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ABSTRACT. The study of perfect numbers (numbers which equal the sutmeafproper
divisors) goes back to antiquity, and is responsible foresoifrthe oldest and most popular
conjectures in number theory. We investigate a generaizantroduced by Pollack and
Shevelev:k-near-perfect numbers. These are examples to the wellikmssudoperfect
numbers first defined by Siefpski, and are numbers such that the sum of all but at most
k of its proper divisors equals the number. We establish gimptotic order for most
integersk > 4, as well as some properties of related quantities.

1. INTRODUCTION

Let o(n) be the sum of all positive divisors of. A natural numben is perfectif
o(n) = 2n. Perfect numbers have played a prominent role in classigaber theory for
millennia. A well-known conjecture claims that there arinitely many even, but no odd,
perfect numbers. Despite the fact that these conjectuneaineunproven, there has been
significant progress on studying the distribution of perfaembers[[Vo[ HoWil K&l Er],
as well as generalizations. One are peeudoperfect numbera/hich were introduced
by Sierpiski [Si]. A natural number is pseudoperfect if it is a sum @fi® subset of its
proper divisors. Erdds and Benkoski [Erd, BeEr] proved thatasymptotic density for
pseudoperfect numbers, as well as that of abundant nuntiersute not pseudoperfect
(also calledveird numbery exist and are positive.

Pollack and Shevelei [PoiSh] initiated the study of a susaépseudoperfect numbers
called near-perfect numbersA natural number ig-near-perfect if it is a sum of all of
its proper divisors withat mostk exceptions. Restriction on the number of exceptional
divisors leads to asymptotic density 0. The numbet-okar-perfect numbers up toid]
at mostz/4+°(1) and in general fok > 1 the number of-near-perfect numbers up io
is at mostz(loglog )%~/ log z.

Our first result improves the count bfnear-perfect numbers.

Theorem 1.1. Denote byN (k; x) the set ofk-near-perfect numbers at mast For k > 4
with k& not equal ta2+2 — 5 or 252 — 6 for somes > 2,
x

log(k+4) J _3

#N(k;x) = (loglog z) !~ sz (1.1)

log x
We exclude integers of the forn2$™2 — 5 and2°+2 — 6 from the above theorem to
keep our argument in the proof short and clean, and at the saraenot to obscure the
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IThis is a result stated il [AOPoPo]. In the original paper olldtk and Shevele\ [PoSh], the upper bound
was given byz5/6+0(1)
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main ideas behind. At the cost of additional work one couldycaut the same kind of
computations done in the proof of Theoreml 1.1 in order to cthese two cases.

Our argument is based on a partition of the 8ét; x) different from that of [PoSh].
This allows us to carry out an inductive argument and esasigntieduces the count of
#N (k; x) for large integers: to that for small integers (k = 4,5,6,7,8,9). In fact, for
these small integers, we even have precise asymptotic faemu

Theorem 1.2. For4 < k£ < 9, we have

xr
#N (k;z) ~ ¢ (1.2)
log x
asx — oo, where
1
C4:C5:6
_17 _ 1, 1
C6=3g4 = 51 38 (1.3)
cr=cg = 28 - L L1 1L 1 '
7= 88 = 1260 ~— 6 12 18 20 28
_ 179017 __ 1 1 1 1 1 1 1 1 1
Co=160960 = sttt Tw a0 T 6T s T 09

The numbers in the denominators of the reciprocal sums-aear-perfect. The pres-
ence of these numbers will become clear in the proof.

We can extend the notion @fnear perfect numbers with the constaneplaced by a
positive strictly increasing function. For further dission, see AppendixIA.

Our last result is motivated by an open question raised ifEfBecans(n)/n be arbi-
trarily large whem is a weird numbef?We replace ‘weirdness’ by ‘exact-perfectness’,
where a natural number isexact-perfectf it is a sum of all of its proper divisors with
exactlyk exceptions. Note the result below is conditional on theliedao odd perfect
numbers.

Theorem 1.3. Lete € (0,2/5). Denote byE(k) the set of allk-exact-perfect numbers,
E(k;z):= E(k)N[1,z] andE.(k;z) := {n <z :n € E(k), o(n) > 2n+n}. LetM
be the set of all natural numbers of the fo2q whereq is a Mersenne prlnﬁe If there are
no odd perfect number, then forsufficiently large and: ¢ M, we have

. #HEc (ki)
lim ———~=

a0 #E(k; )

1.1. Qutline. In Section2 we introduce the necessary definitions and leefoa our
theorems. In Sectiopn 3, we set the stage for proving Thebrdnadd1.P. In Section
[4,[3 and® , we prove Theorem 1L[2.11.1 1.3 and respectivelgeneralization of
near-perfectness is discussed in Appefidix A. We supply et to the calculations of

Theoreni T and 1.2 in AppendX B andl C.

