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Abstract A beautiful theorem of Zeckendorf states that every integer can be writ-
ten uniquely as a sum of non-consecutive Fibonacci numbers {Fn}∞

n=1; Lekkerk-
erker proved that the average number of summands for integers in [Fn,Fn+1) is
n/(ϕ2 + 1), with ϕ the golden mean. This has been generalized to certain classes
of linear recurrence relations, where using techniques from number theory and er-
godic theory the fluctuations about the mean are shown to be Gaussian. We dis-
cuss an alternative proof that is more combinatorial, and comment on general-
izations to related decompositions and problems which have not been handled by
these other methods. For example, every integer can be written uniquely as a sum
of the ±Fn’s, such that every two terms of the same (opposite) sign differ in in-
dex by at least 4 (3). The distribution of the numbers of positive and negative
summands converges to a bivariate normal with computable, negative correlation,
namely−(21−2ϕ)/(29+2ϕ)≈−0.551058. Another consequence of this perspec-
tive is proving that the distribution of gaps between summands in the Zeckendorf
decomposition converges to a geometric random variable.
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1.1 Introduction

1.1.1 History

The Fibonacci numbers have fascinated professional mathematicians and ama-
teurs for centuries. They have a wealth of properties and interesting relationships;
see for example [Kos]. This article is concerned with how Fibonacci numbers arise
in decompositions. A beautiful theorem of Zeckendorf [Ze] states that every posi-
tive integer may be written uniquely as a sum of non-adjacent Fibonacci numbers; of
course, to ensure that the decomposition is unique we need to use the normalization
F1 = 1, F2 = 2, F3 = 3, F4 = 5 and in general Fn+1 = Fn +Fn−1.

The standard proof is by induction, and is also constructive. Simply take the
largest Fibonacci number that is at most our number x; say this is Fn. If Fn+Fn−1≤ x
then we could take Fn−1 in our decomposition, and then replace Fn and Fn−1 with
Fn+1 by the recurrence relation, which contradicts the maximality of Fn. Thus
Fn + Fn−1 > x and Fn−1 cannot be used. By induction, we can write x− Fn as a
sum of non-adjacent Fibonacci numbers; further, since x−Fn < Fn−1 clearly Fn−1 is
not in our decomposition. Adding Fn to the decomposition of x−Fn yields our de-
sired expansion. To prove uniqueness, we again proceed by induction. Arranging the
Fibonacci summands in decreasing order, if x = Fn1 + · · ·+Fnk = Fm1 + · · ·+Fm`

, we
must have Fn1 = Fm1 ; if not, the two sums cannot be equal.1 The claim now follows
by induction as x−Fn1 < x.

There are many questions one may ask about the Zeckendorf decomposition. The
first is to understand the average number of summands needed. Lekkerkerker [Lek]
proved that for x ∈ [Fn,Fn+1), as n→ ∞ the average number of summands needed
is n/(ϕ2 +1), with ϕ = 1+

√
5

2 the golden mean. These results can be generalized to
other related decompositions; see [BCCSW, Day, GT, Ha, Ho, Ke, Len] for some
of the history and results along these lines. After determining the mean, the next
question is the variance or, more generally, the distribution of the fluctuations about
the mean. Using techniques from number theory and ergodic theory, the fluctuations
about the mean have been shown [DG, FGNPT, GTNP, LT, Ste1] to converge to a
Gaussian.

In this chapter we discuss a new approach to proving these results. Koloğlu,
Kopp, Miller and Wang [KKMW] adopt a combinatorial vantage to attack this and
related problems. They reprove the Gaussian behavior for the Zeckendorf decom-
position by writing down an explicit formula for the number of x where there are
exactly k summands in the decomposition, and then using Stirling’s formula to an-
alyze the resulting binomial coefficients. This method is extended in Miller-Wang
[MW] to other decompositions in terms of elements satisfying special recurrence
properties. We describe the main results in §1.1.2 and then sketch the proofs in the

