Chapter 1

Some Results in the Theory of Low-lying Zeros:
Determining the 1-level density, identifying the
group symmetry and the arithmetic of moments
of Satake parameters

Blake Mackall, Steven J. Miller, Christina Rapti, Carolifngrnage-Butterbaugh
and Karl Winsor

Abstract While Random Matrix Theory has successfully modeled thétilng be-
havior of many quanties of families affunctions, especially the distributions of
zeros and values, the theory frequently cannot see thevaiih of the family. In
some situations this requires an extended theory thatttnagthmetic factors that
depend on the family, while in other cases these arithmatitofs result in con-
tributions which vanish in the limit, and are thus not degelctin this chapter we
review the general theory associated to one of the most itapiostatistics, the-
level density of zeros near the central point. Accordingh® Katz-Sarnak density
conjecture, to each family af-functions there is a a corresponding symmetry group
(which is a subset of a classical compact group) such thaighavior of the zeros
near the central point as the conductors tend to infinity egyweith the behavior
of the eigenvalues near 1 as the matrix size tends to infiigyshow how these
calculations are done, emphasizing the techniques, metrutlobstructions to im-
proving the results, by considering in full detail the faynilf Dirichlet characters
with square-free conductors. We then move on and descrilver@omay associate
a symmetry constant to each family, and how to determineytimergetry group of a
compound family in terms of the symmetries of the constitsi€fhese calculations
allow us to explain the remarkable universality of behgwdrere the main terms
are independent of the arithmetic, as we see that only thevismoments of the
Satake parameters survive to contribute in the limit. Simib the Central Limit
Theorem, the higher moments are only felt in the rate of cayemce to the uni-
versal behavior. We end by exploring the effect of lower otdems in families of
elliptic curves. We present evidence supporting a conjechat the average second
moment in one-parameter families without complex muitiaiion has, when ap-
propriately viewed, a negative bias, and end with a disonssf the consequences
of this bias on the distribution of low-lying zeros, in pattiar relations between
such a bias and the observed excess rank in families.
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1.1 Introduction

The purpose of this chapter is to describe some results,fenchethods used to
prove them, in the theory of low-lying zeros and the conmadibetween number
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theory and random matrix theory. There is now an extengeliure on the subject.
See for example the books [Da, Ed, For, lw, lwKo, KaSa2, Méhafid the survey
articles [BFMT-B, Con, KaSal, KeSn1, KeSn2, KeSn3], as a&lHa, FirMil] for
popular accounts of the history of the meeting of the two §eld

Briefly, assuming the Generalized Riemann Hypothesis (GRé&lhon-trivial ze-
ros of any nicd_-function lie on its critical line, and therefore it is pdsi& to inves-
tigate the statistics of its normalized zeros. The work oikgmmery and Odlyzko
[Mon, Od1, Od2] suggested that zerod efunctions in the limit are well-modeled
by eigenvalues of matrix ensembles. Initially the comparigzas made between
number theory and the Gaussian Unitary Ensemble (GUE) wdiisscs such as
n-level correlations and spacings between zeros; howénesgetstatistics are insen-
sitive to finitely many zeros and in particular miss the bébwaat the central point.
This is a significant issue, as there are many situations mbeu theory where
these central values are important, such as the Birch andn®@wbn-Dyer conjec-
ture [BS-D1, BS-D2], and these statistics had the sameitighitalues both for dif-
ferent families oL-functions and different matrix ensembles. The readerraitiar
with these statistics and results should see the intraglucti [AAILMZ, ILS] (or
the introduction of any of the dissertations in low-lyingag!) for more details.

Following the work of Katz-Sarnak [KaSal, KaSa2] a new statiwas intro-
duced, then-level density; unlike the earlier statistics this depeodshe family or
ensemble being studied. We mostly concentrate on the 1-devsity in this pa-
per, though see [Mill, Mil2] for some important applicatsoof the 2-level density
(which we briefly discuss later).

Let @ be an even Schwartz test functionl&whose Fourier transform

oy) = /7 ‘:qo(x)e*Z""xydx (1.1.1)

has compact support. Leky be a (finite) family ofL-functions satisfying GRH.
The 1-level density associated.%# is defined by

1 |Ong (j)>
Dy % = — 1.1.2
12 = 3 Yo, (112)

Where% +iy§J> runs through the non-trivial zeros bfs, f). Herec; is the “analytic
conductor” off, and gives the natural scale for the low zeros¢As Schwartz, only
low-lying zeros (i.e., zeros within a distangel/ logcs of the central poins=1/2)
contribute significantly. Thus the 1-level density can heééntify the symmetry type
of the family.

Based in part on the function-field analysis whée#) is the monodromy group
associated to the family?, Katz and Sarnak [KaSal, KaSaZ2] conjectured that for
each reasonable irreducible family loffunctions there is an associated symmetry
groupG(.#) (one of the following five: unitaryJ, symplectic USp, orthogonal O,
SO(even), SO(odd)), and that the distribution of criticaas near 12 mirrors the
distribution of eigenvalues near 1. (Similar correspom@srold for other statistics,
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such as the values df-functions being well modeled by values of characteristic
polynomials; see for example [CFKRS].) The five groups hasérdjuishable 1-
level densities.

To evaluate (1.1.2), one applies the explicit formula, @timg sums over zeros
to sums over primes. By [KaSal], the 1-level densities fer ¢lassical compact
groups are

Wi soevenfX) = Ki(X,X)
Wi so@ddf(X) = K_1(X,X)+ ()

Wi,0(X) = 2Wi so(evenfX) + 3Wi s0(0ddfX) (1.1.3)
Wi u(x) = Ko(x,X)
Wiusp(X) = Ko1(xX),

whereK(y) = 31 K, (x,y) = K(x—Y) + eK(x+Y) for € = 0,+1, andd(X) is
the Dirac deltar?,unctional. It is often more convenient torkvavith the Fourier
transforms of the densities:

Wi soevenf) = &(u) + 31 ()

Wi so@dd(U) = S(u) - 31(u)+1

Wa0(u) = 5(u)+3 (1.1.4)
W u(u) = o(u)

Wiusp(t) = 3(u) - 31(u),

wherel (u) is the characteristic function ¢f 1, 1]. While these five densities are dis-
tinguishable for test functiong where the support o:ﬁ exceedg—1,1], the three
orthogonal densities are indistinguishable inside thigore While for many fami-
lies of interest we cannot calculate the 1-level densityonely—1,1], we are able
to uniquely associate a symmetry group by studying the Hdensities, which are
mutually distinguishable for arbitrarily small suppore€s[Mil1, Mil2]).

Let .# be a family ofL-functions, and%y the subset with analytic conduc-
tors N (or at mostN, or of orderN). There is now a large body of work sup-
porting the Katz-Sarnak conjecture that the behavior obzearear the central
point s= 1/2 in a family of L-functions (as the conductors tend to infinity)
agrees with the behavior of eigenvalues near 1 of a classieapact group (uni-
tary, symplectic, or some flavor of orthogonal). Evidencesupport of this con-
jecture has been obtained for many families Lefunctions, including Dirich-
let characters [Gao, ER-GR, FioMil, HuRud, LevMil, OS1, QSub], ellip-
tic curves [HuyKeSn, Mill, Mil2, Yol], weightk level N cuspidal newforms
[ILS, Ro, HuMil, MilMo, RiRo, Ro], Maass forms [AAILMZ, AMil, GolKon],
L-functions attached to number fields [Folw, MilPe, Ya], syatrit powers of
GL, automorphic representations [Gil] and Rankin-Selbergalations of fami-
lies [DuMill, DuMil2] to name a few.

Our purpose is to introduce the reader to some of the techaignd issues of
the field. Any introduction must by necessity be brief and nsaslly omit many in-
teresting and related results. In particular, we do notudisother models for zeros
near the central point, such as the Hybrid Model (see [GoHuMeereL-functions
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are modeled by a partial Euler product, which encodes nuthiery, and a partial
Hadamard product, which is believed to be modeled by matréembles), or the
L-function Ratios Conjecture [CFZ1, CFZ2, ConSn, ConSn@\vii GIMMNPP,
HuyMM, Mil5, Mil7, MilMo]. We also mostly ignore the issuehiat arise when
studying 2-level (or higher) densities (see [HuMil] for aekenination of an alter-
native to the Katz-Sarnak density conjecture which fatiis comparisons between
number theory and random matrix theory).

We begin in§1.2 by first calculating the 1-level density of various faesl of
Dirichlet L-functions. This simple family is very amenable to analysis such, it
provides an excellent introduction to the subject and al@ne to see the main
ideas and techniques without becoming bogged down in teehnomputations.
We thus show the calculations in complete detail in the hdpasdoing so will
help introduce newcomers to the subject.

We then turn in§1.3 to determining the symmetry group of convolutiond ef
functions. Recently Shin and Templier [ShTe] determinedgfymmetry group for
many families (see also the article by Sarnak, Shin and Tiem@aShTe] in this
volume); using the work of Duefiez-Miller [DuMil1, DuMil2}e are able to use in-
puts such as these to find the symmetry group of Rankin-Sgtfsewolutions, thus
reducing the study of compound families to that of simplesoiethe course of our
analysis we see the role lower order terms play. This leadsitoe interpretation of
the remarkable universality in behavior between numbesrthand random matrix
theory reminiscent of the universality found in the Centriahit Theorem, which
we elaborate on in great detail.

