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ABSTRACT. One of the most important statistics in studying the zeros of L-functions
is the 1-level density, which measures the concentration ofzeros near the central point.
Fouvry and Iwaniec [FI] proved that the 1-level density forL-functions attached to
imaginary quadratic fields agrees with results predicted byrandom matrix theory. In
this paper, we show a similar agreement with random matrix theory occurring in more
general sequences of number fields. We first show that the mainterm agrees with ran-
dom matrix theory, and similar to all other families studiedto date, is independent of the
arithmetic of the fields. We then derive the first lower order term of the 1-level density,
and see the arithmetic enter.

1. INTRODUCTION

1.1. Background. While studying class numbers in the early 1970s, Montgomerymade
the remarkable observation that the zeros of the Riemann zeta function appear to be
correlated in precisely the same way as the eigenvalues of Gaussian random matrices
[Mon]. This was based on a chance encounter with Freeman Dyson, who had calculated
the eigenvalue pair correlation function for the Gaussian Unitary Ensemble and found it
to be

1−
(
sin πx

πx

)2

,

exactly the distribution conjectured by Montgomery for thezeros of the zeta function.
Extensive numerical computations by Odlyzko [Od1, Od2] support this unexpected cor-
respondence to impressive heights on the critical line.

Attempts to explain this connection rigorously in the number field case have thus
far been unsuccessful. However, groundbreaking theoretical work by Katz and Sarnak
has put this goal within reach in the function field setting. They proved that, as one
averages over the zeros of suitable families ofL-functions obtained from geometry,
the scaling limit of the spacing measures of the normalized zeros tends to a ‘universal
measure’ which is the limit of the spacing measures of the eigenvalues of Gaussian
random matrices (see [KaSa1, KaSa2] for details, as well as the survey article [FM]
for a description of the development of random matrix theoryfrom nuclear physics to
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number theory). Moreover, their work predicts that associated to an appropriate family
E of elliptic curves overQ is a classical compact matrix groupG(E) (which may be
viewed as a group of random matrices under normalized Haar measure) in such a way
that for any compactly supported even Schwartz functionh onR, we have

∫

R

h(x)WG(E)(x)dx = lim
X→∞

(
1/
∑

n≤X

|En|
)

∑

n≤X,E∈En

h

(
γE,j

log(NE)

2π

)
(1.1)

whereNE denotes the conductor of the curveE,

En = {Q−isogeny classes ofE ∈ E : NE = n}
and1/2 ± iγE,j are the zeros ofL(S,E/Q) (normalized to have functional equation
s → 1 − s). The distributionWG(E) is canonically associated to the scaling limit of a
classical compact group, and gives the density of the normalized spacings between the
eigenangles. Katz and Sarnak [KaSa1, KaSa2] showed that fortest functionsφ with
Fourier transforms supported in(−1, 1), the one-level densities of the scaling limits of
the classical compact groups are given by1

∫
φ(x)WSO(even)(x)dx = φ̂(0) +

1

2
φ(0)

∫
φ(x)WSO(odd)(x)dx = φ̂(0) +

1

2
φ(0)

∫
φ(x)WO(x)dx = φ̂(0) +

1

2
φ(0)

∫
φ(x)WUSp(x)dx = φ̂(0)− 1

2
φ(0)

∫
φ(x)WU(x)dx = φ̂(0). (1.2)

The quantity on the right side of (1.1), which due to the normalization by
log(NE)

2π
measures the low-lying zeros of theL-functions, is known as the 1-level density for the
family. Thus, this conjecture is often referred to as the ‘density conjecture’.

One expects that an analogue of this conjecture should hold for all suitable families
of automorphicL-functions, not just those associated to elliptic curves. Indeed, the
density conjecture has been verified (up to small support) for a wide variety of families,
including all Dirichlet characters, quadratic Dirichlet characters, elliptic curves, weight
k levelN cuspidal newforms, Maass forms, symmetric powers of GL(2)L-functions,
and certain families of GL(4) and GL(6)L-functions; see [AAILMZ, DM1, DM2, HR,
HM, ILS, KaSa2, Mil1, Mil3, OS, RR, Ro, Rub, Yo2]. We have two goals in this paper.
The first is to verify the density conjecture for as large a class of test functions as possible
for L-functions coming from a patently different situation thanthat of elliptic curves,
namely theL-functions of ideal class characters of number fields. As in all other families
studied to date, the main term is independent of the arithmetic of the family. Our second

1For the purposes of this paper, the following formulas suffice as we only need to know the one-level
densities whensupp(φ̂) ⊂ (−1, 1). See [KaSa1, KaSa2] for determinantal formulas for then-level
densities for arbitrary support.
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goal is to see the effects of the arithmetic in the lower orderterms, thereby distinguishing
different families.

To make things precise, letF be a family of number fields, and define for each field
K ∈ F the1-level density

D
ĈL(K)

(φ) =
1

hK

∑

χ∈ĈL(K)

∑

γχ
L(1/2+iγχ,χ)=0

φ

(
γχ

log∆K

2π

)
(1.3)

whereφ is an even Schwartz function whose Fourier transform has compact support,
hK is the class number ofK, ∆K is the absolute value of its discriminant, and the outer
sum runs over the characters of the ideal class groupCL(K) of K. Again, due to the
rapid decay ofφ and the scaling factorlog∆K

2π
, only the low-lying zeros contribute to this

sum in the limit as∆K → ∞. Since for a given numberX there are only finitely many
number fields of (absolute value of) discriminant less thanX, the discriminant must
tend to infinity in any infinite family of number fields. Moreover, ordering the familyF
according to the increasing parameter∆K , we may consider the limit

DF(φ) = lim
∆K→∞

D
ĈL(K)

(φ),

and this is independent of rearranging fields which have the same value of∆K . How-
ever, there is no good reason to expect this limit to exist ifF is just an arbitrary collection
of number fields; thus we reserve the term ‘family’ for a collectionF of number fields
whose members have similar arithmetic properties and for which the 1-level density
actually exists. This is by no means an attempt at an actual definition of the term ‘fam-
ily’, which is an ongoing subject, but it suffices for our purposes, wherein the common
arithmetic origin of our fields will be obvious.

Among the wide variety of families for which the density conjecture has been inves-
tigated, few have arisen from the number field context. In fact, to our knowledge, the
only work to date analyzing the 1-level density for Hecke characters is that of Fouvry-
Iwaniec [FI], who showed that, in the notation above, the1-level densityDF(φ) for
F the familyQ(−D) with −D a fundamental discriminant is given by the symplectic
distribution. In addition, recent unpublished work of Andrew Yang [Ya] indicates that
the 1-level density for the Dedekind zeta functions of cubicfields is governed by the
symplectic distribution. In this paper, we extend the results of [FI] to the family of all
CM-fields over a fixed totally real field (see below for definitions). Since infinitely many
such families exist, we also derive the first lower order termof the 1-level density (under
certain conditions), which allows us to distinguish different families by their arithmetic.

1.2. 1-level density. In this paper,K will denote a number field of fixed degreeN over
Q, hK its class number,∆K the absolute value of its discriminant,r1 andr2 the number
of real resp. half the number of complex embeddings2, andRK the regulator.

Although K will vary, we will generally omit the subscripts
from our notation; thus h = hK, et cetera.

