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ABSTRACT. The study of perfect numbers (numbers which equal the sum oftheir proper
divisors) goes back to antiquity, and is responsible for some of the oldest and most popular
conjectures in number theory. We investigate a generalization introduced by Pollack and
Shevelev:k-near-perfect numbers. These are examples to the well-known pseudoperfect
numbers first defined by Sierpiński, and are numbers such that the sum of all but at most
k of its proper divisors equals the number. We establish theirasymptotic order for most
integersk ≥ 4, as well as some properties of related quantities.

1. INTRODUCTION

Let σ(n) be the sum of all positive divisors ofn. A natural numbern is perfect if
σ(n) = 2n. Perfect numbers have played a prominent role in classical number theory for
millennia. A well-known conjecture claims that there are infinitely many even, but no odd,
perfect numbers. Despite the fact that these conjectures remain unproven, there has been
significant progress on studying the distribution of perfect numbers [Vo, HoWi, Ka, Er],
as well as generalizations. One are thepseudoperfect numbers, which were introduced
by Sierpínski [Si]. A natural number is pseudoperfect if it is a sum of some subset of its
proper divisors. Erdös and Benkoski [Erd, BeEr] proved thatthe asymptotic density for
pseudoperfect numbers, as well as that of abundant numbers that are not pseudoperfect
(also calledweird numbers), exist and are positive.

Pollack and Shevelev [PoSh] initiated the study of a subclass of pseudoperfect numbers
callednear-perfect numbers. A natural number isk-near-perfect if it is a sum of all of
its proper divisors withat mostk exceptions. Restriction on the number of exceptional
divisors leads to asymptotic density 0. The number of1-near-perfect numbers up tox is1

at mostx3/4+o(1), and in general fork ≥ 1 the number ofk-near-perfect numbers up tox
is at mostx(log log x)k−1/ log x.

Our first result improves the count ofk-near-perfect numbers.

Theorem 1.1. Denote byN(k;x) the set ofk-near-perfect numbers at mostx. For k ≥ 4
with k not equal to2s+2 − 5 or 2s+2 − 6 for somes ≥ 2,

#N(k;x) ≍k
x

log x
(log log x)⌊

log(k+4)
log 2 ⌋−3. (1.1)

We exclude integers of the forms2s+2 − 5 and2s+2 − 6 from the above theorem to
keep our argument in the proof short and clean, and at the sametime not to obscure the
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main ideas behind. At the cost of additional work one could carry out the same kind of
computations done in the proof of Theorem 1.1 in order to cover these two cases.

Our argument is based on a partition of the setN(k;x) different from that of [PoSh].
This allows us to carry out an inductive argument and essentially reduces the count of
#N(k;x) for large integersk to that for small integersk (k = 4, 5, 6, 7, 8, 9). In fact, for
these small integers, we even have precise asymptotic formulae.

Theorem 1.2. For 4 ≤ k ≤ 9, we have

#N(k;x) ∼ ck
x

log x
(1.2)

asx → ∞, where


















c4 = c5 = 1
6 ,

c6 = 17
84 = 1

6 + 1
28

c7 = c8 = 493
1260 = 1

6 + 1
12 + 1

18 + 1
20 + 1

28

c9 = 179017
360360 = 1

6 + 1
12 + 1

18 + 1
20 + 1

28 + 1
24 + 1

40 + 1
56 + 1

88 + 1
104 .

(1.3)

The numbers in the denominators of the reciprocal sums are1-near-perfect. The pres-
ence of these numbers will become clear in the proof.

We can extend the notion ofk-near perfect numbers with the constantk replaced by a
positive strictly increasing function. For further discussion, see Appendix A.

Our last result is motivated by an open question raised in [BeEr]: canσ(n)/n be arbi-
trarily large whenn is a weird number?2 We replace ‘weirdness’ by ‘exact-perfectness’,
where a natural number isk-exact-perfectif it is a sum of all of its proper divisors with
exactlyk exceptions. Note the result below is conditional on there being no odd perfect
numbers.

Theorem 1.3. Let ǫ ∈ (0, 2/5). Denote byE(k) the set of allk-exact-perfect numbers,
E(k;x) := E(k) ∩ [1, x] andEǫ(k;x) := {n ≤ x : n ∈ E(k), σ(n) ≥ 2n+ nǫ}. LetM
be the set of all natural numbers of the form2q, whereq is a Mersenne prime3. If there are
no odd perfect number, then fork sufficiently large andk 6∈ M , we have

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 1. (1.4)

1.1. Outline. In Section 2 we introduce the necessary definitions and lemmata for our
theorems. In Section 3, we set the stage for proving Theorem 1.1 and 1.2. In Section
4, 5 and 6 , we prove Theorem 1.2, 1.1 and 1.3 and respectively.A generalization of
near-perfectness is discussed in Appendix A. We supply moredetail to the calculations of
Theorem 1.1 and 1.2 in Appendix B and C.

1.2. Notations. We use the following notations and definitions.

• We writef(x) ≍ g(x) if there exist positive constantsc1, c2 such thatc1g(x) <
f(x) < c2g(x) for all sufficiently largex.

• We writef(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.
• We writef(x) = O(g(x)) or f(x) ≪ g(x) if there exists a positive constantC

such thatf(x) < Cg(x) for all sufficiently largex.
• We writef(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.

2A number isweird if the sum of its proper divisors is greater than itself, but no subset of these divisors sums
to the original number.

