
Chapter 1
Some Results in the Theory of Low-lying Zeros:
Determining the 1-level density, identifying the
group symmetry and the arithmetic of moments
of Satake parameters

Blake Mackall, Steven J. Miller, Christina Rapti, CarolineTurnage-Butterbaugh
and Karl Winsor

Abstract While Random Matrix Theory has successfully modeled the limiting be-
havior of many quanties of families ofL-functions, especially the distributions of
zeros and values, the theory frequently cannot see the arithmetic of the family. In
some situations this requires an extended theory that inserts arithmetic factors that
depend on the family, while in other cases these arithmetic factors result in con-
tributions which vanish in the limit, and are thus not detected. In this chapter we
review the general theory associated to one of the most important statistics, then-
level density of zeros near the central point. According to the Katz-Sarnak density
conjecture, to each family ofL-functions there is a a corresponding symmetry group
(which is a subset of a classical compact group) such that thebehavior of the zeros
near the central point as the conductors tend to infinity agrees with the behavior
of the eigenvalues near 1 as the matrix size tends to infinity.We show how these
calculations are done, emphasizing the techniques, methods and obstructions to im-
proving the results, by considering in full detail the family of Dirichlet characters
with square-free conductors. We then move on and describe how we may associate
a symmetry constant to each family, and how to determine the symmetry group of a
compound family in terms of the symmetries of the constituents. These calculations
allow us to explain the remarkable universality of behavior, where the main terms
are independent of the arithmetic, as we see that only the first two moments of the
Satake parameters survive to contribute in the limit. Similar to the Central Limit
Theorem, the higher moments are only felt in the rate of convergence to the uni-
versal behavior. We end by exploring the effect of lower order terms in families of
elliptic curves. We present evidence supporting a conjecture that the average second
moment in one-parameter families without complex multiplication has, when ap-
propriately viewed, a negative bias, and end with a discussion of the consequences
of this bias on the distribution of low-lying zeros, in particular relations between
such a bias and the observed excess rank in families.
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1.1 Introduction

The purpose of this chapter is to describe some results, and the methods used to
prove them, in the theory of low-lying zeros and the connections between number
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theory and random matrix theory. There is now an extensive literature on the subject.
See for example the books [Da, Ed, For, Iw, IwKo, KaSa2, Meh, Ti] and the survey
articles [BFMT-B, Con, KaSa1, KeSn1, KeSn2, KeSn3], as wellas [Ha, FirMil] for
popular accounts of the history of the meeting of the two fields.

Briefly, assuming the Generalized Riemann Hypothesis (GRH)the non-trivial ze-
ros of any niceL-function lie on its critical line, and therefore it is possible to inves-
tigate the statistics of its normalized zeros. The work of Montgomery and Odlyzko
[Mon, Od1, Od2] suggested that zeros ofL-functions in the limit are well-modeled
by eigenvalues of matrix ensembles. Initially the comparison was made between
number theory and the Gaussian Unitary Ensemble (GUE) with statistics such as
n-level correlations and spacings between zeros; however, these statistics are insen-
sitive to finitely many zeros and in particular miss the behavior at the central point.
This is a significant issue, as there are many situations in number theory where
these central values are important, such as the Birch and Swinnerton-Dyer conjec-
ture [BS-D1, BS-D2], and these statistics had the same limiting values both for dif-
ferent families ofL-functions and different matrix ensembles. The reader unfamiliar
with these statistics and results should see the introduction of [AAILMZ, ILS] (or
the introduction of any of the dissertations in low-lying zeros!) for more details.

Following the work of Katz-Sarnak [KaSa1, KaSa2] a new statistic was intro-
duced, then-level density; unlike the earlier statistics this dependson the family or
ensemble being studied. We mostly concentrate on the 1-level density in this pa-
per, though see [Mil1, Mil2] for some important applications of the 2-level density
(which we briefly discuss later).

Let φ be an even Schwartz test function onR whose Fourier transform

φ̂(y) =

∫ ∞

−∞
φ(x)e−2π ixydx (1.1.1)

has compact support. LetFN be a (finite) family ofL-functions satisfying GRH.
The 1-level density associated toFN is defined by

D1,FN(φ) =
1

|FN| ∑
f∈FN

∑
j

φ
(

logcf

2π
γ( j)

f

)
, (1.1.2)

where1
2 + iγ( j)

f runs through the non-trivial zeros ofL(s, f ). Herecf is the “analytic
conductor” off , and gives the natural scale for the low zeros. Asφ is Schwartz, only
low-lying zeros (i.e., zeros within a distance≪ 1/ logcf of the central points= 1/2)
contribute significantly. Thus the 1-level density can helpidentify the symmetry type
of the family.

Based in part on the function-field analysis whereG(F ) is the monodromy group
associated to the familyF , Katz and Sarnak [KaSa1, KaSa2] conjectured that for
each reasonable irreducible family ofL-functions there is an associated symmetry
groupG(F ) (one of the following five: unitaryU , symplectic USp, orthogonal O,
SO(even), SO(odd)), and that the distribution of critical zeros near 1/2 mirrors the
distribution of eigenvalues near 1. (Similar correspondences hold for other statistics,
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such as the values ofL-functions being well modeled by values of characteristic
polynomials; see for example [CFKRS].) The five groups have distinguishable 1-
level densities.

To evaluate (1.1.2), one applies the explicit formula, converting sums over zeros
to sums over primes. By [KaSa1], the 1-level densities for the classical compact
groups are

W1,SO(even)(x) = K1(x,x)
W1,SO(odd)(x) = K−1(x,x)+ δ (x)
W1,O(x) = 1

2W1,SO(even)(x)+
1
2W1,SO(odd)(x)

W1,U(x) = K0(x,x)
W1,USp(x) = K−1(x,x),

(1.1.3)

whereK(y) = sinπy
πy , Kε (x,y) = K(x− y) + εK(x+ y) for ε = 0,±1, andδ (x) is

the Dirac delta functional. It is often more convenient to work with the Fourier
transforms of the densities:

Ŵ1,SO(even)(u) = δ (u)+ 1
2I(u)

Ŵ1,SO(odd)(u) = δ (u)− 1
2I(u)+1

Ŵ1,O(u) = δ (u)+ 1
2

Ŵ1,U(u) = δ (u)
Ŵ1,USp(u) = δ (u)− 1

2I(u),

(1.1.4)

whereI(u) is the characteristic function of[−1,1]. While these five densities are dis-
tinguishable for test functionsφ where the support of̂φ exceeds[−1,1], the three
orthogonal densities are indistinguishable inside this region. While for many fami-
lies of interest we cannot calculate the 1-level density beyond [−1,1], we are able
to uniquely associate a symmetry group by studying the 2-level densities, which are
mutually distinguishable for arbitrarily small support (see [Mil1, Mil2]).

Let F be a family ofL-functions, andFN the subset with analytic conduc-
tors N (or at mostN, or of orderN). There is now a large body of work sup-
porting the Katz-Sarnak conjecture that the behavior of zeros near the central
point s = 1/2 in a family of L-functions (as the conductors tend to infinity)
agrees with the behavior of eigenvalues near 1 of a classicalcompact group (uni-
tary, symplectic, or some flavor of orthogonal). Evidence insupport of this con-
jecture has been obtained for many families ofL-functions, including Dirich-
let characters [Gao, ER-GR, FioMil, HuRud, LevMil, OS1, OS2, Rub], ellip-
tic curves [HuyKeSn, Mil1, Mil2, Yo1], weightk level N cuspidal newforms
[ILS, Ro, HuMil, MilMo, RiRo, Ro], Maass forms [AAILMZ, AMil, GolKon],
L-functions attached to number fields [FoIw, MilPe, Ya], symmetric powers of
GL2 automorphic representations [Gü] and Rankin-Selberg convolutions of fami-
lies [DuMil1, DuMil2] to name a few.

Our purpose is to introduce the reader to some of the techniques and issues of
the field. Any introduction must by necessity be brief and must sadly omit many in-
teresting and related results. In particular, we do not discuss other models for zeros
near the central point, such as the Hybrid Model (see [GoHuKe], whereL-functions
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are modeled by a partial Euler product, which encodes numbertheory, and a partial
Hadamard product, which is believed to be modeled by matrix ensembles), or the
L-function Ratios Conjecture [CFZ1, CFZ2, ConSn, ConSn2, FioMil, GJMMNPP,
HuyMM, Mil5, Mil7, MilMo]. We also mostly ignore the issues that arise when
studying 2-level (or higher) densities (see [HuMil] for a determination of an alter-
native to the Katz-Sarnak density conjecture which facilitates comparisons between
number theory and random matrix theory).

We begin in§1.2 by first calculating the 1-level density of various families of
Dirichlet L-functions. This simple family is very amenable to analysis. As such, it
provides an excellent introduction to the subject and allows one to see the main
ideas and techniques without becoming bogged down in technical computations.
We thus show the calculations in complete detail in the hopesthat doing so will
help introduce newcomers to the subject.

We then turn in§1.3 to determining the symmetry group of convolutions ofL-
functions. Recently Shin and Templier [ShTe] determined the symmetry group for
many families (see also the article by Sarnak, Shin and Templier [SaShTe] in this
volume); using the work of Dueñez-Miller [DuMil1, DuMil2]we are able to use in-
puts such as these to find the symmetry group of Rankin-Selberg convolutions, thus
reducing the study of compound families to that of simple ones. In the course of our
analysis we see the role lower order terms play. This leads toa nice interpretation of
the remarkable universality in behavior between number theory and random matrix
theory reminiscent of the universality found in the CentralLimit Theorem, which
we elaborate on in great detail.

We conclude in§1.4 with avery brief synopsis of some work in progress on
lower order terms in families of elliptic curves, and the effect they have on rates of
convergence and detecting the arithmetic of the family (which is missed by the main
term in the 1-level density).

1.2 Families of Dirichlet L-Functions

To date, there has been significant success in showing agreement between zeros near
the central point in families ofL-functions and eigenvalues near 1 of ensembles
of classical compact groups. The purpose of this section is to analyze one of the
simplest examples, that of DirichletL-functions. The advantage of this calculation
is that many of the technical difficulties that plague other families are not present,
and thus this provides an excellent opportunity to introduce the reader to the subject.
Our first result is the following, proved by Hughes and Rudnick [HuRud].