Let χ be a character of the ideal class group ofK, and letφ be an even function in

2Thusr1 + 2r2 = N .
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the Schwartz spaceS(R) such that the function̂φ has compact support; herêφ repre-
sents the Fourier Transform3

φ̂(y) =

∫ ∞

−∞

φ(x)e−2πixydx. (1.4)

Assume the generalized Riemann hypothesis, so we may write the zeros ofL(s, χ) as
1/2 + iγχ with γχ ∈ R. Then Weil’s explicit formula, as simplified by Poitou, reads
[Po, BDF, La1]

∑

γχ

φ

(
γχ

log∆

2π

)
=

1

log∆

[
4δχ

∫ ∞

0

φ̂

(
x

log∆

)
cosh(x/2)dx

+φ̂(0)(log∆−NγEM −N log 8π − r1π

2
)

−
∑

p

logNp

∞∑

m=1

φ̂

(
m
logNp

log∆

)

Npm/2
(χ(p)m + χ(p)−m)

+r1

∫ ∞

0

φ̂(0)− φ̂(x)

2cosh(x/2)
dx+ N

∫ ∞

0

φ̂(0)− φ̂(x)

2sinh(x/2)
dx

]
, (1.5)

where the sum on the left is over the imaginary partsγχ of the zeros ofL(s, χ), the
sum on the right is over the prime ideals of the ring of integers ofK, γEM is the Euler-
Mascheroni constant andδχ is the indicator of the trivial character (i.e., it is 1 ifχ is
the trivial character and 0 otherwise). As is standard, we rescaled the zeros bylog∆ to
facilitate applications to studying the zeros near the central point.

We now wish to average this formula over all charactersχ of the ideal class group
CL(K) of K. We denote its dual bŷCL(K), and note that its cardinality is the class
numberh. By χ(p) we of course mean the value ofχ on the ideal class ofp. For any
non-zero integerm and any primep of K we have

∑

χ∈ĈL(K)

χ(p)m =

{
h if p is principal
h if p is not principal andm | ordCL(K)(p)
0 otherwise.

(1.6)

3Note other works may use a different normalization, usinge−ixy instead ofe−2πixy.



LOW-LYING ZEROS OF NUMBER FIELDL-FUNCTIONS 5

Averaging the explicit formula over the family yields the one-level density

D
ĈL(K)

(φ) :=
1

h

∑

χ∈ĈL(K)

∑

γχ
L(1/2+iγχ, χ)=0

φ

(
γχ

log∆

2π

)

=
1

log∆

[
4

h

∫ ∞

0

φ̂

(
x

log∆

)
cosh

(x
2

)
dx+ φ̂(0) ·

(
log∆−NγEM −N log 8π − r1π

2

)

−2




∑

p non−principal

logNp
∑

m≥1
pm principal

φ̂
(
m logNp

log∆

)

Npm/2
+

∑

p principal

logNp

∞∑

m=1

φ̂
(
m logNp

log∆

)

Npm/2




+r1

∫ ∞

0

φ̂(0)− φ̂(x)

2 cosh(x/2)
dx+N

∫ ∞

0

φ̂(0)− φ̂(x)

2 sinh(x/2)
dx

]
. (1.7)

We wish to ascertain the behavior of this average as∆ → ∞.
We recall some relevant facts from algebraic number theory (see Chapter 4, Part 1

of [La1] or [Wa] for more details). A number fieldK0 is called totally real if every
embedding ofK0 into C has image contained inR, i.e. K0 is generated overQ by
an algebraic number all of whose conjugates are real. On the other hand, a number
field K is called totally imaginary ifno embedding ofK into C has image contained in
R. A CM-field is a totally imaginary number field which forms a quadratic extension
of a totally real number field. This totally real field is unique and is denotedK+. K
then takes the formK = K+(

√
β), whereβ is a square-free element ofOK+ which is

totally negative, e.g.σ(β) < 0 for every embeddingσ : K+ →֒ R. Any totally real field
obviously has infinitely many CM-fields over it, and CM-fieldsform a rich and abundant
class of number fields. Indeed, any finite abelian extension of Q is either totally real or
is a CM-field (by the Kronecker-Weber theorem), and the abbreviation CM reflects the
strong connection between CM-fields and the theory of abelian varieties with complex
multiplication (see IV.18 of [Sh] for details).

We now describe our family of number fields. Fix a totally realnumber fieldK0/Q
of class number one and degreeN overQ, and let{K∆} be the family of all CM-fields
for whichK+

∆ = K0, ordered by (absolute value of) discriminant∆. Although it may
be the case that severalK share the same value of∆, there are by standard results only
finitely many which do ([La1], pg. 121), so their ordering is irrelevant. Each of these
fields has degree2N overQ. We denote the class number ofK∆ by h∆.

Define distributionsS1(∆, ·), S2(∆, ·) by

S1(∆, φ) := −2
∑

p non−principal

logNp
∑

m≥2
pm principal

φ̂
(
m logNp

log∆

)

Npm/2

S2(∆, φ) := −2
∑

p principal

logNp

∞∑

m=1

φ̂
(
m logNp

log∆

)

Npm/2
; (1.8)
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note them-sum forS1(∆, φ) starts at2 and not1 becausep is not principal butpm is. In
terms of this notation, (1.7) yields

Theorem 1.1(Expansion for the 1-level density). Notation as above, ifφ is an even
Schwartz function withsupp(φ̂) ⊂ (−σ, σ), then

D
ĈL(K)

(φ) :=
1

h∆

∑

χ∈ ̂CL(K∆)

∑

γχ
L(1/2+iγχ, χ)=0

φ

(
γχ

log∆

2π

)

=
1

log∆

[
4

h∆

∫ ∞

0

φ̂

(
x

log∆

)
cosh

(x
2

)
dx

+ φ̂(0) · (log∆− 2NγEM − 2N log 8π)

+ S1(∆, φ) + S2(∆, φ) + 2N

∫ ∞

0

φ̂(0)− φ̂(x)

2 sinh(x/2)
dx

]
. (1.9)

Note that we’ve usedr1 = 0, sinceK is totally imaginary.

1.3. Main results. Our first result is the following.

Theorem 1.2. Assume the Generalized Riemann Hypothesis for all HeckeL-functions.
Let φ be an even Schwartz function whose Fourier transform is supported in (−1, 1).
Fix a normal, totally real number fieldK0/Q of class number one and degreeN over
Q, and let{K∆} be the family of all CM-fields for whichK+

∆ = K0, ordered by the
absolute value of the discriminant∆. Then

D
ĈL(K)

(φ) = φ̂(0)− 1

2
φ(0) +O

(
log log∆

log∆

)
, (1.10)

which implies that the one-level density agrees with the scaling limit of symplectic but
not unitary or orthogonal matrices (see(1.2)).

Frequently in computing 1-level densities of families, we are able to improve our
support or isolate lower order terms if we restrict to a sub-family of the original family
which is more amenable to averaging. See for instance the results of Gao [Gao] and
Miller [Mil4] for sub-families of the family of quadratic Dirichlet characters with even
fundamental discriminants at mostX,4 or [Mil3] for families of elliptic curves. The
situation is similar here; to derive the lower order terms ofthe 1-level density, we make
the additional assumption that the class number ofK0 in the narrow sense is 1. Recall
that thenarrow class groupof K0 is defined similarly to the ordinary ideal class group,
except that ideals are considered equivalent if and only if they differ by a totally positive
element ofK0 rather than an arbitrary one.

