mn − µ̃n is

µ̃n(2) = h′(1)n+ q̂′′1(1) + o(τn2 ) (2.41)

with h′(1) ̸= 0, q̂′′1(1) and τ2 ∈ (0, 1) constant depending on only L and the ci’s.

With the estimation (2.25), it follows immediately that the variance of Mn = aKn + bLn is

µ̂n(2) = h′(1)n+ q̂′′1(1) + o(τ ′n2 ),
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with h′(1) ̸= 0, q̂′′1(1) and τ2 ∈ (0, 1) constant depending on only a and b, with

ĥ′(1) =

√
5− 1

200

[
10

(
a2 + b2

)
− 20−

√
5

5
(a+ b)2

]
. (2.42)

Proof of Proposition 2.7. If m = 2, by (2.40) and (2.34) we get f2,2(1) = h(1)f1,1(1) = 0.
Applying (2.38) to (i,m) = (1, 2) and plugging in (2.39) yields

f1,2(x) = h(x)f0,1(x) + d′f1,1(x) + xf ′
1,1(x)

= h(x)f0,1(x) + d′h(x)q̂1(x) + xh(x)q̂′1(x) + xh′(x)q̂1(x).

Setting x = 1 and using h(1) = 0 (see (2.34)) yields

f1,2(1) = h(1)f0,1(1) + d′h(1)q̂1(1) + h(1)q̂′1(1) + h′(1)q̂1(1) = h′(1)q̂1(1).

Using (2.40) and (2.38), we can find f0,2(x) as follows:

f0,2(x) = d′f0,1(x) + xf ′
0,1(x) = d′2q̂1(x) + d′xq̂′1(x) + d′xq̂1(x) + xq̂′1(x) + x2q̂′′1(x).

Setting x = 1 and substituting d′ by − q̂′1(1)

q̂1(1)
(see (2.33)) yields f0,2(1) = q̂′′1(1). Combining the

above results with Proposition 2.6 gives (2.41). We can derive a formula for ĥ′(w) in terms

of e1(w) by using (2.8). Then (2.42) follows by e1(1) = Φ. We can verify that ĥ′(1) ̸= 0 by
simple quadratic inequalities (details can be found in Appendix E.4 of [MW]). This completes
the proof, and proves (2.5) of Theorem 2.2. �

From Propositions 2.6 and 2.7, we see that (2.26) (which is what we need to show to finish
the proof of Theorem 2.4) is equivalent to

fi,2u−1(1) = 0, i ≥ u, (2.43)

fi,2u(1) = 0, i > u, (2.44)

and

fu,2u(1) = (2u− 1)!!q̂1(1) (h
′(1))

u
. (2.45)

For convenience, we denote t
(ℓ)
i,m = f

(ℓ)
i,m(1), ℓ ≥ 0. Note that if ℓ = 0, then the definition is

just ti,m = fi,m(1).

Proposition 2.8. For any 0 ≤ m < 2i and ℓ ≥ 0, we have

t
(ℓ)
i,m−ℓ = f

(ℓ)
i,m−ℓ(1) = 0. (2.46)

Proof. If ℓ > m or i > m − ℓ, according to Definition (2.37), we have fi,m−ℓ(x) = 0. Thus

f
(ℓ)
i,m−ℓ(x) = 0 and (2.46) follows. Therefore, it suffices to prove for 0 ≤ ℓ ≤ m < 2i and
i ≤ m− ℓ, which follows by induction. �

Corollary 2.9. For any u ≥ 1, we have (2.43) and (2.44), i.e.,

ti,2u−1 = 0, i ≥ u and ti,2u = 0, i > u.

