LOW-LYING ZEROS OF NUMBER FIELD L-FUNCTIONS
STEVEN J. MILLER AND RYAN PECKNER

ABSTRACT. One of the most important statistics in studying the zefak-functions
is the 1-level density, which measures the concentrati@eafs near the central point.
Fouvry and Iwaniec[[FI] proved that the 1-level density foiffunctions attached to
imaginary quadratic fields agrees with results predictedamgom matrix theory. In
this paper, we show a similar agreement with random matgrmoccurring in more
general sequences of number fields. We first show that the texs@magrees with ran-
dom matrix theory, and similar to all other families studiedlate, is independent of the
arithmetic of the fields. We then derive the first lower oraent of the 1-level density,
and see the arithmetic enter.

1. INTRODUCTION

1.1. Background. While studying class numbers in the early 1970s, Montgonmeagte

the remarkable observation that the zeros of the Riemaranfaattion appear to be
correlated in precisely the same way as the eigenvalues wéskan random matrices
[Mon]. This was based on a chance encounter with Freeman)ydw had calculated
the eigenvalue pair correlation function for the Gaussiaitdyy Ensemble and found it

to be
sin 7z \ 2
- ()
T

exactly the distribution conjectured by Montgomery for #tezos of the zeta function.
Extensive numerical computations by Odlyzko [Od1, Od2]mrpthis unexpected cor-
respondence to impressive heights on the critical line.

Attempts to explain this connection rigorously in the numbeld case have thus
far been unsuccessful. However, groundbreaking thealatiork by Katz and Sarnak
has put this goal within reach in the function field settinghey proved that, as one
averages over the zeros of suitable familiesLefunctions obtained from geometry,
the scaling limit of the spacing measures of the normaliazdsztends to a ‘universal
measure’ which is the limit of the spacing measures of thereiglues of Gaussian
random matrices (see [KaSal, KaSa?2] for details, as welhastrvey article[ [FM]
for a description of the development of random matrix theiooyn nuclear physics to
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number theory). Moreover, their work predicts that assedia an appropriate family
& of elliptic curves overQ is a classical compact matrix grogf{€) (which may be
viewed as a group of random matrices under normalized Haasune) in such a way
that for any compactly supported even Schwartz functiam R, we have

Amwmmmwng&<w§]&0 > n(wE)

nSX HSX,EE(E‘H

where Ny denotes the conductor of the curke
&, ={Q —isogenyclasses df € £ : Np = n}

and1/2 + iyg ; are the zeros of(S, £/Q) (normalized to have functional equation
s — 1 — s). The distributioni¥/; ) is canonically associated to the scaling limit of a
classical compact group, and gives the density of the nazethkpacings between the
eigenangles. Katz and Sarnak [KaSal, KaSa2] showed thatgbfunctionsy with
Fourier transforms supported {p-1, 1), the one-level densities of the scaling limits of
the classical compact groups are giveﬂ by

[ @ Wsoioun (2)ds = 5(0) + 5000

/ O(2)Wso(oaa) (z)dz = 5(0)+%¢(0)

[ o@nmoaids = 50)+ 50(0)

[o@is@de = 30) - 50(0)
[ oami@as = G0) (12)
log(Ng)

The quantity on the right side of (1.1), which due to the ndizaion by o

measures the low-lying zeros of tlhefunctions, is known as the 1-level densit;/Tfor the
family. Thus, this conjecture is often referred to as then&iy conjecture’.

One expects that an analogue of this conjecture should bolallfsuitable families
of automorphicL-functions, not just those associated to elliptic curvesdekd, the
density conjecture has been verified (up to small supparg feide variety of families,
including all Dirichlet characters, quadratic Dirichldtaracters, elliptic curves, weight
k level N cuspidal newforms, Maass forms, symmetric powers of GI(Z)nctions,
and certain families of GL(4) and GL(@)-functions; see |AAILMZ| DM1| DM2[ HR,
HM| ILS| KaSa2| Mill] Mil3, OS| RR, Ra, Rub, Y02]. We have twoals in this paper.
The first is to verify the density conjecture for as large a€laf test functions as possible
for L-functions coming from a patently different situation thiat of elliptic curves,
namely thel-functions of ideal class characters of number fields. Adliother families
studied to date, the main term is independent of the ariticro&the family. Our second

For the purposes of this paper, the following formulas seféis we only need to know the one-level

~

densities whemupp(¢) C (—1,1). See [KaSal, KaSa2] for determinantal formulas for thievel
densities for arbitrary support.
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goal is to see the effects of the arithmetic in the lower oteens, thereby distinguishing
different families.

To make things precise, |6t be a family of number fields, and define for each field
K € F thel-level density

1 log A g
Dezmy(®) = 7= 2 ; cb(vx = ) (1.3)
XECLE 11 /217y 20 =0

where¢ is an even Schwartz function whose Fourier transform haspectnsupport,
hi is the class number df, A is the absolute value of its discriminant, and the outer
sum runs over the characters of the ideal class gtbfigy) of K. Again, due to the
rapid decay ofh and the scaling factd?gz%, only the low-lying zeros contribute to this
sum in the limit asA x — oo. Since for a given numbeX there are only finitely many
number fields of (absolute value of) discriminant less thgnthe discriminant must
tend to infinity in any infinite family of number fields. Moreew ordering the familyF
according to the increasing paramefer, we may consider the limit

D#(6) = lim Doz ().

and this is independent of rearranging fields which have dgineesvalue ofA . How-
ever, there is no good reason to expect this limit to exigtis just an arbitrary collection
of number fields; thus we reserve the term ‘family’ for a colien 7 of number fields
whose members have similar arithmetic properties and factwthe 1-level density
actually exists. This is by no means an attempt at an actdialtiten of the term ‘fam-
ily’, which is an ongoing subject, but it suffices for our pages, wherein the common
arithmetic origin of our fields will be obvious.

Among the wide variety of families for which the density cecture has been inves-
tigated, few have arisen from the number field context. I, fexcour knowledge, the
only work to date analyzing the 1-level density for Heckerebters is that of Fouvry-
lwaniec [FI], who showed that, in the notation above, thievel densityDx(¢) for
F the family Q(—D) with —D a fundamental discriminant is given by the symplectic
distribution. In addition, recent unpublished work of Aadr Yang [Ya] indicates that
the 1-level density for the Dedekind zeta functions of culetds is governed by the
symplectic distribution. In this paper, we extend the ressaf [Fl] to the family of all
CM-fields over a fixed totally real field (see below for definits). Since infinitely many
such families exist, we also derive the first lower order tefitine 1-level density (under
certain conditions), which allows us to distinguish diéfiet families by their arithmetic.