By restricting the family of number fields we study a little bit, we are able to isolate
the first lower order term, which depends on the arithmetic ofthe field.

Theorem 1.3(First Lower Order Term). Assume the Generalized Riemann Hypothesis
for all HeckeL-functions. Letφ be an even Schwartz function whose Fourier transform
is supported in(−1, 1). Fix a normal, totally real number fieldK0/Q whose class

4The sub-family studied is{8d : 0 < d ≤ X ; d an odd, positive square-free fundamental
discriminant}; this extra restriction facilitates the application of Poisson summation.
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number in the narrow sense is 1, and let{K∆} be the family of all CM-fields of odd
class number (in the usual sense) for whichK+

∆ = K0, ordered by the absolute value of
the discriminant∆. For a number fieldE/Q, let ρE be the residue of its Dedekind zeta
function at the simple poles = 1

ρE = ress=1ζE(s) =
2r1(2π)r2hERE

wE

√
|DE/Q|

, (1.11)

and letγE denote its Euler constant

γE =
d

ds
[(s− 1)ζE(s)]s=1 = lim

s→1

(
ζE(s)−

ρE
s− 1

)
. (1.12)

LetγEM be the Euler-Mascheroni constant. Then the 1-level densityis given by

D
ĈL(K)

(φ) = φ̂(0)− 1

2
φ(0) +

1

log∆

(
φ̂(0)τ(∆) + L1(∆)

)
+O

(
1

log2∆

)
(1.13)

where

L1(∆) =
4

h∆

∫ ∞

0

φ̂

(
x

log∆

)
cosh

(x
2

)
dx+ φ̂(0) · (−2NγEM − 2N log 8π)

+2N

∫ ∞

0

φ̂(0)− φ̂(x)

2 sinh(x/2)
dx (1.14)

and

τ(∆) = 4
γK0

ρK0

− 2
γK
ρK

− 4
∑

q⊂OK0
inert in K

logNq

Nq2 − 1
. (1.15)

Moreover,τ(∆) = O(1), with the implied constant depending onK0.

Remark 1.4. As is common in many families ofL-functions (see for example[FI, HKS,
Mil2, Mil3, Mil4, Mil5, MilMo, Ya, Yo1] ), the main term in the 1-level density is inde-
pendent of the arithmetic of the family, which only surfacesin the lower order terms.

This paper is organized as follows. After analyzing part of the first lower order term,
we prove a lemma on CM-fields that allows us to bound sums over principal primes of
degree 1. We proceed to reduce sums overK to sums overK0, which are then handled
using standard algebraic number theory. To deal with sums over degree 2 primes, we
introduce a variant of the Dedekind zeta function ofK0 and show that integration against
its logarithmic derivative yields the desired quantities (up to reasonably small error),
from which we obtain the result. In Section 3, we restrict ourclass of number fields
in order to obtain complete control of the ramification behavior, which allows us to
reduce the error terms significantly. We then extract the first lower order term by closely
studying the arithmetic of the families in question, in the process proving a discriminant-
independent bound on number field Euler constants that we haven’t seen elsewhere in
the literature (see Proposition 3.3 and Appendix A).
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2. PROOF OFTHEOREM 1.2

The proof of Theorem 1.2 follows from an analysis of the termsin Theorem 1.1 (the
one-level density expansion from averaging the explicit formula over the family). The
terms other thanSi(∆, φ) are readily analyzed. To see this, we first need a lemma
relating the size ofh∆ to ∆.

Lemma 2.1. We havelog h∆ ∼ 1
2
log∆ as∆ → ∞.

Proof. Since the fieldsK∆ all have the same degree overQ, we have by the Brauer-
Siegel Theorem ([La1], Chapter XVI) that

log(h∆R∆) ∼ 1

2
log∆ as∆ → ∞. (2.1)

The regulatorR∆ satisfies ([Wa], pg. 41)

R∆

RK+

=
1

Q
2N−1 (2.2)

whereQ = 1 or 2, and thereforeR∆ is bounded by a constant independent of∆. This
proves the claim. �

Lemma 2.2. Assumesupp(φ̂) ⊂ (−σ, σ) with σ < 1. Then the terms involvingcosh
andsinh in Theorem 1.1 areO(1/ log∆).

Proof. The last two terms, where the hyperbolic trig functions are in the denominator,
are readily analyzed. Ascosh(x/2) ≫ 1 and decays exponentially, the integrand with
cosh in the denominator isO(1). Thesinh integral is handled similarly (note everything
is well-behaved nearx = 0 becauseφ is differentiable, and by L’Hopital’s rule the
quotient is bounded nearx = 0).

We are left with handling the integral of̂φ againstcosh. Changing variables (u =
x/ log∆) gives

4

h∆ log∆

∫ ∞

0

φ̂

(
x

log∆

)
cosh

(x
2

)
dx =

4

h∆

∫ ∞

0

φ̂(u) cosh

(
u log∆

2

)
du. (2.3)

Using2 cosh(t) = et + e−t, we see this integral is dominated by

1

h∆

∫ ∞

0

∣∣∣φ̂(u)
∣∣∣∆u/2du ≪ σ∆σ/2

h∆
, (2.4)

which tends to zero by Lemma 2.1 asσ < 1. �

Thus, by the above lemma, the asymptotic behavior ofF(∆, φ) for fixed φ is deter-
mined by that ofS1 andS2. While the hyperbolic integrals will contribute lower order
terms of size1/ log∆, the values of these integrals are independent of the family.

In what follows, we drop ∆ from our number field notation;
thus K = K∆, h = h∆, et cetera.

Before analyzingS1 andS2, we first prove some lemmas on CM-fields which will be
essential in our investigations.
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2.1. Lemmas on CM-fields. Just as in the case of quadratic fields overQ, one easily
proves the following.

Lemma 2.3. LetK be a CM-field andβ ∈ OK+ a totally negative, square-free element
such thatK = K+(

√
β). Then either

OK = OK+ [
√
β] or OK = OK+

[
1 +

√
β

2

]
.

Indeed, the minimal polynomial of an elementα = x + y
√
β ∈ K, x, y ∈ K+ over

K+ is

t2 − 2xt+ x2 − βy2

so by transitivity of integral closure,α ∈ OK if and only if 2x, x2 − βy2 ∈ OK+. The

two possibilities of the lemma then correspond to whetherx ∈ OK+ or x ∈ 1

2
OK+.

The following lemma is crucial, as it allows us to bound sums over degree 1 principal
primes (by showing the sums are vacuous if the support is restricted as in Theorem 1.2).

Lemma 2.4. Let K be a CM-field with maximal real subfieldK+. Chooseβ ∈ K+

which is totally negative and such thatK = K+(
√
β). Letp ⊂ OK be a principal prime

ideal of degree 1 with normNp = p. Thenp ≥ C∆, whereC is a constant depending
only onK+.

Proof. We assume thatOK = OK+ [
√
β]; the other case is similar. We first claim that

p ≥ |NK+

Q (β)|. Sincep is principal, there existx, y ∈ OK+ such thatp = (x + y
√
β).

Supposey = 0; then

Np := NK
Q (p) = NK+

Q (NK
K+(p))

= NK+

Q (x2)

= NK+

Q (x)2

which is a contradiction sincep = Np is a prime number (|NK+

Q (x)| > 1 becausex
can’t be a unit). Thusy 6= 0.