Theorem 1.2.1 (1-Level Density for Family of Prime Conductors) Let φ̂ be an
even Schwartz function with supp(φ̂) ⊂ [−2,2], m a prime, andFm = {χ : χ is
primitive mod m}. Then
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1
Fm

∑
χ∈Fm

∑
γχ :L( 1

2+iγχ ,χ)=0

φ
(

γχ
log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy+O

(
1

logm

)
. (1.2.5)

As m→ ∞, the above agrees only with the N→ ∞ limit of the 1-level density of
N×N unitary matrices.

The argument below is from notes by the second named author written during
the completion of his thesis [Mil1].

After proving this agreement between number theory and random matrix theory,
there are two natural ways to proceed. The first is to try to extend the support. It turns
out that extending the support is related to deep arithmeticquestions concerning the
distribution of primes in congruence classes, which we emphasize below. While un-
fortunately at present there are no unconditional results,recently Fiorilli and Miller
[FioMil] showed how to extend the support under various standard assumptions.
Depending on the strength of the assumed cancelation, theirresults range from in-
creasing the support up to(−4,4) all the way to showing agreement for any finite
support.

The other direction is to remove the restriction that the conductor is prime.

Theorem 1.2.2 (Dirichlet Characters from Square-free Numbers) LetFN,sq−free

denote the family of primitive Dirichlet characters arising from odd square-free
numbers m∈ [N,2N], and letφ̂ be an even Schwartz function with supp(φ̂)⊂ [−2,2]
Denote the conductor ofχ by c(χ). Then

1
|FN,sq−free| ∑

χ∈FN,sq−free

∑
γχ :L( 1

2+iγχ ,χ)=0

φ
(

γχ
log(c(χ)/π)

2π

)

=

∫ ∞

−∞
φ(y)dy+O

(
1

logN

)
. (1.2.6)

As N→ ∞, the above agrees only with the N→ ∞ limit of the 1-level density of
N×N unitary matrices.

While the arguments in [FioMil] also apply to general square-free moduli, their
approach is different. We prove this result by first generalizing Theorem 1.2.1 to a
conductor with exactlyr distinct prime factors, and obtain good estimates on the
error terms as a function ofr. Theorem 1.2.2 then follows by controlling how many
square-free numbers haver factors, highlighting a common technique in the subject.
We elected to show this method of proof precisely because it showcases an important
technique in the subject. It is also possible to attack a fixedm directly, which we do
in Theorem 1.2.9.
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1.2.1 Dirichlet Characters from Prime Conductors

Before computing the 1-level density of the low-lying zerosof DirichletL-functions,
as one of the aims of this article is to provide a self-contained introduction to the
subject we first quickly review the needed properties of Dirichlet characters and their
associatedL-functions. After these preliminaries, we use the explicitformula (see
for example [ILS, RudSa]) to relate sums of our test functionover the zeros to sums
of its Fourier transform weighted by Dirichlet characters.We are able to analyze
these sums very easily due to the orthogonality relations ofDirichlet characters, and
obtain support up to[−2,2]. See [Da, IwKo] for more on Dirichlet characters.

1.2.1.1 Review of Dirichlet Characters

If m is prime, then(Z/mZ)∗ is cyclic of orderm−1 with generatorg (so any element
is of the formga for somea). Let ζm−1 = e2π i/(m−1). The principal characterχ0 is

χ0(k) =

{
1 if (k,m) = 1

0 if (k,m)> 1.
(1.2.7)

Each of them−2 primitive characters are determined (because they are multi-
plicative) once their action on a generatorg is specified. As eachχ : (Z/mZ)∗ →C∗,
for eachχ there exists anl such thatχ(g) = ζ ℓ

m−1. Hence for eachℓ, 1≤ ℓ≤ m−2,
we have

χℓ(k) =

{
ζ ℓa

m−1 if k≡ ga modm

0 if (k,m) > 0.
(1.2.8)

In most families one is not so fortunate to have such explicitformulas; these facil-
itate many calculations (such as proving the orthogonalityrelations for sums over
the characters).

Let χ be a primitive character modulom. Set

c(m,χ) =
m−1

∑
k=0

χ(k)e2π ik/m; (1.2.9)

c(m,χ) is a Gauss sum of modulus
√

m. The associatedL-functionL(s,χ) (and the
completedL-functionΛ(s,χ)) are given by

L(s,χ) = ∏
p
(1− χ(p)p−s)−1

Λ(s,χ) = π− 1
2 (s+ε)Γ

(
s+ ε

2

)
m

1
2 (s+ε)L(s,χ), (1.2.10)

where
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ε =

{
0 if χ(−1) = 1

1 if χ(−1) =−1

Λ(s,χ) = (−i)ε c(m,χ)√
m

Λ(1− s, χ̄). (1.2.11)

Let φ be an even Schwartz function with compact support, say contained in the
interval(−σ ,σ), and letχ be a non-trivial primitive Dirichlet character of conductor
m. The explicit formula1 gives

∑
γχ

φ
(

γχ
log(m

π )

2π

)
=

∫ ∞

−∞
φ(y)dy

− ∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
[χ(p)+ χ(p)]p−1/2

− ∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
[χ2(p)+ χ2(p)]p−1

+ O

(
1

logm

)
, (1.2.12)

where we are assuming GRH2 to write the zeros as12 + iγχ , γχ χ ∈ R, and the con-
tribution from the primes to the third and higher powers are absorbed in the big-Oh
term.3 Sometimes it is more convenient to normalize the zeros not bythe logarithm
of the analytic conductor but rather by something that is thesame to first order.4

Explicitly, for m∈ [N,2N] we have

1 The derivation is by doing a contour integral of the logarithmic derivative of the completedL-
function times the test function, using the Euler product and shifting contours; see [RudSa] for
details.
2 It is worth noting that these formulas hold without assumingGRH. In that case, however, the zeros
no longer lie on a common line and we lose the correspondence with eigenvalues of Hermitian
matrices.
3 A similar absorbtion holds in other families, so long as the Satake parameters satisfy|αi(p)| ≤
Cpδ for someδ < 1/6.
4 We comment on this in greater length when we consider the family of all characters with square-
free modulus. Briefly, a constancy in the conductors allows us to pass certain sums through the
test functions to the coefficients. This greatly simplifies the analysis of the 1-level density; unfortu-
nately cross terms arise in the 2-level and higher cases, andthe savings vanish (see [Mil1, Mil2]).
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∑
γχ

φ

(
γχ

log(N
π )

2π

)
=

log(m/π)
log(N/π)

∫ ∞

−∞
φ(y)dy

− ∑
p

logp
log(N/π)

φ̂
(

logp
log(N/π)

)
[χ(p)+ χ(p)]p−1/2

− ∑
p

logp
log(N/π)

φ̂
(

2
logp

log(N/π)

)
[χ2(p)+ χ2(p)]p−1

+ O

(
1

logN

)
, (1.2.13)

and for any subsetN of [N,2N]

1
|N | ∑

m∈N

log(m/π)
log(N/π)

= 1+O

(
1

logN

)
. (1.2.14)

ConsiderFm, the family of primitive characters modulo a primem. There are
m− 2 elements in this family, given by{χℓ}1≤ℓ≤m−2. As eachχℓ is primitive, we
may use the Explicit Formula. To determine the 1-level density we must evaluate

∫ ∞

−∞
φ(y)dy − 1

m−2 ∑
χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
[χ(p)+ χ(p)]p−1/2

− 1
m−2 ∑

χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
[χ2(p)+ χ2(p)]p−1

+ O

(
1

logm

)
. (1.2.15)

Definition 1.2.3 (First and Second Sums)We call the two sums in(1.2.15) the
First Sum and the Second Sum (respectively), denoting them by S1(m;φ) and
S2(m;φ).

The Density Conjecture states that the family average should converge to the
Unitary Density:

lim
m→∞

D1,Fm(φ) = lim
m→∞ ∑

χ(m)
χ 6=χ0

∑
γχ

φ
(

γχ
log(m

π )

2π

)
=

∫ ∞

−∞
φ(y)dy. (1.2.16)

We prove this for̂φ supported in[−2,2], which establishes Theorem 1.2.1. We break
the proof into two steps. First, we show in Lemmas 1.2.4 and 1.2.5 that the first sum
does not contribute asm→ ∞ for suchφ̂ , and then complete the proof in Lemma
1.2.6 by showing the second sum does not contribute for any finite support.
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1.2.1.2 The First SumS1(m;φ)

As one of our goals is to see how far we can get with elementary methods, in the
lemma below we show that simple estimation of the prime sums allows us to de-
termine the 1-level for support up to(−2,2), and then immediately strengthen it by
using the Brun-Titchmarsh Theorem to get it for[−2,2].

Lemma 1.2.4 (Contribution from S1(m;φ)) For supp(φ̂ )⊂ (−σ ,σ) and m prime,
S1(m;φ)≪ mσ/2−1, implying that this term does not contribute to the main termin
the 1-level density forσ < 2.

Proof. We must analyze

S1(m;φ) =
1

m−2 ∑
χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
[χ(p)+ χ(p)]p−1/2.

(1.2.17)
Since the orthogonality of the Dirichlet characters implies

∑
χ(m)

χ(k) =

{
m−1 if k≡ 1 modm

0 otherwise,
(1.2.18)

we have for any primep 6= m that

∑
χ(m)
χ 6=χ0

χ(p) =

{
m−2 if p≡ 1 modm

−1 otherwise.
(1.2.19)

Let

δm(p,1) =

{
1 if p≡ 1 modm

0 otherwise.
(1.2.20)

The contribution to the sum fromp = m is zero; if instead we substitute−1 for
∑ χ(m)

χ 6=χ0

χ(m), our error isO(1/
√

m) and hence negligible relative to the other errors.

We now calculateS1(m;φ) with φ̂ an even Schwartz function with support in
(−σ ,σ). As the conductors are constant in the family, we may interchange the sum-
mations and first average over the family. This allows us to exploit the cancelation
in sums of Dirichlet characters.
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S1(m;φ) =
1

m−2 ∑
χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
[χ(p)+ χ(p)]p−1/2

=
1

m−2 ∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
∑
χ(m)
χ 6=χ0

[χ(p)+ χ(p)]p−1/2

=
2

m−2 ∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
p−1/2(−1+(m−1)δm(p,1))

≪ 1
m

mσ

∑
p=2

p−1/2 +
mσ

∑
p=1

p≡1(m)

p−1/2

≪ 1
m

mσ

∑
k=1

k−1/2 +
mσ

∑
k=m+1
k≡1(m)

k−1/2

≪ 1
m

mσ

∑
k=1

k−1/2 +
1
m

mσ

∑
k=1

k−1/2 ≪ 1
m

mσ/2. (1.2.21)

Notice that we had to be careful with the estimates of the sum over primes congruent
to 1 modulom. Each residue class modulom has approximately the same sum,
with the difference between two classes bounded by the first term of whichever
class has the smallest element. As our numbersk are of the formℓm+ 1 for ℓ ∈
{1,2,3, . . .}, the classk ≡ 1(m) has the smallest sum of them classes. Thus if we
add all the classes modulom and divide bym, we increase the sum, justifying the
above arguments.