Proof. Use Proposition 2.8 with (i,m, ℓ) = (i, 2u− 1, 0). �

Thus it remains to show (2.45).
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Proposition 2.10. For any u ≥ 1 we have
(a)fu,u+v(x) with 0 ≤ v ≤ u is of the form

fu,u+v(x) = ru,v q̂1(x)x
vhu−v(x) (h′(x))

v
+ su,v(x)h

u+1−v(x), (2.47)

where ru,v is a constant determined by u and v, su,v(x) is a polynomial of the h(ℓ)(x)’s and the

q̂
(ℓ)
1 (x)’s (ℓ ≥ 0) with coefficients polynomials of x.
(b) ru,0 = 1 and

ru,v = ru−1,v + (u− v + 1)ru,v−1, ru,u = ru,u−1, 1 ≤ v < u. (2.48)

(c) ru,u = (2u− 1)!!. (2.49)

Proof. We proceed by induction on u+ v. By (2.39) and (2.40), we get

fu,u(x) = q̂1(x)h
u(x), u ≥ 1.

Hence (a) holds for v = 0 and ru,0 = 1.
Since the only (u, v) with u+v = 1 and 0 ≤ v ≤ u is (0, 1), (a) holds for u+v = 1. Assume

that (a) holds for u+ v ≤ t (t ≥ 1). We simultaneously prove (a) and (b). If u+ v = t+1, we
have shown that the statement holds for v = 0. For 1 ≤ v ≤ u, we have three cases: v = 1,
1 < v < u and 1 < v = u.

When 1 ≤ v < u, applying (2.38) to (i,m, ℓ) = (u, u + v, 0) and using the induction
hypothesis for (u− 1, v), (u, v − 1), we get

fu,u+v(x) = h(x)fu−1,u+v−1 + d′fu,u+v−1 + xf ′
u,u+v−1

= ru−1,v q̂1(x)x
vhu−v(x) (h′(x))

v
+ [su−1,v(x)

+ d′ru,v−1q̂1(x)x
v−1 (h′(x))

v−1
+ d′su,v−1(x)h(x)]h

u+1−v(x)

+ x
[
ru,v−1q̂1(x)x

v−1hu−v+1(x) (h′(x))
v−1

+ su,v−1(x)h
u+2−v(x)

]′
. (2.50)

Denote the last line of (2.50) by W . There are three cases: v = 1, 1 < v < u, and 1 < v = u.
We prove the third case, as the others follow similarly (or see [MW]).

As 1 < v = u, we have u ≥ 2. From the recurrence relation (2.38) and the initial condition

(2.39), we see that each fi,m is a polynomial of the h(ℓ)(x)’s and the q̂
(ℓ)
1 (x)’s (ℓ ≥ 0) with

coefficients polynomials of x. By (2.50) and the induction hypothesis (2.47) for (u, v) =
(u, u−1), after some algebra we get fu,u+v(x) is of the form (2.47) and (2.48) holds, completing
the proof of (a) and (b). We use generating functions to prove (c). The proof of (c) is an
immediate consequence of Lemma 2.11 (see Remark 2.1 for the details). �
Lemma 2.11. Define

Tv(x) =
∞∑
u=v

ru,vx
u−v, v ≥ 0. (2.51)

Then we have
(a)

Tv(x) =
T ′
v−1(x)

1− x
, v ≥ 1. (2.52)

(b)

T0(x) =
1

1− x
and Tv(x) =

(2v − 1)!!

(1− x)2v+1
, v ≥ 1. (2.53)
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Proof. (a) From Definition (2.51) and the recurrence relation, we find

(1− x)Tv(x) =
∞∑
u=v

(u− v + 1)ru,v−1x
u−v. (2.54)

On the other hand, taking the derivative of both sides of Definition (2.51), we see that T ′
v−1(x)

also equals (2.54). Therefore (2.52) holds.
(b) Since ru,0 = 1 (see Proposition 2.10(b)), we obtain T0(x) =

1
1−x

. The claimed expressions
for Tv follow from (a) by induction. �

Remark 2.1. The proof of part (c) of Proposition 2.10 is immediate, as any u ≥ 1,

ru,u = Tu(0) = (2u− 1)!!

by Definition (2.51) and Lemma 2.11.