3 Mersenne primes are primes of the form2p − 1 for some primep.
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• In all cases, subscripts indicate dependence of implied constants on other parame-
ters.

• Denote by[a, b]Z the set of all integersn such thata ≤ n ≤ b.
• Denote bylogk x the kth iterate of logarithm. Thuslog1 x = log x, log2 x =
log log x, and so on.

• Let y ≥ 2. A natural numbern is said to bey-smooth if all of its prime factors are
at mosty.

• Let x ≥ y ≥ 2. Denote byΦ(x, y) the set of ally-smooth numbers up tox.
• We usep andpi to denote primes, andP+(n) to denote the largest prime factor of
n.

• Denote byτ(n) the number of positive divisors ofn.

1.3. Acknowledgments. This work was supported in part by NSF Grants DMS1265673,
DMS1347804, DMS1561945, and DMS1659037, the Williams SMALL REU Program,
the Clare Boothe Luce Program, the COSINE Program of the Chinese University of Hong
Kong and the Professor Charles K. Kao Research Exchange Scholarship 2015/16. We
thank Kevin Ford, Charles Chun Che Li, Paul Pollack and Carl Pomerance for helpful
discussions.

2. PREPARATIONS

In this section, we collect the necessary lemmata for our theorems. We begin with two
estimations of the number ofy-smooth numbers up tox.

Lemma 2.1. Let

u =
log x

log y
. (2.1)

Uniformly forx ≥ y ≥ 2, we have the following bound on the size ofΦ(x, y), they-smooth
numbers up tox:

#Φ(x, y) ≪ x exp(−u/2). (2.2)

Uniformly for (log x)3 ≤ y ≤ x, we have

#Φ(x, y) = x exp (−u logu+O(u log log u)) . (2.3)

Proof. See Theorem 9.5, Theorem 9.15 and Corollary 9.18 of [DeKLu]. �

Our next lemma is a standard result from sieve theory.

Lemma 2.2. SupposeA is a finite set of natural numbers,P is a set of primes,z > 0 and
P (z) is the product of primes inP not greater thanz. Let

S(A,P, z) := {n ∈ A : (n, P (z)) = 1}
and

Ad := {a ∈ A : d | a}.
Assume the following conditions.

(1) Supposeg is a multiplicative function satisfying

0 ≤ g(p) < 1 for p ∈ P and g(p) = 0 for p 6∈ P,

and there exists constantsB > 0 andκ ≥ 0 such that
∏

y≤p≤w

(1− g(p))−1 ≤
(

logw

log y

)κ

exp

(

B

log y

)
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for 2 ≤ y < w.
(2) LetX > 0. For any square-free numberd with all of its prime factors inP , define

rd := #Ad −Xg(d).

Assume thatrd satisfies the inequality
∑

d|P (z)

d≤Xθ

|rd| ≤ C
x

(log x)κ
.

for someθ > 0.

Then for2 ≤ z ≤ X , we have

#S(A,P, z) ≪κ,θ,C,B XV (z), (2.4)

where
V (z) :=

∏

p≤z
p∈P

(1− g(p)). (2.5)

Proof. For example, see [FoHa]. �

In the proof of Theorem 1.1, an estimate is needed for the sizeof the set

Φj(x, y) := {n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < pj < · · · < p1}, (2.6)

wherej ≥ 1 andx ≥ y ≥ 2. The following lemma follows from Lemmas 2.1 and 2.2.

Lemma 2.3. Supposex ≥ y ≥ 2 andy ≤ xo(1). For everyj ≥ 1, we have

#Φj(x, y) ≪ x log y

log x
(log log x)j−1. (2.7)

Proof. We follow the settings and notations of Lemma 2.2. LetA be the set of all natural
numbers up tox, P be the set of primes in(y, x1/(j+1)], z := x1/(j+1), X := x and
g(d) := 1/d. The setS(A,P, z) is all natural numbers up tox whose prime factors are at
mosty or exceedx

1
j+1 . (Note that at mostj prime factors can be larger thanx

1
j+1 .)

By Merten’s estimates, we can see that all of the assumptionsof Lemma 2.2 are satisfied
and hence we have

#S(A,P, z) ≪ x log y

log x
. (2.8)

Therefore,

#Q(j)(x) := #{n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < x

1
j+1 < pj < · · · < p1}

≪ x log y

log x
. (2.9)

For1 ≤ i ≤ j − 1, denote byQ(i)(x) the set
{

n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < pj < · · · < pi+1 ≤ x

1
j+1 < pi < · · · < p1

}

(2.10)

and byQ(0)(x) the set
{

n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < pj < · · · < p1 ≤ x

1
j+1

}

. (2.11)
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For1 ≤ i ≤ j−1, we use the same kind of estimate ofS(A,P, z) with the same choices
of parameters as above, except this time we choose

X :=
x

pi+1 · · · pj
(2.12)

andA the set of all natural numbers up toX , for some fixed choices of primespi+1, . . . pj .
Hence

#Q(i)(x) =
∑

y<pj<···<pi+1≤x
1

j+1

∑

P+(mj)≤y

p1>···>pi>x
1

j+1

p1···pimj≤x/(pi+1···pj)

1

≪
∑

y<pj<···<pi+1≤x
1

j+1

x

pi+1 · · · pj
log y

log x

≤ x log y

log x







∑

p≤x
1

j+1

1

p







j−i

≪ x log y

log x
(log log x)j−i, (2.13)

and

#Q(0)(x) =
∑

y<pj<···<p1≤x
1

j+1

∑

P+(mj)≤y
mj≤x/(p1···pj)