HenceS1(m;φ) = 1
mmσ/2, implying that there is no contribution from the first

sum if σ < 2. �

The next lemma illustrates a common theme in the subject: additional arithmetic
information translates to increased support (and vice-versa).

Lemma 1.2.5 For supp(φ̂) ⊂ [−2,2] and m prime, S1(m;φ) ≪ 1/ logm, implying
that this term does not contribute to the main term in the 1-level density.

Proof. Following [HuRud] we use the Brun-Titchmarsh Theorem to improve our
bound for the prime sums in (1.2.21) whenσ = 2. Revisiting that calculation, we
find

S1(m;φ) ≪ 1
mlogm

m2

∑
p=1

logp√
p

+
1

logm

m2

∑
p=1

p≡1(m)

logp√
p
. (1.2.22)

The Brun-Titchmarsh theorem (see [HuRud, MonVa]) states that if x > 2m and
(a,m) = 1 then

π(x;m,a) := #{p≤ x : p≡ a(m)} <
2x

φ(m) log(x/m)
. (1.2.23)
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We can trivially bound the contribution from the primes in (1.2.22) less than 2q by
the arguments from Lemma 1.2.4, and for the remaining we argue as in [HuRud].
The two sums are handled similarly. For example, for the second prime sum we have

1
logm

m2

∑
p>2m

p≡1(m)

logp

p−1/2
≪ 1

logm

∫ m2

2m

logx√
x

1
m

dx
log(x/m)

≪ 1
logm

, (1.2.24)

proving that this term does not contribute whenσ = 2. The first prime sum in
(1.2.22) follows analogously, completing the proof. �

1.2.1.3 The Second SumS2(m;φ)

Lemma 1.2.6 (Contribution from S2(m;φ)) For supp(φ̂ )⊂ (−σ ,σ) and m prime,
S2(m;φ) ≪ σ logm

m , implying that this term does not contribute to the main termin
the 1-level density for any finiteσ .

Proof. We must analyze (formprime)

S2(m;φ) =
1

m−2 ∑
χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
[χ2(p)+ χ2(p)]p−1.

(1.2.25)
The orthogonality relations immediately imply

S(m) := ∑
χ(m)
χ 6=χ0

[χ2(p)+ χ2(p)] =

{
2(m−2) if p≡±1(m)

−2 if p 6≡ ±1(m).
(1.2.26)

The proof is straightforward asχ2(p) = χ(p2) (and similarly forχ).
Let

δm(p,±) =

{
1 if p≡±1 modm

0 otherwise.
(1.2.27)

We argue as we did in our analysis ofS1(m;φ) in Lemma 1.2.4, and find
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S2(m;φ) =
1

m−2 ∑
χ(m)
χ 6=χ0

∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
[χ2(p)+ χ2(p)]p−1

=
1

m−2∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
∑
χ(m)
χ 6=χ0

[χ2(p)+ χ2(p)]p−1

=
1

m−2

mσ/2

∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
p−1[−2+(2m−2)δm(p,±)]

≪ 1
m−2

mσ/2

∑
p

p−1 +
2m−2
m−2

mσ/2

∑
p=1

p≡±1(m)

p−1

≪ 1
m−2

mσ/2

∑
k=1

k−1 +
mσ/2

∑
k=m+1
k≡1(m)

k−1 +
mσ/2

∑
k=m−1

k≡−1(m)

k−1

≪ 1
m−2

log(mσ/2) +
1
m

mσ/2

∑
k=1

k−1 +
1
m

mσ/2

∑
k=1

k−1 + O

(
1
m

)

≪ σ
(

logm
m

+
logm

m
+

logm
m

+
1
m

)
. (1.2.28)

ThereforeS2(m;φ) = O(σ logm
m ), so for all fixed, finiteσ there is no contribution.�

1.2.2 Dirichlet Characters from Square-free Conductors

We now remove the restriction thatm is prime and consider the more general case of
square-free conductors. The purpose of this section is to highlight some of the issues
that arise in the analysis of low-lying zeros in families ofL-functions in a setting
where the methods can be appreciated without being overwhelmed by technical
details.

Specifically, we discuss the question of how to normalize these zeros (either lo-
cally or globally), as well as how to combine results from different cases. We find
it is convenient to partition the space of characters by the number of prime factors,
which we denote byr, of their conductors. We then generalize our bounds on the
first and second sums, explicitly determining ther dependence. The proof is com-
pleted by standard results on sums of the divisor function. This procedure is used in
the analysis of many other families. For example, in [ILS] the analysis of newforms
is accomplished by using inclusion-exclusion to apply the Petersson formula to the
various spaces of oldforms, removing their contributions and carefully combining
the errors.

Our main result is Theorem 1.2.2. As the proof is similar to the proof of Theo-
rem 1.2.1, we content ourselves below with highlighting thedifferences. The first



Contents 15

choice is how to normalize the zeros of each DirichletL-function. We can split
our family by the conductor, and note that the normalizationof the zeros depends
only on this quantity. Further, this number varies monotonically as we move from
N to 2N. While we could normalize by the average log-conductor, or even by logN,
there is no additional work to rescale eachL-function’s zeros by the logarithm of
the conductor. The reason is that we will break the analysis below by the size of the
conductor, and our first and second sums do not contribute. The situation is different
for the contribution from the Gamma factor; however, by (1.2.14) there is no affect
on the main terms. While the situation appears different if we looked at the 2-level
density, as then we would have cross terms and would have to deal with sums of
products of logarithms of conductors and Dirichlet characters, there is no difficulty
here as the conductors are constant among characters with the same moduli, and
monotonically increasing with the moduli. These properties allow us to again break
the analysis into characters with the same moduli. The situation is very different for
one-parameter families of elliptic curves. There, we have to be significantly more
careful, as these cross terms become much harder to handle. For more on these
issues, see [Mil1, Mil2].

Before proving Theorem 1.2.2, we first set some notation and isolate some useful
results. Fix anr ≥ 1 and distinct, odd primesm1, . . . ,mr . Let

m := m1m2 · · ·mr

M1 := (m1−1)(m2−1) · · ·(mr −1) = φ(m)

M2 := (m1−2)(m2−2) · · ·(mr −2). (1.2.1)

NoteM2 is the number of primitive characters modm, each of conductorm. For each
ℓi ∈ [1,mi −2] we have the primitive character discussed in the previous section,χℓi .
A general primitive character modm is given by a product of these characters:

χ(u) = χℓ1(u)χℓ2(u) · · ·χℓr (u). (1.2.2)

Let Fm = {χ : χ = χℓ1χℓ2 · · ·χℓr}. Then|Fm| = M2, and we are led to investi-
gating the following sums:

S1(m, r;φ) =
1

M2
∑

χ∈Fm

∑
p

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
χ(p)+ χ(p)√

p

S2(m, r;φ) =
1

M2
∑

χ∈Fm

∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
χ2(p)+ χ2(p)

p
;(1.2.3)

we have added anr in the notation above to highlight the fact thatm hasr distinct
odd prime factors. We first bound these two sums in terms ofr, and then sum overr
to complete the proof of Theorem 1.2.2.
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1.2.2.1 The First SumS1(m, r;φ) (m Square-free)

Lemma 1.2.7 (Contribution from S1(m, r;φ)) Notation as above (in particular, m
has r factors),

S1(m, r;φ) ≪ 1
M2

2rmσ/2. (1.2.4)

Proof. We must study∑χ∈Fm χ(p) (the sum withχ is handled similarly). Earlier
we showed

mi−2

∑
ℓi=1

χℓi (p) =

{
mi −1−1 if p≡ 1 modmi

−1 otherwise.
(1.2.5)

Define

δmi (p,1) =

{
1 if p≡ 1 modmi

0 otherwise.
(1.2.6)

Then

∑
χ∈Fm

χ(p) =
m1−2

∑
ℓ1=1

· · ·
mr−2

∑
ℓr=1

χℓ1(p) · · ·χℓr (p)

=
r

∏
i=1

mi−2

∑
ℓi=1

χℓi (p) =
r

∏
i=1

(−1+(mi −1)δmi (p,1)). (1.2.7)

Let us denote byk(s) an s-tuple(k1,k2, . . . ,ks) with k1 < k2 < · · ·< ks. This is just a
subset of{1,2, . . . , r}. There are 2r possible choices fork(s). We use these to expand
the above product. Define

δk(s)(p,1) =
s

∏
i=1

δmki
(p,1). (1.2.8)

If s= 0 we setδk(0)(p,1) = 1 for all p. Then

r

∏
i=1

(−1+(mi −1)δmi (p,1)) =
r

∑
s=0

∑
k(s)

(−1)r−sδk(s)(p,1)
s

∏
i=1

(mki −1). (1.2.9)

Let h(p) = 2 logp
log(m/π) φ̂

(
logp

log(m/π)

)
≪ ||φ̂ ||. Then
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S1 =
mσ

∑
p

1
2

h(p)p−1/2 1
M2

∑
χ∈F

[χ(p)+ χ(p)]

=
mσ

∑
p

h(p)p−1/2 1
M2

r

∑
s=0

∑
k(s)

(−1)r−sδk(s)(p,1)
s

∏
i=1

(mki −1)

≪
mσ

∑
p

p−1/2 1
M2

(
1+

r

∑
s=1

∑
k(s)

δk(s)(p,1)
s

∏
i=1

(mki −1)

)
. (1.2.10)

Observing thatm/M2 ≤ 3r we see thes= 0 sum contributes

S1,0 =
1

M2

mσ

∑
p

p−1/2 ≪ 3rmσ/2−1, (1.2.11)

which is negligible forσ < 2, though it is also bounded bymσ/2−1/M2. Now we
study

S1,k(s) =
1

M2

s

∏
i=1

(mki −1)
mσ

∑
p

p−1/2δk(s)(p,1). (1.2.12)

The effect of the factorδk(s)(p,1) is to restrict the summation to primesp≡ 1(mki )
for ki ∈ k(s). The sum will increase if instead of summing over primes satisfy-
ing the congruences we sum over all numbersn satisfying the congruences (with
n ≥ 1+∏s

i=1mki ). As the sum is now over integers and not primes, we can use
basic uniformity properties of integers to bound it. We are summing integers mod
∏s

i=1mki , so summing over integers satisfying these congruences is basically just

∏s
i=1(mki )

−1 ∑mσ
n=1n−1/2 = ∏s

i=1(mki )
−1mσ/2. We can do this as the sum of the

reciprocals from the residue classes of∏s
i=1mki differ by at most their first term.