1.2. Notations. We use the following notations and definitions.

e We write f(x) = g(z) if there exist positive constants, c; such thai; g(x) <
f(z) < cag(x) for all sufficiently larger.

o We write f(x) ~ g(z) if lim, . f(z)/g(z) =

e We write f(z) = O(g(xz)) or f(z) < g(x) if there exists a positive consta@t

such thatf (x) < Cg(z) for all sufficiently Iarge:c

(x)
o We write f(x) = o(g(x)) if lim, o f(2)/g(x) =

2A number isweird if the sum of its proper divisors is greater than itself, boismbset of these divisors sums
to the original number.
3 Mersenne primes are primes of the fo2fh — 1 for some primep.

— 1. (1.4)
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e In all cases, subscripts indicate dependence of impliedteors on other parame-
ters.

e Denote byla, b]; the set of all integers such thats < n < b.

e Denote bylog,, « the k" iterate of logarithm. Thusog, 2 = logz, logy 2 =
loglog 2, and so on.

e Lety > 2. A natural number is said to bey-smooth if all of its prime factors are
at mosty.

e Letx >y > 2. Denote byd(z, y) the set of ally-smooth numbers up te.

e We usep andp; to denote primes, anft* (n) to denote the largest prime factor of
n.

e Denote byr(n) the number of positive divisors of.

1.3. Acknowledgments. This work was supported in part by NSF Grants DMS1265673,
DMS1347804, DMS1561945, and DMS1659037, the Williams SMAREU Program,
the Clare Boothe Luce Program, the COSINE Program of thegSkitUniversity of Hong
Kong and the Professor Charles K. Kao Research Exchangdasetip 2015/16. We
thank Kevin Ford, Charles Chun Che Li, Paul Pollack and Carh@ance for helpful
discussions.

2. PREPARATIONS

In this section, we collect the necessary lemmata for owrdras. We begin with two
estimations of the number gfsmooth numbers up te.

Lemma 2.1. Let |
u = 8% (2.1)
logy
Uniformly forz > y > 2, we have the following bound on the siz&gf:, y), they-smooth

numbers up ta:

#P(2,y) < wexp(—u/2). (2.2)

Uniformly for (log #)3 < y < z, we have
#O(x,y) = wexp(—ulogu+ O(uloglogu)). (2.3)
Proof. See Theorem 9.5, Theorem 9.15 and Corollary 9.18 of [DéKLul]. O

Our next lemma is a standard result from sieve theory.

Lemma 2.2. Supposel is a finite set of natural number#, is a set of primes; > 0 and
P(z) is the product of primes i not greater thare. Let

S(A,P,z) == {n€A:(n,P(z) =1}
and
Ay = {a€A:d|a}.
Assume the following conditions.
(1) Supposg is a multiplicative function satisfying
0 < g(p) < 1for peP and g(p)=0 for p& P,
and there exists constanis > 0 andx > 0 such that

I (-9 < (iij)xl)(lgy)

y<p<w
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for2 <y < w.
(2) LetX > 0. For any square-free numbérwith all of its prime factors inP, define

rqg = #A44— Xg(d).
Assume that, satisfies the inequality
x
< Cr—vr.
Z Iral < C(loggc)"i

d|P(z)
a<x?

for somed > 0.
Then for2 < z < X, we have

#S(A,P,Z) <k,0,C,B XV(2)7 (24)
where
V(z) == J[-g). (2.5)
p<z
peP
Proof. For example, seé [FoHa]. O

In the proof of Theorem 111, an estimate is needed for theddittee set
Dj(x,y) = {n<wz:n=pi---pym;, PT(my) <y<p; <---<p1},  (2.6)
wherej > 1 andx > y > 2. The following lemma follows from Lemmas 2.1 and]2.2.