1

≪
∑

y<pj<···<p1≤x
1

j+1

x

p1 · · · pj
exp

(

− log(x/p1 · · · pj)
2 log y

)

≤
∑

y<pj<···<p1≤x
1

j+1

x

p1 · · · pj
exp

(

− 1

2(j + 1)

log x

log y

)

≤ x exp

(

− 1

2(j + 1)

log x

log y

)







∑

p≤x
1

j+1

1

p







j

≪ x(log log x)j exp

(

− 1

2(j + 1)

log x

log y

)

. (2.14)

We thus have

#Φj(x, y) =

j
∑

i=0

#Q(i)(x) ≪ x log y

log x
(log log x)j−1, (2.15)

which completes the proof. �

Remark 2.4. Since

{n ≤ x : n = p1 · · · pjmj ,mj ≤ y < pj < · · · < p1} ⊂ Φj(x, y), (2.16)
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it follows that

#Φj(x, y) ≥
∑

mj≤y

∑

nj≤ x
mj

nj=p1···pj

for somep1>···pj>y

1

≫
∑

mj≤y

x/mj

log(x/mj)

(

log log
x

mj

)j−1

≥ x

log x

(

log log
x

y

)j−1
∑

mj≤y

1

mj

≫ x log y

log x

(

log log
x

y

)j−1

. (2.17)

Below we state some simple observations about near-perfectnumbers.

Lemma 2.5. Prime powers cannot bek-near-perfect for anyk ≥ 0.

Proof. This follows directly from the definition of near-perfect numbers and the unique-
ness ofq-ary representation. �

Let τ(m) be the number of positive divisors of the positive integerm. From Lemma
2.5 we immediately deduce the following.

Lemma 2.6. If τ(m) is prime, thenm cannot bek-near-perfect for anyk ≥ 0. If m is a
k-near-perfect number for somek ≥ 0, thenτ(m) ≥ 4.

Finally, a direct computation yields

Lemma 2.7. If m is ak-near-perfect number for somek ≥ 0 andτ(m) = 4 or τ(m) = 6,
thenm ∈ {6, 12, 18, 20, 28}.

The following is a complete classification of1-near-perfect numbers with two distinct
prime factors.

Lemma 2.8. A 1-near-perfect number which is not perfect and has two distinct prime
factors is of the form

(1) 2t−1(2t − 2k − 1), where2t − 2k − 1 is prime,
(2) 22p−1(2p − 1), wherep is a prime such that2p − 1 is also a prime.
(3) 2p−1(2p − 1)2, wherep is a prime such that2p − 1 is also a prime.
(4) 40.

Proof. See [ReCh]. �

Denote byΩ(n) the number of prime factors ofn counting multiplicitiesand letΩ(r;x) :=
{n ≤ x : Ω(n) = r}. We have the following result, due to Landau (Theorem 10.3 of
[DeKLu]).

Lemma 2.9. Fix an integerr ≥ 1. Asx → ∞, we have

#Ω(r;x) ∼ 1

(r − 1)!

x

log x
(log log x)r−1. (2.18)
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The equationσ(n) = ℓn + k has been studied by a number of authors in the past
decades; for more detail, see [AnPoPo, Po, Po1, Po2, PoPo, PoSh, PoPoTh]. In this article,
we only need the case ofℓ = 2 and adopt following definitions from the aforementioned
literature.

Definition 2.10 (Regular / Sporadic Solutions). The solutions ofσ(n) = 2n + k of the
form

n = pm′, where p ∤ m′, σ(m′) = 2m′, σ(m′) = k, (2.19)

are called regular. All other solutions are called sporadic.

Lemma 2.11. The number of sporadic solutions in[1, x] is at mostx3/5+o(1) asx → ∞.

Proof. See [PoPoTh]. �

3. OUTLINE OF THEOREM 1.1 AND 1.2

Let us first recall the settings in [PoSh]. In order to estimate the size of the setN(k;x),
one may partition it into the following three subsets and estimate each respectively:

N1(k;x) := {n ∈ N(k;x) : P+(n) ≤ y},
N2(k;x) := {n ∈ N(k;x) : P+(n) > y andP+(n)2|n},
N3(k;x) := {n ∈ N(k;x) : P+(n) > y andP+(n) || n}, (3.1)

wherey = y(x) is some parameter to be chosen later.
In [PoSh] they further partitionedN3(k;x) according to whetherτ(m) is at mostk

or not. They bounded the contribution fromτ(m) ≤ k simply by x
log x (log log x)

k−1, i.e.,
Lemma 2.9. Instead, if one considers the normal order oflog τ(n), which is(log 2) log logn,

one obtains the boundx
log x(log log x)

⌊ log k
log 2 ⌋ for N(k;x). More work is needed, though,

as this is still not the correct order for#N(k;x); we thus have to partitionN3(k;x) more
carefully. This is explained as follows.

Supposen ∈ N3(k;x). There exists a set of proper divisorsDn of n with #Dn ≤ k
such that

σ(n) = 2n+
∑

d∈Dn

d, (3.2)

andn is of the form

n = pm, where p > max{y, P+(m)}. (3.3)

DivideDn into two subsets:

D(1)
n := {d ∈ Dn : p ∤ d},

D(2)
n := {d/p : d ∈ Dn, p | d}. (3.4)

It is clear that
σ(m)−

∑

d∈D
(1)
n

d ≥ 0, (3.5)

andD(2)
n consists of proper divisors ofm.

