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ABSTRACT. We introduce a new family of N × N random real symmetric matrix ensembles, the
k-checkerboard matrices, whose limiting spectral measure has two components which can be deter-
mined explicitly. All but k eigenvalues are in the bulk, and their behavior, appropriately normalized,
converges to the semi-circle as N →∞; the remaining k are tightly constrained near N/k and their
distribution converges to the k×k hollow GOE ensemble (this is the density arising by modifying the
GOE ensemble by forcing all entries on the main diagonal to be zero). Similar results hold for com-
plex and quaternionic analogues. We are able to isolate each regime separately through appropriate
choices of weight functions for the eigenvalues and then an analysis of the resulting combinatorics.
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1.1. Background. Since their introduction by Wishart [Wis] in the 1920s in statistics, the distribu-
tion of eigenvalues of random matrix ensembles have played a major role in a variety of fields, espe-
cially in nuclear physics and number theory; see for example the surveys [Bai, BFMT-B, Con, FM,
KaSa, KeSn] and the textbooks [Fo, Meh, MT-B, Tao2]. One of the central results in the subject is
Wigner’s semi-circle law. Inspired by studies of energy levels of heavy nuclei, Wigner conjectured
that their energy levels are well-modeled by eigenvalues of a random matrix ensemble, and he and
others proved that in many matrix ensembles the distribution of the scaled eigenvalues of a typical
matrix converge, in some sense, to the semi-circle distribution [Wig1, Wig2, Wig3, Wig4, Wig5].

Which matrix ensemble models the system depends on its physical symmetries. Though the
most used in physics and number theory are the Gaussian Orthogonal, Unitary and Symplectic En-
sembles, it is of interest to study other families. In many cases the additional symmetry constraints
on the matrix (for example, requiring it to be Toeplitz or circulant or arising from a d-regular
graph) lead to a different density of states. There is now an extensive literature on the density of
eigenvalues of special ensembles; see for example [Bai, BasBo1, BasBo2, BanBo, BLMST, BCG,
BHS1, BHS2, BM, BDJ, GKMN, HM, JMRR, JMP, Kar, KKMSX, LW, MMS, MNS, MSTW,
McK, Me, Sch], where many of them have limiting spectral measures different than the semi-circle
(though recent work, see [ERSY, ESY, TV1, TV2] among others, shows that in many cases the
spacing between normalized eigenvalues is universal and equals that of the Gaussian ensembles).

In many of these special ensembles while one is able to prove the density of eigenvalues of a
typical matrix converges to a limiting spectral measure, one cannot write down a nice, closed-form
expression for this limiting distribution (notable exceptions are d-regular graphs [McK], block
circulant matrices [KKMSX] and palindromic Toeplitz matrices [MMS]). In what follows we
study a new ensemble of ‘checkerboard’ matrices, the eigenvalues of which are split into two
types, each of which converges to a different limiting spectral distribution which can be solved
for explicitly. Most of the eigenvalues are of order

√
N and converge to a semi-circle; however,

a small number are of size Θ(N) and converge to new limiting measures related to the Gaussian
ensembles.

Similar splitting behavior has been studied by [CDF, CDF2] for the more general class of ‘de-
formed Wigner ensembles’, where a fixed-rank family of deterministic matrices is added to a
Wigner ensemble. Their approach relies on the machinery of free probability, while in this pa-
per we show that the checkerboard ensembles can be studied by combinatorial methods in the style
of [KKMSX, MMS], and the elementary semicircularity arguments for the classical ensembles.
The same approach in this paper should be generalizable to a broader class of Wigner ensembles
deformed by fixed-rank matrices (aij) with aij determined by |i−j|mod k for some k independent
of the matrix sizeN . We define these matrices in the next section, and then summarize our findings
and the techniques developed to study such split behavior.