1 If Fm1 > Fn1 , then the largest the n-sum can be is Fn1 +Fn1−2 +Fn1−4 + · · ·+δ , where δ is either
1 or 2. Adding 1 or 2 to this and using the recurrence relation gives Fn1+1, and thus the expressions
are unequal.
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Fibonacci case in §1.2. The key idea is recasting the problem from number theory to
combinatorics, specifically to the number of integer partitions satisfying certain con-
straints. We describe this idea in detail, and outline the resulting algebra (complete
details are available in [KKMW]). Unfortunately, while the combinatorial frame-
work applies to generalizations of Zeckendorf decompositions, the proof in general
is significantly harder. This is due to the fact that for the Fibonacci numbers, we
have explicit formulas for the probability a number in [Fn,Fn+1) has exactly k+ 1
summands in its Zeckendorf decomposition; it is just

(n−1−k
k

)
/Fn−1. All our results

follow from a careful analysis of the behavior as n → ∞, which can be accom-
plished with Stirling’s formula. In the general case, the resulting expressions are not
as tractable, and the combinatorial approach must be supplemented. We sketch the
main ingredients in the analysis in §1.3, and refer the reader to [MW] for full proofs.
We end in §1.4 with some open questions as well as recent successes in applying
these techniques to determine the distribution of gaps between summands.

1.1.2 Main Results

Before stating the main results, we first set some notation. The sequences defined
below are the generalizations of the Fibonacci numbers that can be handled using
the techniques of [MW] (as well as the other methods).

Definition 1.1.1 A sequence {Hn}∞
n=1 of positive integers is a Positive Linear Re-

currence Sequence (PLRS) if the following properties hold:

1. Recurrence relation: There are non-negative integers L,c1, . . . ,cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L, (1.1)

with L,c1 and cL positive.
2. Initial conditions: H1 = 1, and for 1≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 +1. (1.2)

A decomposition ∑
m
i=1 aiHm+1−i of a positive integer N (and the sequence {ai}m

i=1)
is legal if a1 > 0, the other ai ≥ 0, and one of the following two conditions holds:

• Condition 1: We have m < L and ai = ci for 1≤ i≤ m.
• Condition 2: There exists s ∈ {0, . . . ,L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (1.3)

as+1, . . . ,as+` = 0 for some `≥ 0, and {bi}m−s−`
i=1 (with bi = as+`+i) is legal.

If ∑
m
i=1 aiHm+1−i is a legal decomposition of N, we define the number of sum-

mands (of this decomposition of N) to be a1 + · · ·+am.
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Informally, in a legal decomposition we can’t use the recurrence relation to re-
place a linear combination of summands with another summand, and the coeffi-
cient of each summand is appropriately bounded. Other authors [DG, Ste1] use the
phrase G-ary decomposition for a legal decomposition, and sum-of-digits function
for the number of summands. For example, if Hn+1 = 2Hn + 3Hn−1 +Hn−2, then
H5 + 2H4 + 3H3 +H1 is legal, while H5 + 2H4 + 3H3 +H2 is not (we can replace
2H4 + 3H3 +H2 with H5), nor is 7H5 + 2H2 (as the coefficient of H5 is too large).
Note the Fibonacci numbers are just the special case of L = 2 and c1 = c2 = 1.

The following probabilistic language is convenient for stating some of our main
results.

Definition 1.1.2 (Associated Probability Space to a PLRS) Let {Hn} be a Posi-
tive Linear Recurrence Sequence. For each n, consider the discrete outcome space

Ωn = {Hn, Hn +1, Hn +2, · · · , Hn+1−1} (1.4)

with probability measure

Pn(A) = ∑
ω∈A

ω∈Ωn

1
Hn+1−Hn

, a⊂Ωn; (1.5)

in other words, each of the Hn+1−Hn numbers is weighted equally. We define the
random variable Kn by setting Kn(ω) equal to the number of summands of ω ∈Ωn
in its legal decomposition. Implicit in this definition is that each integer has a unique
legal decomposition; we prove this in Theorem 1, and thus Kn is well-defined.