Lemma 2.3. Suppose: > y > 2 andy < z°()). For everyj > 1, we have

zlogy
#¢J(‘T1y) << IOgZC

(loglog ). (2.7)

Proof. We follow the settings and notations of Lemmal2.2. Udbe the set of all natural
numbers up ta, P be the set of primes iy, z'/U*V], 2z := /Ut X := z and
g(d) :==1/d. The setS(A, P, z) is all natural numbers up to whose prime factors are at
mosty or exceedri+1. (Note that at most prime factors can be larger tham+ )

By Merten'’s estimates, we can see that all of the assumpbidrsmmd 2. are satisfied
and hence we have

1
#S(A,P,2) < ””lozgxy. (2.8)

Therefore,
#QU(z) == #{n<z:n=p ---pymj, P (m;)<y< ZTT < pj<---<pi}

zlo
< L2089
log x

(2.9)

Forl <i < j— 1, denote byQ)(z) the set

{né:vzn:pl---pjmpPJr(mj)§y<pj<---<pz-+1 < g7 <pz-<---<p1}
(2.10)

and byQ(¥ (z) the set

{néxzn:pl---pjmpPJr(mj) Sy<pj<---<p Sxﬁ}. (2.11)
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Forl < i < j—1, we use the same kind of estimateXtfA, P, z) with the same choices
of parameters as above, except this time we choose

X =2 (2.12)
Pit1- Dy

andA the set of all natural numbers up ., for some fixed choices of primes, i, . .. p;.
Hence

#Q(z) = > 3 1

1 + .
Yy<pj < <pip1<zITL P (mJ)SQI

p1>-->pi>xitl
p1-pim;<z/(Pit1-D;)

< Z x logy
, Pit1---pjlogx
y<pj<--<piy1<z I+

j—i

zlogy 1 xlogy
< -
log x Z < log x

(loglog )7~ (2.13)
péxj%l

and

#Q0 () = > oo

1 +
- P (m;)<y
y<p'<---<;01§067+1 Jjl=
! m;<z/(p1---p;)

€T log(z/py - 'pj))
< exp <——
Z , P1--Dj 2logy
y<p;<--<py <z It1

x 1 log
: g (ke
2 L D1y 2(j+1) logy
y<p;<--<p1<zitl

J

1 log x 1
< xexp (— - ) —
2(j +1) logy Zl P
p<zitl
< z(loglogz)’ e ( ! Ing) (2.14)
- ex — . .
SIOBLI P\ T 1 1) logy
We thus have
J
, logy -
o, - @ L2989 (loglog )71 2.15
#;(z,y) ;#Q (2) < 355 Uoglogzy’™, (2.15)
which completes the proof. O

Remark 2.4. Since

n<xin=pr--pmjm; <y<p;<---<pi} C Pi(x,y), (2.16)
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it follows that

>, X !

m; <y S

nj=p1-pj
for somep1 >---p; >y

j—1
> 1()g a:/mj ( 0808 )

my

x 2\’ 7! 1
> —— [ loglog — —
ogx Y m;

m;<y

1 It
> T8y <1oglog E) . (2.17)
log Y

Below we state some simple observations about near-perfieabers.

Lemma 2.5. Prime powers cannot ble-near-perfect for any: > 0.

Proof. This follows directly from the definition of near-perfectmbers and the unique-
ness ofy-ary representation. O

Let 7(m) be the number of positive divisors of the positive integer From Lemma
[2.3 we immediately deduce the following.

Lemma 2.6. If 7(m) is prime, thenn cannot bek-near-perfect for anye > 0. If m is a
k-near-perfect number for sonte> 0, thenr(m) > 4.

Finally, a direct computation yields

Lemma 2.7. If m is ak-near-perfect number for somke> 0 andr(m) = 4 or 7(m) = 6,
thenm € {6,12,18,20, 28}.

The following is a complete classification dfnear-perfect numbers with two distinct
prime factors.

Lemma 2.8. A 1-near-perfect number which is not perfect and has two distprime
factors is of the form

(1) 20712t — 2% — 1), where2! — 2F — 1 is prime,

(2) 22p=1(27 — 1), wherep is a prime such tha?? — 1 is also a prime.

(3) 2P~ 1(27P — 1)2, wherep is a prime such tha2? — 1 is also a prime.

(4) 40.

Proof. See[[ReCh]. O

Denote by2(n) the number of prime factors afcounting multiplicitiesand letQ(r; z) :=
{n < z:Q(n) = r}. We have the following result, due to Landau (Theorem 10.3 of

[DeKLu]).
Lemma 2.9. Fix an integerr > 1. Asz — oo, we have

1 -1

#Q(r;x) ~ mlo (loglog )"

(2.18)
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The equatiorv(n) = ¢n + k has been studied by a number of authors in the past
decades; for more detail, sée [AnPOPd,[Po] Pol,[PoZ]PoBt,/PoPoTh]. In this article,
we only need the case of = 2 and adopt following definitions from the aforementioned
literature.