1.2. 1-level density. In this paper K will denote a number field of fixed degrééover
Q, hx its class number) i the absolute value of its discriminant,andr, the number
of real resp. half the number of complex embedcﬁngBdRK the regulator.

Al though K will vary, we will generally omt the subscripts
fromour notation; thus h=hg, et cetera.

Let y be a character of the ideal class group/of and let¢ be an even function in

2ThUS’I’1 + 2r9 = N.
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the Schwartz spac&(R) such that the functio& has compact support; he@erepre-
sents the Fourier Transfo

_ /_ Z o (x)e= Vg, (1.4)

Assume the generalized Riemann hypothesis, so we may \wgtedros of_(s, x) as
1/2 + i, with v, € R. Then Weil’s explicit formula, as simplified by Poitou, read
[Pa,[BDE,[Lal]

log A 1 oo
£ (52) - gt [ e

™™

+6(0)(log A — Nygy — N log 87 — 5
A< long)
e ¢ m
~Y log N Z 82 ) (o)™ + x(p) ™)
> log Np gz (X x(p
p

> 6(0) — 9(x)
T 0 2cosr(x/2 v N/ 23|nh(:c/2 ]’(1'5)

where the sum on the left is over the imaginary pastof the zeros ofL(s, x), the
sum on the right is over the prime ideals of the ring of integer’, vg\; is the Euler-
Mascheroni constant ang is the indicator of the trivial character (i.e., it is 1Lyfis
the trivial character and 0 otherwise). As is standard, seaked the zeros hyg A to
facilitate applications to studying the zeros near theregpbint.

We now wish to average this formﬂliover all charactersf the ideal class group
CL(K) of K. We denote its dual bg £(K'), and note that its cardinality is the class

numberh. By x(p) we of course mean the value gfon the ideal class gf. For any
non-zero integem and any prime of K we have

h if p is not principal andn | orde. (k) (p) (1.6)

{ h if p is principal
0 otherwise.

3Note other works may use a different normalization, usintf* instead ofe—27izv,
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Averaging the explicit formula over the family yields theeslevel density

log A
Peew(® = 5 2 2 ¢<%‘ Ozgw)

XECL(K) L(1/2+2'yX x)=0

1
log A

4 [~ x T
E/o Cb(logA)COSh( )dx+¢() <1ogA NVEM—N10g87r—7>

~2| > lgNp Y o) + longZ s )

m/2 m/2
p non—principal m>1 N]J / p principal Np /
p™ principal
< $(0) /
d N d 1.7
n 0 2cosh * 2s1nh x/2 v (L.7)

We wish to ascertain the behavior of this averagéas c.

We recall some relevant facts from algebraic number theseg Chapter 4, Part 1
of [Lal] or [Wa] for more details). A number fiel&, is called totally real if every
embedding ofK, into C has image contained iR, i.e. K, is generated ove by
an algebraic number all of whose conjugates are real. Onttier dand, a number
field K is called totally imaginary iho embedding of” into C has image contained in
R. A CM-fieldis a totally imaginary number field which forms a quadratiteasion
of a totally real number field. This totally real field is un@and is denoted& ™. K
then takes the fornk’ = K+ (1/f3), whereg is a square-free element 6+ which is
totally negative, e.go(3) < 0 for every embedding : K+ — R. Any totally real field
obviously has infinitely many CM-fields over it, and CM-fiefdsm a rich and abundant
class of number fields. Indeed, any finite abelian extensidp is either totally real or
is a CM-field (by the Kronecker-Weber theorem), and the abatien CM reflects the
strong connection between CM-fields and the theory of abetiaieties with complex
multiplication (see 1V.18 of [Sh] for details).

We now describe our family of number fields. Fix a totally reamber fieldK,/Q
of class number one and degr¥eoverQ, and let{ K } be the family of all CM-fields
for which K{ = K, ordered by (absolute value of) discriminakt Although it may
be the case that severdl share the same value of, there are by standard results only
finitely many which do ([Lal], pg. 121), so their ordering ieeievant. Each of these
fields has degre2/V overQ. We denote the class numberigf, by ha.

Define distributionsS; (A, -), S2(A, -) by

log Np
S1(A ) = =2 Z log Np Z gb(m:g/j)
p non—principal m>2 Np
p™ principal
A=)
S(Ag) = =2 Y longZ Np;fﬂ : (1.8)

p principal m=1
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note them-sum forS; (A, ¢) starts ak and notl because is not principal bup™ is. In
terms of this notation[_(11.7) yields

Theorem 1.1 (Expansion foi the 1-level densityNotation as above, i is an even
Schwartz function Witbupp(gb) (—o,0), then

Degiiey(®) = — Z ¢<WXIO§WA)

XECE(KA) L(1/2+2'yX x)=0

1 4 [0~ z
~ logA K/O ¢<logA)COSh< )dx
+ $(0) - (log A — 2Nygy — 2N log 87)
+ 51 (A, ¢) + Sa(A, ¢) +2N/ W%dx]. (1.9)

Note that we've used, = 0, sinceK is totally imaginary.
1.3. Main results. Our first result is the following.

Theorem 1.2. Assume the Generalized Riemann Hypothesis for all Hedkmctions.
Let ¢ be an even Schwartz function whose Fourier transform is sueg in (—1,1).
Fix a normal, totally real number field,/Q of class number one and degréeover
Q, and let{ KA} be the family of all CM-fields for whiclk'\ = K, ordered by the
absolute value of the discriminadt. Then

S log log A
Deze)() = 6(0) = 56(0) + 0 (%) , (1.10)

which implies that the one-level density agrees with théirsgdimit of symplectic but
not unitary or orthogonal matrices (sd#.2)).