Assume nowy 6= 0. Recall the minimal polynomial ofx+ y
√
β overK+ is

t2 − 2xt + x2 − βy2, (2.5)

soNK
K+(p) = NK

K+(x + y
√
β) = x2 − βy2. Hence, since the degree is multiplicative

over towers,

p = |NK+

Q (x2 − βy2)|

=

∣∣∣∣∣
∏

σ:K+→C

σ(x2 − βy2)

∣∣∣∣∣

=

∣∣∣∣∣
∏

σ:K+→C

(σ(x)2 − σ(β)σ(y)2)

∣∣∣∣∣ . (2.6)



10 STEVEN J. MILLER AND RYAN PECKNER

We now use our assumption thatβ is totally negative, which implies thatσ(β) < 0 for
eachσ. We have−σ(β) = |σ(β)| and so

∣∣∣∣∣
∏

σ

(σ(x)2 − σ(β)σ(y)2)

∣∣∣∣∣ =

∣∣∣∣∣
∏

σ

(σ(x)2 + |σ(β)|σ(y)2)
∣∣∣∣∣ . (2.7)

Sincex, y ∈ K+ andK+ is totally real, we haveσ(x), σ(y) ∈ R for eachσ. Therefore
σ(x)2 ≥ 0, σ(y)2 > 0 and so

∣∣∣∣∣
∏

σ

(σ(x)2 + |σ(β)|σ(y)2)
∣∣∣∣∣ =

∏

σ

(σ(x)2 + |σ(β)|σ(y)2)

≥
∏

σ

σ(x)2 +
∏

σ

|σ(β)|σ(y)2

= NK+

Q (x)2 + |NK+

Q (β)| ·NK+

Q (y)2. (2.8)

Sincey 6= 0 andy ∈ OK+ , NK+

Q (y)2 is a positive integer. Thus the last expression is at
least|NK+

Q (β)|, which proves the claim.
By the relative discriminant formula, and since[K : K+] = 2, we have

DK/Q = NK+

Q (DK/K+) ·D2
K+/Q (2.9)

where for an extension of number fieldsK/E, DK/E denotes the relative discriminant
(which we take to be an integer ifE = Q, although it is an ideal ofOE in general).
SinceDK/K+ = (4β), we haveNK+

Q (DK/K+) = 4N |NK+

Q (β)|. Therefore, by the above
claim, we have

p ≥ |NK+

Q (β)| =
|DK/Q|

4ND2
K+/Q

=
∆

4ND2
K+/Q

(2.10)

Finally, note that1/(4ND2
K+/Q) depends only onK+. �

In particular, since in our settingK+ = K0 is fixed, we see thatC is independent
of ∆. This observation will be crucial in what follows, in that itallows us to assert
the vacuity of certain sums since they only involve primes whose norms lie outside the
support ofφ̂.

Remark 2.5. The CM structure is crucial to obtain such a strong lower bound on the
norm of degree 1 principal primes. In general, the results ofLagarias, Montgomery
and Odlyzko[LMO] and Oesterlé[Oe] guarantee that forL/K a Galois extension of
number fields, there exists a primep of K of norm at most70(log |DL/Q|)2. One must
therefore avoid number fields with extensions of small discriminant in order to obtain
such a bound.

2.2. Evaluation of S1.

Lemma 2.6. Assumesupp(φ̂) ⊂ (−σ, σ). If σ < 1, we have

S1(∆, φ) = O(log log∆) as∆ → ∞. (2.11)
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Proof. First, we claim that

S1(∆, φ) = −2
∑

p non−principal
p2 principal

logNp

Np
φ̂

(
2
logNp

log∆

)
+O(1). (2.12)

Indeed, sincêφ is bounded, and since each rational primep has at most2N prime ideals
lying over it inK, the sum

∑

p non−principal

logNp

∞∑

m=3

φ̂
(
m logNp

log∆

)

Npm/2
(2.13)

is bounded by a constant times a convergent series, namely
∑

p

∑

m

log p

pm
≪
∑

p

log p

p3
≪ 1. (2.14)

This proves (2.12).

For K/E an extension of number fields andp a prime ideal ofOK , we denote by
fK/E(p) the residue degree ofp overE, so thatNK

E (p) = qfK/E(p), whereq = p ∩ OE .
Notice that

∑

p non−principal
p2 principal

logNp

Np
φ̂

(
2
logNp

log∆

)
=

∑

p non−principal
p2 principal
fK/Q(p)=1

logNp

Np
φ̂

(
2
logNp

log∆

)
+O(1)

since the complementary sum is again bounded up to a constantby the convergent series∑
p
log p
p2

. By the compact support of̂φ, we have

∑

p non−principal
p2 principal
fK/Q(p)=1

logNp

Np
φ̂

(
2
logNp

log∆

)
=

∑

p non−principal
p2 principal
fK/Q(p)=1

logNp<σ log∆
2

logNp

Np
φ̂

(
2
logNp

log∆

)
. (2.15)

Let p be a prime of degree 1 overQ such thatp2 is principal, sayp2 = (α). Either
α ∈ OK+ or α ∈ OK \ OK+ . Denote these contributions byS1,1(∆, φ) andS1,2(∆, φ).

Suppose first thatα ∈ OK+. ThenαOK+ is a prime ideal ofOK+ sinceNK/Q(p)
2 =

NK+/Q(α)
2, and it ramifies inK. Therefore, sincefK/Q(p) = 1 implies thatp = Np

is a rational prime,p ramifies inK. As the ramified rational primes inK are precisely
those dividing∆, we find

S1,1(∆, φ) :=
∑

p non−principal
p2=(α),α∈OK+

fK/Q(p)=1

logNp<σ log ∆
2

logNp

Np
φ̂

(
2
logNp

log∆

)
(2.16)

≪
∑

p
p |∆

log p

p
= O(log log∆), (2.17)
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where we used the standard fact5 that
∑

p|∆
log p
p

≪ log log∆.
Now consider the case whenα ∈ OK\OK+. Let

S1,2(∆, φ) :=
∑

p non−principal
p2=(α),α∈OK\OK+

fK/Q(p)=1

logNp<σ log ∆
2

logNp

Np
φ̂

(
2
logNp

log∆

)
. (2.18)

In this situation, we haveNK/Q(p)
2 = NK/Q(α), so the proof of Lemma 2.4 shows that

Np ≥ C
√
∆, whereC is a positive constant independent of∆. Hence, sinceσ < 1,

the conditionlogNp < σ log∆
2

on the sum implies thatS1,2(∆, φ) is zero for sufficiently
large∆. Putting things together, we have forσ < 1 that

S1(∆, φ) = S1,1(∆, φ) + S1,2(∆, φ) +O(1) = O(log log∆), (2.19)

which proves the claim. �

2.3. Reduction ofS2. In this subsection we replaceS2 with sums which are easier to
evaluate. We determine those sums in the next subsection, which will complete the
analysis ofS2.