Definition 2.10 (Regular / Sporadic SolutionsYhe solutions ofo(n) = 2n + k of the
form

n=pm’, whereptm/, a(m’) = 2m’, o(m’) = k, (2.19)
are called regular. All other solutions are called sporadic

Lemma 2.11. The number of sporadic solutions[in z] is at mostz®/>+°(1) asz — oc.

Proof. Seel[PoPoTh]. O

3. OUTLINE OF THEOREM[L.IAND[T.2

Let us first recall the settings in [PaSh]. In order to estarthe size of the seY (k; x),
one may patrtition it into the following three subsets aniheste each respectively:

Ni(k;x) == {n € N(k;x): PT(n) <y},
No(k; ) {n € N(k;z) : PT(n) > yandP"(n)?|n},
N3(k;x) {n € N(k;x) : PT(n) >yandP"(n) || n}, (3.2)

wherey = y(x) is some parameter to be chosen later.

In [PoSh] they further partitionedVs(k; 2:) according to whether(m) is at mostk
or not. They bounded the contribution fromin) < k simply by ooz (loglogz)*~1,i.e.,
LemmdZ®. Instead, if one considers the normal ordereof (n), which is(log 2) log log n,
one obtains the boungZ_ (log log )L552) for N (k; ). More work is needed, though,
as this is still not the correct order fgt N (k; 2); we thus have to partitioiVs(k; =) more
carefully. This is explained as follows.

Supposer € N3(k;x). There exists a set of proper divisdps, of n with #D,, < k
such that

o(n) = 2n+ > d, (3.2)
deD,
andn is of the form
n = pm, wherep > max{y, PT(m)}. (3.3)

Divide D,, into two subsets:
DY .= {de D, :ptd},

D® = {d/p:deD,, p|d}. (3.4)
Itis clear that
o(m)— > d >0, (3.5)
deDV

andD,(f) consists of proper divisors of.
Now also suppose

(3.6)

2
3
|
sM
SH
Il
o
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From
(1+p)o(m) = o(pm) = 2pm+ > d+p »_ d, (3.7)
deDY deD?
we see that
o(m) = 2m+ > d. (3.8)
deD®

Since#DS" = 7(m) and#DSY + #DP = #D, < k, we haver(m) < k and
#D,(f) < k — 7(m). It follows that

m € N(k—7(m)). (3.9)
To facilitate discussion that follows, we introduce thddaling notations:
N{O(k;z) == {n € N(ksz) : n = pm, p > max{y, P*(m)},7(m) < k
andm € N(k — 7(m))},

NP (ks2) = Na(ksa) \ N (ks ). (3.10)
Denote byM (k) the set ofn € N (k) such thate = pm, p > P™(m) and
a(m)— > d>0. (3.11)
deD'V

Let M (k;x) = M(k) N[1,].

We carry out the above partition (inf¥;, No, Nél ,NB(Q)) recursively in the next sec-
tion. At each step, we show that the contributions from N, N§2) are of acceptable
sized] After this is done, we analyzze??fl)(k; x) carefully for small integers. In this way,
we improve upon the boungiZ_ (log log 2)L152) and establish Theorefil.1. The proof
of Theoren LR is simpler. It follows quite directly from tpartition as in Theoredn 1.1

without encountering complications of the recursive pesc&\Ve start with its proof in the
next section.

)

4. PROOF OFTHEOREM[I.2

Firstly, observe that the contributions frowWy (k; z:), Na(k; x) andNéQ)(k;x) are ac-
ceptable. Indeed, take= (log 2)***1° and similar to[[PoSh], one has

x

#N1(k; ), #Na (ks 2) < log2)? (4.1)
and o ) i
2) (1. il 3k+1
#N;7 (k;2) < y(logx) < Tog )2 (4.2)

Considem € N{" (k;z), i.e.,n = pm, p > max{y, P*(m)} andm € N(k — r(m)).
Fork = 4,5, 7(m) = 4 andm € N(1) by Corollary[2Z6. By Lemm&2l7, we have
m = 6. By the Prime Number Theorem, we have

x

#ND (43) = m(w/6) — m(a/ B8 ~ (4.3)

1
6logx’

4 we say that the size of a quantity &ceptableif it is not greater than that of the main term, e.g.,
log(k+4) | _o .
—Z—(log log ac)L 1oe7 1 % in TheoreniTIL andz/ log z in TheorenLP.