Setting v = u and x = 1 in Proposition 2.10(a) and using (2.34) and (2.49), we get

fu,2u(1) = ru,uq̂1(1) (h
′(1))

u
= (2u− 1)!!q̂1(1) (h

′(1))
u
,

as desired, completing the proof of Theorem 2.4 and Theorem 2.2(b). �
Applying Theorem 2.2 to the special cases (a, b) = (1, 0) and (0, 1) yields

Theorem 2.12. The expected values and variances of Kn and Ln are

E[Kn] =
1

10
n+

371− 113
√
5

40
+ o(γ̂n

1,0), var(Kn) =
29
√
5− 25

1000
n+O(1),

E[Ln] =
1

10
n+

361− 123
√
5

40
+ o(γ̂n

0,1), var(Ln) =
15 + 21

√
5

1000
n+O(1).

Additionally, we have

E[Kn]− E[Ln] =
1 +

√
5

4
+ o(γ̂′n) =

φ

2
+ o(γ̂′n) ≈ 0.809016994 for some γ̂′ ∈ (0, 1).

In words, on average there are approximately 0.809 more positive terms than negative terms
in the far-difference representation.

Applying Theorem 2.2 to a = b = 1, we get

var(Kn + Ln) =
2
√
5

125
n+O(1), and var(Kn − Ln) =

√
5− 1

10
n+O(1). (2.55)

Hence the covariance is approximately −0.0219574275n+O(1), as

cov(Kn,Ln) =
var(Kn + Ln)− var(Kn − Ln)

4
=

25− 21
√
5

1000
n+O(1). (2.56)

With Theorem 2.12 and (2.56), we compute the correlation between Kn and Ln:

corr(Kn,Ln) =
10
√
5− 121

179
+ o(1) ≈ −0.551057655 + o(1).

Since var(Kn) and var(Ln) are of size n and have the same coefficients of n, we have

cov(Kn + Ln,Kn − Ln) = var(Kn)− var(Ln) = O(1).
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Further, we have the values of var(Kn + Ln) and var(Kn − Ln) from (2.55), thus

corr(Kn + Ln,Kn − Ln) =
cov(Kn + Ln,Kn − Ln)√
var(Kn + Ln)var(Kn − Ln)

= o(1).

Since Kn and Ln are asymptotically bivariate Gaussian, Kn+Ln and Kn−Ln are independent
as n → ∞.

3. Conclusion and Future Research

Our combinatorial perspective has extended previous work, allowing us to prove Gaussian
behavior for the number of summands for a large class of expansions in terms of solutions to
linear recurrence relations. This is just the first of many questions one can ask. Others, which
we hope to return to at a later date, include:

(1) What happens for linearly recursive sequences with arbitrary integer coefficients?
(2) What if either uniqueness fails, or some numbers are not representable?
(3) What if we only care about how many distinct Hi’s occur in the decomposition?
(4) What is true about gaps between summands?

The last question has been solved in some cases in [BGM], and is currently being generalized
to additional recurrence relations. They prove

Theorem 3.1 (Base B Gap Distribution). For base B decompositions, as n → ∞ the proba-

bility of a gap of length 0 between summands for numbers in [Bn, Bn+1) tends to (B−1)(B−2)
B2 ,

and for gaps of length k ≥ 1 to (B−1)(3B−2)
B2 B−k.

Theorem 3.2 (Zeckendorf Gap Distribution). For Zeckendorf decompositions, for integers in

[Fn, Fn+1) the probability of a gap of length k ≥ 2 tends to φ(φ−1)
φk for k ≥ 2, with φ = 1+

√
5

2

the golden mean. A similar result holds for Tribonacci and other recurrence sequences.
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Bordeaux 10 (1998), no. 1, 17–32.
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