Throwing out the first term of the class 1+∏s
i=1mki makes it have the smallest sum

of the∏s
i=1mki classes, so adding all the classes and dividing by∏s

i=1mki increases
the sum. Hence (recallingm/M2 ≤ 3r )

S1,k(s) ≪ 1
M2

s

∏
i=1

(mki −1)
s

∏
i=1

(mki )
−1mσ/2 ≪ 3rmσ/2−1, (1.2.13)

though it is also bounded bymσ/2−1/M2. Therefore, for alls theS1,k(s) contribute

3rmσ/2−1. There are 2r choices, yielding

S1 ≪ 6rmσ/2−1, (1.2.14)

which is negligible asmgoes to infinityfor fixed r if σ < 2. If instead we do not use
m/M2 ≤ 3r we obtain a bound ofO(2rmσ/2/M2). �

The worst errors occur whenm is the product of the firstr primes. Letpi denote
the ith prime. The Prime Number Theorem implies forr large that
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logm = ∑
p≤pr

logp ∼ pr . (1.2.15)

As pr ∼ r logr, we find logm∼ r logr or r ∼ logm/ loglogm. Thus

6r ∼ er log6 ∼ mlog6/ loglogm. (1.2.16)

While this iso(mε) for anyε > 0, this estimate is wasteful whenm has few prime
factors. For example, ifm= 1050 thenmlog6/ loglogm ∼ m0.3775, which is sizable. We
thus prefer to leave the estimate ofS1(m, r;φ) as a function ofr, and then average
over the number of square-free integers with exactlyr distinct odd prime factors.
Such a division will lead to significantly better results forthe family of square-free
conductors.

1.2.2.2 The Second SumS2(m, r;φ) (m Square-free)

Lemma 1.2.8 (Contribution from S2(m, r;φ)) Notation as above (in particular, m
has r factors),

S2(m, r;φ) ≪ 1
M2

3rm1/2. (1.2.17)

Proof. We must study∑χ∈F χ2(p) (the sum withχ is handled similarly). Earlier
we showed

mi−2

∑
ℓi=1

χ2
ℓi
(p) =

{
mi −1−1 if p≡±1 modmi

−1 otherwise.
(1.2.18)

Then

∑
χ∈F

χ2(p) =
m1−2

∑
ℓ1=1

· · ·
mr−2

∑
ℓr=1

χ2
ℓ1
(p) · · ·χ2

ℓr
(p)

=
r

∏
i=1

mi−2

∑
ℓi=1

χ2
ℓi
(p)

=
r

∏
i=1

(−1+(mi −1)δmi (p,1)+ (mi −1)δmi (p,−1)). (1.2.19)

Instead of having 2r terms as in the first sum, now we have 3r . Let k(s) be as
before, and letj(s) be an s-tuple of±1’s. Ass ranges from 0 tor we get each of the
3r possibilities, as for a fixeds there are

(r
s

)
choices fork(s), each of these having 2s

choices forj(s) (note∑r
s=02s

(r
k

)
= (1+2)r ). Let h(p) = 2 log p

log(m/π) φ̂
(

2 logp
log(m/π)

)
≪

||φ̂ ||. Define

δk(s)(p, j(s)) =
s

∏
i=1

δmki
(p, j i). (1.2.20)
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Then

∑
χ∈F

χ2(p) =
r

∑
s=0

∑
k(s)

∑
j(s)

(−1)r−sδk(s)(p, j(s))
s

∏
i=1

(mki −1). (1.2.21)

Therefore

S2 =
1

M2
∑
p

logp
log(m/π)

φ̂
(

2
logp

log(m/π)

)
p−1 ∑

χ∈F

[χ2(p)+ χ2(p)]

=
1

M2
∑
p

h(p)
r

∑
s=0

∑
k(s)

∑
j(s)

p−1(−1)r−sδk(s)(p, j(s))
s

∏
i=1

(mki −1)

≪ 1
M2

∑
p

r

∑
s=0

∑
k(s)

∑
j(s)

p−1δk(s)(p, j(s))
s

∏
i=1

(mki −1)

=
r

∑
s=0

∑
k(s)

∑
j(s)

S2,k(s), j(s). (1.2.22)

The term wheres= 0 is handled easily (recallm/M2 ≤ 3r ):

S2,0,0 =
1

M2

mσ

∑
p

p−1 ≪ 3r logmσ

m
(1.2.23)

(we could also bound it byσ log(m)/M2).
We would like to handle the terms fors 6= 0 analogously as before. The con-

gruences onp from k(s) and j(s) force us to sum only over certain primes mod
∏s

i=1mki , with each prime satisfyingp ≥ mki ± 1. We increase the sum by sum-
ming over all integers satisfying these congruences. As each congruence class mod
∏s

i=1mki has basically the same sum, we can bound our sum over primes satisfying
the congruencesk(s), j(s) by ∏s

i=1(mki )
−1 ∑mσ

n=1n−1 = ∏s
i=1(mki )

−1 logmσ .
There is one slight problem with this argument. Before each prime was con-

gruent to 1 mod each primemki , hence the first prime occurred no earlier than at
1+∏s

k=1mki . Now, however, some primes are congruent to+1 modmki while oth-
ers are congruent to to−1, and it is possible the first such prime occurs before
∏s

k=1 mki .
For example, say the prime is congruent to+1 mod 11, and−1 mod 3,5,17. We

want the prime to be greater than 3·5 ·11·17, but 3·5 ·17−1 is congruent to−1
mod 3,5,17 and+1 mod 11. (Fortunately it equals 254, which is composite.)

So, for each pair(k(s), j(s)) we handle all but the possibly first prime as we did in
the First Sum case. We now need an estimate on the possible error for low primes.
Fortunately, there is at most one for each pair, and as our sumhas a 1/p, we can
expect cancelation if it is large.

Fix now a pair (remember there are at most 3r pairs). As we never specified the
order of the primesmi , without loss of generality (basically, for notational conve-
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nience) we may assume that our primep is congruent to+1 modmk1 · · ·mka, and
−1 modmka+1 · · ·mks.

The contribution to the second sum from the possible low prime in this pair is

1
M2

1
p

s

∏
i=1

(mki −1). (1.2.24)

How small canp be? The+1 congruences imply thatp≡ 1(mk1 · · ·mka), so p is at
leastmk1 · · ·mka +1. Similarly the−1 congruences implyp is at leastmka+1 · · ·mks−
1. Since the product of these two lower bounds is greater than∏s

i=1(mki − 1), at

least one must be greater than
(
∏s

i=1(mki −1)
)1/2

. Therefore the contribution to
the second sum from the possible low prime in this pair is bounded by (remember
m/M2 ≤ 3r )

1
M2

(
s

∏
i=1

(mki −1)

)1/2

≤ m1/2

M2
≤ 3rm−1/2. (1.2.25)

Combining this with the estimate for the primes larger than∏s
i=1(mki −1) yields

S2,k(s), j(s) ≪ 3rm−1/2+
3r

m
logmσ , (1.2.26)

yielding (as there are 3r pairs)

S2 =
r

∑
s=0

∑
k(s)

∑
j(s)

S2,k(s), j(s) ≪ 9rm−1/2; (1.2.27)

if we don’t usem/M2 ≤ 3r we find a bound of 3rm1/2/M2. �

1.2.2.3 Proof of Theorem 1.2.2

We now extend the results of the previous sections to consider the familyFN;sq−free

of all primitive characters whose conductor is an odd square-free integer in[N,2N].
Some of the bounds below can be improved, but as the improvements do not increase
the range of convergence, they will only be sketched.

Proof (Proof of Theorem 1.2.2).First we calculate the number of primitive charac-
ters arising from odd square-free numbersm∈ [N,2N]. Letm=m1m2 · · ·mr . Thenm
contributes(m1−2) · · · (mr −2) characters. On average we might expect the number
of characters to be of orderN, and as a positive percent of numbers are square-free,
we expect there to be on the order ofN2 characters.

Instead we prove there are at leastN2/ log2N primitive characters in the family;
as we are winning by power savings and not logarithms, the log2N factor is harm-
less. There are at leastN/ log2N + 1 primes in the interval. For each primep (except
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possibly the first) we havep−2≥ N. Hence there are at leastN · N
log2 N

=N2/ log2N

primitive characters. LetM = |FN;sq−free|. Then

M ≥ N2 log−2N ⇒ 1
M

≤ log2N
N2 . (1.2.1)

We recall the results from the previous section. Fix an odd square-free number
m∈ [N,2N], and saymhasr = r(m) factors. Before we divided the First and Second
sums byM2 = (m1−2) · · · (mr −2), as this was the number of primitive characters
in our family. Now we divide byM. Hence the contribution to the First and Second
Sums from thism is

S1(m, r;φ) ≪ 1
M

2r(m)mσ/2

S2(m, r;φ) ≪ 1
M

3r(m)m1/2. (1.2.2)

Note that 2r(m) = τ(m), the number of divisors ofm. While it is possible to prove

∑
n≤x

τℓ(n) ≪ x(logx)2ℓ−1 (1.2.3)

the crude bound

τ(n) ≤ c(ε)nε (1.2.4)

yields the same region of convergence. Note 3r(m) ≤ τ2(m). Therefore by Lemma
1.2.7 the contributions to the first sum is majorized by

2N

∑
m=N

m square−free

S1(m, r;φ) ≪
2N

∑
m=N

1
M

2r(m)mσ/2

≪ 1
M

Nσ/2
2N

∑
m=N

τ(m)

≪ 1
M

Nσ/2c(ε)N1+ε

≪ log2N
N2 Nσ/2c(ε)N1+ε

≪ c(ε)N
1
2σ+ε−1 log2 N. (1.2.5)

For σ < 2, choosingε < 1− 1
2σ yieldsS1 goes to zero asN tends to infinity. For

the second sum, Lemma 1.2.8 bounds it by
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2N

∑
m=N

m square−free

S2(m, r;φ) ≪
2N

∑
m=N

1
M

3r(m)m1/2

≪ 1
M

N1/2
2N

∑
m=N

τ2(m)

≪ c(ε)
log2N

N2 N1/2N1+2ε

≪ c(ε)N2ε− 1
2 log2N, (1.2.6)

which converges to zero asN tends to infinity for allσ and completes the proof.�

1.2.3 Dirichlet Characters from a Fixed Modulus

We thank the referee for the following theorem and proof, which extends Theorem
1.2.1 to the family of Dirichlet characters for any fixed modulus.