We conclude in51.4 with avery brief synopsis of some work in progress on
lower order terms in families of elliptic curves, and theeetfthey have on rates of
convergence and detecting the arithmetic of the family ¢Wwiig missed by the main
term in the 1-level density).

1.2 Families of Dirichlet L-Functions

To date, there has been significant success in showing agreéetween zeros near
the central point in families oE-functions and eigenvalues near 1 of ensembles
of classical compact groups. The purpose of this section analyze one of the
simplest examples, that of Dirichletfunctions. The advantage of this calculation
is that many of the technical difficulties that plague othanifies are not present,
and thus this provides an excellent opportunity to intrecthe reader to the subject.
Ouir first result is the following, proved by Hughes and Ru#iilduRud].

Theorem 1.2.1 (-Level Density for Family of Prime Conductors) Let q? be an
even Schwartz function with sufgp C [-2,2], m a prime, and%m = {x : X is
primitive mod m. Then
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J%mxg 5 _0¢(yxw>='/°;<o<y>dy+o<@>.(1.z.5)

EFmyL(3+iyyX)

As m— oo, the above agrees only with the N o limit of the 1-level density of
N x N unitary matrices.

The argument below is from notes by the second named authibenvduring
the completion of his thesis [Mil1].

After proving this agreement between number theory andaanaatrix theory,
there are two natural ways to proceed. The first is to try terekthe support. It turns
out that extending the support is related to deep arithnyestions concerning the
distribution of primes in congruence classes, which we exsjzie below. While un-
fortunately at present there are no unconditional restidtgntly Fiorilli and Miller
[FioMil] showed how to extend the support under various déad assumptions.
Depending on the strength of the assumed cancelation,résitts range from in-
creasing the support up te-4,4) all the way to showing agreement for any finite
support.

The other direction is to remove the restriction that thedemtor is prime.

Theorem 1.2.2 (Dirichlet Characters from Square-free Numlers) Let.7y sq-free
denote the family of primitive Dirichlet characters arigiirom odd square-free
numbers ne [N, 2N], and letg be an even Schwartz function with sg@pc [—2,2]
Denote the conductor of by ). Then

1 log(c(x)/m)
5 S o(netm)
)=0

T p
| N"Swfree| XEPN sq-freeyy 1L ( % +Hiyy, X

~00 1
- /700 o(y)dy+O (@) . (1.2.6)
As N— oo, the above agrees only with the N oo limit of the 1-level density of
N x N unitary matrices.

While the arguments in [FioMil] also apply to general squtez moduli, their
approach is different. We prove this result by first geneiadj Theorem 1.2.1to a
conductor with exactly distinct prime factors, and obtain good estimates on the
error terms as a function of Theorem 1.2.2 then follows by controlling how many
square-free numbers havéactors, highlighting a common technique in the subject.
We elected to show this method of proof precisely becaub®iwsases an important
technique in the subject. It is also possible to attack a firelirectly, which we do
in Theorem 1.2.9.
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1.2.1 Dirichlet Charactersfrom Prime Conductors

Before computing the 1-level density of the low-lying zeoé®irichlet L-functions,
as one of the aims of this article is to provide a self-cordimtroduction to the
subject we first quickly review the needed properties ofdbiet characters and their
associated.-functions. After these preliminaries, we use the expfitnula (see
for example [ILS, RudSa]) to relate sums of our test functiger the zeros to sums
of its Fourier transform weighted by Dirichlet charactaiée are able to analyze
these sums very easily due to the orthogonality relatiomsr¢hlet characters, and
obtain support up t0-2,2]. See [Da, IwKo] for more on Dirichlet characters.

1.2.1.1 Review of Dirichlet Characters

If mis prime, ther(Z/mZ)* is cyclic of ordem-— 1 with generatog (so any element
is of the formg? for somea). Let Zm_1 = €¥/(M-1)_ The principal characteyo is

Xo(K) = {1 t (k’m)ill (1.2.7)

Each of them— 2 primitive characters are determined (because they arg-mul
plicative) once their action on a generadgas specified. As eack : (Z/mZzZ)* — C*,
for eachy there exists ahsuch thaty(g) = erkl. Hence for eacl, 1 </ <m-2,
we have

1.2.8
0 if (k,m) > 0. ( )
In most families one is not so fortunate to have such exgdlicinulas; these facil-
itate many calculations (such as proving the orthogonaditgtions for sums over
the characters).
Let x be a primitive character moduio. Set

a jf k=g modm
XK = {Zml 9

c(mx) = r:;Jlx(k)ez’“"‘/m; (1.2.9)

c(m, x) is a Gauss sum of modulygm. The associated-functionL(s, x) (and the
completed_-functionA(s, x)) are given by

LX) = [Ta-x(mp S
p

A(s X) = n*%(SJrs)r (_) m%(SJFS)L(S,X), (1.2.10)

where
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. JO ifx(-1=1
)1 ifx(-1)=-1

AlsX) = (—i)gc(%)/\(l—s,)?). (1.2.11)

Let ¢ be an even Schwartz function with compact support, say gwdan the
interval(—o, o), and lety be a non-trivial primitive Dirichlet character of conducto
m. The explicit formula gives

Z¢(vxlog(f)) = /jo @(y)dy

[ee]

Yx
logp -~/ logp o
Z log(m/m) (p(log(m/n)) X(P)+X(p)]p /2
B Z 'OEIJOSW? 0 a(zlo;(()ri/pn)) X?(p) +X*(P)]p*
o (IO;m) (1.2.12)

where we are assuming GRIb write the zeros a% +ivy, Yay € R, and the con-
tribution from the primes to the third and higher powers drgoabed in the big-Oh
term3 Sometimes it is more convenient to normalize the zeros néiéyogarithm
of the analytic conductor but rather by something that issdume to first ordef.
Explicitly, for me [N, 2N] we have

1 The derivation is by doing a contour integral of the logaritb derivative of the completeld-
function times the test function, using the Euler produdl ahifting contours; see [RudSa] for
details.

2 Itis worth noting that these formulas hold without assun®®H. In that case, however, the zeros
no longer lie on a common line and we lose the correspondeiitteeigenvalues of Hermitian
matrices.

8 A similar absorbtion holds in other families, so long as tlaa®e parameters satisfy; (p)| <
Cpd for somed < 1/6.

4 We comment on this in greater length when we consider thefashall characters with square-
free modulus. Briefly, a constancy in the conductors allog/goupass certain sums through the
test functions to the coefficients. This greatly simplifies &nalysis of the 1-level density; unfortu-
nately cross terms arise in the 2-level and higher caseghershvings vanish (see [Mill, Mil2]).
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log(%) log(m/mm) [*
pr<vx o ) = Wlmw(y)dy

Yx

o~

_zlologp <o< 09 ))[x(p)+7(p)]pl/2

g(N/m) " \log(N/m
logp (., logp o
Z log(N/m) q’( Iog(N/n)) X*(p)+X*(P) P~
+0 (IoglgN) (1.2.13)

and for any subset/” of [N, 2N]

1 log(m/ m) - i
7] o2, Tog(N/m) — 1+O(|09N)- (1.2.14)

Considern, the family of primitive characters modulo a prime There are
m— 2 elements in this family, given b{x,}1</<m_2. As eachy, is primitive, we
may use the Explicit Formula. To determine the 1-level dgnee must evaluate

t logp ~ logp — _
'/7m<p(y)d — ng /¢ (Iog(m/r[)) X(P)+X(P)]p /2

X(m
X#Xo

_ i logp  ~ logp 2 2 -1
m—2 X;Zm) %Iog(m/n)(p(zlog(m/n)) X“(p)+X"(P)lp

+o( = ) (1.2.15)

logm

Definition 1.2.3 (First and Second Sums)\We call the two sums ifl.2.15)the
First Sum and the Second Sum (respectively), denoting thei& (m; ¢) and

S(m @)
The Density Conjecture states that the family average showmhverge to the
Unitary Density:

lim Dy ,(¢) = lim z zqo< Xlog( )) = '/:w(y)dy (1.2.16)

moe Lo 21T
X#Xo0

We prove this forﬁ supported ifi—2, 2], which establishes Theorem 1.2.1. We break
the proof into two steps. First, we show in Lemmas 1.2.4 aBcbIhat the first sum
does not contribute am — o for such¢g, and then complete the proof in Lemma
1.2.6 by showing the second sum does not contribute for aitg apport.
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1.2.1.2 The First SumS;(m; @)

As one of our goals is to see how far we can get with elementathods, in the
lemma below we show that simple estimation of the prime sullos/ga us to de-
termine the 1-level for support up te-2,2), and then immediately strengthen it by
using the Brun-Titchmarsh Theorem to get it fer2, 2].

Lemma 1.2.4 (Contribution from S;(m; @)) Forsup[:(?o) C (—o,0)and m prime,
Si(m; ) < m9/2-1 implying that this term does not contribute to the main t@rm
the 1-level density foo < 2.