1.2. Generalized Checkerboard Ensembles. Our arguments apply with only minor modification
to the reals, complex numbers and quaternions, and show connections between the checkerboard
and Gaussian ensembles. As we often use i as an index of summation, we use î :=

√
−1 and

similarly î, ĵ and k̂ for the quaternions. Additionally, we index the entries mij of a matrix starting
at 0 to simplify certain congruence conditions.
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Definition 1.1. FixD = R,C or H, k ∈ N, w ∈ R. Then theN×N (k, w)-checkerboard ensemble
over D is the ensemble of matrices M = (mij) given by

mij =

{
aij if i 6≡ j mod k

w if i ≡ j mod k
(1.1)

where aij = aji and

aij =


rij if D = R
rij+bij î√

2
if D = C

rij+bij î+cij ĵ+dij k̂

2
if D = H

(1.2)

with rij , bij , cij , and dij i.i.d. random variables with mean 0, variance 1, and finite higher moments,
and the probability measure on the ensemble given by the natural product probability measure. We
refer to the (k, 1)-checkerboard ensemble over D simply as the k-checkerboard ensemble over D.

When not stated or otherwise clear from context, we assume that D = R when talking about
k-checkerboard matrices. We use w = 1 throughout for simplicity, since only slight alterations are
needed to make the results hold for any w 6= 0.

For example, a (2, w)-checkerboard matrix A would be of the form

A =


w a0 1 w a0 3 w · · · a0N−1

a0 1 w a1 2 w a1 4 · · · w
w a1 2 w a2 3 w · · · a2N−1
...

...
...

...
... . . . ...

a0N−1 w a2N−1 w a4N−1 · · · w

 . (1.3)

1.3. Results. Let νA,N be the empirical spectral measure of a N × N matrix A, where we have
normalized the eigenvalues by dividing by

√
N :

νA,N =
1

N

N∑
i=1

δ

(
x− λi√

N

)
, (1.4)

where the {λi}Ni=1 are the eigenvalues ofA. Here, we useA andN in the subscript to highlight both
the matrix and its size. Wigner’s semicircle law states that for many random matrix ensembles, for
almost all sequences {AN}N∈N of N × N matrices AN , we have weak convergence of empirical
spectral measures νAN ,N as N →∞ to the semicircle measure of radius R, σR, which has density{

2
πR2

√
R2 − x2 if |x| ≤ R

0 if |x| > R.
(1.5)

Note that for R 6= 1 the ‘semicircle’ distribution is actually a semi-ellipse with horizontal axis
R. While one can renormalize the eigenvalues by a constant independent of N to rescale to a
semicircle, we will see below that in our setting that constant would depend on k. We prefer not to
introduce a renormalization dependent on k, as it makes no material difference.

For the ensembles mentioned in §1.1 one is able to determine the limiting spectral measure
through the method of moments. The situation is more subtle here. As we argue later, the k-
checkerboard matrices have k eigenvalues of size N/k. As the variance of these eigenvalues is of
order k, for fixed k we see these eigenvalues are well-separated from the N − k eigenvalues that
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are of order
√
N . In fact, by using a matrix perturbation approach we are able to establish the

following result, which we prove in Appendix B.

Theorem 1.2. Let {AN}N∈N be a sequence of (k, w)-checkerboard matrices. Then almost surely
as N →∞ the eigenvalues of AN fall into two regimes: N − k of the eigenvalues are O(N1/2+ε)
and k eigenvalues are of magnitude Nw/k +O(N1/2+ε).

We refer to the N − k eigenvalues that are on the order of
√
N as the eigenvalues in the bulk,

while the k eigenvalues near N/k are called the eigenvalues in the blip. See [CHS] for some
general results about a class of random matrices exhibiting a different kind of split behavior.

While the presence of these k large eigenvalues prevent us from using one of the standard tech-
niques, the method of moments, to determine the limiting density of the eigenvalues in the bulk,
numerics (see Figure 1) suggest that the limit is a semi-ellipse.

FIGURE 1. A histogram, normalized appropriately to achieve unit mass, of the
scaled eigenvalue distribution for 100×100 2-checkerboard real matrices with w =
1 after 500 trials.

The following result (see [Tao1]) allows us to bypass the complications presented by the small
number of large eigenvalues.

Proposition 1.3. ([Tao1]) Let {AN}N∈N be a sequence of random Hermitian matrix ensembles
such that {νAN ,N}N∈N converges weakly almost surely to a limit ν. Let {ÃN}N∈N be another
sequence of random matrix ensembles such that 1

N
rank(ÃN) converges almost surely to zero.

Then {νAN+ÃN ,N
}N∈N converges weakly almost surely to ν.