Theorem 1.2.9 (Dirichlet Characters from a Fixed Modulus) LetFm denote the
family of primitive Dirichlet characters arising from a fixed m, and let̂φ be an even
Schwartz function with supp(φ̂)⊂ (−2,2) Denote the conductor ofχ by c(χ). Then

1
φ(m) ∑

χ(m)
χ 6=χ0

∑
γχ :L( 1

2+iγχ ,χ)=0

φ
(

γχ
log(c(χ)/π)

2π

)
=
∫ ∞

−∞
φ(y)dy+O

(
1

logm

)
.

(1.2.7)
As m→ ∞, the above agrees only with the m→ ∞ limit of the 1-level density of
m×m unitary matrices.

Proof. We argue similarly as in the proof of Theorem 1.2.1. From Equation (3.8) of
[IwKo] we have

∑
χ(m)

χ(p) = ∑
d|(p−1,m)

φ(d)µ(m/d). (1.2.8)

We can now bound the first prime sum,S1(m;φ):

S1(m;φ) =
1

φ(m) ∑
d|m

φ(d)µ(m/d) ∑
p≡1(d)

logp
log(m/π)

φ̂
(

logp
log(m/π)

)
2Re(χ(p))√

p

≪ mσ/2

φ(m) ∑
d|m

φ(d)
d

≤ τ(m)

φ(m)
mσ/2, (1.2.9)

which isO(1/ logm), completing the proof. �

Remark 1.2.10 We could argue as in the proof of Theorem 1.2.9, and by applying
trekhe Brun-Titchmarsh Theorem extend the support to[−2,2].
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1.3 Convolutions of Families ofL-Functions

The analysis of DirichletL-functions in§1.2 highlights the general framework for
determining the behavior of the low-lying zeros in a family and identifying the cor-
responding symmetry group. In this section we describe how to find the symmetry
group of a compound family in terms of its constituent pieces. In order to view these
results in the proper context, we first briefly summarize the procedure used in most
works to calculate 1-level densities, and refer the reader to [?] in this volume for a
more detailed treatment.

These calculations break down into three steps. The first step is to understand
and control conductors. In most families analyzed to date they are either constant, or
monotonically increasing. Their importance stems from thefact that their logarithm
controls the spacing of zeros near the central point, and constancy or monotonicity
allows us to pass sums over the family past the test function to the Fourier coeffi-
cients. When these properties fail, the computations are significantly harder. A no-
table exception is in one-parameter families of elliptic curves overQ(T), where for
t ∈ [N,2N] variations in the logarithms of the conductors, from log(Nd) to log(cNd),
greatly complicates the analysis and requires careful sieving.

The second step is the classic explicit formula, which relates sums of our test
functionφ at the zeros of theL-functions to sums of its Fourier transform̂φ at the
primes (weighted by the coefficients of theL-function). This is very similar to the
role the Eigenvalue Trace Lemma plays in random matrix theory. While we wish
to understand the eigenvalues of a matrix, it is the matrix elements where we have
information; the Eigenvalue Trace Lemma allows us to pass from knowledge of the
matrix coefficients (which we have) to knowledge of the eigenvalues (which we
desire). The explicit formulas in number theory play a similar role.

The explicit formula is useless, however, unless we have a way to execute the
resulting sums. The final step is to use an averaging formula for weighted sums
of L-function coefficients. Examples here include the orthogonality relations of
Dirichlet characters, the Petersson formula for holomorphic cusp forms, and the
Kuznetsov trace formula for Maass forms. Unfortunately, asour family becomes
more complicated the averaging formulas become harder to use, and often yield
smaller support. This can be seen in comparison of some recent work (such as
[GolKon, MaTe, ShTe]).

The goal for the remainder of this section is to discuss how toidentify the cor-
responding symmetry group for a family ofL-functions, and to discuss the role the
Fourier coefficients play in the rate of convergence of the 1-level density to the scal-
ing limits of ensembles from the classical compact groups.

1.3.1 Identifying the Symmetry Group of a Family

Determining the corresponding symmetry group for a family of L-functions is one
of the hardest questions in the subject. In many cases we cannot compute the 1-
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level density for large enough support to distinguish between the three orthogonal
candidates (though we can uniquely determine which works bylooking at the 2-level
density). In many situations we are able to argue by analogy with a function field
analogue, where the situation is clearer and the answer arises from the monodromy
group.Another approach is to work with the Sato-Tate measure of the family as
carried out in [?].

A folklore conjecture stated that the symmetry was determined by the sign of
the functional equations. For example, if all the signs wereodd then the family had
to have SO(odd) symmetry. If the signs are all even then thereare two candidates:
Symplectic and SO(even). Initially many thought that SO(even) symmetry happened
when there was a corresponding family with odds signs that was being ignored (for
example, splitting the family of weightk and levelN > 1 cuspidal newforms by
sign and ignoring the forms with odd sign), and that if there were no correspond-
ing family with odd signs then the symmetry would be Symplectic. Dueñez and
Miller [DuMil1] disproved this conjecture by analyzing a family suggested by Sar-
nak:{L(s,φ × sym2 f ) : f ∈ Hk}, whereφ is a fixed even Hecke-Maass cusp form
andHk is a Hecke eigenbasis for the space of holomorphic cusp formsof weight
k for the full modular group. Their proof involved finding the symmetry group of
a Rankin-Selberg convolution in terms of the symmetry groups of the constituents.
They generalized their argument to many families in [DuMil2]. We quickly sketch
the main ideas of that argument, and then conclude this section with an interpretation
of convergence to the limiting densities in the spirit of theCentral Limit Theorem.

We first need some standard notation and results.

• π : A cuspidal automorphic representation on GLn.

• Qπ > 0: The analytic conductor ofL(s,π) = ∑λπ(n)/ns.

• By GRH5 the non-trivial zeros are12 + iγπ , j .

• {απ ,i(p)}n
i=1: The Satake parameters, andλπ(pν) = ∑n

i=1 απ ,i(p)ν . Thus thepν -
th coefficient ofL(s,π) is theν-th moment of the Satake parameters.

• L(s,π) = ∑n
λπ (n)

ns = ∏p ∏n
i=1 (1−απ ,i(p)p−s)

−1.

The explicit formula, applied to a givenL(s,π), yields

∑
j

g

(
γπ , j

logQπ

2π

)
= ĝ(0)−2∑

p

∞

∑
ν=1

ĝ

(
ν logp
logQπ

)
λπ(pν) logp

pν/2 logQπ
. (1.3.10)

5 The definition of the 1-level density as a sum of a test function at scaled zeros is well-defined
even if GRH fails; however, in that case the zeros are no longer on a line and we thus lose the
ability to talk about spacings between zeros. Thus in many ofthe arguments in the subject GRH is
only used to interpret the quantities studied, though thereare exceptions (in [ILS] the authors use
GRH for DirichletL-functions to expand Kloosterman sums).



Contents 25

For ease of exposition, we assume the conductors in our family are constant,6 and
thusQπ = Q say. Thus in calculating the 1-level density we can push the sum over
our familyFN through the test function; hereFN are all forms in our infinite family
F with some restriction involvingN on the conductor (frequent choices are the
conductor equalsN, lives in an interval[N,2N], or is at mostN). The 1-level density
is then found by taking the limit asN → ∞. We rescale the zeros by logR, whereR
is closely related toQ (it sometimes differs by a fixed, multiplicative constant; this
extra flexibility simplifies some of the resulting expressions for various families).

We also assume sufficient decay in theλπ(pν)’s so that the sum over primes with
n≥ 3 converges; this is known for many families. Determining the 1-level density,
up to lower order terms which we will return to later, is equivalent to analyzing the
N → ∞ limits of

S1(FN) := −2∑
p

ĝ

(
logp
logR

)
logp√
plogR

[
1

|FN| ∑
π∈FN

λπ(p)

]

S2(FN) := −2∑
p

ĝ

(
2

logp
logR

)
logp

plogR

[
1

|FN| ∑
π∈FN

λπ(p
2)

]
. (1.3.11)

As
λπ(p

ν) = απ ,1(p)
ν + · · ·+απ ,n(p)

ν , (1.3.12)

we see that only the first two moments of the Satake parametersenter the calculation.
The sum over the remaining powers,

Sν(FN) := −2
∞

∑
ν=3

∑
p

ĝ

(
ν

logp
logR

)
logp

pν/2 logR

[
1

|FN| ∑
π∈FN

λπ(p
ν )

]
, (1.3.13)

is O(1/ logR) under the Ramanujan Conjectures.7

To date, the only families where the first sumS1(FN) is not negligible are el-
liptic curve families with rank. The presence of non-zero terms here require trivial
modifications to the classical random matrix ensembles, andeffectively in the limit
only result in additional independent zeros at the central point. Thus, if the family
has rankr, the scaling limit is that of a block diagonal matrix, with anr × r identity
matrix in the upper left, and then an(N− r)×(N− r) matrix in the lower right (with
the other two rectangular blocks zero).

We introduce a symmetry constant for the family,cF , as follows:

6 It is easy to handle the case where the conductors are monotone by rescaling the zeros by the
average log-conductor; as remarked many times above the general case is more involved.
7 The Satake parameters|απ,i| are bounded bypδ for someδ , and it is conjectured that we may take
δ = 0. While this conjecture is open in general, for many forms there is significant progress towards
these bounds with someδ < 1/2. See for example recent work of Kim and Sarnak [Kim, KimSa].
For our purposes, we only need to be able to takeδ < 1/6, as such an estimate and trivial bounding
suffices to show that the sum over all primes and allν ≥ 3 isO(1/ logR).
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cF := lim
N→∞

1
|FN| ∑

π∈FN

λπ(p
2), (1.3.14)

which is the limit of the average second moment of the Satake parameters. The
corresponding classical compact group is Unitary ifcF is 0, Symplectic ifcF = 1,
and Orthogonal ifcF =−1. Equivalently,cF = 0 (respectively, 1 or -1) if the family
F has Unitary (respectively, Symplectic or Orthogonal) symmetry.