log x
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and so
AN(Aiz) ~ =2 (4.4)
o 6logx’ '
Fork = 6, we haver(m) € {4,6}.
o If 7(m) = 4, thenm € N(2). We haven = 6.
o If 7(m) = 6, thenm € N(0). We haven = 28.
Therefore,
17 =z
#N(6;x) ~ Silogs’ (4.5)

For the rest of the cases claimed in Theofem 1.2, the arguimesimilar but is more

involved. For the case @&f = 9, we have to use the classification result of [ReCh] (Lemma

[2.8). The details are included in Appenfiik B. This complétesproof of Theorem 112.
Before we end this section, we record the following obséowatlt was established in

[PoSh] that
#N (k; z) < zexp(—(cx + o(1))y/log x loglog x), (4.6)

wherecy, = \/6/6 ~ 0.4082 andcs = \/5/4 ~ 0.3535. This follows easily by the method
above, withe;, being improved td /2 and now one can takg1) to beO(log; =/ log, ).

By CorollarylZ&N?El)(& x) Is an empty set. So,
#N(3:z) = #N1(35) + #N2(3;0) + %N, (3;2)

< zexp(—ulogu + O(uloglogu)) + f(log x)'0, 4.7)
Y

whereu = (log x)/(logy). Choosdog y = v/log zloglog xz. Then

1 1 1
u= 8T and ulogu = = o8 (loglog z—logloglog z) < logy. (4.8)
loglog x 2 \/ loglogz

Therefore
#N(3;2) < wexp (—lx/logxloglog:v (1 +0 (10g_3x)>) . (4.9
2 logy
5. PROOF OFTHEOREM[1L]]
As in the proof of Theoredn 1.2,
. . () (7. x
#Nl(kax)a#NQ(kvx)v#Nb’ (k,I) < (1ng)2 (51)

Therefore, it now suffices to considers of the formp;m with p; > max{y, P*(m1)},
7(m1) < kandmy; € N(k — 7(m1)). Repeat the partition ton,, i.e., for R =
N1, No, Nél), N§2), consider the sets

{n <x:n=pmi,p >max{y, PT(mi)},m1 € R (k —7(my); g) } . (5.2)

e WhenR = Nl,NQ,N§2), the set[(5R) will be shown to be of acceptable size
O(=2-loglog x) in Section§ 5]1,5]2 ad 5.3 (in more general settings).

log x
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_ N - ined i
e WhenR = N, ’, the set[(E[R) is contained in

{n <2 :n=pipema, p1 > p2 > max{y, P (ms)}, me € N <k — 37(m2); y_a;) } .

(5.3)
Repeat the patrtition tow,, so on and so forth.

In general, letj > 2 be any integer. Suppose we have carried out this partitipnin
procedure forj — 1 times. We arrive at the tasks of estimating the sizes of ttee se

{nequ@imer (k- v )L 6

for R = Ny, No, N§2), where(;_1(x) denotes the set of natural numberslinz] of the
formp; - pj_1mj_1 with p; > -+ > p;_1 > max{y, P*(m;_1)}. This will be done

in Section§ 511, 5]2 arid5.3.
5.1. Estimation for R = N;. From Lemma& 213, we immediately have
# {” €Qj-1(x) :mj—1 €Ny (k — (@7 = D)7(my); %)}
< #0U7 Y (,y)
* (loglogz)’~!. (5.5)

<k
log x

5.2. Estimation for R = N,. From our previous analysis, we have
: X
# {n €Qj-1(x) :mj_1 € Ny (k: - (2J71 —D)71(mj—1); yﬂ—_l)}

) > 1
P1>>Pj—1>Ym; 1 <z/p1-pj_1
PLUPIm1SE P (m 1) mya
Pt (mj—1)>y

IN

<y L
p1>>py >y I PP
p1pj—1<x
j—1
x 1 x . T .
=z il z Jj—1 Jj—1
< ; pgx > < y(log log z) < (og )70 (loglog ) ~". (5.6)

5.3. Estimation of N§2). From [PoSh], we have

#{n<z:neMEk),PT(n) >y} < g(loga:)?’k*l. (5.7)
Then
#M(kix) = #{n < w:ne M(k),PT(n) <y} +#{n <z:n e Mk),P*(n) >y}
(5.8)

T
& T 3k+1 '
<k #P(z,y) + y( og ) Lk (log z)2

It follows from partial summation that

Z l<oo.