Frequently in computing 1-level densities of families, we able to improve our
support or isolate lower order terms if we restrict to a saitmify of the original family
which is more amenable to averaging. See for instance thétses Gao [Gab] and
Miller [Mil4] for sub-families of the family of quadratic Dichlet characters with even
fundamental discriminants at maatfi or [MiI3] for families of elliptic curves. The
situation is similar here; to derive the lower order term¢hef 1-level density, we make
the additional assumption that the class numbekin the narrow sense is 1. Recall
that thenarrow class groumf K, is defined similarly to the ordinary ideal class group,
except that ideals are considered equivalent if and onhey differ by a totally positive
element ofK, rather than an arbitrary one.

By restricting the family of number fields we study a little,lwe are able to isolate
the first lower order term, which depends on the arithmetibeffield.

Theorem 1.3(First Lower Order Term)Assume the Generalized Riemann Hypothesis
for all Hecke L-functions. Let be an even Schwartz function whose Fourier transform
is supported in(—1,1). Fix a normal, totally real number field{,/Q whose class

“The sub-family studied i84 : 0 < d < X; d an odd, positive square-free fundamental
discriminant; this extra restriction facilitates the application of §wn summation.
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number in the narrow sense is 1, and {dt’A} be the family of all CM-fields of odd
class number (in the usual sense) for whicj = K, ordered by the absolute value of
the discriminantA. For a number fieldZ/Q, let p be the residue of its Dedekind zeta
function at the simple pole= 1

2m (QW)TQhERE
pE = ress—1(p(s) = : (1.11)
wp/|DE/ql
and letv; denote its Euler constant
d
YE = 5[(5 — 1)Cp(8)]s=1 hm (CE( ) — p_El) ) (1.12)

Letygy be the Euler-Mascheroni constant. Then the 1-level derssgiven by

Dozt (@) = 9(0) — 56(0) + 10; = (0r(2) + £1(8)) +0 ( : A) (1.13)

where
4 BN x
Li(A) = N ¢ <logA) cosh <2> dz + $(0) - (—2Nvgy — 2N log 87)
—|—2N/ 251nh x/2 dx (1.14)
and
VKo 5K log Nq
T(A) = 480 o R _y Z (1.15)
PKo  PK 4O, Ng? -1
inert in K

Moreover,7(A) = O(1), with the implied constant depending &@.

Remark 1.4. As is common in many families bffunctions (see for examplEl, HKS,
Mil2] Mil3, Mil4, Mil5,IMilMo, Ya,|Yo1]| ), the main term in the 1-level density is inde-
pendent of the arithmetic of the family, which only surfaoebe lower order terms.

This paper is organized as follows. After analyzing parthef first lower order term,
we prove a lemma on CM-fields that allows us to bound sums awecipal primes of
degree 1. We proceed to reduce sums dvdo sums overx,, which are then handled
using standard algebraic number theory. To deal with sures degree 2 primes, we
introduce a variant of the Dedekind zeta functiori@fand show that integration against
its logarithmic derivative yields the desired quantitiep o reasonably small error),
from which we obtain the result. In Sectibh 3, we restrict olass of number fields
in order to obtain complete control of the ramification bebgwvhich allows us to
reduce the error terms significantly. We then extract thelGvger order term by closely
studying the arithmetic of the families in question, in theqess proving a discriminant-
independent bound on number field Euler constants that wenftaseen elsewhere in
the literature (see Proposition B.3 and Appendix A).
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2. PROOF OFTHEOREMI[L.2

The proof of Theorer 112 follows from an analysis of the term&heoreni L1 (the
one-level density expansion from averaging the expliginfala over the family). The
terms other tharb;(A, ¢) are readily analyzed. To see this, we first need a lemma
relating the size ofin to A.

Lemma 2.1. We havéog ha ~ 1 log A asA — .

Proof. Since the fieldg<, all have the same degree ov@r we have by the Brauer-
Siegel Theorem|([L&a1], Chapter XVI) that

1
log(haRA) ~ §logA asA — oo. (2.1)
The regulator?» satisfies ([Wa], pg. 41)
Ra L noa
= =2 2.2
Res ~ O (2.2)
where(@ = 1 or 2, and therefore?» is bounded by a constant independentofThis
proves the claim. O

~

Lemma 2.2. Assumeupp(¢) C (—o,0) with o < 1. Then the terms involvingbsh
andsinh in Theorem 1J1 ar€©(1/log A).

Proof. The last two terms, where the hyperbolic trig functions aréhe denominator,
are readily analyzed. Assh(z/2) > 1 and decays exponentially, the integrand with
cosh in the denominator i€ (1). Thesinh integral is handled similarly (note everything
is well-behaved near = 0 becausep is differentiable, and by L'Hopital’s rule the
guotient is bounded near= 0).

We are left with handling the integral @Aﬁf againstcosh. Changing variablesu( =
x/log A) gives

4 C~( x x 4 [~ ulog A
—_ h(=)der = — h du. (2.
ha logA/O ¢ (logA) o8 (2) . hA/O #(u) cos ( 2 ) v (23)

Using2 cosh(t) = e' + e*, we see this integral is dominated by

1 [%~ A“/?
- ‘gb(u))A“/Qdu < = (2.4)
hA 0 hA

which tends to zero by Lemna 2.1 as< 1. O

Thus, by the above lemma, the asymptotic behaviaF @A, ¢) for fixed ¢ is deter-
mined by that ofS; andS;. While the hyperbolic integrals will contribute lower orde
terms of sizel / log A, the values of these integrals are independent of the family

In what follows, we drop A fromour nunber field notation;
thus K = Kan, h=ha, et cetera.

Before analyzings; andsS,, we first prove some lemmas on CM-fields which will be
essential in our investigations.
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2.1. Lemmas on CM-fields. Just as in the case of quadratic fields oiggrone easily
proves the following.

Lemma 2.3. Let K be a CM-field ands € O+ a totally negative, square-free element
such that’ = K* (/). Then either

Ox = O [VB] of Ox = Oks {H;/B].

Indeed, the minimal polynomial of an element= =z + y/8 € K,z,y € K over
KT*is
t? — 2wt + 2° — By?
so by transitivity of integral closurey € Oy if and only if 22, 22 — Sy? € Ok+. The

two possibilities of the lemma then correspond to whetherOy+ or x € §OK+.

The following lemma is crucial, as it allows us to bound sumsralegree 1 principal
primes (by showing the sums are vacuous if the support iggtst as in Theorein 1.2).