We denote the cardinality of Ωn by

∆n = Hn+1−Hn, (1.6)

and we set pn,k equal to the number of elements in [Hn,Hn+1) whose generalized
Zeckendorf decomposition has exactly k summands; thus

pn,k = ∆n ·Prob(Kn = k). (1.7)

The following special case suggests why the limiting behavior is Gaussian.
Consider the PLRS given by L = 1, Hn+1 = 10Hn. Thus our PLRS is just the
geometric series 1,10,100, . . . , and a legal decomposition of N is just its deci-
mal expansion. Clearly every positive integer has a unique legal decomposition.
Further, the distribution of the number of summands converges to a Gaussian by
the Central Limit Theorem, as we essentially have the sum of n− 1 indepen-
dent, identically distributed discrete uniform random variables. To see this, write
N = a110n+ · · ·+an+11. We are interested in the large n behavior of a1+ · · ·+an+1
as we vary over x in [10n,10n+1). For large n the contribution of a1 is immaterial,
and the remaining ai’s can be understood by considering the sum of n indepen-
dent, identically distributed discrete uniform random variables on {0, . . . ,9} (which
have mean 4.5 and standard deviation approximately 2.87). Denoting these random
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variables by Ai, by the Central Limit Theorem A2 + · · ·+An+1 converges to being
normally distributed with mean 4.5n and standard deviation

√
33n/4.

We first review previous results and methods (which are also proved using our
methods in [MW]), and then describe our new perspective and extensions. See [?,
Ha, Ho, Ke, Len] for more on generalized Zeckendorf decompositions, [GT] for a
proof of Theorems 1 and 2, and [DG, FGNPT, GTNP, LT, Ste1] for a proof and
some generalizations of Theorem 3.

The first result is that a PLRS leads to a unique, generalized Zeckendorf decom-
position.

Theorem 1 (Generalized Zeckendorf’s Theorem for PLRS). Let {Hn}∞
n=1 be a

Positive Linear Recurrence Sequence. Then
(a) There is a unique legal decomposition for each integer N ≥ 0.
(b) There is a bijection between the set Sn of integers in [Hn,Hn+1) and the set

Dn of legal decompositions ∑
n
i=1 aiHn+1−i.

In addition to being of interest in its own right, the Generalized Lekkerkerker
Theorem below is needed as input to prove the Gausian behavior of the number of
summands.

Theorem 2 (Generalized Lekkerkerker’s Theorem for PLRS). Let {Hn}∞
n=1 be

a Positive Linear Recurrence Sequence, let Kn be the random variable of Definition
1.1.2 and denote its mean by µn. Then there exist constants C > 0, d and γ1 ∈ (0,1)
depending only on L and the ci’s in the recurrence relation of the Hn’s such that

µn = Cn+d +o(γn
1 ). (1.8)

The main result in the subject is

Theorem 3 (Gaussian Behavior for PLRS). Let {Hn}∞
n=1 be a Positive Linear Re-

currence Sequence and let Kn be the random variable of Definition 1.1.2. As n→∞,
the distribution of Kn converges to a Gaussian.

Unlike previous proofs, which required all summands to be positive, our method
allows us to handle negative summands as well, and thus we can prove Gaussian
behavior in many other situations. We state one particularly interesting situation.

Definition 1. We call a sum of the ±Fn’s a far-difference representation if every
two terms of the same sign differ in index by at least 4, and every two terms of
opposite sign differ in index by at least 3.

Albert [Al] proved the analogue of Zeckendorf’s Theorem for the far-difference
representation. It is convenient to set

Sn =

{
∑0<n−4i≤n Fn−4i = Fn +Fn−4 +Fn−8 + · · · if n > 0
0 otherwise.

(1.9)
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Theorem 4 (Generalized Zeckendorf’s Theorem for Far-Difference Represen-
tations [Al]). Every integer has a unique far-difference representation. For each
N ∈ (Sn−1 = Fn− Sn−3− 1,Sn], the first term in its far-difference representation is
Fn, and the unique far-difference representation of 0 is the empty representation.