We writeS2 as a sum

S2(∆, φ) = S2,1(∆, φ) + S2,2(∆, φ) (2.20)

where

S2,1(∆, φ) := −2
∑

p principal

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2

S2,2(∆, φ) := −2
∑

p principal

logNp
∑

m≥1
(m,h∆)>1

φ̂
(
m logNp

log∆

)

Npm/2
. (2.21)

Note that the proof of Lemma 2.6 did not actually use the non-principality of the prime
ideals involved in the sum, but only the fact that the primes have principal square, as
well as Lemma 2.4 and the fact that the sum began atm = 2. Since the principality
of p of course implies the principality ofp2, and since the condition(m, h) > 1 in the
definition ofS2,2(∆, φ) implies that the sum again begins at least atm = 2, the same
argument given in Lemma 2.6 shows that

S2,2(∆, φ) ≪
∑

p
p |∆

log p

p
= O(log log∆). (2.22)

5Note log u

u
is decreasing foru ≥ 3, so the sum is maximized when∆ is a primorial. If2 ·3 · · ·pr = ∆

thenpr ∼ log∆, and the claim follows from partial summation.
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We now analyzeS2,1(∆, φ). Note that

S2,1(∆, φ) = −2
∑

p principal
fK/Q(p)≤2

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
+O(1) (2.23)

since, as before (see Lemma 2.6), the sum
∑

p principal
fK/Q(p)>2

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
is bounded

by a convergent series. Moreover, observe that

∑

p principal
fK/Q(p)=1

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
=

∑

p principal
fK/Q(p)=1
Np<∆σ

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
,

(2.24)
and ifσ < 1 then this sum is zero for sufficiently large∆ by Lemma 2.4. Thus, letting

S2,1(∆, φ)2 = −2
∑

p principal
fK/Q(p)=2

logNp
∑

m≥1
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
, (2.25)

we find that

S2,1(∆, φ) = S2,1(∆, φ)2 +O(1) (2.26)

and so, by (2.20) and (2.22), we find that

S2(∆, φ) = S2,1(∆, φ)2 +O(log log∆). (2.27)

Proposition 2.7. We have

S2,1(∆, φ)2 = −2
∑

p principal
fK/Q(p)=2

logNp

Np1/2
φ̂

(
logNp

log∆

)
+O(1). (2.28)

Proof. LetA(∆, φ) be the difference betweenS2,1(∆, φ)2 and the main term on the right
hand side of (2.28). Thus

A(∆, φ) = −2
∑

p principal
fK/Q(p)=2

logNp
∑

m≥2
(m,h∆)=1

φ̂
(
m logNp

log∆

)

Npm/2
. (2.29)
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Sinceφ̂ is bounded andNp ≥ 2, we have

A(∆, φ) ≪
∑

p principal
fK/Q(p)=2

logNp

∞∑

m=2

1

Npm/2

≪
∑

p principal
fK/Q(p)=2

logNp

Np
, (2.30)

where the last statement is derived by summing the geometricseries. Since each rational
primep has at mostN prime ideals of degree 2 lying above it inK, we find

A(∆, φ) ≪
∑

p

N log p

p2
. (2.31)

This sum is convergent, since it is dominated by a convergentseries. HenceA(∆, φ) =
O(1) as claimed. �

We now expressS2,1(∆, φ)2 in terms of primes ofK+.

Proposition 2.8. We have

S2,1(∆, φ)2 = −2

[
2

∑

q⊂OK+

q inert in K
fK+/Q(q)=1

logNq

Nq
φ̂

(
2
logNq

log∆

)]
+O(log log∆). (2.32)

Proof. Let M(∆, φ) be the main term in the expression forS2,1(∆, φ)2 given by Propo-
sition 2.7:

M(∆, φ) = −2
∑

p principal
fK/Q(p)=2

logNp

Np1/2
φ̂

(
logNp

log∆

)
. (2.33)

Divide this sum by degree overK+:

M(∆, φ) = −2

[
∑

p principal
fK/K+ (p)=fK/Q(p)=2

logNp

Np1/2
φ̂

(
logNp

log∆

)

+
∑

p principal
fK/K+ (p)=1,fK/Q(p)=2

logNp

Np1/2
φ̂

(
logNp

log∆

)]

:= M1(∆, φ) +M2(∆, φ). (2.34)

ForM2(∆, φ), fK/K+(p) = 1 implies thatq = p ∩ OK+ either splits or is ramified in
K. It follows as before from Lemma 2.4 that the contribution from split primes is zero
for large enough∆ assupp(φ̂) ⊂ (−1, 1). The contribution from thosep which lie over
ramified primes inK+ and for whichfK/Q(p) = 2 is bounded (up to a constant) by

∑

p |∆

log p

p
≪ log log∆. (2.35)
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ThereforeM2(∆, φ) = O(log log∆).
Denote the main term in (2.32) byM ′(∆, φ), so

M ′(∆, φ) := −2



2

∑

q⊂OK+

q inert in K
fK+/Q(q)=1

logNq

Nq
φ̂

(
2
logNq

log∆

)



. (2.36)

AsM2(∆, φ) = O(log log∆) it suffices to showM ′(∆, φ) = M1(∆, φ) to complete the
proof.

Letq be a prime ofK+ of degree 1 overQ that is inert inK. Then, sincehK+ = 1, p =
qOK is principal. Moreover,fK/K+(p) = fK/Q(p) = 2 andNp = Nq2. Conversely, if
p is a prime ofK such thatfK/K+(p) = fK/Q(p) = 2, thenq = p ∩ OK+ has degree 1
overQ and is inert inK. Therefore

M ′(∆, φ) = −2

[
2

∑

p⊂OK principal
fK/K+ (p)=fK/Q(p)=2

log(Np1/2)

Np1/2
φ̂

(
2
log(Np1/2)

log∆

)]

= −2

[
∑

p principal
fK/K+ (p)=fK/Q(p)=2

logNp

Np1/2
φ̂

(
logNp

log∆

)]
= M1(∆, φ). (2.37)

Hence,S2,1(∆, φ)2 = M(∆, φ)+O(1) = M1(∆, φ)+M2(∆, φ)+O(1) = M ′(∆, φ)+
O(log log∆), as claimed. �

2.4. Evaluation of S2. We now complete the analysis ofS2. Letχ be the unique non-
trivial character ofG := Gal(K/K+). For q a prime ofK+ unramified inK, define

χ(q) := χ

((
q

K/K+

))
where

(
q

K/K+

)
is the Artin symbol. Thus

χ(q) =

{
−1 if q is inert inK
1 if q splits inK.

(2.38)

The Artin L-function associated toχ is

L(s, χ) =
∏

q unramified inK

(
1− χ(q)

Nqs

)−1

. (2.39)

Sinceχ is the character of a non-trivial one-dimensional representation ofG, L(s, χ) is
entire and has no zeros on the lineℜs = 1. Define a functionU(s) by

U(s) = (s− 1)
ζK+(s)

L(s, χ)ζram(s)
. (2.40)

Hereζram(s) is given by the partial Euler product forζK+(s) restricted to those primes
which ramify inK. One has ([La1], pg. 161) thatζK+(s) is analytic forℜs > 1− 1/N
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except for a simple pole ats = 1. Since the factor of(s− 1) cancels this pole,U(s) is
analytic forℜs > 1− 1/N . In this region, we have

U(s) = (s− 1)
∏

q inert inK

(
Nqs − 1

Nqs + 1

)−1

. (2.41)

Therefore, forℜs > 1− 1/N one has

U ′

U
(s) =

1

s− 1
− 2

∑

q inert inK

∞∑

m=0

logNq

(Nqs)2m+1
. (2.42)

Consider the integral ∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx. (2.43)