Lemma 2.4. Let K be a CM-field with maximal real subfield ™. Chooses € K*
which is totally negative and such that= K*(1/3). Letp C Ok be a principal prime
ideal of degree 1 with normVp = p. Thenp > C'A, whereC' is a constant depending
onlyonK™.

Proof. We assume thabx = Og+[/B]; the other case is similar. We first claim that
p> |Ng+(ﬁ)|. Sincep is principal, there exist,y € Og+ such thap = (z + y/B).
Suppose; = 0; then
Np == N§(p) = N§ (Ni(p)
= N
= N (2)
which is a contradiction since = Np is a prime number|(\f(§+(9:)| > 1 becauser

can’t be a unit). Thug # 0.
Assume nowy # 0. Recall the minimal polynomial of + /3 over K is

t? — 2at + 2° — By, (2.5)

SONE.(p) = Nii(xz + y/B) = 2* — By*. Hence, since the degree is multiplicative
over towers,

p o= INg (&%= By
= | II oG -5
o:Kt—C

(2.6)
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We now use our assumption thais totally negative, which implies that(/5) < 0 for
eacho. We have—o(5) = |o(5)| and so

[[ (o) = a(B)a(y)?)

[

[ (0(@)? +a(B)lo(y)?)]- (2.7)

[

Sincex,y € K andK™ is totally real, we have(x),o(y) € R for eacho. Therefore
o(z)? > 0,0(y)* > 0and so

[ (@) +1o(8)lo(y)?)

[

= [l 0@’ +l0B)o())
> J[e@?+]]leB)o()

= NET@?P+INETB)NET ()2 (2.8)

Sincey # 0 andy € O+, N(éf+ (y)? is a positive integer. Thus the last expression is at

Ieast|N6+(5) , which proves the claim.
By the relative discriminant formula, and sinidé : K| = 2, we have

Dijg = N (Djx+) - Dy g (2.9)

where for an extension of number field§ £/, Dy, denotes the relative discriminant
(which we take to be an integer B = Q, although it is an ideal oD in general).
SinceDy,x+ = (453), we haveNE " (Dyx+) = 4V|NE(8)|. Therefore, by the above
claim, we have

Drjol A

> |NEY(B)] = = 2.10
Finally, note thaﬂ/(4ND§{+/Q) depends only o . O

In particular, since in our settinf ™ = K, is fixed, we see thaf’ is independent
of A. This observation will be crucial in what follows, in thatatlows us to assert
the vacuity of certain sums since they only involve prime®sénorms lie outside the

support ofo.

Remark 2.5. The CM structure is crucial to obtain such a strong lower bdwm the

norm of degree 1 principal primes. In general, the resultd afjarias, Montgomery
and OdlyzkdLMO] and Oesterl§O€] guarantee that for./ K a Galois extension of
number fields, there exists a primeof K of norm at mos70(log | Dy, g|)*>. One must
therefore avoid number fields with extensions of small disoant in order to obtain
such a bound.

2.2. Evaluation of S;.

~

Lemma 2.6. Assumeupp(¢) C (—o,0). If o < 1, we have

S1(A, ¢) = O(loglog A) asA — oo. (2.11)
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Proof. First, we claim that

log Np~ (_log N
SiAg) = -2 Y Oifp%(z fogg;) +O(1). (2.12)

p non—principal
p2 principal

Indeed, since is bounded, and since each rational pripieas at mos2N prime ideals
lying over it in K, the sum

long)

3 longZ é(m pfjj (2.13)

p non—principal m=3

is bounded by a constant times a convergent series, namely

log p log p
;; pm < —~ P

(2.14)
This proves[(2.12).

For K/E an extension of number fields apda prime ideal ofOy, we denote by
fx/e(p) the residue degree pfover £, so thatVE (p) = q/=/=®), whereq = p N Op.
Notice that

log Np ~ [ _log Np log Np ~ [ _log Np
2 = D) 1
p non%ncipal N]J (b < 10g A p non%ncipal Np (b 10g A " O( )

p? principal p2 principal
fryo(p)=1

since the complementary sumis agaln bounded up to a comstéime convergent series
Z logp . By the compact support @‘ we have

log Np~(_log Np\ log Np ~ [ _log Np
Z Np ¢<2 logA) N Z Np ¢<2 logA)' (2.15)

p non—principal p non—principal

p? principal p? principal
Tr/o(P)=1 Ffro(p)=1
log Np< Zloga o log A

Let p be a prime of degree 1 ové} such thatp? is principal, sayp? = («). Either
a € Okg+ ora € Ok \ Ok+. Denote these contributions By ; (A, ¢) andS; »(A, ¢).

Suppose first that € Ox+. ThenaOy-+ is a prime ideal o)+ sinceNg o(p)? =
N+ g(@)?, and it ramifies ink. Therefore, sincgx/o(p) = 1 implies thatp = Ny
is a rational primep ramifies inK. As the ramified rational primes i” are precisely
those dividingA, we find

log Np~ [ _log N
Sude) = Y EIRG(20ETY) 216
p non—principal &

p2:(a)7aeoK+

Fr/pP)=1

long<#

1

< Y O;‘;’p — O(loglog A), (2.17)

p
plA
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where we used the standard &ttttatz logp « Joglog A.

plA
Now consider the case whenc OK\OKf. Let
o log Np ~ [ _log Np
S12(A, ¢) = > Np b <2 s ) (2.18)

p non—principal
p2=(),a€O0r\O+
fryo(p)=1
log Np< %

In this situation, we havéVy q(p)* = Nk/g(a), so the proof of Lemmia 2.4 shows that

Np > CVA, whereC is a positive constant independentaf Hence, sincer < 1,
the conditionlog Np < % on the sum implies thaf; »(A, ¢) is zero for sufficiently
large A. Putting things together, we have i@r< 1 that

SI(A7¢> = Sl,l(A7¢> + 51,2<A7¢) _'_0(1) = O<10glogA)7 (219)

which proves the claim. O

2.3. Reduction of S,. In this subsection we replace with sums which are easier to
evaluate. We determine those sums in the next subsectiaohwhll complete the

analysis ofSs.
We write S, as a sum
SZ(A7¢) = 52,1(A7¢)+S2,2(A7¢) (220)
where
o (miE
Soa(A¢) == 2 > logNp Y (Npm/2 )
p principal m>1
(m7hA):1
5 (mha
Sya(A, @) = =2 Z log Np Z <N miz ) (2.21)
p principal m>1 p
(m,hA)>1