n
neM(k)
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Therefore,
# {n €Qj-1(x) :mj_1 € N3(2) (k; — (277 = )71 (mj_1); ij—_l)}

S S SEEE T SEED DR

P1>>pj-1>Ymj_1<x/p1-pj—1 m;_1<yx P1>>Pj-1>Y
p1opi—1<VT  mj_1€M(k) mj_1€M (k) P1Pj—1<T/m; 1
_x z r \i2
P1Pj—1 mj—1
— —— | log1
@ ¥ Gt L e ()
p1>>pj—1> P1Pj—1 mj_1<y/x mj—1
p1pj—1<VT mj_1EM(k)
T 1 T - 1
< Z + (loglog )’ 2 Z
2 e .
(logz) p1>"'>Pj—1>yp1 pi-1 logz mj—1<Vx e
Pl"'Pj—lS\/E mj,leM(k)
j—1
X 1 €T .
< — Z - + (loglog ')’ 2
2
(log ) ey log =
< (loglog )72, (5.9
log x

5.4. Analyzing R = Nél). Suppose that for somg= j(k) > 1 there are only finitely
manym; such tha(2/ — 1)7(m;) < kandm; € N(k — (27 —1)7(m;)). It follows from
Lemmd2.® that

#{ne Q@) m e N (k= (@7 = r(m;-1))

< #{neQ;@):m;eNk— (2 —1)r(my))}

€T

<k (loglog )7~ *. (5.10)
log x
Putting the estimateE (5.5), (5.4). (5.9) ahd (5.10) togrethie have
#N(k;2) < —— (loglogz)i~". (5.11)
log x

Therefore, it remains to determine what= j(k) one can take such that the above argu-
ment is valid. This will be done by a case-by-case study. Foplgity, we just demon-
strate one such case below. The analysis of the rest of tles eas similar and we include
the detail in Appendik 1 for the sake of completeness .

Let ¢ > —4. Considerk of the form25+2 + ¢ with

. loglt+6) (5.12)
log 2

Takej = s, i.e., repeat the partitioning processesdor 1 times. From[(5.12),
ko 25244
25 —1  25—1

By Lemmd 25216 and 2.7(ms) = 4, ms € N (£ + 4) and thenn, = 6. It follows
that

4 < 7(my) <

< 6. (5.13)

< 1

(loglogx)® .

#N(kiz) < g (5.14)

ogx
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From [5.12), we have

loglk+4) o _ 11 (5.15)
log 2
Hence
= w ) (5.16)
log 2
and
log(k+4
#N(k;z) <p —— (loglogz)l ez 13 (5.17)
logx
for
log(¢ + 6)
k 252 4 g — 1 = 4.2 —4,6-2" -7y (5.18
eU{ +0:s> ox 2 } Ul .6 7z (5.18)

>4 r>1

Taking account of the cases to be handled in Appehdlix C as Wedoreni_ 11 holds
for
k>4andk #2°72 —6,2°72 — 5 for s > 2. (5.19)

On the other hand, the lower bound N (k; z) is obvious. Consider simply the
natural numbers of the forp; - - - ps = p1 -+ ps + 2p1---ps + 3p1- - ps. By Lemma
[2.9, one has

#N (k; ) - 1
L_(loglogz) =2 — 6(r —2)!"

logz
wherer > 2. This completes the proof of Theoréml1.1.

(5.20)

lim inf
XT—r00

6. PROOF OFTHEOREM[I.3
Lete € (0,2/5). By Lemmd 2111,
#(E(k;z) \ Ee(k;z)) < #{n<z:neEk),n=pm ptm' olm)=2m'}
+ O(23/5+etol)y, (6.1)
Forn € E(k) withn = pm/, pt m’ ando(m’) = 2m/, we have
pm’ = Z di+p Z da, (6.2)
d1€D; d2€ D3
whereD; is a subset of positive divisors @i/, D is a subset of proper divisors of’
with #Dy + #Dy =7(pm/) — 1 —k =27(m/) — 1 — k.