We substitute the expansion from (2.42) above. The first piece is the integral
∫ ∞

−∞

φ(x)
log∆dx

4πix
=

log∆

2

1

2πi

∫ ∞

−∞

φ(x)
dx

x
, (2.44)

which is just 1
4
φ(0) log∆ from complex analysis.6 The second piece becomes the in-

tegral ofφ(x) against factors such as(Nq)s(2m+1) with s = 1 + 4πix
log∆

. The integration
againstx gives the Fourier transform ofφ. Specifically, these terms contribute

1

4
φ(0) log∆− 2

∑

q inert inK

∞∑

m=0

logNq

Nq2m+1
φ̂

(
2(2m+ 1)

logNq

log∆

)
, (2.45)

where
1

4
φ(0) log∆ appears as half the residue of

1

2
φ(s)s−1 log∆ at s = 0. Similarly to

the above, one has

∑

q inert inK

∞∑

m=0

logNq

Nq2m+1
φ̂

(
2(2m+ 1)

logNq

log∆

)

=
∑

q inert inK

logNq

Nq
φ̂

(
2
logNq

log∆

)
+O(1)

=
∑

q inert inK
fK+/Q(q)=1

logNq

Nq
φ̂

(
2
logNq

log∆

)
+O(1). (2.46)

Therefore, by Proposition 2.8, we have shown

Lemma 2.9.

S2,1(∆, φ)2 = −1

2
φ(0) log∆ + 2

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx+O(log log∆).

(2.47)

6Remember thatφ is an even function. The extra factor of1/2 is due to the pole lying on the line of
integration.
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Write
U ′

U
(s) =

1

s− 1
+

ζ ′K+

ζK+

(s)− L′

L
(s, χ)− ζ ′ram

ζram
(s). (2.48)

We have the following important fact (Theorem 5.17 of [IK]).

Theorem 2.10.Assume the Generalized Riemann Hypothesis. LetL(s, ρ) be the Artin
L-function associated to a (possibly trivial) one-dimensional representationρ ofG. Let
r be the order of the pole of thisL-function ats = 1, and letq(χ, s) be the analytic
conductor of the associated Hecke character. Then

− L′

L
(1 + it, ρ) =

r

s− 1
+O(log log q(χ, s)), (2.49)

the implied constant being absolute.

In our situation, we have a factorization of the Dedekind zeta-function ofK just as in
the case of imaginary quadratic fields:

ζK(s) = ζK+(s)L(s, χ), (2.50)

which may be proven by checking the local factors at each prime ideal ofK. Thus
every rational prime dividingq(χ) (the ordinary conductor) must also divide∆. But
we also haveq(χ) = |DK+/Q|NK+

Q f(χ) for an integral idealf(χ) of K+ ([IK], pg.
142), and since each prime in the factorization of this idealhas degree at mostN over
Q, we find q(χ) ≤ |DK+/Q|∆N . Thus, since|DK+/Q| is independent of∆, we find
q(χ, s) ≪ ∆N |s|2N . SinceL(s, χ) is entire, we therefore obtain by Theorem 2.10 the
estimates

− ζ ′K+

ζK+

(1 + it) =
1

s− 1
+O(log log(∆|t|2N))

−L′

L
(1 + it, χ) ≪ log log(∆N |t|2N). (2.51)

Combining these estimates with the fact that

ζ ′ram

ζram
(1 + it) ≪ log log∆ (2.52)

(use
∑

p |∆

log p

p
≪ log log∆), one finds sinceφ is Schwartz that

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx ≪ log log∆, (2.53)

where the implied constant depends only onφ andN . Combined with the previous
lemma, this proves

Lemma 2.11.We have

S2,1(∆, φ)2 = −1

2
φ(0) log∆ +O(log log∆). (2.54)

Thus, by(2.27), we have

S2(∆, φ) = −1

2
φ(0) log∆ +O(log log∆) (2.55)

as well.
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We are now ready to prove the main theorem.

2.5. Proof of Theorem 1.2. Our main result trivially follows from our analysis ofS1

andS2.

Proof of Theorem 1.2.By (1.9), we have

D
ĈL(K)

(φ) =
1

log∆

[
4

h∆

∫ ∞

0

φ̂

(
x

log∆

)
cosh

(x
2

)
dx

+ φ̂(0) ·
(
log∆− 2NγEM − 2N log 8π

)
+ S1(∆, φ) + S2(∆, φ)

+2N

∫ ∞

0

φ̂(0)− φ̂(x)

2 sinh(x/2)
dx

]
. (2.56)

By Lemmas 2.2, 2.6 and 2.11, and sinceN is fixed andr1 ≤ N , this entire expression
equals

1

log∆

[
φ̂(0) log∆− 1

2
φ(0) log∆ +O(log log∆)

]
, (2.57)

which completes the proof. �

3. LOWER ORDER TERMS

In this section, we prove Theorem 1.3, which gives the lower order terms for a sub-
family of our original family. Similar to investigations ofthe 1-level density in other
families (such as [Gao, Mil4]), we are able to isolate lower order terms if we restrict
to a sub-family which simplifies some of the terms. To derive the lower order terms of
the 1-level density, we make the additional assumption thatthe class number ofK0 in
the narrow sense is 1 (recall that thenarrow class groupof K0 is defined similarly to
the ordinary ideal class group, except that ideals are considered equivalent if and only
if they differ by a totally positive element ofK0 rather than an arbitrary one). We will
make use of the following facts, which rephrase Theorems 1 and 2 of [Ho].

Proposition 3.1. The family{K∆} of CM-fields for whichK+ = K0 contains infinitely
many fields of odd class number (in the usual sense).

Thus we may consider{K∆ : 2 ∤ h∆} as a sub-family of{K∆}.

Unless otherwise stated, K = K∆ denotes a CM-field of odd
class number such that K+ = K0.

Proposition 3.2. LetK be a CM-field such thatK+ has class number 1, and suppose
that the class number ofK is odd. Then at most one finite prime ofK+ ramifies inK.

Writing K = K+(
√
β), this implies that the relative discriminantD(K/K+) is divis-

ible by at most one prime ofOK+, which we denoteqK/K+ = q. Since the CM-fieldsK
for whichOK = OK+[

√
β] have discriminant(4β), which is divisible by more than one
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prime, anyK as in the proposition must have ring of integersOK = OK+

[
1 +

√
β

2

]

and relative discriminantDK/K+ = (β). Sinceβ is square-free andhK+ = 1, the propo-
sition then implies thatDK/K+ is prime. Arguing as in the end of the proof of Lemma
2.4, we moreover have

NK+

Q (DK/K+) = |NK+

Q (β)| =
∆

D2
K+/Q

. (3.1)

Thus the contribution from the ramified prime ofOK+ to terms like
logNq

Nq1/2
isO

(
log∆

∆1/2

)
,

where the implied constant depends only onK+ = K0. Since we’re only interested in
terms of size 1

log∆
, we may therefore ignore the ramified prime in what follows.