1.3.2 Identifying the Symmetry Group from Rankin-Selberg
Convolutions

In this section we assume we have two families ofL-functions where we can deter-
mine the corresponding symmetry group. Under standard assumptions (which are
proven in many cases), the Rankin-Selberg convolution exists and it makes sense to
talk about the symmetry group of the family. We assume for simplicity below that
π2 is not the representation contragredient toπ1, and thus theL-function below will
not have a pole, though with more book-keeping this case can readily be handled.
The Satake parameters of the convolutionπ1,p×π2,p are

{απ1×π2,k(p)}nm
k=1 = {απ1,i(p) ·απ2, j(p)} 1≤i≤n

1≤ j≤m
. (1.3.15)

The main result is that the symmetry of the new compound family is beautifully
and simply related to the symmetry of the constituent pieces. See [DuMil2] for a
statement of which families are nice (examples include Dirichlet L-functions and
GL2 families).

Theorem 1.3.1 (Duẽnez-Miller [DuMil2]) If F and G are nice families of L-
functions, then cF×G = cF ·cG .

Proof (Sketch of the proof).From (1.3.15), we find that the moments of the Satake
parameters forπ1,p×π2,p are

nm

∑
k=1

απ1×π2,k(p)
ν =

n

∑
i=1

απ1,i(p)
ν

m

∑
j=1

απ2, j(p)
ν . (1.3.16)

Thus, ifπ1 ∈ GN andπ2 ∈ GM, we find

cF×G = lim
N,M→∞

1
|FN| |GM| ∑

π1∈FN
π2∈GM

λπ1×π2(p
2)

= lim
N,M→∞

1
|FN| ∑

π1∈FN

λπ1(p
2)

1
|GM| ∑

π2∈GN

λπ2(p
2) = cF cG .(1.3.17)
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The first sum is handled similarly, and the higher moments do not contribute by
assumption on the family (the definition of a good family includes sufficient bounds
towards the Ramanujan conjecture to handle theν ≥ 3 terms).

1.3.3 Connections to the Central Limit Theorem

We end this section by interpreting our results in the spiritof the Central Limit
Theorem, which we hope will shed some light on the universality of results.

Interestingly, random matrix theory does not seem to know about arithmetic. By
this we mean that very different families ofL-functions converge to one of five
flavors (unitary, symplectic, or one of the three orthogonals), independent of the
arithmetic structure of the family. It doesn’t matter if we have quadratic Dirichlet
characters or the symmetric square of GL2-forms; we see symplectic behavior. Sim-
ilarly it doesn’t matter if our family of elliptic curves have complex multiplication
or not, or instead are holomorphic cusp forms of weightk or Maass forms; we see
orthogonal behavior.8

One of the first places this universality was noticed was in the work of Rudnick
and Sarnak [RudSa], who showed for suitable test functions that then-level cor-
relations of zeros arising from a fixed cuspidal automorphicrepresentation agreed
with the Gaussian Unitary Ensemble. The cause of their universality was that the
answer was governed by the first and second moments of the Fourier coefficients,
and explained why the behavior of zeros far from the central point was the same for
all L-functions.

We have a similar explanation for the behavior of the zeros near the central point.
Our universality is due to the fact that the main term of the limiting behavior depends
only on the first two moments of the Satake parameters, which to date have very few
possibilities. The effect of the higher moments are felt only in theν ≥ 3 terms, which
(under the Generalized Ramanujan Conjectures) contributeO(1/ logR). While these
contributions vanish in the limit, they can be felt inhow the limiting density is
approached.

Notice how similar this is to the Central Limit Theorem, which in its simplest
form states that the normalized sum of independent random variables drawn from
the same nice distribution (finite moments suffice) converges to being normally dis-
tributed. If the meanµ and the varianceσ2 of a random variableX are finite, we
can always study instead the standardized random variableZ = (X− µ)/σ , which
has mean 0 and variance 1. Thus the first ‘free’ moment of our density is the third
(or fourth if the distribution is symmetric). A standard proof is to look at the Fourier
transform of theN-fold convolution, Taylor expand, and then show that the inverse
Fourier transform converges to the Gaussian. The higher moments emerge only in

8 There are some situations where arithmetic enters. The standard example is that in estimating
moments ofL-functions one has a productakgk, whereak is an arithmetic factor coming from the
arithmetic of the form andgk arises from random matrix theory. See for example [CFKRS, KeSn1,
KeSn2].
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the error terms, and while they have no contribution asN → ∞ they do affect the
rate in which the density of the convolution approaches the Gaussian.

Thus, for families ofL-functions the higher moments of the Satake parameters
help control the convergence to random matrix theory, and can depend on the arith-
metic of family. This leads to the exciting possibility of isolating lower order terms
in 1-level densities, and seeing the arithmetic of the family emerge.

Unfortunately, it is often very hard to isolate these lower order terms from other
errors. For example, Dueñez and Miller [DuMil2] convolve two families of elliptic
curves with ranksr1 andr2, and see a potential lower order term of sizer1r2 divided
by the logarithm of the conductor. Thus, while this looks like a lower order term
which is highly dependent on the arithmetic of the family, there are other error terms
which can only be bounded by larger quantities (though we believe these bounds are
far from optimal and that this product term should be larger in the limit). We discuss
some of these issues in more detail in the concluding section.

1.4 Lower Order Terms and Rates of Convergence

In this section we discuss some work (see [Mil3, Mil6]) on lower order terms in
families of elliptic curves, though similar results can be done for other families
(especially families of DirichletL-functions [FioMil] or cusp forms [MilMo]). We
first report on some families where these lower order terms have been successfully
isolated (which is different than the example from convolving two families with
rank from§1.3.3), and end with some current research about finer properties of the
distribution of the Satake parameters in families of elliptic curves and lower order
terms.

1.4.1 Arithmetic-Dependent Lower Order Terms in Elliptic Curve
Families

The results below are from [Mil6], where many families of elliptic curves were
studied. For families of elliptic curves, it is significantly easier to calculate and work
with λE(p) (which is an integer and computable via sums of Legendre symbols) then
the Satake parametersαE,1(p) andαE,2(p). We thus first re-express the formula for
the 1-level density to involve sums over theλE’s, and then give several families with
lower order terms depending on the arithmetic.

It is often convenient to study weighted moments (for example, in [ILS] much
work is required to remove the harmonic weights, which facilitated applications of
the Petersson formula). For a familyF and a weight functionw define
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Ar,F (p) :=
1

WR(F ) ∑
f∈F

f∈S(p)

wR( f )λ f (p)
r

A′
r,F (p) :=

1
WR(F ) ∑

f∈F

f 6∈S(p)

wR( f )λ f (p)
r

S(p) := { f ∈ F : p ∤Cf }, (1.4.18)

whereCf is the conductor off (when doing the computations, there are sometimes
differences at primes dividing the conductor, and it is worth isolating their contribu-
tion). The main difficulty in determining the 1-level density is evaluating

S(F ) := − 2∑
p

∞

∑
m=1

1
WR(F ) ∑

f∈F

wR( f )
α f ,1(p)m+α f ,2(p)m

pm/2

logp
logR

φ̂
(

m
logp
logR

)
,

(1.4.19)
where we are assuming we have GL2 forms.

The following alternative expansion for the explicit formula from [Mil6] is espe-
cially tractable for families of elliptic curves:

S(F ) = − 2∑
p

∞

∑
m=1

A′
m,F (p)

pm/2

logp
logR

φ̂
(

m
logp
logR

)

−2φ̂(0)∑
p

2A0,F (p) logp

p(p+1) logR
+ 2∑

p

2A0,F (p) logp

plogR
φ̂
(

2
logp
logR

)

−2∑
p

A1,F (p)

p1/2

logp
logR

φ̂
(

logp
logR

)
+2φ̂(0)

A1,F (p)(3p+1)

p1/2(p+1)2

logp
logR

−2∑
p

A2,F (p) logp

plogR
φ̂
(

2
logp
logR

)
+2φ̂(0)∑

p

A2,F (p)(4p2+3p+1) logp

p(p+1)3 logR

−2φ̂(0)∑
p

∞

∑
r=3

Ar,F (p)pr/2(p−1) logp

(p+1)r+1 logR
+ O

(
1

log3R

)

= SA′(F )+S0(F )+S1(F )+S2(F )+SA(F )+O

(
1

log3R

)
. (1.4.20)

Letting ÃF (p) := 1
WR(F ) ∑ f∈S(p)wR( f )

λ f (p)
3

p+1−λ f (p)
√

p, by the geometric series

formula we may replaceSA(F ) with SÃ(F ), where

SÃ(F ) = −2φ̂(0)∑
p

ÃF (p)p3/2(p−1) logp
(p+1)3 logR

. (1.4.21)

We now state some results (see [Mil6] for the proofs). For comparison purposes
we start with the family of cuspidal newforms, as this familyis significantly easier
to calculate and serves as a good baseline. In reading the formulas below, it is im-
portant to note that the contributions from the smaller primes are significantly more
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than those from the larger primes. For elliptic curves the primes 2 and 3 often be-
have differently; while they will have no affect on the main term, they will strongly
influence the lower order terms.

In the subsections below, we assume the logarithms of the conductors are of size
logR, so that we are comparing zeros of similar size. In all families of elliptic curves
we start with an elliptic curve overQ(T), and then form a one-parameter family by
looking at the specializations from settingT equal to integerst.

1.4.1.1 Fk,N the family of even weightk and prime levelN cuspidal newforms,
or just the forms with even (or odd) functional equation.

Up to O(log−3R), asN → ∞ for test functionsφ with supp(φ̂) ⊂ (−4/3,4/3) the
(non-conductor) lower order term for either of these families is

C ·2φ̂(0)/ logR, (1.4.22)

with C ≈ −1.33258. In other words, the difference between the Katz-Sarnak pre-
diction and the 1-level density has a lower order term of order 1/ logR, with the
next correctionO(1/ log3). Note the lower order corrections are independent of the
distribution of the signs of the functional equations, and the weightk.