Suppose thab; # (). Then
1< > di < o(m) = 2m. (6.3)
d1€D1
Reducing[(6.R2) modulp, we have

> di (6.4)

d1€Dy

p

The number of possible values fpris O(log 2m’) = O(log ). Thus the number of
possible values for suchis O(z°") log z) by the Hornfeck-Wirsing Theoreni ([HoWi]),
which is acceptable.
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Now suppose thab; = (. Then#Dy = 27(m’) — 1 — k and
m = > dy. (6.5)

d2€ D>
Sinces(m’) = 2m’, we have# Dy = 7(m') — 1. Thereforeg(m’) —1 = 27(m’) — 1 -k,
ie.,7(m') =k.
By the hypothesis of non-existence of odd perfect numbettla@duclid-Euler Theo-
rem, we haven’ = 2¢'~1(2¢'—1) for some Mersenne primg. Sok = (m/) = 2¢ € M.
Hence ifk ¢ M, then we have a contradiction and

#(E(k;2) \ Ec(k;2)) = O logz) + O(23/5+ete)y = O(g3/5F<+o(V))  (6.6)

It was shown in[[PoSh], by using a form of the Prime Number TFasoof Drmota,
Mauduit and Rivat, that for all large the number ok-exactly-perfect numbers up tois
> ¢/ logz. Therefore

H#(E(k: x) \ Ec(k; ) log
#af;(/ﬂ;x) = < 552/5—7:0(1) (6.7)
and e
. € ;X _
A e T ©9)

Remark 6.1. Supposé: € M. Thenk = 2q for some Mersenne primg Letm =
2¢-1(2¢ — 1). Thenq¢’ = q and som’ = m in the above argument. By the Prime Number
Theorem,
i sup #E (k) \ Ee(k;2) 1 6.9)
£—300 x/logx m

On the other hand, since is perfect, the number of proper divisorsrofis 7(m)—1 =
2q — 1. Hencepm is a sum oRq — 1 of its proper divisors. The number of proper divisors
of pmis 7(pm) — 1 = 4¢ — 1. So,pm is a sum of all of its proper divisors with exactly
(49— 1) — (2q — 1) = 2q exceptions, i.epm € E(k). Clearlyo(pm) — 2pm < (pm)€ if
p > (2m'~¢)Y/< andp { m. It follows that

T—00 ,CC/ 10g(E m

As a result,
g HEED\Ekiz) _ 1 (6.11)
T30 x/logx m

APPENDIXA. GENERALIZATIONS AND PHASE-CHANGES OFNEAR-PERFECTNESS

Throughout this sectior; is a positive strictly increasing function. A natural numbe
n is said to bek-near-perfecif n is a sum of all of its proper divisors with at madstn)
exceptions, i.e., we allow to increase withn and larger natural numbershave more
exceptional divisors.
It is well-known that
log7(n)

limsup ——————— = log2. (A1)
n—oo logn/loglogn

lo
ko(y) := exp <logi?;y) . (A.2)

Take
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The setN (ko) is simply the set of all pseudoperfect numbers. It sufficesosiderk
satisfying

lim sup k() < 1. (A.3)
y—r00 ko(y)
It is not hard to observe that if
lim inf k() (A.4)
y—oo (logy)?

for somed > log?2, then N (k) has the asymptotic density of the set of pseudoperfect
numbers. This has little to do with the structureiefear-perfectness. Indeed, since the
normal order ofog 7(n) is (log 2) log log n,

#N(:o;:v) _ #N:(Ek;:v) 40 (é#{" <z:i7(n)> k(n)}) _ #Nki2) +o(1)
asx — oo. The result follows.
Lemma A.1. Uniformly fora € (0, 1),
#{n <z :log7(n) < alog2loglogz} < z(logz) B (A.5)

whereB(a) = aloga — a + 1.

Proof. See for example Theorem 3.7 of Chapter I11.30f [Ten] for theresponding results

for the prime-divisor-counting functions(n) and2(n). The results for(n) follows from
2@(n) < 7(p) < 29, O

The following result is also not unexpected.

Proposition A.2. If

lim sup < 1, (A.6)
y—oo (logy)©
for somee € (0,log 2), thenN (k) has asymptotic density
X
N(k; PR — A7
where L los 9 1
re) = 1 - SUFlogy2=loge) (A.8)

log 2

Proof. Use the same partition as [(n[PAOSW; (k; x), Na(k; z), N4 (k; ), N§ (k; ), where
N/ (k;z) consists of the natural numbers ¥y (k; z) such thatr(n) < k and N§/ (k; x)
otherwise. We now replace certain estimates donein [PoSh].