The far-difference representations have both positive and negative summands,
which opens up the fascinating question of how the number of each are related. It
turns out they are correlated, though the total number of summands and the differ-
ence in the number of positive and negative summands are not. Specifically,

Theorem 5 (Generalized Lekkerkerker’s Theorem and Gaussian Behavior for
Far-Difference Representations [MW]). Let Kn and Ln be the corresponding
random variables denoting the number of positive summands and the number of
negative summands in the far-difference representation for integers in (Sn−1,Sn]. As
n tends to infinity, E[Kn] =

1
10 n+ 371−113

√
5

40 +o(1), and is
√

5+1
4 = ϕ

2 greater than

E[Ln]; the variance of both is of size 15+21
√

5
1000 n; the joint density of Kn and Ln is

a bivariate Gaussian with negative correlation 10
√

5−121
179 =− 21−2ϕ

29+2ϕ
≈−0.551; and

Kn +Ln and Kn−Ln are independent.
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1.2 The Fibonacci Case

As the framework of the Fibonacci case is the basis for the general case, and as the
Fibonacci case can be handled elementarily, we describe it in some detail. The key
idea is to change our perspective and apply the solution to a standard problem in
combinatorics, the stars and bars problem. It is also known as the cookie problem in
some circles (see for instance Chapter 1 of [MT-B]), or Waring’s problem with first
powers (see [Na]).

Lemma 1.2.1 The number of ways to partition C identical objects into P distinct
sets is

(C+P−1
P−1

)
.
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Here it is very important that the objects being partitioned are indistinguishable;
all that matters is how many objects are given to a specified set, not which objects
are given.

Proof. Imagine instead C+P−1 objects. There are
(C+P−1

P−1

)
ways to choose P−1

of the C. Each of these choices corresponds to a partition of C objects into P sets
where order does not count and the objects are indistinguishable. Specifically, for
a given choice all of the remaining C items are divided among the P sets, where
everything up to the first of the P−1 chosen objects goes to the first set, the objects
between the first and second chosen element goes into the second set, and so on.

We may recast the above as saying the number of solutions to x1 + · · ·+ xP =C,
with each xi ≥ 0, is

(C+P−1
P−1

)
. One of the advantages of this approach is that it is

very easy to add in lower restrictions. For example, to find the number of solutions
to y1 + · · ·+ yP = C with yi ≥ ni for some choice of non-negative integers (with of
course n1 + · · ·+nP ≤C), simply let yi = xi +ni. Now each xi ≥ 0 is integer valued,
and the number of solutions to the equation in the yi’s is the number of solutions to
x1 + · · ·+ xP =C− (n1 + · · ·+nP), or

(C−(n1+···+nP)+P−1
P−1

)
.

We use the above perspective to analyze the Zeckendorf decomposition of an
x ∈ [Fn,Fn+1). The number of such x is Fn+1−Fn, which by the Fibonacci recur-
rence relation is just Fn−1. We count the number of x ∈ [Fn,Fn+1) with exactly k+1
summands in their Zeckendorf decomposition, denoting this quantity by Nn(k); we
choose to record the number of summands as k+1 as each x must have at least one
summand, namely Fn. By the standard proof of Zeckendorf’s theorem, we know
each x has at most one such valid decomposition. The existence of a Zeckendorf
decomposition follows by showing ∑

n
k=0 Pn(k) = Fn−1 (since no number has two

valid decompositions, it is enough to know that the number of valid decompositions
equals the number of integers in the interval [Fn,Fn+1)).

Lemma 1.2.2 Let Pn(k) = Nn(k)/Fn−1, which is the probability an x ∈ [Fn,Fn+1)

has exactly k+1 summands in its Zeckendorf decomposition. Then Pn(k) =
(n−1−k

k

)
/ Fn−1.