Taking ÃN to be the fixed matrix with entriesmij = 1i≡j (mod k) implies that the limiting spectral
distribution of the k-checkerboard ensemble as defined previously with w = 1 is the same as the
limiting spectral distribution of the ensemble with w = 0, which does not have the k large blip
eigenvalues (for the remainder of this paper,AN always refers to anN×N matrix). This overcomes
the issue of diverging moments.

4



Theorem 1.4. Let {AN}N∈N be a sequence of N × N (k, 1)-checkerboard matrices, and let νAN

denote the empirical spectral measure, then νAN
converges weakly almost surely to the Wigner

semicircle measure σR with radius

R = 2
√

1− 1/k. (1.6)

The proof is by standard combinatorial arguments. We give the details in Appendix A.
On the other hand, the blip is where the vast majority of interesting behavior and technical

challenges are encountered. We begin with some heuristic arguments which give intuition for how
the blip arises and behaves.

Firstly, recall that a matrix A for which the sum of all entries in any given row is equal to some
fixed d has the trivial eigenvalue d with eigenvector (1, 1, . . . , 1)T . For a matrix in the N × N

k-checkerboard ensemble, the sum of the ith row is equal to N/k+
∑N

j=1 aij where the aij are i.i.d.
N (0, 1). This is approximately N/k, so heuristically there should be an eigenvector very close to
(1, 1, . . . , 1)T with eigenvalue roughly N/k. Similarly, there are k − 1 other eigenvalues of size
approximately N/k with eigenvectors close to the one described previously with some additional
periodic sign changes.

Hence the blip may be thought of as deviations about the trivial eigenvalues. The surprising
result of this paper is that these deviations, while seemingly quite different from the eigenvalue
distributions of classical random matrix theory, in fact have the same distribution as the eigenvalues
of the following k×k random matrix sub-ensemble of the classical Gaussian Orthogonal Ensemble
(GOE).

Definition 1.5. The hollow Gaussian Orthogonal Ensemble is given by A = (aij) = AT with

aij =

{
NR(0, 1) if i 6= j

0 if i = j.
(1.7)

The spectral distribution of the 2× 2 hollow GOE is Gaussian (see Proposition 3.19), and in the
k → ∞ limit the eigenvalue distribution is a semicircle by standard GOE arguments. For larger
finite k we see an interesting sequence of distributions which interpolate between the Gaussian and
the semicircle, similarly to the results in [KKMSX] for block circulant matrices. The first few are
shown in Figures 2 and 3.
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FIGURE 2. (Left) Histogram of eigenvalues of 32000 2× 2 hollow GOE matrices.
(Right) Histogram of eigenvalues of 32000 3× 3 hollow GOE matrices.
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FIGURE 3. (Left) Histogram of eigenvalues of 32000 4× 4 hollow GOE matrices.
(Right) Histogram of eigenvalues of 32000 16× 16 hollow GOE matrices.

Computing this distribution poses substantial challenges. Ideally, we would like to define a
weighted blip spectral measure which takes into account only the eigenvalues of the blip and not
the bulk. Naively, one could multiply the empirical spectral measure by some smooth cutoff func-
tion of the form 1[N/k−δ(N),N/k+δ(N)] for δ(N) growing appropriately to capture all of the blip
and neglect the bulk in the limit. However, with such a weighting function we cannot use the
eigenvalue-trace formula to reduce the problem to combinatorics on products of matrix entries in
the standard way. The next reasonable possibility is to try Taylor expanding a nice cutoff function,
for then each expected moment is of the form

E

[
∞∑
i=0

cipi(λ1, . . . , λN)

]
, (1.8)

where pi is the power sum symmetric polynomial of degree i and λj’s are the eigenvalues. Unfor-
tunately, Taylor series convergence and limit-switching issues make this approach untenable.

Hence, we are led to use a polynomial weighting function. No polynomial of fixed degree is a
sufficiently good approximation to a smooth cutoff function, so we use a sequence of polynomials
of degree increasing with the matrix size N so that in the limit we mimic a smooth cutoff function.
Specifically, let

fn(x) := x2n(x− 2)2n. (1.9)

Thus we alter the standard empirical spectral measure in the following way to capture the blip.
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Definition 1.6. The empirical blip spectral measure associated to an N × N k-checkerboard
matrix A is

µA,N :=
1

k

∑
λ eigenvalue of A

fn(N)

(
kλ

N

)
δ

(
x−

(
λ− N

k

))
(1.10)

where n(N) is a function for which there exists some ε so thatN ε � n(N)� N1−ε; the particular
choice is not important as long as these conditions are satisfied.