Proof. We must analyze

Smp) = =5 5 3 oI (o0) Ix(p) X

& 4 log(m/mm) ™ \ log(m/m)
X#Xo
(1.2.17)
Since the orthogonality of the Dirichlet characters implie
—1 ifk=1mod
3 x(k) = {m ' moam (1.2.18)
X 0 otherwise,
we have for any prim@ # mthat
m—2 if p=1modm
> x(p) = 1 p=2 (1.2.19)
Fo — otherwise.
X#X0
Let
1 if p=1modm
1) = 1.2.20
On(P,1) {O otherwise. ( )

The contribution to the sum fromp = mis zero; if instead we substitute1 for
S xm X(m), our error isO(1/+/m) and hence negligible relative to the other errors.
X#X0

We now calculates; (m; @) with quan even Schwartz function with support in
(—0o,0). As the conductors are constant in the family, we may intengle the sum-
mations and first average over the family. This allows us fdakthe cancelation
in sums of Dirichlet characters.
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. _ logp -~ logp _ 12
Sme) = 575 3 ¥ fogmm ¥ (log(m/n) X(P)+X(p)]p
X#Xo
_ logp -~/ logp 172
- om-— ZZlog m/n <|Og(m/7r) X(Zm) [X(P)+X(P)IP
X#Xo0
. Iogp ~ logp 12, B
1 msz 1/2 Z 1/2
< p e+ p-
p=1(m)
<« X mza k12 4 %U K-1/2
mkzl k=m+1
k=1(m)
mU
< = Z K12 Z K12 < In%ma/z_ (1.2.21)
m&

Notice that we had to be careful with the estimates of the segnprimes congruent
to 1 modulom. Each residue class modufo has approximately the same sum,
with the difference between two classes bounded by the &rst bf whichever
class has the smallest element. As our numkeaee of the formém+ 1 for ¢ €
{1,2,3,...}, the clask = 1(m) has the smallest sum of tme classes. Thus if we
add all the classes moduto and divide bym, we increase the sum, justifying the
above arguments.

HenceS;(m; @) = %m"/z, implying that there is no contribution from the first
sumifo < 2. O

The next lemma illustrates a common theme in the subjecttiaddl arithmetic
information translates to increased support (and vicea)er

Lemma 1.2.5 For supf@) C [—2,2] and m prime, §m @) < 1/logm, implying
that this term does not contribute to the main term in thevelidensity.

Proof. Following [HuRud] we use the Brun-Titchmarsh Theorem to liaye our
bound for the prime sums in (1.2.21) when= 2. Revisiting that calculation, we
find

m? m?
] 1 Iogp 1 Iogp
Si(me) < mlogmpz Iogm Z (1.2.22)

The Brun-Titchmarsh theorem (see [HuRud, MonVa]) states ihx > 2m and
(a,m) =1 then

2X

nix;ma) = #H{p<x:p=am} < @(m)log(x/m)’

(1.2.23)
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We can trivially bound the contribution from the primes inA22) less than@by
the arguments from Lemma 1.2.4, and for the remaining weeaagun [HuRud].
The two sums are handled similarly. For example, for theisépoime sum we have

P o
1 logp 1 Iogxl dx < 1 (1.2.24)
logm &, p~%/? logm /om /X mlog(x/m) logm
p=1(m)

proving that this term does not contribute when= 2. The first prime sum in
(1.2.22) follows analogously, completing the proof. O

1.2.1.3 The Second Sur;(m; @)

Lemma 1.2.6 (Contribution from S;(m; @)) Forsup[:(?o) C (—o,0)and m prime,
S(m; @) < 0'%™ implying that this term does not contribute to the main témm
the 1-level densny for any finite.

Proof. We must analyze (fam prime)

S(me) = X(Zm Zloéoi?n A( |O;C()f;?m) X*(p) +X*(P)IP
e (1.2.25)

The orthogonality relations immediately imply

- 2(m—2) if p=+1(m)
sm =Y x*(p)+X*(p)] = . (1.2.26)

X% -2 if pz£ +1(m).

X#X0
The proof is straightforward ge%(p) p?) (and similarly fory).
Let
1 if p=+1modm

1.2.27
Gn(p:£) = {O otherwise. ( )

We argue as we did in our analysis&fm; ¢) in Lemma 1.2.4, and find
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logp ~ logp 2 -2 -1
Smo) ( X2(p) +X%(p)]p
M0 = o 5 Y et (2o ) R X
X#X0
B logp -~ logp 2 2 -1
g 22|og 9 o (log(m/n) > )X PP
X#X0
B ' logp - ,_logp =24 (2m—2)n(p, +)]
T m-— 2 Z log( m/Tr log(m/ ) P >
g m2 ol 2m-—2 M ~1
< mo2 z -2 pZ\ i
p=+1(m)
mo/2 mo/2 mo/2
< k't + kK + k™
m— 2 Z k%Jrl k%l
k=1(m) k=—1(m)
m0/2 me/2
<<—|Og m°/2) Zkl Zkl+o<)
- 0<Iogm . logm |09m+1>. (1.2.28)
m m m m

ThereforeS;(m; @) = O(a"’%ﬂ), so for all fixed, finiteo there is no contributiof]

1.2.2 Dirichlet Characters from Square-free Conductors

We now remove the restriction thattis prime and consider the more general case of
square-free conductors. The purpose of this section igtdight some of the issues
that arise in the analysis of low-lying zeros in familieslefunctions in a setting
where the methods can be appreciated without being ovemdteby technical
details.

Specifically, we discuss the question of how to normalizegteeros (either lo-
cally or globally), as well as how to combine results fronfatiént cases. We find
it is convenient to partition the space of characters by timalver of prime factors,
which we denote by, of their conductors. We then generalize our bounds on the
first and second sums, explicitly determining thdependence. The proof is com-
pleted by standard results on sums of the divisor functitis procedure is used in
the analysis of many other families. For example, in [ILS] #nalysis of newforms
is accomplished by using inclusion-exclusion to apply teeePsson formula to the
various spaces of oldforms, removing their contributiond earefully combining
the errors.

Our main result is Theorem 1.2.2. As the proof is similar t pinoof of Theo-
rem 1.2.1, we content ourselves below with highlighting difeerences. The first
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choice is how to normalize the zeros of each Dirichlefunction. We can split
our family by the conductor, and note that the normalizatibthe zeros depends
only on this quantity. Further, this number varies monotonycadl we move from
N to 2N. While we could normalize by the average log-conductoryvenedy logN,
there is no additional work to rescale edcliunction’s zeros by the logarithm of
the conductor. The reason is that we will break the analydmibby the size of the
conductor, and our first and second sums do not contributesitination is different
for the contribution from the Gamma factor; however, by (142 there is no affect
on the main terms. While the situation appears differentefl@oked at the 2-level
density, as then we would have cross terms and would haveaiondd sums of
products of logarithms of conductors and Dirichlet chages;tthere is no difficulty
here as the conductors are constant among characters witathe moduli, and
monotonically increasing with the moduli. These propertibow us to again break
the analysis into characters with the same moduli. Thetsitug very different for
one-parameter families of elliptic curves. There, we havbé significantly more
careful, as these cross terms become much harder to hamdlendfe on these
issues, see [Mil1, Mil2].

Before proving Theorem 1.2.2, we first set some notation swidte some useful
results. Fix amr > 1 and distinct, odd prima®y, ..., m. Let

My = (M —1)(mp—1)--(m —1) = @(m)

My i= (my—2)(mp—2)-- (m —2). (1.2.1)
NoteM; is the number of primitive characters magieach of conductan. For each
¢ € [1,my — 2] we have the primitive character discussed in the previottgse x;,.
A general primitive character madis given by a product of these characters:

X(U) = Xey (U)Xe,(U) -~ Xe, (U). (1.2.2)

Let Zm={X 1 X = X Xt~ X¢, }- Then|Fm| = My, and we are led to investi-
gating the following sums:

1 logp ~/ logp \ x(p)+X(p)
SMEe) = 2 2 fogim/m) (Iog(m/n)) NG

N logp ~ (. logp \ x2(p) +X2(p).
i) = iy, 3 iogin? G @29

we have added anin the notation above to highlight the fact thamthasr distinct
odd prime factors. We first bound these two sums in termisafid then sum over
to complete the proof of Theorem 1.2.2.
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1.2.2.1 The First SumS;(m,r; @) (m Square-free)

Lemma 1.2.7 (Contribution from S;(m,r; @)) Notation as above (in particular, m
has r factors),

Si(mr; @) < Mizzrmo/% (1.2.4)

Proof. We must studyy yc #,, X (P) (the sum withx is handled similarly). Earlier
we showed

m-—1-1 if p=1modm
‘ = 1.2.5
egl Xa(P) { -1 otherwise. ( )
Define
1 if p=1modm
1) = 1.2.6
om (P.1) {0 otherwise. ( )
Then
m—2
X(p) = Z Z Xer(P) -+ Xer (P)
XEFm

F!Z)@. =|j 1+ (M-Dan(pD).  (127)

Let us denote b¥(s) an s-tuplgky, ky, ... ks) with k; < ks < --- <ks. Thisis justa
subsetoff1,2,...,r}. There are 2possible choices fd4(s). We use these to expand
the above product. Define

1) = ﬁaw (p,1). (1.2.8)

If s=0 we setd)(p,1) =1 forall p. Then

r S

ﬂ( 14 (m —1)3n 202 1) 8 ( r! ~1). (1.2.9)

Leth(p) = ZIOQ';(’,%’” a(logl](()r%)n ) < ||@||. Then
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N

m? r s
1
~1/2 L _
< %P N <1+ > Y &s(p.1) H: (m, 1)). (1.2.10)
Observing thain/M, < 3" we see tha =0 sum contributes
Sio = - mzap*W < 3Im7F (1.2.11)
’ Mo 5

which is negligible foro < 2, though it is also bounded by®/?~1/M,. Now we
study

Siks) = Miz D(mq -1 % P Y285 (p. 1) (1.2.12)