Proof. If x has exactly k+1 summands, then x = Fi1 +Fi2 + · · ·+Fik +Fik+1 , where
Fik+1 = Fn, 1≤ i1 < i2 < i3 < · · ·< ik < ik+1, and d j := i j− i j−1 ≥ 2 for 2≤ j≤ k+1
(and d1 := i1− 0 ≥ 1). We can recast this in terms of the cookie problem above.
Clearly d1+d2+ · · ·+dk+1 = n (we have a telescoping series and the last summand
in the decomposition is Fn). Let d1 = x1 + 1 and d j = x j + 2 for 2 ≤ j ≤ k + 1.
Then the number of x that have exactly k + 1 summands is the number of tuples
(d1, . . . ,dk+1) with d1 + d2 + · · ·+ dk+1 = n, or equivalently the number of tuples
(x1, . . . ,xk+1) with x1 + x2 + · · ·+ xk+1 = n− (2k+1). By our combinatorial result,
Lemma 1.2.1, taking C = n− (2k + 1) and P = k + 1 we see the number of such
tuples is just

Nn(k) =

(
C+P−1

P−1

)
=

(
n− (2k+1)+(k+1−1)

k+1−1

)
=

(
n−1− k

k

)
; (1.10)

the lemma now follows.
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Now that we have an explicit formula for Nn(k) and Pn(k), all the claims follow
for the Fibonacci case. We quickly provide a sketch; see [KKMW] for details.

1. Zeckendorf expansion (Theorem 1): As each x ∈ [Fn,Fn+1) has at most one
Zeckendorf decomposition, the claim follows by counting the number of valid
Zeckendorf expansions and seeing that this equals Fn−1. This number is just
∑

n
k=0
(n−1−k

k

)
. The summands vanish if k≥b(n−1)/2c (the binomial coefficients

are extended so that
(n
`

)
= 0 if ` > n or ` < 0). We claim

n

∑
k=0

(
n−1− k

k

)
= Fn−1. (1.11)

We proceed by induction. The base case is clear, and the general case follows
from using the standard identity that

(m
`

)
+
( m
`+1

)
=
(m+1
`+1

)
. Specifically,

n

∑
k=0

(
n+1−1− k

k

)
=

n

∑
k=0

[(
n−1− k

k−1

)
+

(
n−1− k

k

)]
=

n

∑
k=1

(
n−2− (k−1)

k−1

)
+

n

∑
k=0

(
n−1− k

k

)
=

n−1

∑
k=0

(
n−2− k

k

)
+

n

∑
k=0

(
n−1− k

k

)
= Fn−2 +Fn−1 (1.12)

by the inductive assumption; noting Fn−2 +Fn−1 = Fn completes the proof.

2. Lekkerkerker’s Theorem (Theorem 2): The claim follows by computing the ex-
pected value, which is

n

∑
k=0

(k+1)Pn(k) = 1+
1

Fn−1

n

∑
k=0

k
(

n−1− k
k

)
. (1.13)

Let

E (n) =
b n−1

2 c

∑
k=0

k
(

n−1− k
k

)
. (1.14)

Straightforward algebra shows

E (n) = (n−2)Fn−3−E (n−2). (1.15)

To see this, note
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E (n) =
b n−1

2 c

∑
k=0

k
(

n−1− k
k

)
=
b n−1

2 c

∑
k=1

k
(n−1− k)!

k!(n−1−2k)!

=
b n−1

2 c

∑
k=1

(n−2− (k−1))
(n−3− (k−1)!

(k−1)!(n−3−2(k−1))!

=
b n−3

2 c

∑
`=0

(n−2− `)

(
n−3− `

`

)

= (n−2)
b n−3

2 c

∑
`=0

(
n−3− `

`

)
−
b n−3

2 c

∑
`=0

`

(
n−3− `

`

)
= (n−2)Fn−3−E (n−2), (1.16)

which proves the claim. Note that we used (1.11) to replace the sum of binomial
coefficients with a Fibonacci number.
We study the telescoping sum

b n−3
2 c

∑
`=0

(−1)` (E (n−2`)+E (n−2(`+1))) (1.17)

(which is essentially E (n)). Using (1.15) yields

b n−3
2 c

∑
`=0

(−1)`(n−3−2`)Fn−3−2`+O(Fn−2). (1.18)