Remark 1.7. We give a heuristic argument that, in the limit, the empirical blip spectral measure
behaves like an empirical spectral measure with bulk eigenvalues weighted at 0 and blip eigenval-
ues weighted at 1/k. Due to standard semicircle behavior the deviations of the bulk eigenvalues
λ′ are on the order of

√
N , hence fn

(
kλ′

N

)
≈ 0 for any bulk eigenvalue λ′. Furthermore, because

f ′n(0) = · · · = f
(2n−1)
n (0) = 0, and n(N) grows sufficiently quickly, the weights fn

(
λ′

N/k

)
given

bulk eigenvalues are closer to 0 as N gets larger, counteracting the fact that there are more (≈ N )
eigenvalues and ensuring that the bulk does not contribute in the limit. Hence to remove the con-
tribution of the bulk eigenvalues to the limiting blip spectral measure, we require N ε � n(N). On
the other hand, we have fn(1) = 1 and f ′n(1) = 0, so the blip eigenvalues are all given weight
roughly 1. However, f ′′n(1) is negative and decreases with n, so naively one might expect this to
affect the limiting blip spectral measure by changing the weights of the blip eigenvalues which
deviate from N/k. However, because such eigenvalues are normalized by N/k in fn(N)

(
kλ
N

)
, the

differences in the weights given to blip eigenvalues deviating from N/k become insignificant in
the limit, provided that n(N) grows sufficiently slowly so that f ′′n(N)(1) does not grow too quickly.
Hence we require n(N) � N1−ε. It is worth noting that, in the later method of moments proofs,
both of these restrictions on n(N) become computationally necessary to avoid the divergence of
certain terms.

Remark 1.8. It is clear given the previous remark that a different choice of family of weighting
functions fn should not affect the limiting blip spectral measure; the authors experimented with
several other sequence of polynomials satisfying the same conditions, and all give the same end
results, but this one simplifies computations. Furthermore, it is nonnegative, ensuring that the
empirical blip spectral measure is actually a measure rather than a signed measure. It is almost
a probability measure, i.e., for a typical matrix µA,N(R) is close to 1. To make µA,N a probability
measure we would need to divide by the sum of the weights associated to the eigenvalues, but the
expected value of this quotient is intractable, so we instead divide by k and show that the limiting
blip spectral measure is in fact a probability measure.

Definition 1.6 finally allows reduction to tractable combinatorics. Interestingly, this combina-
torics reduces back to random matrix theory, yielding convergence in expectation of the moments
of the weighted blip spectral measure of the k-checkerboard matrix ensemble to those of the k× k
hollow GOE. However, we cannot show almost-sure weak convergence of measures by standard
arguments because (a) due to the weighting function, the blip empirical spectral measure is no
longer a probability measure, and (b) the number of eigenvalues in the blip is fixed so there are not
enough to average over. We modify the moment convergence theorem to overcome the first diffi-
culty, and average over the eigenvalues of multiple independent matrices to overcome the second.

We now state this result formally.
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Definition 1.9. Fix a function g : N → N. The averaged empirical blip spectral measure associ-
ated to a g(N)-tuple of N ×N k-checkerboard matrices (A

(1)
N , A

(2)
N , . . . , A

(g(N))
N ) is

µ
N,g,A

(1)
N ,A

(2)
N ,...,A

(g(N))
N

:=
1

g(N)

g(N)∑
i=1

µ
A

(i)
N ,N

. (1.11)

Theorem 1.10. Let g : N → N be such that there exists a δ > 0 for which g(N) � N δ.
Let A(i) = {A(i)

N }N∈N be sequences of fixed N × N matrices, and let A = {A(i)}i∈N be a se-
quence of such sequences. Then, as N → ∞, the averaged empirical blip spectral measures
µ
N,g,A

(1)
N ,A

(2)
N ,...,A

(g(N))
N

of the k-checkerboard ensemble over R converge weakly almost-surely to the
measure with moments equal to the expected moments of the standard empirical spectral measure
of the k × k hollow Gaussian Orthogonal Ensemble.