Note that the proof of Lemmia 2.6 did not actually use the nionefpality of the prime
ideals involved in the sum, but only the fact that the primasgehprincipal square, as
well as Lemma_2]4 and the fact that the sum begam at 2. Since the principality
of p of course implies the principality qf?, and since the conditiofin, ) > 1 in the
definition of S5 2(A, ¢) implies that the sum again begins at leastat= 2, the same
argument given in Lemnia2.6 shows that

1
Saa(A,¢) < Z in = O(loglog A). (2.22)

p
plA

5Notek’% is decreasing for > 3, so the sum is maximized whekis a primorial. If2-3---p,. = A
thenp, ~ log A, and the claim follows from partial summation.
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We now analyzeb, ; (A, ¢). Note that

A( log Np

) +0(1)  (2.23)

log A
S1(A,0) = =2 > logNp > - Npm2
p principal m>1
(i)
since, as before (see Lemmal2.6), thesuh _ logNp ) Nijj? is bounded
p principal m>1 p
Tx/0(p)>2 (m,ha)=1

by a convergent series. Moreover, observe that

o (me) o (me)
S logNp Y = > logNp :

— pm/2 - pm/2
p principal m>1 p principal m>1
Tr/o(p)=1 (m,ha)=1 fryo(p)=1 (m,ha)=1
Np<A°
(2.24)
and ifo < 1 then this sum is zero for sufficiently largeby LemmdZ2.4. Thus, letting
o (mii)
og
Sa(A, )y = =2 > logNp Y g (2.25)
p principal m>1
Tr/o(p)=2 (m,ha)=1
we find that
S21(A,0) = S21(A,6)2 +O(1) (2.26)

and so, by[(2.20) an@ (2.22), we find that
S2(A,9) = 521(A,¢)2 + O(loglog A). (2.27)

Proposition 2.7. We have

long log Np
Sa1(A, B)a 2 ) ST ( log A +0(1). (2.28)
P pr1n01pa1
fryo(p)=2

Proof. Let A(A, ¢) be the difference betweefy ; (A, ¢), and the main term on the right
hand side of((2.28). Thus

o (i)
AA¢) = =2 > logNp Y —Ng (2.29)

p principal m>2
Tx/o(p)=2 (m,ha)=1
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Sinceggis bounded andvp > 2, we have

= 1
Ad) < 3 TogNpY o
p principal m=2
T /oP)=2
log Np
< D (2.30)
p principal
fryo(p)=2

where the last statement is derived by summing the geonsetries. Since each rational
primep has at mostV prime ideals of degree 2 lying above it in, we find

AN < Y N ;(;gp . (2.31)

p

This sum is convergent, since it is dominated by a converggngs. Hencel(A, ¢) =
O(1) as claimed. O

We now express 1 (A, ¢), in terms of primes of{ .
Proposition 2.8. We have
loquA( loqu)
2 3 NG
o, Nq log A

q inert in K
fK+/Q(q):1

52,1(A7 $)y = —2

+ O(loglog A).  (2.32)

Proof. Let M (A, ¢) be the main term in the expression 6y, (A, ¢), given by Propo-

sition[2.7:
log Np ~ (log Np
M(A¢) = =2 Y Np1/2¢ osd ) (2.33)
p principal

freyo(p)=2
Divide this sum by degree ové¢:

M(A,¢) = —2[ 3 IOgNP$<long>

— Npt/2 log A
p principal
Fre) e+ (0)=F K /o (p)=2
log Np ~ (log Np
" Z Npt/2 ¢ ( log A
p principal
Trey e+ (0)=1,frc/0(p)=2

= Mi(A,¢) + Ma(A, 9). (2.34)

For My(A, @), fx/k+(p) = 1implies thatqg = p N O+ either splits or is ramified in
K. It follows as before from Lemma 2.4 that the contributioonfr split primes is zero

~

for large enough\ assupp(¢) C (—1,1). The contribution from thosg which lie over
ramified primes iK™ and for whichfy o (p) = 2 is bounded (up to a constant) by

1
Y 25 < loglog A (2.35)
p

plA
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ThereforeM, (A, ¢) = O(loglog A).
Denote the main term i (2.82) by'(A, ¢), so

log Nq~ (_log Nq
M'(A, @) == =2 |2 ) (2 . (2.36)
( ) q§+ Nq log A
q inertifn K
L fKJr/Q(q):l |

As My (A, ¢) = O(loglog A) it suffices to showM' (A, ¢) = M (A, ¢) to complete the
proof.

Letq be a prime of* of degree 1 ove thatisinertink’. Then, sincé+ = 1,p =
qOx is principal. Moreoverfy, +(p) = fx/o(p) = 2andNp = Ng°. Conversely, if
p is a prime of K such thatfx,x+(p) = fx/o(p) = 2, theng = p N Ok+ has degree 1
overQ and is inert inK. Therefore

_ log(Np'/2) ~ [ _log(Np'/2)
/ p— _

M'(A,¢) = —2|2 Z | o 5 o

L pC Ok principal

Frcye+ (M)=FK /o (P)=2
_ longA<long)
= 2 > 2 _ My(A, §).(2.37)
p principal Np1/2 10g A

_fK/K+(p):fK/©(p):2
Hence,ngl(A, ¢)2 = M(Av ¢) + 0(1) = Ml(Aa ¢) +M2(Av ¢) + 0(1) = M/(Av ¢) +
O(loglog A), as claimed. O

2.4. Evaluation of S,. We now complete the analysis 6f. Let x be the unique non-
trivial character ofG := Gal(K/K™). Forq a prime of K unramified ink, define

._ q q : .
x(q) :=x ((K/K+>) where(K/K+) is the Artin symbol. Thus

(q) = —1 if gisinertinK
MU= 1 if gsplitsink.

(2.38)

The Artin L-function associated tgis

Lisx) = ] (1— X(q))_l. (2.39)

N S
q unramified inK q

Sincey is the character of a non-trivial one-dimensional represt@m of G, L(s, x) is
entire and has no zeros on the liRe = 1. Define a functiori/(s) by

N Cx+(5)
Uls) = (s~ 1)L(5> X)Cram(s).