While we could evaluate the last sum exactly, trivially estimating it suffices to
obtain the main term, which will give us Lekkerkerker’s Theorem.
Binet’s formula2 states that Fn =

ϕ√
5
·ϕn− 1−ϕ√

5
· (1−ϕ)n, with ϕ = 1+

√
5

2 is the
golden mean. We use this to convert the sum into a weighted geometric series
(where each factor is multiplied by a simple polynomial):

E (n) =
ϕ√

5

b n−3
2 c

∑
`=0

(n−3−2`)(−1)`ϕn−3−2`+O(Fn−2)

=
ϕn−2
√

5

(n−3)
b n−3

2 c

∑
`=0

(−ϕ
−2)`−2

b n−3
2 c

∑
`=0

`(−ϕ
−2)`

+O(Fn−2).(1.19)

2 It is worth noting that while one can establish Binet’s formula by substituting and checking , it can
also be derived via generating functions; it is no coincidence that in the general proof generating
functions will play a central role.
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We use the geometric series formula to evaluate the first term, and differentiating
identities3 on the second. After some algebra we obtain

E (n) =
nϕn−2

√
5(1+ϕ−2)

+O(Fn−2) =
nϕn

√
5(ϕ2 +1)

+O(Fn−2). (1.20)

As Fn−1 =
ϕn
√

5
+O(1) for large n, we finally obtain

E (n) =
nFn−1

ϕ2 +1
+O(Fn−2). (1.21)

We note a more careful analysis is possible, and such a computation leads to an
exact form for the mean.

3. Gaussian Behavior (Theorem 3): As we have the density function Pn(k) =(n−1−k
k

)
/Fn−1, one way to prove the Gaussian behavior is to show that as n→ ∞

the function Pn(k) converges to a normal distribution. This may be accomplished
via Stirling’s formula (see [KKMW] for the computation). Another possible ap-
proach would be to generalize the proof of Lekkerkerker’s theorem to compute
all moments, and then appeal to the Moment Method; however, as the combi-
natorics become harder as the moment increases, the Stirling approach is more
tractable.

1.3 Positive Linear Recurrence Sequences

We discuss the main ideas in proving the Gaussian behavior for the generalized
Zeckendorf decompositions for Positive Linear Recurrence Sequences {Hn}. In par-
ticular, we discuss the obstructions that arise in trying to use the argument from the
previous section, and describe the techniques that handle them. The computations
become quite long and technical; we refer the reader to [MW] for these details, and
content ourselves with describing the method below.

The first step is to prove that all integers have a unique, legal representation
involving the Positive Linear Recurrence Sequence. The proof is essentially just
careful book-keeping.

The next step is to determine the size of a general term Hn in our sequence. The
most important use of this is to count the number of integers we have in a given
window, which is used to normalize our counts to probabilities. In the Fibonacci
case, the number of integers in the interval [Fn,Fn+1) is just Fn+1−Fn = Fn−1; we
then used Binet’s formula to approximate well the size of Fn−1. This all generalizes
immediately as we have a linear recurrence relation.

3 As ∑
m
k=0 xk = (1−xm+1)/(1−x), applying x d

dx to both sides gives ∑
m
k=0 kxk = x(1− (m+1)xm +

mxm+1)/(1− x)2.
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We first sketch another proof of the results from §1.2, and then comment on how
to generalize these arguments. While we do not discuss the proof of Theorem 5 in
detail, it too can be handled by this method (see [MW]).