3.1. Evaluation of S1 (Redux). With all notation as before, we again considerS1(∆, φ).
Our goal is to improve the calculation to terms of size1/ log∆. Recall (cf. (2.12)) that

S1(∆, φ) = −2
∑

p non−principal
p2 principal

logNp

Np
φ̂

(
2
logNp

log∆

)
+O(1). (3.2)

Since now the class number ofK is odd, no non-principal prime has principal square,
so in fact

S1(∆, φ) = −2
∑

p non−principal

logNp
∑

m≥3
pm principal

φ̂
(
m logNp

log∆

)

Npm/2
. (3.3)

Observe that ifp is non-principal, thenfK/K+(p) = 1, since otherwisep lies over an
inert prime ofK+ and so must be principal sincehK+ = 1. Letm > 1 be an integer such
thatpm is principal. Letpm = αOK , and supposeα ∈ OK+. ThenNK

K+(pm) = (α2).
SincefK/K+(p) = 1, the idealq = NK

K+(p) of OK+ is prime, so unique factorization
into primes implies thatm must be even. Consequently, since the fact thathK is odd
implies that the orderd of p in CL(K) must be odd as well, we must haveα ∈ OK\OK+

if pd = (α). Hence, we may writeα = x+ y
√
β, wherex, y ∈ OK+ andy 6= 0. Thus

NK
Q (pd) = |NK

Q (α)|, (3.4)

so the proof of Lemma 2.4 implies that

NK
Q (p) ≥ (C∆)1/d, (3.5)
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whereC depends only onK+ = K0.
Sincepm is principal if and only ifd|m, we have (writingd = dp to specify the prime),

S1(∆, φ) = −2
∑

p non−principal

logNp

∞∑

k=1

φ̂
(
dpk

logNp

log∆

)

Npdpk/2

= −2
∑

p non−principal

logNp<σ log ∆
dp

logNp

∞∑

k=1

φ̂
(
dpk

logNp

log∆

)

Npdpk/2

(3.6)

so (3.5) and the fact thatσ < 1 imply thatS1(∆, φ) = 0 for sufficiently large∆ because
the sum is vacuous.

3.2. Evaluation of S2 (Redux). We have

S2(∆, φ) = −2
∑

p principal

logNp

∞∑

m=1

φ̂
(
m logNp

log∆

)

Npm/2
. (3.7)

As argued above, the contribution from the ramified prime is negligible, while the con-
tribution from the primes of degree 1 overK0 is ultimately zero. Consequently, for∆
large enough, we have (up to theO

(
log∆
∆1/2

)
error from the ramified prime)

S2(∆, φ) = −2
∑

p principal
fK/K0

(p)=2

logNp

∞∑

m=1

φ̂
(
m logNp

log∆

)

Npm/2

= −4
∑

q⊂OK0
inert in K

logNq

∞∑

m=1

φ̂
(
2m logNq

log∆

)

Nqm
. (3.8)

Recall from Section 2.4 that

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx

=
1

4
φ(0) log∆− 2

∑

q⊂OK0
inert in K

∑

m≥1
odd

logNq

Nqm
φ̂

(
2m

logNq

log∆

)
. (3.9)



LOW-LYING ZEROS OF NUMBER FIELDL-FUNCTIONS 21

Thus, using Lemma 2.4 and the fact that contribution from theramified prime is negli-
gible, we have by the compact support ofφ̂

S2(∆, φ) = −4
∑

q⊂OK0
inert in K

logNq

∞∑

m=1

φ̂
(
2m logNq

log∆

)

Nqm

= −1

2
φ(0) log∆ + 2

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx

− 4
∑

q⊂OK0
inert in K

logNq
∑

m≥2
even

φ̂
(
2m logNq

log∆

)

Nqm
. (3.10)

Therefore, to complete the analysis of the lower-order terms, we must show that

2

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx− 4

∑

q⊂OK0
inert in K

logNq
∑

m≥2
even

φ̂
(
2m logNq

log∆

)

Nqm
(3.11)

equalscK+o(1), with cK bounded independently ofK. Note that in the explicit formula
the termsS1(∆, φ) andS2(∆, φ) are multiplied by1/ log∆; thus if we show the term
above iscK + o(1), we will have isolated its contribution to the first lower order term.

First, note that since the compact support ofφ̂ restricts the sums to be finite, we have
using Taylor series

∑

q⊂OK0
inert in K

logNq
∑

m≥2
even

φ̂
(
2m logNq

log∆

)

Nqm
= φ̂(0)

∑

q⊂OK0
inert in K

logNq
∑

m≥2
even

1

Nqm
+O

(
1

log∆

)

= φ̂(0)
∑

q⊂OK0
inert in K

logNq

Nq2 − 1
+O

(
1

log∆

)

(3.12)

and since each prime ofOK0 lies over at mostN rational primes, this is dominated by a
convergentp-series independent ofK, and thus isO(1).

To analyze the integral ofφ against the logarithmic derivative ofU(s), let βk(∆)
denote thek-th coefficient in the power series expansion of the logarithmic derivative of
U(s) abouts = 1; thus

U ′

U

(
1 +

4πix

log∆

)
=

log∆

4πix
+

∞∑

k=0

βk(∆)

(
4πix

log∆

)k

. (3.13)

To get rid of the termlog∆/4πix, observe thatℑU ′

U
(1 + 4πix/ log∆) is an odd function

of x, so that
∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx =

∫ ∞

−∞

φ(x)ℜU ′

U

(
1 +

4πix

log∆

)
dx (3.14)
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and

ℜU ′

U

(
1 +

4πix

log∆

)
=

∞∑

k=0

β2k(∆)

(
4πix

log∆

)2k

. (3.15)

Recall from 2.4 that

U(s) = (s− 1)
ζK0(s)

L(s, χ)ζram(s)
(3.16)

and thatU(s) is analytic and non-zero ats = 1. A straightforward computation, using
the fact thatL(s, χ) = ζK(s)/ζK0(s), then yields

β0(∆) =
U ′

U
(1) = 2

γK0

ρK0

− γK
ρK

+O

(
1

log∆

)
(3.17)

where for a number fieldE/Q, ρE is the residue of its Dedekind zeta function at the
simple poles = 1

ρE = ress=1ζE(s) =
2r1(2π)r2hERE

wE

√
|DE/Q|

(3.18)

andγE denotes its Euler constant

γE =
d

ds
[(s− 1)ζE(s)]s=1 = lim

s→1

(
ζE(s)−

ρE
s− 1

)
. (3.19)

TheO(1/ log∆) term in (3.17) comes fromζram(s). We claim thatβ0(∆) = O(1) as
∆ → ∞, with the implied constant depending only onK0.

We use the following bound for the number field Euler constant, which is Theorem
7 of [MO]. Let E be a number field of degreen overQ, with r1 real and2r2 complex
embeddings. Denote the embeddingsK →֒ K(i), and arrange them in such a way that
K →֒ K(i) is real for1 ≤ i ≤ r1, imaginary forr1+1 ≤ i ≤ r1+r2, andK(i+r2) = K(i).
Let ǫ1, ..., ǫr be an independent set of generators for the unit group ofOE modulo roots
of unity, wherer = r1 + r2 − 1. Let M be the largest of the values| log |ǫ(i)j || for
1 ≤ i, j ≤ r. Also, choose an integral basisβ1, ..., βn for OE overQ, and let(γij) be
the inverse of the non-singular matrix(β(i)

j ). Finally, setγ = maxi,j |γij|. Then we have

Proposition 3.3.

|γE| ≤ ρE(1 + n2nmax(1,Φn
0 )) (3.20)

whereΦ0 = 2n−1n2nγn−1erM(n−1).