1.4.1.2 CM example, with or without forced torsion: Specializations of
y2 = x3+B(6T+1)κ overQ(T), with B∈ {1,2,3,6} and κ ∈ {1,2}.

This family of elliptic curves has complex multiplication.We consider the sub-
family obtained by sieving and restrictingT so that(6T+1) is (6/κ)-power free. If
κ = 1 then all values ofB give the same result, while ifκ = 2 then the four values
of B have different lower order corrections. Note ifκ = 2 andB= 1 then there is a
forced torsion point of order three,(0,6T +1).

Up to errors of sizeO(log−3R), the (non-conductor) lower order terms are again
of sizeC · 2φ̂(0)/ logR; we give numerical approximations for theC’s for various
choices ofB andκ :

B= 1,κ = 1 : −2.124·2φ̂(0)/ logR,

B= 1,κ = 2 : −2.201·2φ̂(0)/ logR,

B= 2,κ = 2 : −2.347·2φ̂(0)/ logR

B= 3,κ = 2 : −1.921·2φ̂(0)/ logR

B= 6,κ = 2 : −2.042·2φ̂(0)/ logR. (1.4.23)
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1.4.1.3 CM example, with or without rank: Specializations of
y2 = x3−B(36T+6)(36T+5)x overQ(T), with B∈ {1,2}.

We consider another complex multiplication family. IfB = 1 the family has rank
1 overQ(T), while if B = 2 the family has rank 0. We consider the sub-family
obtained by sieving to(36T + 6)(36T + 5) is cube-free. Again we find a lower
order term of sizeC · 2φ̂(0)/ logR, with next term of sizeO(1/ log3R). The most
important difference between these two families is the contribution from theS

Ã
(F )

terms, where theB= 1 family is approximately−.11·2φ̂(0)/ logR, while theB= 2
family is approximately.63·2φ̂(0)/ logR. This large difference is due to biases of
size−r in the Fourier coefficientsat(p) in a one-parameter family of rankr over
Q(T).

The main term of the average moments of thepth Fourier coefficients are given
by the complex multiplication analogue of Sato-Tate in the limit, for eachp there
are lower order correction terms which depend on the rank.

1.4.1.4 Non-CM Example: Specializations ofy2 = x3−3x+12T overQ(T).

Up to O(log−3R), the (non-conductor) lower order correction for this family is C ·
2φ̂(0)/ logR, whereC≈−2.703. Note this answer is very different than the family
of weight 2 cuspidal newforms of prime levelN.

1.4.2 Second Moment Bias in One-Parameter Families of Elliptic
Curves

In §1.4.1 we saw lower order terms to the 1-level density for families of elliptic
curves which depended on the arithmetic of the family. In this section we report
on work on progress on possible family-dependent lower order terms to the sec-
ond moment of the Fourier coefficients in families of elliptic curveL-functions; see
[MMRW] for a more complete investigation of these families,and Appendix A for
some initial results on other families. We then conclude in§1.4.3 by exploring the
implications such a bias would have on low-lying zeros (in particular, in understand-
ing the excess rank phenomenon).

We have observed an interesting property in the average second moments of the
Fourier coefficients of elliptic curveL-functions overQ(T). Specifically, consider
an elliptic curveE : y2 = x3+A(T)x+B(T) overQ(T), whereA(T),B(T) are poly-
nomials inZ[T] and the curveEt (obtained by specializingT to t) has coefficient
at(p) (of size 2

√
p) in the series expansion of itsL-function. Define the average

second momentA2(p) for the family by
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A2(p) :=
1
p ∑

t mod p

at(p)
2 (1.4.24)

(where for notational convenience we are suppressing the subscriptE on A2, as the
family is fixed). Michel [Mic] proved that

A2(p) = p2+O(p3/2) (1.4.25)

for families of elliptic curves with non-constantj-invariant j(T), and cohomological
arguments show that the lower-order terms9 are of sizesp3/2, p, p1/2, and 1. In every
case that we have proven or numerically analyzed, the following conjecture holds.

Conjecture 1.4.1 (Bias Conjecture)For any family of elliptic curvesE overQ(T),
the largest lower order term in the second moment ofE which does not average to
0 is on average negative. Explicitly, from Michel [Mic] we have

A2(p) = p2+β3/2(p)p
3/2+β1(p)p+β1/2p1/2+β0(p) (1.4.26)

where eachβr(p) is of order 1; when we write the second moment thusly the first
βr(p) term which does not average to zero will average to a negativevalue.

Below, we give several proven cases of the Bias Conjecture and some preliminary
numerical evidence supporting the conjecture. We have madeseveral additional ob-
servations about the terms in the second moments, though we do not know if these
always hold.

• In families with constantj-invariant, the largest term is on averagep2 (rather
than exactlyp2), and the Bias Conjecture appears to hold similarly.

• Every explicit second moment expression has a non-zerop3/2 term or a non-zero
p term (or both). The term of sizep3/2 always averages to 0, and the term of size
p is always on average negative.

• In many cases the terms of sizep3/2 and/orp are governed by the values of an
elliptic curve coefficient, that is, a sum of the form

∑
x mod p

(
ax3+bx2+ cx+d

p

)
, (1.4.27)

possibly squared, cubed, or multiplied byp, et cetera.

Rosen and Silverman [RoSi] proved that the negative bias in the first moments is
related to the rank of family by

lim
X→∞

1
X ∑

p≤X

A1(p)
logp

p
= rankE (Q(T)). (1.4.28)

9 These bounds cannot be improved, as Miller [Mil3] found a family where there is a term of size
p3/2.
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It is natural to ask whether the bias in the second moments is also related to the
family rank. We are currently investigating this. More generally, we can ask if higher
moments are also biased and if this bias is also related to therank of the family.

1.4.2.1 Evidence: Explicit Formulas

We have proven the conjecture for a variety of specific families and some restricted
cases, and list a few of these below; these are a representative subset of families
we have successfully studied, and we are currently investigating many more. The
average bias refers to the average value of the coefficient ofthe largest lower order
term not averaging to 0 (which in all of our cases is thep term).

Lemma 1.4.2 Consider elliptic curve families of the form y2 = ax3+bx2+cx+d+
eT . These families have rank0 overQ(T), and for primes p> 3 with p ∤ a,e and
p ∤ b2−3ac,

A2(p) = p2− p

(
1+

(
b2−3ac

p

)
+

(−3
p

))
. (1.4.29)

These families obey the Bias Conjecture with an average biasof −1 in the p term.

Lemma 1.4.3 Consider families of the form y2 = ax3+bx2+(cT+d)x. These fam-
ilies have rank0, and for primes p> 3 with p ∤ a,b,c,

A2(p) = p2− p

(
1+

(−1
p

))
. (1.4.30)

These families obey the Bias Conjecture with an average biasof −1 in the p term.

Lemma 1.4.4 Consider families of the form y2 = x3 + Tnx. These families have
rank0, and for primes p> 3,

A2(p) =




(p−1)

(
∑x(p)

(
x3+x

p

))2
if n≡ 0(2)

(
p2− p

)(
1+
(
−1
p

))
if n≡ 1(2).

(1.4.31)

These families obey the Bias Conjecture with an average biasof−4/3 for n≡ 0(2)
and−1 for n≡ 1(2) in the p term.

Lemma 1.4.5 Consider families of the form y2 = x3+Tn. These families have rank
0, and for primes p> 3,

A2(p) =





(p−1)
(

∑x(p)

(
x3+1

p

))2
if n≡ 0(3)

p2− p
(

1+
(
−3
p

))
if n≡ 1(3)

p2− p if n≡ 2(3).

(1.4.32)
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These families obey the Bias Conjecture with an average biasof−4/3 for n≡ 0(3)
and−1 for n≡ 1,2(3) in the p term.

Lemma 1.4.6 Consider families of the form y2 = x3+Tx2+(mt−3m2)x−m3 for
m a non-zero integer. These families have rank0 for m non-square and rank1 for m
a square, and for primes p> 3,

A2(p) = p2− p

(
2+2

(−3
p

))
−1. (1.4.33)

These families obey the Bias Conjecture with an average biasof −2.

Lemmas 1.4.2 and 1.4.3 prove the Bias Conjecture for a large number of fami-
lies studied by Fermigier in [Fe2]. A more systematic study of Fermigier’s families
(which is in progress [MMRW]) will help determine whether the bias in second
moments is correlated to the family rank. Lemmas 1.4.4 and 1.4.5 provide examples
of complex-multiplication families where the Bias Conjecture holds. Lemma 1.4.6
proves the conjecture for a family with an unusual distribution of signs, providing
stronger evidence for the conjecture.

1.4.2.2 Numerical Data

The following lemma is useful for analyzing Fermigier’s rank 1 families [Fe2].

Lemma 1.4.7 Consider families of the form y2 = ax3 + cx2 +(dT + e)x+ g. For
p ∤ d,g,

A2(p) = p2+ pc1(p)− pc0(p), (1.4.34)

where c0(p) is the number of roots of the congruence2ax3+ cx2 − g ≡ 0(p) and

c1(p) = ∑x,y:axy2+(ax2+cx)y−g≡0(p)

(
xy
p

)
.

We are not able to explicitly determine thec1(p) term in general, but the data
in Table 1.1 suggests that on average this term is 0. We averaged these coefficients
over the 6000th to the 7000th primes, and all averages are very small in absolute
value. Thus, we believe that these families obey the Bias Conjecture with an aver-
age bias ofc0(p), which in most cases is about 1. We collected additional dataon
rank 2 families, and found similar evidence from these families that thep3/2 term
coefficient is on average 0.