Here(ram(s) is given by the partial Euler product fgg+(s) restricted to those primes
which ramify in K. One has ([Lal], pg. 161) thgt+(s) is analytic forRs > 1 — 1/N

(2.40)
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except for a simple pole at= 1. Since the factor ofs — 1) cancels this pold/(s) is
analytic forfts > 1 — 1/N. In this region, we have

v = -1 1 (Xe=1)” (2.41)
S) = (S - | Nqs—l—l . .
q inertin K
Therefore, fofts > 1 — 1/N one has
U’ log _logNg
U( s) = Nt (2.42)
q inertin K m= 0
Consider the integral
/ e U, 4m dx (2.43)
oA : :
We substitute the expansion frotﬂz.42) above. The firsigpiethe integral
o logAdr  logA 1 o dx
/_OO o) dmiz 2 2w /_OO o) x’ (2.44)

which is just¢(0) log A from complex analysi8. The second piece becomes the in-
tegral ofo(x) against factors such d&/q)**"+9 with s = 1 + £Z%. The integration
againstr gives the Fourier transform of. Specifically, these terms contribute

log Nq log Nq
¢ JlogA—2 Y ZNq2m+1 (2 +1)lgA , (2.45)

q inertin K m=0

Whereigb(o) log A appears as half the residue—;odb(s)s‘1 log A ats = 0. Similarly to
the above, one has

log Nq log Nq
(2m+1
Z Z Nq2m+1 ( + ) lOgA

q inertin K m=0

B log Nq~ (_log Nq
B Z Nq ¢(2logA +00)

q inertin K
log Nq~ ( log Nq
= 2 1). 2.46
Z Nq ¢( log A +0() ( )
q inertin K
fK+/@(q):1

Therefore, by Propositidn 2.8, we have shown

Lemma 2.9.

4mix

So1(A,¢)y = ——gb( )logA+2/ o(x F (1 + logA) dzx + O(loglog A).
(2.47)

SRemember that is an even function. The extra factor bf2 is due to the pole lying on the line of
integration.
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Write - ) X ” ¢
U(S) =17t CI;—+(S) - f(&X) - C:—::(S)- (2.48)

We have the following important fact (Theorem 5.17[ofl[IK]).

Theorem 2.10.Assume the Generalized Riemann HypothesisLLetp) be the Artin
L-function associated to a (possibly trivial) one-dimemnsilkrepresentatiom of GG. Let
r be the order of the pole of this-function ats = 1, and letq(x, s) be the analytic
conductor of the associated Hecke character. Then

/

L
— S (1+it.p) = — +Ollogloga(x.s)). (2.49)

the implied constant being absolute.

In our situation, we have a factorization of the Dedekin@Zenction of K just as in
the case of imaginary quadratic fields:

(k(s) = Cr+(s)L(s, x), (2.50)
which may be proven by checking the local factors at each eiineal of K. Thus
every rational prime dividing(x) (the ordinary conductor) must also divide But
we also havey(y) = |DK+/Q|N6+f(X) for an integral ideaf(x) of K+ ([IK], pg.
142), and since each prime in the factorization of this idea degree at most over
Q, we findg(x) < |Dg+/glAN. Thus, sincdDy+ gl is independent of\, we find
q(x, s) < AN|[s|?N. SinceL(s, x) is entire, we therefore obtain by Theorém 2.10 the
estimates

SSE 1) = Lt Ologlog(Al™))

Cre+
/

L
_f(l +it,x) < loglog(AN[¢]*™). (2.51)
Combining these estimates with the fact that
/
?i"(l +it) < loglog A (2.52)
ram
log p

(use —= < loglogA), one finds since is Schwartz that
p
plA

o U Amiz
/_OO gb(x)ﬁ (1 + logA) dr < loglog A, (2.53)

where the implied constant depends only @and N. Combined with the previous
lemma, this proves

Lemma 2.11. We have

So1(A, ¢)2 = —%gb(O) log A + O(loglog A). (2.54)
Thus, by(2.27) we have
Sa(A, @) = —%(b((]) log A + O(loglog A) (2.55)

as well.
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We are now ready to prove the main theorem.

2.5. Proof of Theorem[1.2. Our main result trivially follows from our analysis ¢f
ands.

Proof of Theorerh 112By (1.9), we have

%/OOO(EQOQA) cosh(2>dx

+ 3(0) - (logA _ 2NVEM — 9N log 87T> + 51 (A, ) + Sa(A, )

+2N/ 2smh x/2 x] . (2.56)

By Lemmas 2.2 216 arild ZJ11, and sin¥ds fixed andr; < N, this entire expression
equals

1

1 ~ 1
log A — = log A loglog A 2.57
oz A {¢(0) og 2¢(0) og A + O(loglog )} , (2.57)
which completes the proof. O

3. LOWER ORDER TERMS

In this section, we prove Theorém I1.3, which gives the lowdepterms for a sub-
family of our original family. Similar to investigations dhe 1-level density in other
families (such as [Gaad, Mil4]), we are able to isolate lowetes terms if we restrict
to a sub-family which simplifies some of the terms. To derhe lower order terms of
the 1-level density, we make the additional assumptiontti@tlass number ok, in
the narrow sense is 1 (recall that tharrow class groupf K is defined similarly to
the ordinary ideal class group, except that ideals are dersil equivalent if and only
if they differ by a totally positive element &, rather than an arbitrary one). We will
make use of the following facts, which rephrase Theoremsi2aof [Hd].

Proposition 3.1. The family{ K'» } of CM-fields for whichk = K contains infinitely
many fields of odd class number (in the usual sense).

Thus we may considgfK A : 2 1 ha} as a sub-family of KA }.

Unl ess otherw se stated, K = Kx denotes a CMfield of odd
cl ass nunmber such that Kt = K,.

Proposition 3.2. Let K be a CM-field such thak'™ has class number 1, and suppose
that the class number df is odd. Then at most one finite primelgf ramifies inK.

Writing K = K*(y/3), this implies that the relative discriminabt( K/ K ) is divis-
ible by at most one prime @+, which we denotg,x+ = q. Since the CM-fieldg{
for which O = Og+[v/B] have discriminant43), which is divisible by more than one
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1+ \/B]
2
and relative discriminanD -+ = (). Sincef is square-free anblx+ = 1, the propo-
sition then implies thaD . x+ is prime. Arguing as in the end of the proof of Lemma
[2.4, we moreover have

prime, anyK as in the proposition must have ring of integéltg = O+ {

A
NE' (Dijicr) = INET(B)] = F— 3.1)
K*/Q
I . . . log Ngq . log A
Thus the contribution from the ramified prime®f; + to terms IlkeW isO <W :

where the implied constant depends only/én = K. Since we're only interested in
terms of sizqogl—A, we may therefore ignore the ramified prime in what follows.