The effect of the factody)(p, 1) is to restrict the summation to primes= 1(my)
for ki € k(s). The sum will increase if instead of summing over primességati
ing the congruences we sum over all numbesatisfying the congruences (with
n> 1+, m). As the sum is now over integers and not primes, we can use
basic uniformity properties of integers to bound it. We armming integers mod
M., Mg, SO summing over integers satisfying these congruencessisdily just
Moy (mg)~t s n~%2 = 5., (my)'m°/2. We can do this as the sum of the
reciprocals from the residue classes[f ; my differ by at most their first term.
Throwing out the first term of the classt[]7_, m, makes it have the smallest sum
of the[]?_; my classes, so adding all the classes and dividingjpy, m increases
the sum. Hence (recalling/M, < 3")

S S
Stk < Mi []me—1 _r!(mq)*lm"/z < 3Im?21 (1.213)

2

though it is also bounded by?/2-1/M,. Therefore, for als the S, () contribute
3'm?/2-1, There are 2choices, yielding

S < 6'mo/? L, (1.2.14)

which is negligible asn goes to infinityfor fixed rif o < 2. If instead we do not use
m/M, < 3" we obtain a bound d®(2'm?/2/M,). O

The worst errors occur whamis the product of the first primes. Letp; denote
thei" prime. The Prime Number Theorem implies fdarge that
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logm = z logp ~ pr. (1.2.15)
p<pr

As pr ~rlogr, we find logm~ rlogr orr ~logm/loglogm. Thus
6 ~ erIogG ~ mlogB/IogIogm. (1.2.16)

While this iso(m#) for any € > 0, this estimate is wasteful whenhas few prime

factors. For example, ih= 10°0 thenm/©96/10glogm , y0.3775 \yhich is sizable. We

thus prefer to leave the estimate®fm,r; @) as a function of, and then average
over the number of square-free integers with exacttiistinct odd prime factors.
Such a division will lead to significantly better results the family of square-free
conductors.

1.2.2.2 The Second Sur;(m,r; @) (m Square-free)

Lemma 1.2.8 (Contribution from S;(m,r; @)) Notation as above (in particular, m
has r factors),

Smr; @) < Miafml/z. (1.2.17)
2

Proof. We must studyzxeyxz(p) (the sum withy is handled similarly). Earlier
we showed
m—1—1 if p=+1modm

m—2
2(p) = 1.2.18
egl Xi(P) { -1 otherwise. ( )

Then

2 mozom-2 2

X = > > xi,(p)- X, (p)

XEF (1=1 =1
r m—2

2
il:l giZlXEi(p)
_|j(—1+ (M —1)8m (p,1) + (M — 1)8m (p,—1)). (1.2.19)

Instead of having 2terms as in the first sum, now we have Betk(s) be as
before, and lef(s) be an s-tuple of-1's. Assranges from O t@ we get each of the
3" possibilities, as for a fixesthere arg}) choices fok(s), each of these having 2

choices forj(s) (notey%_(25(;) = (1+2)"). Leth(p) = 2Io$‘(’9n?n)$(2log(’§§m) <

||@||. Define
&) (P J(s) = _u%i(pvji)- (1.2.20)
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Then
Y x*(p) = > (=155 (P, §(9) [ (mg — 1) (1.2.21)

Therefore

_ 1 logp _~(,_logp 1\ - =
= = l\/l_zzlo )q0<2|og(m/n)>p lxezy[Xz(p)+X2(P)]

_ = h 71_1r—s < ’- 1
M, 2 (p)s;k(sm P (=D (P ) (M6 = 1)

S) i=

Miz %;% J% pflfsk(s)(DaJ'(S))i: (mg — 1)

= Zoz > Sk, (1.2.22)
s=0K(s) I(s)

<

N

The term wheres = 0 is handled easily (recath/M, < 3"):

1™ logm?
=—5p = 1.2.23
S00 MZ%D < o ( )

(we could also bound it by log(m)/M).

We would like to handle the terms far## 0 analogously as before. The con-
gruences orp from k(s) and j(s) force us to sum only over certain primes mod
M1 M, with each prime satisfyingg > m, + 1. We increase the sum by sum-
ming over all integers satisfying these congruences. Al eangruence class mod
M., My has basically the same sum, we can bound our sum over pritisfyisag
the congruencei(s), j(s) by [15;(m ) 37, n % = [J2_y (m)*logm?.

There is one slight problem with this argument. Before eatme was con-
gruent to 1 mod each primmy, hence the first prime occurred no earlier than at
1+ k-1 My . Now, however, some primes are congruent-tbmodmy, while oth-
ers are congruent to tel, and it is possible the first such prime occurs before
M1 M-

Forrnéxample, say the prime is congruenttb mod 11, and-1 mod 35,17. We
want the prime to be greater thans 11-17, but 35-17— 1 is congruent to-1
mod 35,17 and+1 mod 11. (Fortunately it equals 254, which is composite.)

So, for each paitk(s), j(s)) we handle all but the possibly first prime as we did in
the First Sum case. We now need an estimate on the possibt€a@rfow primes.
Fortunately, there is at most one for each pair, and as ourtgsma ¥ p, we can
expect cancelation if it is large.

Fix now a pair (remember there are at mospairs). As we never specified the
order of the primesn;, without loss of generality (basically, for notational een
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nience) we may assume that our primés congruent to+-1 modmy, ---m,, and
—1modmy,, - M.

The contribution to the second sum from the possible low giimthis pair is

112
— = - —1). 1.2.24
Mapl (mg—1) ( )
How small canp be? The+-1 congruences imply that = 1(my, ---my,), so p is at
leastmy, - - - my, + 1. Similarly the—1 congruences implp is atleastm,c1+1 o
1. Since the product of these two lower bounds is greater fifan(m 1)

least one must be greater th&f>_,(m — 1))1/2. Therefore the contribution to
the second sum from the possible Iow prime in this pair is ledrby (remember
m/M, < 3)

1 s 1/2 ml/
VS <|‘|(m‘q 1)) < s < 3Im Y2 (1.2.25)
Combining this with the estimate for the primes larger tfign, (my — 1) yields
Sks).is < 3 *1/2+3—r;|ogm0, (1.2.26)

yielding (as there are" 3airs)
S = Z) ) < Im Yz (1.2.27)

if we don’t usem/M, < 3" we find a bound of 3n/2 /M. O

1.2.2.3 Proof of Theorem 1.2.2

We now extend the results of the previous sections to congiddamily .7 n.sq—free
of all primitive characters whose conductor is an odd saéir@einteger inN, 2N].
Some of the bounds below can be improved, but as the impraviside notincrease
the range of convergence, they will only be sketched.

Proof (Proof of Theorem 1.2.2First we calculate the number of primitive charac-
ters arising from odd square-free numbrrs [N, 2N]. Letm=mgmy - --m,. Thenm
contributem; —2) - -- (my — 2) characters. On average we might expect the number
of characters to be of ord&t, and as a positive percent of numbers are square-free,
we expect there to be on the ordeiN# characters.

Instead we prove there are at lebgt/ log?N primitive characters in the family;
as we are winning by power savings and not logarithms, th&Ndgctor is harm-
less. There are at leasf log’N + 1 primes in the interval. For each prirpdexcept
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possibly the first) we havp— 2 > N. Hence there are at ledst —2— =N2/log?N
primitive characters. LM = |.Zn:sq-free|]. Then
1 log’N

M > NZog N = & < =5

(1.2.1)

We recall the results from the previous section. Fix an oddésgtfree number
me [N,2N], and saymhasr = r(m) factors. Before we divided the First and Second
sums byM, = (my — 2) --- (my — 2), as this was the number of primitive characters
in our family. Now we divide byM. Hence the contribution to the First and Second
Sums from thignis

Si(mr;@) < %ZF(”‘)m"/2

Smr; @) < %3f<m>ml/2. (1.2.2)
Note that 2™ = 1(m), the number of divisors ah. While it is possible to prove

’(n) < x(logx)? 1 (1.2.3)

n<x

the crude bound
T(n) < c(e)nf (1.2.4)

yields the same region of convergence. NJt&)3< t2(m). Therefore by Lemma
1.2.7 the contributions to the first sum is majorized by

N N g
Si(mr;p) < MZr(m)m"/2

= m=
m square-free

1 o/2 2N

< —N (m)
TN

< %N"/Zc(e)Nl+£

< log NN"/2 (e)NLFE

< c(e)Nz”f*HogZN. (1.2.5)

For o < 2, choosinge < 1— %0 yields S; goes to zero aBl tends to infinity. For
the second sum, Lemma 1.2.8 bounds it by
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2 Smr) < ZN Larmpy2

m square-free
1 1/2 gk 2
—N °(m
<y nb} (m)
log®N
< C(g)OIE\JI_ZNl/zNst
< c(e)N%zlog?N, (1.2.6)

which converges to zero a&stends to infinity for allo and completes the proof]

1.2.3 Dirichlet Characters from a Fixed Modulus

We thank the referee for the following theorem and proof,cféxtends Theorem
1.2.1 to the family of Dirichlet characters for any fixed madu

Theorem 1.2.9 (Dirichlet Characters from a Fixed Modulus) Let.7, denote the
family of primitive Dirichlet characters arising from a fiden, and letp be an even
Schwartz function with supp) C (—2,2) Denote the conductor gf by ¢ x). Then

w2 3 o(wS ) = [Loveo()

x(m) i -
e X L(3+yg.x)=0

(1.2.7)
As m— oo, the above agrees only with the - co limit of the 1-level density of
m x m unitary matrices.