Now also suppose

σ(m)−
∑

d∈D
(1)
n

d = 0. (3.6)
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From
(1 + p)σ(m) = σ(pm) = 2pm+

∑

d∈D
(1)
n

d+ p
∑

d∈D
(2)
n

d, (3.7)

we see that
σ(m) = 2m+

∑

d∈D
(2)
n

d. (3.8)

Since#D
(1)
n = τ(m) and#D

(1)
n + #D

(2)
n = #Dn ≤ k, we haveτ(m) ≤ k and

#D
(2)
n ≤ k − τ(m). It follows that

m ∈ N(k − τ(m)). (3.9)

To facilitate discussion that follows, we introduce the following notations:

N
(1)
3 (k;x) := {n ∈ N(k;x) : n = pm, p > max{y, P+(m)}, τ(m) ≤ k

andm ∈ N(k − τ(m))},
N

(2)
3 (k;x) := N3(k;x) \N (1)

3 (k;x). (3.10)

Denote byM(k) the set ofn ∈ N(k) such thatn = pm, p > P+(m) and

σ(m)−
∑

d∈D
(1)
n

d > 0. (3.11)

LetM(k;x) = M(k) ∩ [1, x].

We carry out the above partition (intoN1, N2, N
(1)
3 , N

(2)
3 ) recursively in the next sec-

tion. At each step, we show that the contributions fromN1, N2, N
(2)
3 are of acceptable

sizes.4 After this is done, we analyzeN (1)
3 (k;x) carefully for small integersk. In this way,

we improve upon the boundx
log x (log log x)

⌊ log k
log 2 ⌋ and establish Theorem 1.1. The proof

of Theorem 1.2 is simpler. It follows quite directly from thepartition as in Theorem 1.1
without encountering complications of the recursive process. We start with its proof in the
next section.

4. PROOF OFTHEOREM 1.2

Firstly, observe that the contributions fromN1(k;x), N2(k;x) andN (2)
3 (k;x) are ac-

ceptable. Indeed, takey = (log x)3k+10 and similar to [PoSh], one has

#N1(k;x),#N2(k;x) ≪ x

(log x)2
, (4.1)

and
#N

(2)
3 (k;x) ≪ x

y
(log x)3k+1 ≪ x

(log x)2
. (4.2)

Considern ∈ N
(1)
3 (k;x), i.e.,n = pm, p > max{y, P+(m)} andm ∈ N(k − τ(m)).

For k = 4, 5, τ(m) = 4 andm ∈ N(1) by Corollary 2.6. By Lemma 2.7, we have
m = 6. By the Prime Number Theorem, we have

#N
(1)
3 (4;x) = π(x/6)− π(x1/ log log x) ∼ 1

6

x

log x
, (4.3)

4 We say that the size of a quantity isacceptableif it is not greater than that of the main term, e.g.,
x

log x
(log log x)

⌊
log(k+4)

log 2
⌋−3 in Theorem 1.1 andx/ log x in Theorem 1.2.
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and so

#N(4;x) ∼ 1

6

x

log x
. (4.4)

Fork = 6, we haveτ(m) ∈ {4, 6}.

• If τ(m) = 4, thenm ∈ N(2). We havem = 6.
• If τ(m) = 6, thenm ∈ N(0). We havem = 28.

Therefore,

#N(6;x) ∼ 17

84

x

log x
. (4.5)

For the rest of the cases claimed in Theorem 1.2, the argumentis similar but is more
involved. For the case ofk = 9, we have to use the classification result of [ReCh] (Lemma
2.8). The details are included in Appendix B. This completesthe proof of Theorem 1.2.

Before we end this section, we record the following observation. It was established in
[PoSh] that

#N(k;x) ≪ x exp(−(ck + o(1))
√

log x log log x), (4.6)

wherec2 =
√
6/6 ≈ 0.4082 andc3 =

√
2/4 ≈ 0.3535. This follows easily by the method

above, withck being improved to1/2 and now one can takeo(1) to beO(log3 x/ log2 x).

By Corollary 2.6,N (1)
3 (3;x) is an empty set. So,

#N(3;x) = #N1(3;x) + #N2(3;x) + #N
(2)
3 (3;x)

≪ x exp(−u log u+O(u log log u)) +
x

y
(log x)10, (4.7)

whereu = (log x)/(log y). Chooselog y =
√
log x log log x. Then

u =

√

log x

log log x
and u logu =

1

2

√

log x

log log x
(log log x−log log log x) ≍ log y. (4.8)

Therefore

#N(3;x) ≪ x exp

(

−1

2

√

log x log log x

(

1 +O

(

log3 x

log2 x

)))

. (4.9)

5. PROOF OFTHEOREM 1.1

As in the proof of Theorem 1.2,

#N1(k;x),#N2(k;x),#N
(2)
3 (k;x) ≪ x

(log x)2
. (5.1)

Therefore, it now suffices to considern is of the formp1m1 with p1 > max{y, P+(m1)},
τ(m1) ≤ k and m1 ∈ N(k − τ(m1)). Repeat the partition tom1, i.e., for R =

N1, N2, N
(1)
3 , N

(2)
3 , consider the sets

{

n ≤ x : n = p1m1, p1 > max{y, P+(m1)},m1 ∈ R

(

k − τ(m1);
x

y

)}

. (5.2)

• WhenR = N1, N2, N
(2)
3 , the set (5.2) will be shown to be of acceptable size

O( x
log x log log x) in Sections 5.1, 5.2 and 5.3 (in more general settings).