In our setting (e.g. CM-fields of odd class number over a fixed totally real field of
strict class number 1), the valuesγ andM , which a priori depend onK = K∆, can in
fact be made independent of∆ (see Appendix A for justification). Combining this fact
with the above proposition and (3.17), as well as the fact that n = [K : Q] = 2N is
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fixed, we find

β0(∆) = 2
γK0

ρK0

− γK
ρK

+O

(
1

log∆

)

≪ 2
γK0

ρK0

+
ρK(1 + 2N22N max(1,Φ2N

0 ))

ρK
+O

(
1

log∆

)

= 2
γK0

ρK0

+ 1 + 2N22N max(1,Φ2N
0 ) +O

(
1

log∆

)

= O(1) (3.21)

with the implied constant depending only onK0.
Now,

∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx =

∫ ∞

−∞

φ(x)ℜU ′

U

(
1 +

4πix

log∆

)
dx

=

∫ ∞

−∞

φ(x)
∞∑

k=0

β2k(∆)

(
4πix

log∆

)2k

dx

= φ̂(0)β0(∆) +

∫ ∞

−∞

φ(x)

∞∑

k=1

β2k(∆)

(
4πix

log∆

)2k

dx.

(3.22)

To estimate the integral, observe that

βk(∆) = γk − γk(∆) +O

(
1

log∆

)
(3.23)

whereγk andγk(∆) are the coefficients in the power series expansion of the logarithmic
derivative ofζK0(s) andL(s, χ), respectively, abouts = 1. The Riemann hypothesis for
L(s, χ) implies

γk(∆) ≪ (log log∆)k+1 (3.24)

and therefore

βk(∆) ≪ (log log∆)k+1 (3.25)

with the implied constant depending onk andK0. Hence, from (3.22), we obtain
∫ ∞

−∞

φ(x)
U ′

U

(
1 +

4πix

log∆

)
dx = φ̂(0)β0(∆) +

∫ ∞

−∞

φ(x)
∞∑

k=1

β2k(∆)

(
4πix

log∆

)2k

dx

= φ̂(0)β0(∆) +
∞∑

k=1

φ̂(2k)(0)β2k(∆)

(
4πi

log∆

)2k

= φ̂(0)β0(∆) +O

(
(log log∆)3

(log∆)2

)
(3.26)

with the implied constant depending onφ andK0. Finally, combining this with the
expression for the 1-level density given in 1.1, we obtain the full first lower-order term,
completing the proof of Theorem 1.3.
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APPENDIX A. ∆-INDEPENDENCE INPROPOSITION3.3

The purpose of this appendix is to prove the∆-independence alluded to after Propo-
sition 3.3. Namely, we have

Proposition A.1. LetK be a CM-field of odd class number such thatK+ has strict class
number 1, and let the valuesγ = γ(K) andM = M(K) associated toK be defined as
in Proposition 3.3 (note thatγ(K) is distinct from the number field Euler constantγK).
Then we may boundγ andM by constants depending only onK+.

Thus, if we begin with a totally real fieldK0 of strict class number 1 and consider the
family {K∆} of all CM-fields of odd class number for whichK+ = K0, then

γ(K∆),M(K∆) = O(1) as ∆ → ∞ (A.1)

with the implied constants depending onK0. Actually, this is true even whenK has
even class number, but that doesn’t matter for us since theremay be too many ramified
primes.

Proof. Lemma 15 of [Ok] implies that ifK0 is a totally real field of strict class number
1, then for any CM-fieldK with K+ = K0, the Hasse unit indexQK satisfies

QK = [O∗
K : WKO∗

K0
] = 1, (A.2)

whereWK is the group of roots of unity contained inK. Consequently, any indepen-
dent setǫ1, ..., ǫr of generators forO∗

K0
modulo{±1} also serves as independent set of

generators forO∗
K moduloWK . This, together with the exact sequence

1 → Gal(K/K0) → Gal(K/Q) → Gal(K0/Q) → 1 (A.3)

implies that
M(K) = max

1≤j≤r
σ∈Gal (K/Q)

| log |σ(ǫj)||

depends only onK0, as desired.
To boundγ(K), recall thatOK = OK0 [α], whereα = (1 +

√
β)/2 for β ∈ OK0 a

totally negative element. Thus, ifx1, ..., xN is an integral basis forOK0 overQ, then

βj =

{
xj if 1 ≤ j ≤ N

αxj−N if N + 1 ≤ j ≤ 2N
(A.4)

is an integral basis forOK overQ. Consequently, the matrix(β(i)
j ) takes the block form

(β
(i)
j ) =

(
X AX
X AX

)
(A.5)

whereX = (x
(i)
j )1≤i,j≤N , A is the diagonal matrix

A =




α(1)

α(2)

. . .
α(N)


 , (A.6)
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and we’ve used the fact thatx(i)
j = x

(i+N)
j andα(i) = α(i+N) for 1 ≤ i ≤ N since

K(i+N) = K(i) andK0 is totally real. It is then straightforward to check that theinverse
of (β(i)

j ) is given in block form by

(γij) =

(
X−1A(A− A)−1 −X−1A(A− A)−1

−X−1(A− A)−1 X−1(A−A)−1

)
. (A.7)

Note that the invertibility ofA − A follows from the fact thatα(i) 6= α(i) for any i;
indeed,α(i) = (1 +

√
β
(i)
)/2, and

√
β
(i)

is purely imaginary sinceβ is totally negative.
Also, X is invertible since the integral basisx1, ..., xN is linearly independent overQ.
Consequently, to boundγ = max1≤i,j≤2N |γij| solely in terms ofK0, it suffices to so
bound the entries of each of the matrices(A− A)−1, A(A− A)−1, andA(A− A)−1.

Recall from the beginning of Section 3 that

|NK0
Q (β)| =

∆

D2
K0/Q

. (A.8)

Moreover,|NK
Q (

√
β)| = |NK0

Q (NK
K0
(
√
β))| = |NK0

Q (β)|. But by definition

NK
Q (
√

β) =
∏

K →֒K(i)

1≤i≤2N

√
β
(i)

(A.9)

and sinceK is CM, we have
∣∣∣
√
β
(i)
∣∣∣ = |

√
β
(j)| for all i, j (cf. [Wa], pg. 38). Therefore,

since|NK
Q (

√
β)| = ∆/D2

K0/Q
, we find that

∣∣∣
√
β
(i)
∣∣∣ =

(
∆

D2
K0/Q

)1/2N

(A.10)

for anyi. This in fact implies the desired bound on the entries of the matrices in question:
we have

(A−A)−1 =




(α(1) − α(1))−1

(α(2) − α(2))−1

. . .

(α(N) − α(N))−1


 (A.11)

and for anyi, we have (sinceα(i) = (1 +
√
β
(i)
)/2)

|(α(i) − α(i))−1| =
∣∣∣
√

β
(i)
∣∣∣
−1

=

∣∣∣∣∣
D2

K0/Q

∆

∣∣∣∣∣

1/2N

≤ |DK0/Q|1/N . (A.12)
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For the matricesA(A−A)−1 andA(A−A)−1, we have for anyi

|α(i)(α(i) − α(i))−1| ≤
1 +

∣∣∣
√
β
(i)
∣∣∣

2
∣∣∣
√
β
(i)
∣∣∣

≤ 1

2
+ |DK0/Q|1/N (A.13)

and we get the same bound for the entries ofA(A−A)−1 since|α(i)| = |α(i)|. �
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