Proof. We argue similarly as in the proof of Theorem 1.2.1. From HEqug3.8) of

[lwKo] we have
> x(p) = Z @(d)p(m/d). (1.2.8)
x(m) |(p—1,m)

We can now bound the first prime suﬁl(m; 0):

) logp ~( _logp ) 2Rex(p))
Sime) = %f” e 2 satm® (e s
m"/2 o) _ 1M o
< o £ < (m) /2, (1.2.9)
which isO(1/logm), completing the proof. O

Remark 1.2.10 We could argue as in the proof of Theorem 1.2.9, and by applyin
trekhe Brun-Titchmarsh Theorem extend the suppdrt-®2].
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1.3 Convolutions of Families ofL-Functions

The analysis of DirichleL-functions in§1.2 highlights the general framework for
determining the behavior of the low-lying zeros in a famihdadentifying the cor-
responding symmetry group. In this section we describe loofint the symmetry
group of a compound family in terms of its constituent pietesrder to view these
results in the proper context, we first briefly summarize tteeedure used in most
works to calculate 1-level densities, and refer the reaa§?]tin this volume for a
more detailed treatment.

These calculations break down into three steps. The firptisteo understand
and control conductors. In most families analyzed to datg &ne either constant, or
monotonically increasing. Their importance stems fromféiwé that their logarithm
controls the spacing of zeros near the central point, andtaony or monotonicity
allows us to pass sums over the family past the test funatidghe Fourier coeffi-
cients. When these properties fail, the computations gréfasiantly harder. A no-
table exception is in one-parameter families of ellipticevas overQ(T ), where for
t € [N, 2N] variations in the logarithms of the conductors, from(hg) to log(cNY),
greatly complicates the analysis and requires carefuirgiev

The second step is the classic explicit formula, which esl&ums of our test
function ¢ at the zeros of thé-functions to sums of its Fourier transforgnat the
primes (weighted by the coefficients of theunction). This is very similar to the
role the Eigenvalue Trace Lemma plays in random matrix thedthile we wish
to understand the eigenvalues of a matrix, it is the matexeints where we have
information; the Eigenvalue Trace Lemma allows us to pass knowledge of the
matrix coefficients (which we have) to knowledge of the eigdues (which we
desire). The explicit formulas in number theory play a samible.

The explicit formula is useless, however, unless we haveyatwaxecute the
resulting sums. The final step is to use an averaging fornarlavéighted sums
of L-function coefficients. Examples here include the orthadion relations of
Dirichlet characters, the Petersson formula for holomirghisp forms, and the
Kuznetsov trace formula for Maass forms. Unfortunatelypas family becomes
more complicated the averaging formulas become hardergparsl often yield
smaller support. This can be seen in comparison of some tregak (such as
[GolKon, MaTe, ShTe]).

The goal for the remainder of this section is to discuss hoideatify the cor-
responding symmetry group for a family bffunctions, and to discuss the role the
Fourier coefficients play in the rate of convergence of thevel density to the scal-
ing limits of ensembles from the classical compact groups.

1.3.1 Identifying the Symmetry Group of a Family

Determining the corresponding symmetry group for a famflydunctions is one
of the hardest questions in the subject. In many cases weotanmpute the 1-
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level density for large enough support to distinguish betwthe three orthogonal
candidates (though we can uniquely determine which worksdiking at the 2-level
density). In many situations we are able to argue by analaty avfunction field
analogue, where the situation is clearer and the answesdrism the monodromy
group.Another approach is to work with the Sato-Tate measfithe family as
carried outin f].

A folklore conjecture stated that the symmetry was deteeahiby the sign of
the functional equations. For example, if all the signs vasté then the family had
to have SO(odd) symmetry. If the signs are all even then therdéwo candidates:
Symplectic and SO(even). Initially many thought that S@E\wsymmetry happened
when there was a corresponding family with odds signs thattveing ignored (for
example, splitting the family of weight and levelN > 1 cuspidal newforms by
sign and ignoring the forms with odd sign), and that if theerevno correspond-
ing family with odd signs then the symmetry would be Symptedbuefiez and
Miller [DuMil1] disproved this conjecture by analyzing anfildly suggested by Sar-
nak: {L(s, @ x syn?f) : f € Hc}, whereg is a fixed even Hecke-Maass cusp form
andHy is a Hecke eigenbasis for the space of holomorphic cusp fofmnagight
k for the full modular group. Their proof involved finding thgnsmetry group of
a Rankin-Selberg convolution in terms of the symmetry geoaithe constituents.
They generalized their argument to many families in [Dulil®e quickly sketch
the main ideas of that argument, and then conclude thisaetth an interpretation
of convergence to the limiting densities in the spirit of @entral Limit Theorem.

We first need some standard notation and results.

e 71T A cuspidal automorphic representation on{sL
e Qg > 0: The analytic conductor df(s, 77) = § Ax(n)/n®.
e By GRH the non-trivial zeros aré -+ iyy .

e {axzi(p)}l,: The Satake parameters, akg{p”) = 3.1 axi(p)". Thus thep’-
th coefficient ofL(s, i) is thev-th moment of the Satake parameters.

o Lism =y, 22 =N, (1 ani(p)p® "

The explicit formula, applied to a givdr(s, 1), yields

1ogQr\ > _(vlogp\ Ar(p¥)logp
zg(vmj o ) = 6(0) 2%V219<|09Qn> 2100 (1.3.10)

5 The definition of the 1-level density as a sum of a test fumctibscaled zeros is well-defined
even if GRH fails; however, in that case the zeros are no longea line and we thus lose the
ability to talk about spacings between zeros. Thus in marg@frguments in the subject GRH is
only used to interpret the quantities studied, though theeeexceptions (in [ILS] the authors use
GRH for DirichletL-functions to expand Kloosterman sums).
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For ease of exposition, we assume the conductors in ourffamglconstar,and
thusQ; = Q say. Thus in calculating the 1-level density we can push tine aver
our family %y through the test function; her#y are all forms in our infinite family
Z with some restriction involvindN on the conductor (frequent choices are the
conductor equalll, lives in an intervalN, 2N], or is at mosN). The 1-level density
is then found by taking the limit ad — «. We rescale the zeros by I&gwhereR
is closely related t@ (it sometimes differs by a fixed, multiplicative constainist
extra flexibility simplifies some of the resulting expressdor various families).

We also assume sufficient decay in thgp¥)’s so that the sum over primes with
n > 3 converges; this is known for many families. Determining hlevel density,
up to lower order terms which we will return to later, is eqlént to analyzing the
N — oo limits of

. - Iogp) logp
FN) = —2
SU(Fw) %g(logR /PlogR

1
s M(p)]

e N

_(,logp\ logp 1 2
ar. _
S(Fn) = 2ng(2logR) SogR |3?N|716’N/\,T(p) . (1.3.11)

As
An(pY) = ana(p)’ +---+ann(p)’, (1.3.12)

we see that only the first two moments of the Satake paranest@sthe calculation.
The sum over the remaining powers,

E e Iogp) logp 1
IN) = =2 v
S(Fn) V23%g< logR/) pY/2logR | |Zn|

is O(1/logR) under the Ramanujan Conjectures.

To date, the only families where the first su8n(.%n) is not negligible are el-
liptic curve families with rank. The presence of non-zenortg here require trivial
modifications to the classical random matrix ensemblesgffiedtively in the limit
only result in additional independent zeros at the centaltp Thus, if the family
has rank, the scaling limit is that of a block diagonal matrix, with ar r identity
matrix in the upper left, and then &N —r) x (N —r) matrix in the lower right (with
the other two rectangular blocks zero).

We introduce a symmetry constant for the famdly,, as follows:

> /\n(p")] . (1.3.13)

e N

6 It is easy to handle the case where the conductors are manbiorescaling the zeros by the
average log-conductor; as remarked many times above ttegaerase is more involved.

" The Satake parametgis,;| are bounded bpd for somed, and it is conjectured that we may take
0 =0. While this conjecture is open in general, for many fornesehs significant progress towards
these bounds with som®e< 1/2. See for example recent work of Kim and Sarnak [Kim, KimSa].
For our purposes, we only need to be able to takel/6, as such an estimate and trivial bounding
suffices to show that the sum over all primes and’all 3isO(1/logR).
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Cyr = — Z (1.3.14)

which is the limit of the average second moment of the Satakarpeters. The
corresponding classical compact group is Unitaryifis 0, Symplectic itz = 1,
and Orthogonal i€z = —1. Equivalentlyc = = 0 (respectively, 1 or -1) if the family
Z has Unitary (respectively, Symplectic or Orthogonal) systmy

1.3.2 Identifying the Symmetry Group from Rankin-Selberg
Convolutions

In this section we assume we have two families gtinctions where we can deter-
mine the corresponding symmetry group. Under standardrgsttans (which are
proven in many cases), the Rankin-Selberg convolutionieaisd it makes sense to
talk about the symmetry group of the family. We assume foipsicity below that
® is not the representation contragredienttpand thus thé.-function below will
not have a pole, though with more book-keeping this case eadily be handled.
The Satake parameters of the convolution x 1 , are

{omxmk(P) D = {0m,i(p)-am j(P)} i (1.3.15)

The main result is that the symmetry of the new compound faimibeautifully
and simply related to the symmetry of the constituent pieSeg [DuMil2] for a
statement of which families are nice (examples includedblgt L-functions and
GL, families).