3.1. Evaluation of S; (Redux). With all notation as before, we again considefA, ¢).
Our goal is to improve the calculation to terms of sizdog A. Recall (cf. [2.1R)) that

B log Np ~ [ _log Np
Si(A,¢) = =2 Z N <2 s & +0(1). (3.2)
p non—principal
p2 principal

Since now the class number Bfis odd no non-principal prime has principal square,
so in fact

& (miee2e)
p non—principal . m>3 '
p™ principa

Observe that ip is non-principal, therfx -+ (p) = 1, since otherwisg lies over an
inert prime of K * and so must be principal sinég+ = 1. Letm > 1 be aninteger such
thatp™ is principal. Letp™ = aOk, and suppose € Of+. ThenNE. (p™) = (a?).
Since fx/k+(p) = 1, the idealq = NE. (p) of O+ is prime, so unique factorization
into primes implies thatn must be even. Consequently, since the fact thais odd
implies that the ordef of p in CL(K') must be odd as well, we must haves O\ O+
if p¢ = («). Hence, we may writer = = + y+/, wherez, y € O+ andy # 0. Thus

Ng (%) = INg (@), (3.4)
so the proof of Lemm@a 2.4 implies that

NE(p) > (€A, (3.5)
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whereC depends only o = K.
Sincep™ is principal if and only ifd|m, we have (writingl = d,, to specify the prime),

oo 5 dk‘loong
SiAe) = -2 Y 1ongZ%

p non—principal k=1
n log Np
¢ (d k log A )

= -9 Z longZW

p non—principal k=1
log Np< 2982 log A

(3.6)

so (3.5) and the fact that < 1 imply thatS; (A, ¢) = 0 for sufficiently largeA because
the sum is vacuous.

3.2. Evaluation of S, (Redux). We have

6 (mizEle)
Sa(Ag) = =2 > longZ Npmg/2 . (3.7)

p principal m=1

As argued above, the contribution from the ramified primeeigligible, while the con-
tribution from the primes of degree 1 ovAf, is ultimately zero. Consequently, fdx

large enough, we have (up to the('%3) error from the ramified prime)

6 (mizle)
S(A¢) = -2 ) longZ Npmg/2

p principal m=1
Tr /Ky (P)=2

loqu>

= —4 Z loquZ ( g &

(3.8)
1COk,
inert in K
Recall from Sectiof 214 that
/ o U ( 47?22) i
B loqu log Nq
= ¢ JlogA—2 Y Z ( oeh ) (3.9)

qC(’)KO m>1
inert in K odd
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Thus, using Lemm@a 2.4 and the fact that contribution fromrémeified prime is negli-
gible, we have by the compact support/of

o (2miE) hzgfzq)
S(A0) = —4 ) 1oquZ 5

4COK,
inert in K

. 00 U’ 4mix
- 5002 [ o) <1 ! 1ogA> "

)
-4 ) loquZ °g (3.10)
9COxK, m>2
inert in K even

Therefore, to complete the analysis of the lower-order $efe must show that

/ U ! 4drix ( 1foggjiq>
o(x ( ) dr—4 ) logNq) ————+  (3.11)

9CO, m>2
inert in K even

equals:k +o(1), with ¢, bounded independently &f. Note that in the explicit formula
the termsS; (A, ¢) and Sy (A, ¢) are multiplied byl/ log A; thus if we show the term
above isck + o(1), we will have isolated its contribution to the first lower erderm.

First, note that since the compact suppor@méstricts the sums to be finite, we have
using Taylor series

¢ 2mloqu
log A
S logNg Y Tl =
Ngm
q4CO0k, m>2 q4CO0Kk, m>2
inert in K inert in K

)
=
5}
o
=
Kat
E\H
3
+
VR
o
(ST
>
N———

’&)
2|5
o | 02
2
Kat

A

o

0 | =

>

N——

q4CO0K,
inert in K

(3.12)

and since each prime @1y, lies over at mosiV rational primes, this is dominated by a
convergenp-series independent éf, and thus i) (1).

To analyze the integral of against the logarithmic derivative @&f(s), let 5,(A)
denote the-th coefficient in the power series expansion of the logarithderivative of
U(s) abouts = 1; thus

U Amix log A & dmiz \ ¥
(1 — A . A
U ( * logA) dmix * kzzoﬁk( ) <logA) (3.13)

To getrid of the termog A /4wiz, observe tha%%’ (1 + 4mixz/log A) is an odd function
of z, so that

U’ dmiz U’ 4mix
/ o(x < A)daz—/ o(x U(1+lgA)d9: (3.14)
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and

! 2k
%% (1 4mx) Zﬁ% <4mx) ‘ (3.15)

Recall from 2.4 that

CKO(S)
L(s, x)Cram(s)

and thatl/(s) is analytic and non-zero at= 1. A straightforward computation, using
the fact that.(s, x) = (x(s)/(k,(s), then yields

U(s) = (s—1) (3.16)

U’ VKo VK 1
A)=—(1) = 2 K 17
Bo(&) U( ) PKy  PK o <logA) (3:17)

where for a number field’/Q, pg is the residue of its Dedekind zeta function at the
simple poles = 1
21 (2m)2hgR
pep = res;—1(p(s) = (27)"hp R (3.18)

wp\/|Dr/ql

andyx denotes its Euler constant

e = A= Vel = (G- LE5) . (a9

TheO(1/log A) term in (3.1T) comes fron..,(s). We claim that5y(A) = O(1) as
A — oo, with the implied constant depending only éi.