We also collected numerical data for several families that were too complicated
to analyze explicitly. We used two averaging statistics,

Ep

(
A2(p)− p2

p3/2

)
, Ep

(
A2(p)− p2

p

)
, (1.4.35)

where the averages are taken over some range of primes. Thesestatistics are meant
to quantify the average bias in the cases where the largest lower term is of size
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Family Average(c1(p)) Average(c0(p))
y2 = 4x3−7x2+4tx+4 0.0068 0.974

y2 = 4x3+5x2+(4t −2)x+1 -0.0176 1.005
y2 = 4x3+5x2+(4t +2)x+1 -0.0174 1.005
y2 = 4x3+x2+(4t +2)x+1 0.0399 0.993

y2 = 4x3+x2+4tx+4 0.0068 0.985
y2 = 4x3+x2+(4t +6)x+9 -0.0113 1.988

y2 = 4x3+4x2+4tx+1 0.0072 0.974
y2 = 4x3+5x2+(4t +4)x+4 0.0035 1.012

y2 = 4x3+4x2+4tx+9 0.0256 1.005
y2 = 4x3+5x2+4tx+4 0.0043 1.005

y2 = 4x3+5x2+(4t +6)x+9 -0.0143 1.037

Table 1.1 Averages ofp3/2 term coefficients in rank 1 families

p3/2 and p, respectively. For these families, we calculated the second moment for
the 100th to 150th primes. In every case, the runningp3/2-normalized average was
small in magnitude, further suggesting that thep3/2 term coefficient is on average 0.
In most families, thep-normalized statistic revealed a clear negative average bias,
but two families showed a positivep-normalized average bias. The problem behind
these statistics is the rate of decay of thep3/2 term. In order for these statistics to
reliably detect an average bias, the average coefficient of thep3/2 term would need to
exhibit enough cancelation that in the limit it would be smaller than the conjectured
bias coming from the lower order terms. This is only a heuristic, but it suggests
that we need to improve this method of analyzing general families. The positive
average families were positive overall but had a negative average on the second half
of the primes. However, here we feel as though we are trying toforce out a negative
average. For several families that support the conjecture,we tried averaging only
over the second half of our sample to see if the bias was still negative in this reduced
sample, and it was in each case.

In the last section we discuss connections of the negative bias with excess rank. It
is important to note, however, that it is the smallest primesthat contribute the most.
Thus while there may be a negative bias overall, at the end of the day what might
matter most is what occurs for the primes 2 and 3 (and other small primes).

1.4.3 Biases and Excess Rank

We end by very briefly discussing an application of the conjectured negative bias
in the second moments to the observed excess rank in families. For more details,
see [Mil3]. The purpose of this section is to show how the arithmetic in lower order
terms can be used as a possible explanation for some interesting phenomena. The
1-level density, with an appropriate test function, is usedto obtain upper bounds
for the average rank; there were several papers using essentially the 1-level density
for this purpose before Katz and Sarnak isolated the 1-leveldensity as a statistic
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to study independent of rank estimation. We show that lower order terms arising
from arithmetic contribute for finite conductors and require a very slight change in
the upper bound of the average rank. Of course, this is not a proof of a connection
between these factors and the average rank, as all we can showis that these affect
the upper bound; however, it is worth noting the role they play in such calculations.
For more on finite models and the behavior of elliptic curve zeros, see [DHKMS1,
DHKMS2].

For a one-parameter family of elliptic curvesE of rank r overQ(T), assuming
the Birch and Swinnerton-Dyer conjecture by Silverman’s specialization theorem
eventually all curvesEt have rank at leastr, and under natural standard conjectures
a typical family will have equidistribution of signs of the functional equations. The
minimalist conjecture on rank suggests that in the limit half should have rankr and
half rankr +1, giving an average rank ofr +1/2; however, in many families this
is not observed. Instead, roughly 30% have rankr and 20% rankr +2, while about
48% have rankr +1 and 2% rankr +3. The question is whether or not the average
rank stays on the order ofr + 1

2 + .40 (or anything larger thanr +1/2, or if this is a
result of small conductors and the limiting behavior not being seen. See [Fe1, Fe2,
Wa] for numerical investigations and [BhSh1, BhSh2, Br, H-B, FoPo, Mic, Sil, Yo2]
for theoretical bounds of the average rank.

Consider families where the average second moment ofat(p)2 is p2 −mE p+
O(1) with mE > 0, and lett ∈ [N,2N] for simplicity. We have already handled the
contribution fromp2 to the 1-level density, and the−mE p term contributes

S2 ∼ −2
N ∑

p

logp
logR

φ̂
(

2
logp
logR

)
1
p2

N
p
(−mE p)

=
2mE

logR∑
p

φ̂
(

2
logp
logR

)
logp

p2 . (1.4.36)

Thus there is a contribution of size1
logR. A good choice of test functions (see Ap-

pendix A of [ILS], or [FrMil] for optimal test functions for all classical compact
groups and larger support) is the Fourier pair

φ(x) =
sin2(2π σ

2 x)

(2πx)2 , φ̂ (u) =

{
σ−|u|

4 if |u| ≤ σ
0 otherwise.

(1.4.37)

Noteφ(0) = σ2

4 , φ̂ (0) = σ
4 = φ(0)

σ , and evaluating the prime sum in (1.4.36) gives

S2 ∼
(
.986

σ
− 2.966

σ2 logR

)
mE

logR
φ(0). (1.4.38)

While we expect anyσ to hold, in all theoretical work to dateσ is greatly restricted.
In [Mil3] the consequences of this are analyzed in detail forvarious values ofσ . If
σ = 1 andmE = 1, then the 1/σ term would contribute 1, the lower correction would
contribute.03 for conductors of size 1012, and thus the average rank is bounded by
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1+ r+ 1
2 + .03= r+ 1

2 +1.03. This is significantly higher than Fermigier’s observed
r + 1

2 + .40. If we were able to prove our 1-level density forσ = 2, then the 1/σ
term would contribute 1/2, and the lower order correction would contribute.02 for
conductors of size 1012. Thus the average rank would be bounded by 1/2+ r +
1/2+ .02= r +1/2+ .52. While the main error contribution is from 1/σ , there is
still a noticeable effect from the lower order terms inA2(p). Moreover, we are now
in the ballpark of Fermigier’s bound; of course, we were already there without the
potential correction term!
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Appendix A: Biases in Second Moments in Additional Families

By Megumi Asada, Eva Fourakis, Steven J. Miller and Kevin
Yang

This appendix describes work in progress on investigating biases in the second
moments of other families. It is thus a companion to§1.4.2. Fuller details and proofs
will be reported by the authors in [AFMY]; our purpose below is to quickly describe
results on analogues of the Bias Conjecture.

1.4.4 Dirichlet Families

Let q be prime, and letFq be the family of nontrivial Dirichlet characters of level
q. In this family, the second moment is given by
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M2(Fq;X) = ∑
p<X

∑
χ∈Fq

χ2(p). (1.4.39)

Denote the amalgamation of families byFY = ∪Y/2<q<YFq, with the naturally de-
fined second moment.

ComputingM2(Fq,X) is straightforward from the orthogonality relations, which
as we’ve seen earlier yields a quantity related to the classical problem on the dis-
tribution of primes in residue classes. Approximating carefully π(X) andπ(X,q,a)
via the Prime Number Theorem, one can deduce the following.

Theorem 1.4.8 The familyFq has positive bias, independent of q, in the second
moments of the Fourier coefficients of the L-functions.

Remark 1.4.9 Note that the behavior of Dirichlet L-functions is very different than
that from families of elliptic curves.

Now, supposeq 6= ℓ is a prime such thatq≡ 1(ℓ). Let Fq,ℓ be the family of non-
trivial ℓ-torsion Dirichlet characters of levelq, which is nonempty by the stipulated
congruence condition. In this family, the second moment is given by

M2(Fq,ℓ;X) = ∑
p<X

∑
χ∈Fq,ℓ

χ2(p). (1.4.40)

DefineFY := ∪Y/2<q<YFq,ℓq for any choice of suitableℓq for eachq.

Theorem 1.4.10The familyFq,ℓ has zero bias independent of q andℓ. Thus,
FY exhibits zero bias in the second moments of the Fourier coefficients of the L-
functions.

1.4.5 Families of Holomorphic Cusp Forms

Let Sk,q(χ0) denote the space of cuspidal newforms of levelq, weightk and triv-
ial nebentypus, endowed with the structure of a Hilbert space via the Petersson
inner product. LetBk,q(χ0) be any orthonormal basis ofSk,q(χ0) and letFX :=
∪k<X:k≡0(2)Bk,q=1(χ0). In this family, the second moment is given by the weighted
Fourier coefficients10:

M2(FX ;δ ) = ∑
p<Xδ

∑
k<X:k≡0(2)

∑
f∈Bk,q(χ0)

|ψ f (p)|2, (1.4.41)

whereψ f (p) =
(Γ (k−1))

1
2

(4π p)
k−1

2
λ f (p)

√
logp, with λ f (p) the Hecke eigenvalue off for

the Hecke operatorTp. LetFX;ε = ∪q<Xε FX be the amalgamation of families with
the second moment

10 Following [ILS] we can remove the weights, but their presence facilitates the application of the
Petersson formula.
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M2(FX;ε ;δ ) = ∑
p<Xδ

∑
q<Xε

∑
k<X:k≡0(2)

∑
f∈Bk,q(χ0)

|ψ f (p)|2. (1.4.42)

The Petersson Formula provides an explicit method of computing M2(FX ;δ ) via
Kloosterman sums and Bessel functions. Averaging over the level and weight to
obtain asymptotic approximations as in [ILS], we prove the following theorem in
[AFMY].

Theorem 1.4.11The familyFX has negative bias, independent of the level q of
1
2, in the second moments of the Fourier coefficients of the L-functions. Thus,FX;ε
exhibits negative bias.

Let us now letH∗
k,q(χ0) denote a basis of newforms of Petersson norm 1 for prime

levelq and even weightk. We consider another weighted second moment, given by

Mweighted
2 (FX ;δ ) = ∑

p<Xδ
∑

k<X:k≡0(2)
∑

f∈H∗
k,q(χ0)

Γ (k)
(4π)k |λ f (p)|2. (1.4.43)

Similarly, let FX;ε = ∪q<Xε FX be the amalgamation of these families with the
weighted second moment

Mweighted
2 (FX;ε ;δ ) = ∑

p<Xδ
∑

q<Xε
∑

k<X:k≡0(2)
∑

f∈H∗
k,q(χ0)

Γ (k)
(4π)k |λ f (p)|2. (1.4.44)

We prove the following in [AFMY].

Theorem 1.4.12The familyFX has positive bias dependent on the level q. More-
over, the familyFX,ε exhibits positive bias as well.

If we now consider the unweighted second moment given by

M2(FX ;δ ) = ∑
p<Xδ

∑
k<X:k≡0(2)

∑
f∈H∗

k,q(χ0)

λ 2
f (p), (1.4.45)

we prove the following in [AFMY] as well.

Theorem 1.4.13Assumeδ < 1 andε = 1. The familyFX has positive bias depen-
dent on q. Moreover, the familyFX;ε exhibits positive unweighted bias as well.
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