1.3.1 New Approach: Case of Fibonacci Numbers

We change notation slightly for the rest of this chapter in order to match the notation
of [MW]. Let pn,k := #{N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N has
exactly k summands}. This double sequence satisfies a nice recurrence relation. For
any N ∈ [Fn+1,Fn+2), we have N = Fn+1 +Ft + · · · where t ≤ n− 1 (we are not
allowed to have adjacent Fibonacci numbers in our decomposition). Imagine N has
exactly k+1 summands in its decomposition. It must have Fn+1 and it cannot have
Fn, and needs exactly k more non-adjacent summands from F1 to Fn−1. There are
pn−1,k ways to have k non-adjacent summands with Fn−1 included, pn−2,k ways to
have k non-adjacent summands without Fn−1 but with Fn−2 included, and so on. We
thus obtain the following formula for pn+1,k+1:

pn+1,k+1 = pn−1,k + pn−2,k + · · · . (1.22)

Similarly (replacing n+1 with n) we find

pn,k+1 = pn−2,k + pn−3,k + · · · . (1.23)

Subtracting, we find

pn+1,k+1 = pn,k+1 + pn−1,k. (1.24)

Our goal is to extract information about the pn,k. A powerful approach is to use
generating functions. The generating function in this case is

∑
n,k>0

pn,kxkyn =
y

1− y− xy2 . (1.25)

Using partial fractions, we find

y
1− y− xy2 = − y

y1(x)− y2(x)

(
1

y− y1(x)
− 1

y− y2(x)

)
, (1.26)

where y1(x) and y2(x) are the roots of 1− y− xy2 = 0 and the coefficient of yn is
g(x) = ∑k>0 pn,kxk. Note the roots are readily computed via the quadratic formula;
this is not true for the general case, and is the source of much of the technicalities.

As in the introduction, let Kn be the corresponding random variable associated
with k. Using the Method of Moments, it suffices to prove the moments of Kn con-
verge to the moments of a Gaussian to prove Gaussian behavior. We do so through
differentiating identities. With g(x) as above, differentiating once and setting x = 1



12 Steven J. Miller and Yinghui Wang

yields
g(1) = ∑

k>0
pn,k = Fn+1−Fn, (1.27)

which is just the number of elements in our interval [Fn,Fn+1). Differentiating again
gives

g′(x) = ∑
k>0

kpn,kxk−1. (1.28)

If we take x = 1 we essentially obtain the mean of Kn; we need to divide by Fn−1 as
the pn,k’s are counts and not probabilities. As g(1) = Fn−1, we find

g′(1) = g(1)E[Kn]. (1.29)

We continue, and find (
xg′(x)

)′
= ∑

k>0
k2 pn,kxk−1, (1.30)

which leads to (
xg′(x)

)′ ∣∣∣
x=1

= g(1)E[K2
n ], (1.31)

and then (
x
(
xg′(x)

)′)′ ∣∣∣
x=1

= g(1)E[K3
n ], (1.32)

and so on.
Similar results hold for the centralized random variable K′n = Kn−E[Kn]. Miller

and Wang [MW] prove that E[(K′n)
2m]/(SD(K′n))

2m→ (2m−1)!! (with SD(K′n) the
standard deviation of K′n) and E[(K′n)

2m−1]/(SD(K′n))
2m−1 → 0, which yields the

Gaussian behavior of Kn.

1.3.2 New Approach: General Case

We generalize the arguments from §1.3.1 to the case of Zeckendorf expansions
arising from Positive Linear Recurrence Sequences {Hn}. We now set pn,k =
#{N ∈ [Hn,Hn+1): the generalized Zeckendorf decomposition of N has exactly k
summands}. We can find a recurrence relation as before. For the Fibonacci num-
bers, we found

pn+1,k+1 = pn,k+1 + pn,k. (1.33)

In the general case, we have

pn+1,k =
L−1

∑
m=0

sm+1−1

∑
j=sm

pn−m,k− j, (1.34)

where s0 = 0,sm = c1 +c2 + · · ·+cm (with these c’s the same c’s as in the definition
of our recurrence sequence).
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The generating function in the Fibonacci case was relatively straightforward, be-
ing y

1−y−xy2 . Now our generating function equals

∑n≤L pn,kxkyn−∑
L−1
m=0 ∑

sm+1−1
j=sm

x jym+1
∑n<L−m pn,kxkyn

1−∑
L−1
m=0 ∑

sm+1−1
j=sm

x jym+1
. (1.35)

We again perform a partial fraction expansion in order to glean information about
the coefficients. Instead of