10 P. COHEN, K. CORDWELL, A. EPSTEIN, C. H. KWAN, A. LOTT, AND S. J. MILLER

• WhenR = N
(1)
3 , the set (5.2) is contained in

{

n ≤ x : n = p1p2m2, p1 > p2 > max{y, P+(m2)},m2 ∈ N

(

k − 3τ(m2);
x

y2

)}

.

(5.3)
Repeat the partition tom2, so on and so forth.

In general, letj ≥ 2 be any integer. Suppose we have carried out this partitioning
procedure forj − 1 times. We arrive at the tasks of estimating the sizes of the sets

{

n ∈ Qj−1(x) : mj−1 ∈ R

(

k − (2j−1 − 1)τ(mj−1);
x

yj−1

)}

(5.4)

for R = N1, N2, N
(2)
3 , whereQj−1(x) denotes the set of natural numbers in[1, x] of the

form p1 · · · pj−1mj−1 with p1 > · · · > pj−1 > max{y, P+(mj−1)}. This will be done
in Sections 5.1, 5.2 and 5.3.

5.1. Estimation for R = N1. From Lemma 2.3, we immediately have

#

{

n ∈ Qj−1(x) : mj−1 ∈ N1

(

k − (2j−1 − 1)τ(mj−1);
x

yj−1

)}

≤ #Φ(j−1)(x, y)

≪k
x

log x
(log log x)j−1. (5.5)

5.2. Estimation for R = N2. From our previous analysis, we have

#

{

n ∈ Qj−1(x) : mj−1 ∈ N2

(

k − (2j−1 − 1)τ(mj−1);
x

yj−1

)}

≤
∑

p1>···>pj−1>y
p1···pj−1≤x

∑

mj−1≤x/p1···pj−1

P+(mj−1)
2|mj−1

P+(mj−1)>y

1

≤
∑

p1>···>pj−1>y
p1···pj−1≤x

x

y

1

p1 · · · pj−1

≤ x

y





∑

p≤x

1

p





j−1

≪ x

y
(log log x)j−1 ≪ x

(log x)3k+10
(log log x)j−1. (5.6)

5.3. Estimation of N (2)
3 . From [PoSh], we have

#{n ≤ x : n ∈ M(k), P+(n) > y} ≪k
x

y
(log x)3k+1. (5.7)

Then

#M(k;x) = #{n ≤ x : n ∈ M(k), P+(n) ≤ y}+#{n ≤ x : n ∈ M(k), P+(n) > y}
≪k #Φ(x, y) +

x

y
(log x)3k+1 ≪k

x

(log x)2
. (5.8)

It follows from partial summation that
∑

n∈M(k)

1

n
< ∞.
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Therefore,

#

{

n ∈ Qj−1(x) : mj−1 ∈ N
(2)
3

(

k − (2j−1 − 1)τ(mj−1);
x

yj−1

)}

≤
∑

p1>···>pj−1>y
p1···pj−1≤

√
x

∑

mj−1≤x/p1···pj−1

mj−1∈M(k)

1 +
∑

mj−1≤
√
x

mj−1∈M(k)

∑

p1>···>pj−1>y
p1···pj−1≤x/mj−1

1

≪k

∑

p1>···>pj−1>

p1···pj−1≤
√
x

x
p1···pj−1

(log x
p1···pj−1

)2
+

∑

mj−1≤
√
x

mj−1∈M(k)

x
mj−1

log x
mj−1

(

log log
x

mj−1

)j−2

≪ x

(log x)2

∑

p1>···>pj−1>y

p1···pj−1≤
√
x

1

p1 · · · pj−1
+

x

log x
(log log x)j−2

∑

mj−1≤
√
x

mj−1∈M(k)

1

mj−1

≪ x

(log x)2





∑

p≤√
x

1

p





j−1

+
x

log x
(log log x)j−2

≪ x

log x
(log log x)j−2. (5.9)

5.4. Analyzing R = N
(1)
3 . Suppose that for somej = j(k) ≥ 1 there are only finitely

manymj such that(2j − 1)τ(mj) ≤ k andmj ∈ N(k− (2j − 1)τ(mj)). It follows from
Lemma 2.9 that

#
{

n ∈ Qj−1(x) : mj−1 ∈ N
(1)
3 (k − (2j−1 − 1)τ(mj−1))

}

≤ #
{

n ∈ Qj(x) : mj ∈ N(k − (2j − 1)τ(mj))
}

≪k
x

log x
(log log x)j−1. (5.10)

Putting the estimates (5.5), (5.6), (5.9) and (5.10) together, we have

#N(k;x) ≪k
x

log x
(log log x)j−1. (5.11)

Therefore, it remains to determine whatj = j(k) one can take such that the above argu-
ment is valid. This will be done by a case-by-case study. For simplicity, we just demon-
strate one such case below. The analysis of the rest of the cases are similar and we include
the detail in Appendix C for the sake of completeness .