Theorem 1.3.1 (Dué@ez-Miller [DuMil2]) If # and ¢ are nice families of L-
functions, then g .4 = Cz - Cy.

Proof (Sketch of the prooflrrom (1.3.15), we find that the moments of the Satake
parameters forg , x b p are

nm

n
kglanlxnz,k(p) Zanll Z an,j(p)"- (1.3.16)

Thus, if ;. € 9y ands € %y, we find

1
Crxg = Nim —mrr 3 z
F XY N,M—sc0 |<9ZN| |%M| s T[1><7T2(p )

THEYD\

1 1
= lim — A (PP) —— Mp(P?) = czCy.(1.3.17)
NM-00 |yN|n1€Z?N n |54M|712;¢N &
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The first sum is handled similarly, and the higher moments atocontribute by
assumption on the family (the definition of a good family s sufficient bounds
towards the Ramanujan conjecture to handletthe3 terms).

1.3.3 Connections to the Central Limit Theorem

We end this section by interpreting our results in the spifithe Central Limit
Theorem, which we hope will shed some light on the universafiresults.

Interestingly, random matrix theory does not seem to knowutbrithmetic. By
this we mean that very different families @ffunctions converge to one of five
flavors (unitary, symplectic, or one of the three orthogspahdependent of the
arithmetic structure of the family. It doesn’t matter if wave quadratic Dirichlet
characters or the symmetric square of3brms; we see symplectic behavior. Sim-
ilarly it doesn’t matter if our family of elliptic curves havwcomplex multiplication
or not, or instead are holomorphic cusp forms of weigbt Maass forms; we see
orthogonal behavidt.

One of the first places this universality was noticed was éwlork of Rudnick
and Sarnak [RudSa], who showed for suitable test functibasthen-level cor-
relations of zeros arising from a fixed cuspidal automorpépresentation agreed
with the Gaussian Unitary Ensemble. The cause of their usaigdy was that the
answer was governed by the first and second moments of théeFouaefficients,
and explained why the behavior of zeros far from the centradtpvas the same for
all L-functions.

We have a similar explanation for the behavior of the zeres tree central point.
Our universality is due to the fact that the main term of theting behavior depends
only on the first two moments of the Satake parameters, whidate have very few
possibilities. The effect of the higher moments are felyamkthev > 3 terms, which
(under the Generalized Ramanujan Conjectures) contri@d(itélogR). While these
contributions vanish in the limit, they can be felt irow the limiting density is
approached.

Notice how similar this is to the Central Limit Theorem, whiin its simplest
form states that the normalized sum of independent randaiablas drawn from
the same nice distribution (finite moments suffice) convetgéeing normally dis-
tributed. If the meanu and the variance? of a random variabl& are finite, we
can always study instead the standardized random vaiZabléX — ) /o, which
has mean 0 and variance 1. Thus the first ‘free’ moment of ounsitleis the third
(or fourth if the distribution is symmetric). A standard pfds to look at the Fourier
transform of theN-fold convolution, Taylor expand, and then show that theise
Fourier transform converges to the Gaussian. The higherentsremerge only in

8 There are some situations where arithmetic enters. Thelat@rexample is that in estimating
moments ofL-functions one has a produatgy, whereay is an arithmetic factor coming from the
arithmetic of the form andy arises from random matrix theory. See for example [CFKRSrKe
KeSn2].
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the error terms, and while they have no contributiorNas> « they do affect the
rate in which the density of the convolution approaches thesSian.

Thus, for families ofL-functions the higher moments of the Satake parameters
help control the convergence to random matrix theory, anddegend on the arith-
metic of family. This leads to the exciting possibility oblating lower order terms
in 1-level densities, and seeing the arithmetic of the famiherge.

Unfortunately, it is often very hard to isolate these lowatay terms from other
errors. For example, Duefiez and Miller [DuMil2] convolveotfamilies of elliptic
curves with ranks; andr,, and see a potential lower order term of size divided
by the logarithm of the conductor. Thus, while this lookslik lower order term
which is highly dependent on the arithmetic of the familgrihare other error terms
which can only be bounded by larger quantities (though wiebethese bounds are
far from optimal and that this product term should be largehe limit). We discuss
some of these issues in more detail in the concluding section

1.4 Lower Order Terms and Rates of Convergence

In this section we discuss some work (see [Mil3, Mil6]) on &vorder terms in
families of elliptic curves, though similar results can bend for other families
(especially families of DirichletL-functions [FioMil] or cusp forms [MilMo]). We
first report on some families where these lower order terms baen successfully
isolated (which is different than the example from convodviwo families with
rank from§1.3.3), and end with some current research about finer piepef the
distribution of the Satake parameters in families of ellipurves and lower order
terms.

1.4.1 Arithmetic-Dependent Lower Order Termsin Elliptic Curve
Families

The results below are from [Mil6], where many families ofigilc curves were
studied. For families of elliptic curves, it is significandasier to calculate and work
with Ag(p) (which is an integer and computable via sums of Legendre sighthen
the Satake parametems 1(p) andag 2(p). We thus first re-express the formula for
the 1-level density to involve sums over the's, and then give several families with
lower order terms depending on the arithmetic.

It is often convenient to study weighted moments (for exanipl [ILS] much
work is required to remove the harmonic weights, which fetiéd applications of
the Petersson formula). For a fami#y and a weight functiomw define
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1

A z(p) = W fezj wWr(f)At(p)’
fes(p)
!/ . 1 r
A z(p) = W fezj wr(f)At(p)
f¢S(p)
S(p) = {feF:p1Cs}, (1.4.18)

whereCs is the conductor of (when doing the computations, there are sometimes
differences at primes dividing the conductor, and it is Wasblating their contribu-
tion). The main difficulty in determining the 1-level densis evaluating

as1(p)™+as2(p)"logp ~/ logp
ZZ Z WR() pm/2 IogRqo mIogR ’

fej
(1.4.19)

where we are assuming we have &brms.
The following alternative expansion for the explicit fortadrom [Mil6] is espe-
cially tractable for families of elliptic curves:

B P) logp ~/ logp
T 22 21 pm/2 logR ¢ (mlogR)
2A0,7(p)logp 2A0,.7(p)logp A(Zlog p>

~200) Z p(p+1)logR % plogR logR

Aly )logp ~ (logp ~ A17(p)(3p+1)logp
_22 pl/2  logR logR +24(0) p/2(p+1)2 logR

Az, 7(p)logp ~ [ logp ~ Az, 7(p)(4p*+3p+1)logp
22 plogR 2IogR +2(p(0)% p(p+1)3logR

D
- < < Az (P)P7*(p—1)logp ( 1 )
—2p(0 . O

¢ 5 23 (p+1)*llogR + log®R

_ sA,(y)+so(9)+sl(9)+sz(9)+sA(9>+o(logigR). (1.4.20)

~ 3
Letting Az(p) = % Y fesp) WR(f)#fp()p)\m, by the geometric series

formula we may replac&(ﬁ‘) with Sz(#), where

o oo o Az(p)p¥2(p—1)logp
Si(F) = 2<p(0)% (p+ 1)%logR . (1.4.21)
We now state some results (see [Mil6] for the proofs). For garison purposes
we start with the family of cuspidal newforms, as this fanidysignificantly easier
to calculate and serves as a good baseline. In reading thulfas below, it is im-
portant to note that the contributions from the smaller psrare significantly more
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than those from the larger primes. For elliptic curves thmps 2 and 3 often be-
have differently; while they will have no affect on the maémrh, they will strongly
influence the lower order terms.

In the subsections below, we assume the logarithms of théumors are of size
logR, so that we are comparing zeros of similar size. In all fagmibf elliptic curves
we start with an elliptic curve ove®(T ), and then form a one-parameter family by
looking at the specializations from settiigequal to integers

1.4.1.1 %N the family of even weightk and prime levelN cuspidal newforms,
or just the forms with even (or odd) functional equation.

Up to O(log3R), asN — o for test functionsp with sup() C (—4/3,4/3) the
(non-conductor) lower order term for either of these faesilis

C-2¢(0)/logR, (1.4.22)

with C =~ —1.33258. In other words, the difference between the Katz-&apme-
diction and the 1-level density has a lower order term of pdddogR, with the
next correctiorO(1/log®). Note the lower order corrections are independent of the
distribution of the signs of the functional equations, amelweightk.

1.4.1.2 CM example, with or without forced torsion: Speciakations of
y? =x34B(6T +1)X over Q(T), with B € {1,2,3,6} and k € {1,2}.

This family of elliptic curves has complex multiplicatiokVe consider the sub-
family obtained by sieving and restrictiigso that(6T + 1) is (6/k )-power free. If
k = 1 then all values 0B give the same result, while ¥ = 2 then the four values
of B have different lower order corrections. Noteif= 2 andB = 1 then there is a
forced torsion point of order thre€), 6T + 1).