We use the following bound for the number field Euler consteshiich is Theorem
7 of [MQJ. Let £ be a number field of degreeover(@ with r; real and2r, complex
embeddings. Denote the embeddidgs— K@, and arrange them in such a way that
K — K@Wisrealforl <i <, |mag|naryforr1+1 < i < 147, andK (i) = K0,
Letey, ..., ¢, be an independent set of generators for the unit grou[@Epfnodqu roots
of unity, wherer = r; + ro — 1. Let M be the largest of the vaIu¢$og|e || for
1 <1i,7 < r. Also, choose an mtegral basts, ..., 5, for O overQ, and Iet(%]) be

the inverse of the non-singular matl(l/ﬁ ) Finally, sety = max; ; |;;|. Then we have
Proposition 3.3.

vel < pr(l+ n2" max(1, Df)) (3.20)
whered, = 27~ 1p2nyn—lerMn=1),

In our setting (e.g. CM-fields of odd class number over a fixgdlly real field of
strict class number 1), the valugsand M, which a priori depend o = KA, can in
fact be made independent Af (see Appendik A for justification). Combining this fact
with the above proposition an (3]117), as well as the fadttha [K : Q] = 2N is
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fixed, we find
VKo TK 1
A) = 2 - —+0
Aol 2) PKo  PK <1Og A)
1+ 2N22N 1, oY 1
< QVK()_'_pK( + maX( ) X0 ))+O< )
PKo PK log A
= 270 41 4 9NN max(1, d2Y) + O !
PK, log A
= 0 (3.22)
with the implied constant depending only éf.
Now,

U’ 4drix &0 U’ 4miz
[ e o - [ (2
&0 > driz \ 2
_ /_ W)Zﬁ%(m (logA) do
4iz \ 2
— 506()+ [ o Zﬁzk (bg A) o,

(3.22)

To estimate the integral, observe that

Aa) = - (@) +0 (1 5) (329

wherey, andy,(A) are the coefficients in the power series expansion of theitbgaic
derivative of(x, (s) andL(s, x), respectively, about = 1. The Riemann hypothesis for
L(s, x) implies

1(A) < (loglog A)*+! (3.24)
and therefore

Br(A) < (loglog A)F (3.25)
with the implied constant depending érand K,. Hence, from[(3.22), we obtain

U’ dmix driz \ 2
o (1 iz i = d0m@) s [~ o> mi) (1) o
B (2k dmi \ 2
= +Z¢ 0)Bar(A <logA)

_ 30)(a) + 0 (%)

with the implied constant depending @nand K. Finally, combining this with the
expression for the 1-level density giveriinll.1, we obta@fthl first lower-order term,
completing the proof of Theorem1.3.

(3.26)
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APPENDIXA. A-INDEPENDENCE INPROPOSITIONZ.3

The purpose of this appendix is to prove thandependence alluded to after Propo-
sition[3.3. Namely, we have

Proposition A.1. Let K be a CM-field of odd class number such that has strict class
number 1, and let the values= v(K) and M = M (K) associated td< be defined as
in Propositior 3.8 (note that(K) is distinct from the number field Euler constant).
Then we may boundand M by constants depending only &f*.

Thus, if we begin with a totally real fiel&’, of strict class number 1 and consider the
family { KA} of all CM-fields of odd class number for whidki* = K, then
Y(Ka), M(KA) = O(1)as A — o0 (A.1)

with the implied constants depending &fy. Actually, this is true even whe/i has
even class number, but that doesn’t matter for us since thayebe too many ramified
primes.

Proof. Lemma 15 of[[Ok] implies that i<, is a totally real field of strict class number
1, then for any CM-fields” with K = K, the Hasse unit inde& ;c satisfies
Qr = [Of : WkOi,] = 1, (A.2)

whereWy is the group of roots of unity contained ii. Consequently, any indepen-
dent sek,, ..., ¢, of generators foOj, modulo{+1} also serves as independent set of
generators foO;, moduloWy. This, together with the exact sequence

1 — Gal(K/K,) — Gal(K/Q) — Gal(K,/Q) — 1 (A.3)
implies that
M(K) = max  |loglo(e;)]]
oeGal (K/Q)

depends only oik, as desired.
To boundy(K), recall thatOx = Ok, [a], wherea = (1 +/B)/2 for § € Ok, a
totally negative element. Thus,df, ..., xy is an integral basis fa®y, overQ, then

T fl1<i<N
B =<7 LT =T (A4)
ar;_y FN+1<j<2N

is an integral basis faPx overQ. Consequently, the matr(>ﬁ](.i)) takes the block form
i X AX

)1<ij<n, A is the diagonal matrix

whereX = (a!”
o)
0@

: (A.6)
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and we've used the fact tha@“ = x§i+N) anda® = o *+N) for 1 < ; < N since
K (i“Y ) = K@ and K, is totally real. It is then straightforward to check that theerse
of (ﬁj(.’)) is given in block form by

(A.7)

B X TAA—- A —XTAA- A
(vig) = (—X_l(Z—A)_l X—l(Z_A)—l )

Note that the invertibility ofA — A follows from the fact thatv® # o for anyi;

indeed,a® = (1 + \/B(Z))/Z and\/B(’) is purely imaginary sincg is totally negative.

Also, X is invertible since the integral basis, ..., xy is linearly independent ovep.

Consequently, to boungl = max;<; j<an |7;;| Solely in terms ofK), it suffices to so

bound the entries of each of the matri¢gls— A)~*, A(A — A)~%, andA(A — A)~L.
Recall from the beginning of Sectidh 3 that

A
N5 (B)] = ——- A.8
[Ng°(8)] D7 (A.8)
Moreover,|[ N (vB)| = INS°(NE, (VB))| = |NG°(8)|. But by definition

NEWB) = T VB (A.9)

K—K®
1<i<2N

and sinceX is CM, we hav%\/ﬁ(i)) = \\/B(j)\ for all 4, j (cf. [Wa], pg. 38). Therefore,
since|Ng (VB)| = A/ D, 1, we find that

‘ A 1/2N
)\/B(” - <D2 ) (A.10)
Ko/Q

for any:. This in fact implies the desired bound on the entries of th&ites in question:
we have

(a(l) — a(l))_l
_ a®@ — @)1
(A=A = (0 =a™) , (A.11)

(Q(N) —_ Q(N))_l

and for anyi, we have (since® = (1 + v/3")/2)

: = @
R e
2

DKO/Q

A
< |Dgyol'N. (A.12)

-1

1/2N
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For the matrices!(A — A)~! andA(A — A)~1, we have for any

[ 1+ |vAY
la@(a® — a7 < 5
2|VB
1
< 5+ Dkl (A.13)
and we get the same bound for the entrieslafi — A)~! since|a®| = [a()]. O
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