Let ℓ ≥ −4. Considerk of the form2s+2 + ℓ with

s >
log(ℓ+ 6)

log 2
− 1. (5.12)

Takej = s, i.e., repeat the partitioning processes fors− 1 times. From (5.12),

4 ≤ τ(ms) ≤ k

2s − 1
=

2s+2 + ℓ

2s − 1
< 6. (5.13)

By Lemma 2.5, 2.6 and 2.7,τ(ms) = 4, ms ∈ N(ℓ + 4) and thenms = 6. It follows
that

#N(k;x) ≪k
x

log x
(log log x)s−1. (5.14)
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From (5.12), we have

s <
log(k + 4)

log 2
− 2 < s+ 1. (5.15)

Hence

s =

⌊

log(k + 4)

log 2

⌋

− 2 (5.16)

and

#N(k;x) ≪k
x

log x
(log log x)⌊

log(k+4)
log 2 ⌋−3 (5.17)

for

k ∈
⋃

ℓ≥−4

{

2s+2 + ℓ : s >
log(ℓ+ 6)

log 2
− 1

}

=
⋃

r≥1

[4 · 2r − 4, 6 · 2r − 7]Z. (5.18)

Taking account of the cases to be handled in Appendix C as well, Theorem 1.1 holds
for

k ≥ 4 and k 6= 2s+2 − 6, 2s+2 − 5 for s ≥ 2. (5.19)

On the other hand, the lower bound for#N(k;x) is obvious. Consider simply the
natural numbers of the form6p1 · · · ps = p1 · · · ps + 2p1 · · · ps + 3p1 · · · ps. By Lemma
2.9, one has

lim inf
x→∞

#N(k;x)
x

log x (log log x)
r−2

≥ 1

6(r − 2)!
, (5.20)

wherer ≥ 2. This completes the proof of Theorem 1.1.

6. PROOF OFTHEOREM 1.3

Let ǫ ∈ (0, 2/5). By Lemma 2.11,

#(E(k;x) \ Eǫ(k;x)) ≤ #{n ≤ x : n ∈ E(k), n = pm′, p ∤ m′, σ(m′) = 2m′}
+O(x3/5+ǫ+o(1)). (6.1)

Forn ∈ E(k) with n = pm′, p ∤ m′ andσ(m′) = 2m′, we have

pm′ =
∑

d1∈D1

d1 + p
∑

d2∈D2

d2, (6.2)

whereD1 is a subset of positive divisors ofm′, D2 is a subset of proper divisors ofm′

with #D1 +#D2 = τ(pm′)− 1− k = 2τ(m′)− 1− k.

Suppose thatD1 6= ∅. Then

1 ≤
∑

d1∈D1

d1 ≤ σ(m′) = 2m′. (6.3)

Reducing (6.2) modulop, we have

p

∣

∣

∣

∣

∑

d1∈D1

d1. (6.4)

The number of possible values forp is O(log 2m′) = O(log x). Thus the number of
possible values for suchn is O(xo(1) log x) by the Hornfeck-Wirsing Theorem ([HoWi]),
which is acceptable.
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Now suppose thatD1 = ∅. Then#D2 = 2τ(m′)− 1− k and

m′ =
∑

d2∈D2

d2. (6.5)

Sinceσ(m′) = 2m′, we have#D2 = τ(m′)−1. Therefore,τ(m′)−1 = 2τ(m′)−1−k,
i.e.,τ(m′) = k.

By the hypothesis of non-existence of odd perfect number andthe Euclid-Euler Theo-
rem, we havem′ = 2q

′−1(2q
′−1) for some Mersenne primeq′. Sok = τ(m′) = 2q′ ∈ M .

Hence ifk 6∈ M , then we have a contradiction and

#(E(k;x) \ Eǫ(k;x)) = O(xo(1) log x) +O(x3/5+ǫ+o(1)) = O(x3/5+ǫ+o(1)). (6.6)

It was shown in [PoSh], by using a form of the Prime Number Theorem of Drmota,
Mauduit and Rivat, that for all largek the number ofk-exactly-perfect numbers up tox is
≫k x/ logx. Therefore

#(E(k;x) \ Eǫ(k;x))

#E(k;x)
≪k

log x

x2/5−ǫ−o(1)
(6.7)

and

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 1. (6.8)

Remark 6.1. Supposek ∈ M . Thenk = 2q for some Mersenne primeq. Let m =
2q−1(2q − 1). Thenq′ = q and som′ = m in the above argument. By the Prime Number
Theorem,

lim sup
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
≤ 1

m
. (6.9)

On the other hand, sincem is perfect, the number of proper divisors ofm is τ(m)−1 =
2q− 1. Hencepm is a sum of2q− 1 of its proper divisors. The number of proper divisors
of pm is τ(pm) − 1 = 4q − 1. So,pm is a sum of all of its proper divisors with exactly
(4q− 1)− (2q− 1) = 2q exceptions, i.e.,pm ∈ E(k). Clearlyσ(pm)− 2pm < (pm)ǫ if
p > (2m1−ǫ)1/ǫ andp ∤ m. It follows that

lim inf
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
≥ 1

m
. (6.10)

As a result,

lim
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
=

1

m
. (6.11)

APPENDIX A. GENERALIZATIONS AND PHASE-CHANGES OFNEAR-PERFECTNESS

Throughout this section,k is a positive strictly increasing function. A natural number
n is said to bek-near-perfectif n is a sum of all of its proper divisors with at mostk(n)
exceptions, i.e., we allowk to increase withn and larger natural numbersn have more
exceptional divisors.