Up to errors of siz&(log—3R), the (non-conductor) lower order terms are again

of sizeC-2<ﬁ(O)/IogR; we give numerical approximations for tis for various
choices oB andk:

B=1k=1: —2124-2¢(0)/logR,

B=1k=2: —2.201-2¢(0)/logR,

B=2k=2: —2.347-2¢(0)/logR

B=3k=2: —1.921-2¢(0)/logR

B=6,k=2: —2.042-2¢(0)/logR. (1.4.23)
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1.4.1.3 CM example, with or without rank: Specializations ¢
y? = x3 — B(36T + 6)(36T +5)x over Q(T), with B {1,2}.

We consider another complex multiplication family.Bf= 1 the family has rank

1 overQ(T), while if B = 2 the family has rank 0. We consider the sub-family
obtained by sieving t¢36T + 6)(36T +5) is cube-free. Again we find a lower
order term of sizeC - 2¢(0)/logR, with next term of sizeD(1/l0og®R). The most
important difference between these two families is thergioution from theS _(.7)

terms, where th8 = 1 family is approximately-.11- Zqu(O)/ logR, while theB = 2
family is approximately63- 2@(0)/Iog R. This large difference is due to biases of
size —r in the Fourier coefficients;(p) in a one-parameter family of rankover
Q(T).

The main term of the average moments of ffeFourier coefficients are given
by the complex multiplication analogue of Sato-Tate in tih@t| for eachp there
are lower order correction terms which depend on the rank.

1.4.1.4 Non-CM Example: Specializations of? = x® — 3x+ 12T over Q(T).

Up to O(log—3R), the (non-conductor) lower order correction for this fanis C -

2?0(0)/ logR, whereC ~ —2.703. Note this answer is very different than the family
of weight 2 cuspidal newforms of prime levdl

1.4.2 Second Moment Biasin One-Parameter Families of Elliptic
Curves

In §1.4.1 we saw lower order terms to the 1-level density for feasiof elliptic
curves which depended on the arithmetic of the family. Iis $@ction we report
on work on progress on possible family-dependent lower rotelens to the sec-
ond moment of the Fourier coefficients in families of ellipturveL-functions; see
[MMRW] for a more complete investigation of these familiasd Appendix A for
some initial results on other families. We then concludglint.3 by exploring the
implications such a bias would have on low-lying zeros (irtipalar, in understand-
ing the excess rank phenomenon).

We have observed an interesting property in the averagedenoments of the
Fourier coefficients of elliptic curve-functions overQ(T). Specifically, consider
an elliptic curves : y> = x3+A(T)x+B(T) overQ(T), whereA(T),B(T) are poly-
nomials inZ[T] and the curves; (obtained by specializing to t) has coefficient
a(p) (of size 2/p) in the series expansion of itsfunction. Define the average
second momenf;(p) for the family by
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Aolp) = = S alp)? (1.4.24)
ptmodp

(where for notational convenience we are suppressing th&csipts on Ay, as the
family is fixed). Michel [Mic] proved that

Ao(p) = p*+0(p*?) (1.4.25)

for families of elliptic curves with non-constaj¥invariantj(T), and cohomological
arguments show that the lower-order tePraee of sizep®2, p, p'/2, and 1. In every
case that we have proven or numerically analyzed, the falilpwonjecture holds.

Conjecture 1.4.1 (Bias Conjecture)For any family of elliptic curveg’ overQ(T),
the largest lower order term in the second momenf afhich does not average to
0is on average negative. Explicitly, from Michel [Mic] we leav

Ao(p) = PP+ Bay2(P)P¥2+ Bu(p) P+ Br/2pY 2+ Bo(p) (1.4.26)

where eaclB;(p) is of order 1; when we write the second moment thusly the first
B: (p) term which does not average to zero will average to a negaiuee.

Below, we give several proven cases of the Bias Conjectuteame preliminary
numerical evidence supporting the conjecture. We have readeral additional ob-
servations about the terms in the second moments, thouglowetdknow if these
always hold.

e In families with constanij-invariant, the largest term is on average (rather
than exactlyp?), and the Bias Conjecture appears to hold similarly.

e Every explicit second moment expression has a non-z&fderm or a non-zero
p term (or both). The term of sizg®2 always averages to 0, and the term of size
p is always on average negative.

e In many cases the terms of sip&?2 and/orp are governed by the values of an
elliptic curve coefficient, that is, a sum of the form

<ax3+bx2—l—cx+d)
x mod p 7

. (1.4.27)

possibly squared, cubed, or multiplied pyet cetera.

Rosen and Silverman [RoSi] proved that the negative bidsdiitst moments is
related to the rank of family by

. |
X@(ﬂ% pZXAl(p)% — rank&(Q(T)). (1.4.28)

9 These bounds cannot be improved, as Miller [Mil3] found aifgnwhere there is a term of size
p3/2_



Contents 33

It is natural to ask whether the bias in the second momentisdsralated to the
family rank. We are currently investigating this. More geally, we can ask if higher
moments are also biased and if this bias is also related tatheof the family.

1.4.2.1 Evidence: Explicit Formulas

We have proven the conjecture for a variety of specific fasiind some restricted
cases, and list a few of these below; these are a represensatiset of families

we have successfully studied, and we are currently invatitig many more. The

average bias refers to the average value of the coefficighedargest lower order
term not averaging to 0 (which in all of our cases is fherm).

Lemma 1.4.2 Consider elliptic curve families of the form 3= ax® + bx¢+ cx+d+
eT. These families have ratkover Q(T), and for primes p> 3 with pta,e and

ptb? - 3ac,
Ao(p) = p°—p <1+ (b2 —p3ac) + <%3)> . (1.4.29)

These families obey the Bias Conjecture with an averagedfiad in the p term.

Lemma 1.4.3 Consider families of the fornfy= ax® +bx? + (cT +d)x. These fam-
ilies have ranl0, and for primes p> 3with pfa,b,c,

Ao(p) = p°—p (1+ (%1)) : (1.4.30)

These families obey the Bias Conjecture with an averagedfiad in the p term.

Lemma 1.4.4 Consider families of the form?y= x3 + T"x. These families have
rank 0, and for primes p> 3,

_ )\ i n=
Po(p) = {(IO 1) (zx(p)g 5)3) if n=0(2) (1.43D)
P

(PP—p) (1+ (3 if n=1(2).

These families obey the Bias Conjecture with an averagedfiagl/3 for n = 0(2)
and—1for n=1(2) in the p term.

Lemma 1.4.5 Consider families of the forn?y= x34 T". These families have rank

0, and for primes p> 3,
if n=0(3)
Aa(p) = p2_p(( (é)g )) if n=1(3) (1.4.32)
p>—p if n=2(3).
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These families obey the Bias Conjecture with an averagedfiagl/3 for n= 0(3)
and—1forn=1,2(3) in the p term.

Lemma 1.4.6 Consider families of the fornPy= x3+ T x2 + (mt— 3m?)x — m® for
m a non-zero integer. These families have r@mér m non-square and rankfor m
a square, and for primes p 3,

Ax(p) = p>— p(2+2(_—;)) —1 (1.4.33)

These families obey the Bias Conjecture with an averagedfia®.

Lemmas 1.4.2 and 1.4.3 prove the Bias Conjecture for a laugger of fami-
lies studied by Fermigier in [Fe2]. A more systematic stutlizermigier’s families
(which is in progress [MMRW]) will help determine whetheretlbias in second
moments is correlated to the family rank. Lemmas 1.4.4 afé provide examples
of complex-multiplication families where the Bias Conjaet holds. Lemma 1.4.6
proves the conjecture for a family with an unusual distiitnuof signs, providing
stronger evidence for the conjecture.

1.4.2.2 Numerical Data

The following lemma is useful for analyzing Fermigier’s kahfamilies [FeZ2].

Lemma 1.4.7 Consider families of the form?y= ax® + cx% + (dT + e)x + g. For
ptd,g,
Ao(p) = p*+ pea(p) — peo(p), (1.4.34)

where g(p) is the number of roots of the congruerzad + cxX’> — g = 0(p) and
Cl(p) = zx,y:ax)?+(axz+cx)yfgzo( p) (x_py)

We are not able to explicitly determine tieg(p) term in general, but the data
in Table 1.1 suggests that on average this term is 0. We as@ithgse coefficients
over the 6000th to the 7000th primes, and all averages ayesveall in absolute
value. Thus, we believe that these families obey the Biagecture with an aver-
age bias ofty(p), which in most cases is about 1. We collected additional data
rank 2 families, and found similar evidence from these fasithat thep®? term
coefficient is on average 0.