− y
y1(x)− y2(x)

(
1

y− y1(x)
− 1

y− y2(x)

)
, (1.36)

now we have

− 1

∑
sL−1
j=sL−1

x j

L

∑
i=1

B(x,y)
(y− yi(x))∏ j 6=i (y j(x)− yi(x))

, (1.37)

where

B(x,y) = ∑
n≤L

pn,kxkyn−
L−1

∑
m=0

sm+1−1

∑
j=sm

x jym+1
∑

n<L−m
pn,kxkyn (1.38)

and the yi(x)’s are the roots of A(y) = 1−∑
L−1
m=0 ∑

sm+1−1
j=sm

x jym+1 = 0. One of the
major difficulties of the proof is the analysis of the roots yi(x). Unlike the Fibonacci
case, where it was easy to write down simple expressions for these via the quadratic
formula, in general the arguments become quite involved. If however the coefficients
in the recurrence relation are non-increasing then the proofs are easy; see Appendix
C of [MW]. The general cases (see Appendix A of [MW]) is more complicated,
involving continuity and the range of the |yi(x)|’s. The main idea is to first show that
there exists x > 0 such that A(y) has no multiple roots and then prove that there are
only finitely many x > 0 such that A(y) has multiple roots.

The coefficient of yn is g(x) = ∑k>0 pn,kxk. We use the method of differentiating
identities as before to get the moments, and find that Kn converges to a Gaussian as
n→ ∞.

The proof of Theorem 5 proceeds similarly. We state the two key elements, the
recurrence relation and the generating function, without proof, and refer the reader
to [MW] for the details. Let pn,k,` be the number of far-difference representations
of integers in (Sn−1,Sn] with k positive summands and ` negative summands. The
recurrence relation is

pn,k,` = pn−1,k,`+ pn−4,k−1,`+ pn−3,`,k−1, n≥ 5, (1.39)

and the generating function is
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Ĝ(x,y,z) = ∑
n>0,k>0,`≥0

pn,k,`xky`zn. (1.40)

1.4 Conclusion and Future Research

The combinatorial approach has extended previous work, allowing us to prove Gaus-
sian behavior for the number of summands for a large class of expansions in terms
of solutions to linear recurrence relations. This is just the first of many questions
one can ask. Others, which we hope to return to at a later date, include:

1. Are there similar results for linearly recursive sequences with arbitrary integer
coefficients (i.e., negative coefficients are allowed in the defining relation)?

2. Lekkerkerker’s theorem, and the Gaussian extension, are for the behavior in in-
tervals [Fn,Fn+1). Do the limits exist if we consider other intervals, say [Fn +
g1(Fn),Fn + g2(Fn)) for some functions g1 and g2? If yes, what must be true
about the growth rates of g1 and g2?

3. For the generalized recurrence relations, what happens if instead of looking at
∑

n
i=1 ai we study ∑

n
i=1 min(1,ai)? In other words, we only care about how many

distinct Hi’s occur in the decomposition.

4. What can we say about the distribution of the largest gap between summands in
the Zeckendorf decomposition? Appropriately normalized, how does the distri-
bution of gaps between the summands behave? What is the distribution of the
largest gap? How often is there a gap of 2?

Recently there has been significant progress on the last question by Beckwith
and Miller [BM]. They prove the following two results.

Theorem 1.4.1 (Base B Gap Distribution) For base B decompositions, as n→ ∞

the probability of a gap of length 0 between summands for numbers in [Bn,Bn+1)

tends to (B−1)(B−2)
B2 , and for gaps of length k ≥ 1 to (B−1)(3B−2)

B2 B−k.

Theorem 1.4.2 (Zeckendorf Gap Distribution) For Zeckendorf decompositions,
for integers in [Fn,Fn+1) the probability of a gap of length k ≥ 2 tends to ϕ(ϕ−1)

ϕk

for k ≥ 2, with ϕ = 1+
√

5
2 the golden mean.

The proofs use the combinatorial vantage, and should be generalizable to other
recurrences.
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