It is well-known that

lim sup
n→∞

log τ(n)

logn/ log logn
= log 2. (A.1)

Take

k0(y) := exp

(

log y

log log y

)

. (A.2)
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The setN(k0) is simply the set of all pseudoperfect numbers. It suffices toconsiderk
satisfying

lim sup
y→∞

k(y)

k0(y)
< 1. (A.3)

It is not hard to observe that if

lim inf
y→∞

k(y)

(log y)δ
> 0 (A.4)

for someδ > log 2, thenN(k) has the asymptotic density of the set of pseudoperfect
numbers. This has little to do with the structure ofk-near-perfectness. Indeed, since the
normal order oflog τ(n) is (log 2) log logn,

#N(k0;x)

x
=

#N(k;x)

x
+O

(

1

x
#{n ≤ x : τ(n) ≥ k(n)}

)

=
#N(k;x)

x
+ o(1)

asx → ∞. The result follows.

Lemma A.1. Uniformly forα ∈ (0, 1),

#{n ≤ x : log τ(n) ≤ α log 2 log log x} ≪ x(log x)−B(α) (A.5)

whereB(α) = α logα− α+ 1.

Proof. See for example Theorem 3.7 of Chapter III.3 of [Ten] for the corresponding results
for the prime-divisor-counting functionsω(n) andΩ(n). The results forτ(n) follows from
2ω(n) ≤ τ(n) ≤ 2Ω(n). �

The following result is also not unexpected.

Proposition A.2. If

lim sup
y→∞

k(y)

(log y)ǫ
< 1, (A.6)

for someǫ ∈ (0, log 2), thenN(k) has asymptotic density0:

#N(k;x) ≪ǫ
x

(log x)r(ǫ)
, (A.7)

where

r(ǫ) := 1− ǫ(1 + log2 2− log ǫ)

log 2
∈ (0, 1). (A.8)

Proof. Use the same partition as in [PoSh]:N1(k;x), N2(k;x), N
′
3(k;x), N

′′
3 (k;x), where

N ′
3(k;x) consists of the natural numbers inN3(k;x) such thatτ(n) ≤ k andN ′′

3 (k;x)
otherwise. We now replace certain estimates done in [PoSh].

#N ′′
3 (k;x) ≪ x

y
(log x)(1 + (log x)3)k(x)

≪ x log x exp

(

− log x

log log x

)

exp(k(x) log(1 + (log x)3))

= x log x exp

(

− log x

log log x

)

exp

(

3k(x) log log x+O

(

k(x)

(log x)3

))

≪ x log x exp

(

− log x

log log x
+ 3(log x)log 2 log log x

)

≪ x log x exp

(

− log x

2 log log x

)

≪ x

(log x)2
. (A.9)
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By Lemma A.1,

#N ′(k;x) ≤ #N ′((log y)ǫ;x)

≪ x

log x
(log x)ǫ(1+log2 2)/ log 2 exp

((

1 +
ǫ log2 x

log 2

)

(log3 x− log2 2(log x)
ǫ)

)

≪ǫ
x

log x
(log x)ǫ(1+log2 2)/ log 2 exp

(

− log ǫ

(

1 +
ǫ log2 x

log 2

))

≪ǫ
x

(log x)r(ǫ)
, (A.10)

where

r(ǫ) := 1− ǫ(1 + log2 2− log ǫ)

log 2
∈ (0, 1). (A.11)

�

APPENDIX B. CASES FOR k = 7, 8, 9 FOR THEOREM 1.2

Fork = 7, we haveτ(m) ∈ {4, 6}. Fork = 8, τ(m) ∈ {4, 6, 8}.

• If τ(m) = 4, thenm ∈ N(3). We havem = 6.
• If τ(m) = 6, thenm ∈ N(1). We havem ∈ {12, 18, 20, 28}.
• If k = 8 andτ(m) = 8, thenm ∈ N(0) andm has at most3 prime factors. It

follows thatm cannot be an odd perfect number.5. Therefore,m is even and by
the Euclid-Euler Theorem,m is of the form2p−1(2p − 1) for some primep such
that2p− 1 is also a prime. Then8 = τ(m) = 2p, which is a contradiction. Hence
there is no suchm.

Therefore, we have

#N(7;x),#N(8;x) ∼ 493

1260

x

log x
. (B.1)

Fork = 9, τ(m) ∈ {4, 6, 8, 9}. Again if τ(m) = 4 or 6, m ∈ {6, 12, 18, 20, 28}.

• If τ(m) = 8, thenm ∈ N(1). By the discussion in the casek = 8, m cannot
be perfect. By Lemma 2.5, we havem is of the formq3r or qrs, whereq, r, s
are distinct primes. For the first case we havem ∈ {24, 40, 56, 88, 104} by using
Lemma 2.8. For the second case, we consider the following setof equations

(1 + q)(1 + r)(1 + s) = 2qrs+ 1,

(1 + q)(1 + r)(1 + s) = 2qrs+ q,

(1 + q)(1 + r)(1 + s) = 2qrs+ qr, (B.2)

in which it is easy to check all of them have no solution.
• If τ(m) = 9, thenm ∈ N(0). By a similar discussion as that in the case ofk = 8,

there is no suchm.