#NY (ks ) < <1og:c><1+<1ogw>3>’“<””>

log x

< xlogxexp <_log loga:) exp(k(z)log(1 + (log2)?))

o 1ng> exp <3k(a:) loglogz + O < (11?)3 >)

= zlogxexp <
1
< zlogxexp ( 08T + 3(log z)°8 2 log log a:>

loglog x

log x x
—5 Tog log 7 ) < . (A.9)

< zlogzexp (log 272
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By LemmdAl,
#N'(k;z) < #N'((logy)S; x)

< é (10g x)e(1+10g2 2)/ log 2 exp ((1 +

<o —2 (log )18z 2)/ 082 o (_bge (1 N elogzw))

elogy
log 2

) (logs = — log, 2(log x)€)>

log x log 2

x
e T/, A.10
< lloga)y® (A10)

where
o €(1 4+ logy 2 — loge)

r(e) =1 log 2 € (0,1). (A.11)
O

APPENDIXB. CASES FORk = 7,8,9 FOR THEOREM[L.2

Fork = 7, we haver(m) € {4,6}. Fork =8, 7(m) € {4, 6, 8}.

o If 7(m) = 4, thenm € N(3). We haven = 6.

o If 7(m) = 6, thenm € N(1). We haven € {12, 18, 20, 28}.

o If k£ = 8andr(m) = 8, thenm € N(0) andm has at mos8 prime factors. It
follows thatm cannot be an odd perfect numb@r.Thereforemn is even and by
the Euclid-Euler Theoremy. is of the form2P—1(27 — 1) for some primep such
that2? — 1 is also a prime. The® = 7(m) = 2p, which is a contradiction. Hence
there is no suchn.

Therefore, we have
493 «x
1260 log "

Fork =9, 7(m) € {4,6,8,9}. Againif r(m) = 4 or 6, m € {6, 12,18, 20, 28}.

e If 7(m) = 8, thenm € N(1). By the discussion in the cage= 8, m cannot
be perfect. By LemmB_2.5, we hawe is of the formg®r or ¢grs, whereg, r, s
are distinct primes. For the first case we haves {24, 40, 56, 88, 104} by using
LemmdZ.8. For the second case, we consider the followingfsgtuations

(1+q) (A +7)(1+s) =2gqrs + 1,
(1+q) (1 +7)(1+s) =2qrs +q,
(I4+q)(14+r)(1+s) =2qrs+ qr, (B.2)

in which it is easy to check all of them have no solution.
e If 7(m) =9, thenm € N(0). By a similar discussion as that in the casé ef 8,
there is no suchm.

(B.1)

#N(T;2), #N(8;z) ~

Therefore, we have
179017 =«

. B.3
360360 log = (B3

#N(9;2) ~

51n fact, it is now known that an odd perfect number must haveast 10 distinct prime factors. This is due
to Nielsen|[Niel]. The proof of an odd perfect has at leadistinct prime factors is completely elementary.
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APPENDIXC. THE REST OF THECASES OFTHEOREM[L.]

(1) Let¢ > 8. Considerk of the form25+2 — ¢ for

w 1. (C.1)
log 2
Takej = s — 1. Then
252 ¢ -8
4<T(m571)§m:8—m<8. (CZ)
By LemmdZH. 216 arfld 2.7(ms_1) = {4,6} andm,_, € {6,12,18,20,28}.
Hence
#N(k;x) <x ° (loglog ) 2. (C.3)
log x

By the following sets of elementary inequalities:

log(k + 4) log(25T2 +4— ) log(2°72 — 4)

log 2 B log 2 < log 2 <8t (C.4)
25T > g4 = 25%2 |4, (C.5)
and
log(k +4) S st (C.6)
log2
we have
{MJ s+l (C.7)
log 2
Therefore,
#N(k;x) <, a (loglog :C)Lloglégtl)J*?’ (C.8)
log x
for
1 —4
kEU{QSH—ﬁiSE%—l}_ U[3~2T—6,4-2T—9]Z. (C.9
£>8 08 r>2

(2) Fork = 2°t2 —8 ands > 2, we havet < 7(m,_1) < 8andms_; € N(2°%2 —
8 — (2571 — 1)7(ms_1)). This was settled in the case bf= 8 in AppendiXB.
Therefore,

1 x (log lOg 1’)572 = r (log log 1’) LIO%C(,E;AL)J *3'
0gx log =

#N(k;x) <, (C.10)

(3) Fork =2°t2 —7ands > 3, we havet < 7(m,_1) < 8andms_ 1 € N(25%2 —
7 — (2571 — 1)7(ms_1)). This was settled in the case bf= 9 in AppendiXB .
Therefore,

x €T log(k+4)

(loglogz)*™2 = (loglog:c)L foxz ] =3, (C.11)
ogw log x

#N (k;x) < ]
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