We also collected numerical data for several families thextenioo complicated
to analyze explicitly. We used two averaging statistics,

Ep <%/;p2>, Ep <mp—p2>’ (1.4.35)

where the averages are taken over some range of primes. Jlaéisdcs are meant
to quantify the average bias in the cases where the largest lterm is of size
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Family Averagéc; (p)) |Averagéco(p))
V=4 -T2+ 4tx+ 4 0.0068 0.974
Y2 =43 + 5%+ (4 —2)x+ 1|  -0.0176 1.005
Y2 =43 +5%° + (4t +2)x+ 1|  -0.0174 1.005
V2 =53+ X2+ (4 +2)x+1 0.0399 0.993
Vo =&+ X +4tx+4 0.0068 0.985
V2 = 4 + X2 + (4t +6)X+9 -0.0113 1.988
Vo =4+ 4%+ 4tx+ 1 0.0072 0.974
Y2 =43 +5x° + (4t +4)x+4]  0.0035 1.012
Y2 =S+ 4° - Ax+9 0.0256 1.005
Y2 = &3 5% - dix+ 4 0.0043 1.005
Y2 =4+ 5+ (4t +6)x+9] -0.0143 1.037

Table 1.1 Averages ofp®2 term coefficients in rank 1 families

p%2 and p, respectively. For these families, we calculated the seenament for
the 100th to 150th primes. In every case, the runmitig-normalized average was
small in magnitude, further suggesting that i#€? term coefficient is on average 0.
In most families, thep-normalized statistic revealed a clear negative averaag bi
but two families showed a positiyenormalized average bias. The problem behind
these statistics is the rate of decay of fi#é? term. In order for these statistics to
reliably detect an average bias, the average coefficiehegf? term would need to
exhibit enough cancelation that in the limit it would be skeathan the conjectured
bias coming from the lower order terms. This is only a heigidiut it suggests
that we need to improve this method of analyzing generallfamiThe positive
average families were positive overall but had a negatieeame on the second half
of the primes. However, here we feel as though we are tryifigrtee out a negative
average. For several families that support the conjectueetried averaging only
over the second half of our sample to see if the bias was stilative in this reduced
sample, and it was in each case.

In the last section we discuss connections of the negatigvith excess rank. It
is important to note, however, that it is the smallest prithes contribute the most.
Thus while there may be a negative bias overall, at the endeoflady what might
matter most is what occurs for the primes 2 and 3 (and othelt pnraes).

1.4.3 Biases and Excess Rank

We end by very briefly discussing an application of the canjesdl negative bias
in the second moments to the observed excess rank in fankiiesnore details,
see [Mil3]. The purpose of this section is to show how théhamitic in lower order
terms can be used as a possible explanation for some inbgr@stenomena. The
1-level density, with an appropriate test function, is usedbtain upper bounds
for the average rank; there were several papers using egdhetite 1-level density
for this purpose before Katz and Sarnak isolated the 1-léeakity as a statistic
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to study independent of rank estimation. We show that lowdeioterms arising
from arithmetic contribute for finite conductors and reguarvery slight change in
the upper bound of the average rank. Of course, this is nabaf pf a connection
between these factors and the average rank, as all we canisiioat these affect
the upper bound; however, it is worth noting the role they jatesuch calculations.
For more on finite models and the behavior of elliptic curvmgesee [DHKMS1,
DHKMSZ2].

For a one-parameter family of elliptic curvésof rankr overQ(T), assuming
the Birch and Swinnerton-Dyer conjecture by Silverman'scsalization theorem
eventually all curve&; have rank at least and under natural standard conjectures
a typical family will have equidistribution of signs of therfctional equations. The
minimalist conjecture on rank suggests that in the limif Babuld have rank and
half rankr + 1, giving an average rank of+ 1/2; however, in many families this
is not observed. Instead, roughly 30% have raakd 20% rank + 2, while about
48% have rank + 1 and 2% rank + 3. The question is whether or not the average
rank stays on the order oft % + .40 (or anything larger thar+ 1/2, or if this is a
result of small conductors and the limiting behavior nonigeseen. See [Fel, Fe2,
Wa] for numerical investigations and [BhSh1, BhSh2, Br, H-BPo, Mic, Sil, Yo2]
for theoretical bounds of the average rank.

Consider families where the average second momeat(@)? is p*> — mep +
O(1) with mg > 0, and lett € [N, 2N] for simplicity. We have already handled the
contribution fromp? to the 1-level density, and thems p term contributes

logp ~ Iogp 1N
= N zIogR (IogR pzp( MsP)

B Iogp logp
= IogRZ ( IogR> —p2 . (1.4.36)

Thus there is a contribution of sqgl—R A good choice of test functions (see Ap-
pendix A of [ILS], or [FrMil] for opt|mal test functions for laclassical compact
groups and larger support) is the Fourier pair

sif(2mgx)  ~ oM ifju <o
— - = 27 = - 1.4.37
o) (2mx)2 W 0 otherwise. ( )
Note ¢(0) = % 43( )= = %) and evaluating the prime sum in (1.4.36) gives
986 2966 \ me
2~ (T a ozlogR) logR 9(0). (1.4.38)

While we expect any to hold, in all theoretical work to dat is greatly restricted.

In [Mil3] the consequences of this are analyzed in detaiMEmious values o&. If

o =1 andmys = 1, then the 1o term would contribute 1, the lower correction would
contribute.03 for conductors of size 18 and thus the average rank is bounded by
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1+r+1+.03=r+1+1.03. Thisis significantly higher than Fermigier's observed
r+ % +.40. If we were able to prove our 1-level density for= 2, then the 1o
term would contribute A2, and the lower order correction would contribld2 for
conductors of size 8. Thus the average rank would be bounded B2 £ r +
1/2+.02=r+1/2+ .52. While the main error contribution is frony &, there is
still a noticeable effect from the lower order termsfis( p). Moreover, we are now
in the ballpark of Fermigier’s bound; of course, we were adiyethere without the
potential correction term!
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Appendix A: Biases in Second Moments in Additional Families

By Megum Asada, Eva Fourakis, Steven J. MIler and Kevin
Yang

This appendix describes work in progress on investigatiagds in the second
moments of other families. It is thus a companiof1o4.2. Fuller details and proofs
will be reported by the authors in [AFMYT; our purpose bel®to quickly describe
results on analogues of the Bias Conjecture.

1.4.4 Dirichlet Families

Let g be prime, and let?, be the family of nontrivial Dirichlet characters of level
g. In this family, the second moment is given by
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Mo(Fq; X) = x2(p). (1.4.39)
’ d pzx X€E

Denote the amalgamation of families B = Uy /o q-y%q, With the naturally de-
fined second moment.

ComputingMz (%4, X) is straightforward from the orthogonality relations, wic
as we've seen earlier yields a quantity related to the dabkpiroblem on the dis-
tribution of primes in residue classes. Approximating éahg m(X) andmn(X,q,a)
via the Prime Number Theorem, one can deduce the following.

Theorem 1.4.8 The family.%4 has positive bias, independent of g, in the second
moments of the Fourier coefficients of the L-functions.

Remark 1.4.9 Note that the behavior of Dirichlet L-functions is very éiéint than
that from families of elliptic curves.

Now, suppose # / is a prime such thai = 1(¢). Let.% , be the family of non-
trivial ¢-torsion Dirichlet characters of levg] which is nonempty by the stipulated
congruence condition. In this family, the second momenisrgby

Ma(Fqei X ;X Z; (1.4.40)

Define #y i= Uy 2.q<v-%q., for any choice of suitablé, for eachq.

Theorem 1.4.10The family %y, has zero bias independent of q aAdThus,
F~ exhibits zero bias in the second moments of the Fourier caeffs of the L-
functions.

1.4.5 Families of Holomorphic Cusp Forms

Let S¢q(Xo) denote the space of cuspidal newforms of leyelveightk and triv-

ial nebentypus, endowed with the structure of a Hilbert spdea the Petersson
inner product. LeBy 4(Xo) be any orthonormal basis & q(xo) and let.7x :=
Ukex:k=0(2) Zka=1(Xo)- In this family, the second moment is given by the weighted

Fourier coefficients:

Mo(Fx;0) = 5 Y S P (1.4.41)
p<Xd k<X:k=0(2) feByqg(Xo)

whereys (p) = ((L At (p)+/1ogp, with At (p) the Hecke eigenvalue df for
(4rp) 2

the Hecke operatdi,. Let #x;: = Ugqxs-Fx be the amalgamation of families with
the second moment

10 Following [ILS] we can remove the weights, but their presefacilitates the application of the
Petersson formula.
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Mo(Feid) = 3 5 > 3 [w(p) (1.4.42)
p<Xd O<X& k<X:k=0(2) fecByq(Xo)

The Petersson Formula provides an explicit method of coimgid,(.%x;d) via

Kloosterman sums and Bessel functions. Averaging overdhel land weight to
obtain asymptotic approximations as in [ILS], we prove tbkofving theorem in
[AFMY].

Theorem 1.4.11The family.%#x has negative bias, independent of the level q of
%, in the second moments of the Fourier coefficients of thenttions. ThusZx.¢
exhibits negative bias.

Letus now leHy , (Xo) denote a basis of newforms of Petersson norm 1 for prime
levelg and even weighit. We consider another weighted second moment, given by
weighted, ~ . . /_(k) 2
M A = T S S G (1449
p<X% k<X:k=0(2) fer,q(xO)

Similarly, let %x.e = Ug<xe-#x be the amalgamation of these families with the
weighted second moment

. rk
M;velghted(gx;s;(s) — Z Z E ()k|/\f(p)|2, (1.4.44)
s abxe Lo 2 (4m)
p<X® g<X¢& k<X:k=0(2) fEHKq(Xo)

We prove the following in [AFMY].

Theorem 1.4.12The family.#x has positive bias dependent on the level q. More-
over, the family#x ¢ exhibits positive bias as well.

If we now consider the unweighted second moment given by

M2(Fx;8) = 3 > AF(P) (1.4.49)
p<x8 k<Xk=0(2) feHc,(xo0)

we prove the following in [AFMY] as well.

Theorem 1.4.13Assum& < 1 ande = 1. The family.%x has positive bias depen-
dent on g. Moreover, the famil§x.. exhibits positive unweighted bias as well.
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