Therefore, we have

#N(9;x) ∼ 179017

360360

x

log x
. (B.3)

5 In fact, it is now known that an odd perfect number must have atleast 10 distinct prime factors. This is due
to Nielsen [Niel]. The proof of an odd perfect has at least4 distinct prime factors is completely elementary.
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APPENDIX C. THE REST OF THECASES OFTHEOREM 1.1

(1) Let ℓ > 8. Considerk of the form2s+2 − ℓ for

s ≥ log(ℓ− 4)

log 2
− 1. (C.1)

Takej = s− 1. Then

4 ≤ τ(ms−1) ≤ 2s+2 − ℓ

2s−1 − 1
= 8− ℓ− 8

2s−1 − 1
< 8. (C.2)

By Lemma 2.5, 2.6 and 2.7,τ(ms−1) = {4, 6} andms−1 ∈ {6, 12, 18, 20, 28}.
Hence

#N(k;x) ≪k
x

log x
(log log x)s−2. (C.3)

By the following sets of elementary inequalities:

log(k + 4)

log 2
=

log(2s+2 + 4− ℓ)

log 2
<

log(2s+2 − 4)

log 2
< s+ 2, (C.4)

2s+1 ≥ ℓ− 4 = 2s+2 − k − 4, (C.5)

and
log(k + 4)

log 2
≥ s+ 1, (C.6)

we have
⌊

log(k + 4)

log 2

⌋

= s+ 1. (C.7)

Therefore,

#N(k;x) ≪k
x

log x
(log log x)⌊

log(k+4)
log 2 ⌋−3 (C.8)

for

k ∈
⋃

ℓ>8

{

2s+2 − ℓ : s ≥ log(ℓ− 4)

log 2
− 1

}

=
⋃

r≥2

[3 · 2r − 6, 4 · 2r − 9]Z. (C.9)

(2) Fork = 2s+2 − 8 ands ≥ 2, we have4 ≤ τ(ms−1) ≤ 8 andms−1 ∈ N(2s+2 −
8 − (2s−1 − 1)τ(ms−1)). This was settled in the case ofk = 8 in Appendix B.
Therefore,

#N(k;x) ≪k
x

log x
(log log x)s−2 =

x

log x
(log log x)⌊

log(k+4)
log 2 ⌋−3. (C.10)

(3) Fork = 2s+2 − 7 ands ≥ 3, we have4 ≤ τ(ms−1) ≤ 8 andms−1 ∈ N(2s+2 −
7 − (2s−1 − 1)τ(ms−1)). This was settled in the case ofk = 9 in Appendix B .
Therefore,

#N(k;x) ≪k
x

log x
(log log x)s−2 =

x

log x
(log log x)⌊

log(k+4)
log 2 ⌋−3. (C.11)



ON NEAR PERFECT NUMBERS 17

REFERENCES

[AnPoPo] A. Anavi and P. Pollack and C. Pomerance,On congruences of the formσ(n) ≡ a (modn) , Int.
J. Number Theory9 (2012), 115-124.

[BeEr] S. J. Benkoski and P. Erdös,On weird and pseudoperfect numbers, Math. Comp.28 (1974), no.126,
617-623.

[DeKLu] J-M De Koninck, F. LucaAnalytic Number Theory: Exploring the Anatomy of Integers, Graduate
Studies in Mathematics Vol. 134, American Mathematical Society.

[Er] P. Erdös,On perfect and multiply perfect numbers, Annali di Matematica Pura ed Applicata,42
(1956), no. 1, 253-258.

[Erd] P. Erdös,Some Extremal Problems in Combinatorial Number Theory, Mathematical Essays Dedi-
cated to A. J. Macintyre, 123–133, Ohio Univ. Press, Athens,Ohio, 1970.

[FoHa] K. Ford, H. HalberstamThe Brun-Hooley Sieve, Journal of Number Theory,81 (2000), 335-350.
[Gu] R. K. Guy,Unsolved problems in number theory, third ed., Springer (2004), 74-75, 78.
[HaWr] G. H. Hardy and E. M. Wright,An introduction to the theory of numbers, fourth ed., Oxford Univer-

sity Press, Oxford (1975), 262-265.
[HoWi] B. Hornfeck and E. Wirsing,Über die Häufigkeit vollkommener Zahlen, Math. Ann.133 (1957),

431-438.
[Ka] H. J. Kanold,Über die Verteilung der vollkommene Zahlen und allgemeinerer Zahlenmengen, Math

Ann. 132(1957), 442-450.
[Niel] P. P. Nielsen,Odd Perfect Numbers, Diophantine Equations, and Upper Bounds, Math. Comp.84

(2015), 2549-2567
[Po] C. Pomerance,On the congruencesσ(n) ≡ a(mod n) andn ≡ a(mod φ(n)), Acta Arith. 26

(1975), 265-272.
[Po1] C. Pomerance,On compositen for whichφ(n)|n− 1, Acta Arith. 28 (1976), 387-389.
[Po2] C. Pomerance,On compositen for whichφ(n)|n− 1, II, Pacific J. Math.69 (1977), 177-186.
[Pol] P. Pollack,Not always buried deep: A second course in elementary numbertheory , AMS, Provi-

dence (2009), 249, 258-259.
[PoPo] P. Pollack, C. Pomerance,On the distribution of some integers related to perfect and amicable

numbers, Colloq. Math.30 (2013), 169-182.
[PoPoTh] P. Pollack, C. Pomerance, L. Thompson,Divisor-sum fibres, Mathematika64 (2018), 330-342.
[PoSh] P. Pollack and V. Shevelev,On perfect and near-perfect numbers, J. Number Theory132 (2012),

3037-3046.
[ReCh] X.-Z. Ren and Y.-G. ChenOn near-perfect numbers with two distinct prime factors, Bull. Aust.

Math. Soc.88 (2013), 520-524.
[Sc] A. Schinzel,On functionsφ(n) andσ(n), Bull. Acad. Pol. Sci. Cl. III3 (1955), 415-419.
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