One can also naturally define the hollow Gaussian Unitary Ensemble and the hollow Gaussian
Symplectic Ensemble by extending Definition 1.5 to complex valued matrices comprised of com-
plex Gaussians and quaternion valued matrices comprised of quaternion Gaussians, respectively.
In Theorem 4.3 we obtain analogous results to Theorem 1.10, connecting the limiting blip spectral
measure of the k-checkerboard ensembles over C and H to the empirical spectral measures of the
hollow GUE and hollow GSE, respectively.

In §2 we prove our claims concerning the eigenvalues in the bulk, then turn to the blip spectral
measure in §3 (and the mentioned generalizations in §4). We then prove results on the convergence
to the limiting spectral measure in §5.

2. THE BULK SPECTRAL MEASURE

In this section we establish that the limiting bulk measure for k-checkerboard matrices follows
a semi-circle law. We denote by µ(m) the mth moment of the measure µ.

Theorem 1.4. Let {AN}N∈N be a sequence of N × N (k, 1)-checkerboard matrices, and let νAN

denote the empirical spectral measure, then νAN
converges weakly almost surely to the Wigner

semicircle measure σR with radius

R = 2
√

1− 1/k. (1.6)

One common tool used to study the limiting spectral density of a matrix ensemble is the method
of moments. However, this method cannot be applied directly to the study of checkerboard matri-
ces when studying the bulk regime because the limiting expected moments of the empirical spectral
measure do not exist. For a proof of their divergence, see Proposition A.1 in the appendix. The
following result overcomes this difficulty by allowing us to treat the w entries as 0.

Proposition 1.3. ([Tao1]) Let {AN}N∈N be a sequence of random Hermitian matrix ensembles
such that {νAN ,N}N∈N converges weakly almost surely to a limit ν. Let {ÃN}N∈N be another
sequence of random matrix ensembles such that 1

N
rank(ÃN) converges almost surely to zero.

Then {νAN+ÃN ,N
}N∈N converges weakly almost surely to ν.

We now use the method of moments to establish the result for (k, 0)-checkerboard matrices.
The main work is using combinatorics to establish convergence of the expected moments. The
remaining arguments establishing almost sure weak convergence are standard and may be found
in Appendix A.
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Lemma 2.1. The expected moments of the bulk empirical spectral measure taken over AN in the
N×N (k, 0)-checkerboard ensemble converge to the moments of the Wigner semicircle distribution
σR with radius R = 2

√
1− 1/k

E
[
ν

(`)
AN

]
→ σ

(`)
R (2.1)

as N →∞.

Proof. We have immediately from the eigenvalue-trace lemma and linearity of expectation that

E
[
ν

(`)
AN

]
=

1

N `/2+1

∑
1≤i1,...,i`≤N

E
[
ai1i2 · · · ai`−1i`ai`i1

]
. (2.2)

Each term in the sum is associated to a sequence I = i1i2 . . . i`i1, and we refer to these summands
as cyclic products. Furthermore, we refer to the a’s as entries of the cyclic product. Each cyclic
product corresponds to a closed walk on the complete graph with vertices labeled by the elements
of the set {i1, ..., i`} by giving the order in which the vertices are visited. Define the weight of
such a cyclic product I to be the number of distinct entries of I. If the weight of a walk is greater
than `/2 + 1, the walk contributes nothing to the sum because the expectation of some entry is
independent of the rest and its expectation is 0.

The cyclic products of weight less than `/2+1 contribute o(N `/2+1) to the sum. This is because
the cyclic products may be partitioned into a finite number of equivalence classes by the isomor-
phism class of the corresponding walk. An isomorphism class of weight t then gives rise to O(N t)
walks of weight t by choosing labels for the distinct nodes in any such walk.

The cyclic products of weight `/2 + 1 require a finer analysis. When ` is odd, the expectation
of each such cyclic product is 0. When ` is even, the walk corresponding to such a cyclic product
visits `/2 + 1 nodes and traverses `/2 distinct edges. Hence as the walk is connected, it is a tree.
Moreover, each walk may be rooted by associating the initial node of the walk to the root. As
is well known, there are C`/2 rooted trees on `/2 + 1 nodes, where C` is the `th Catalan number.
We may then label the nodes in the tree in such a way that no two adjacent nodes have the same
congruence class in N `/2+1

(
k−1
k

)`/2
+ o

(
N `/2+1

)
ways. Writing ζI for ai1i2 · · · ai`−1i`ai`i1 , we

have

E
[
ν

(`)
AN

]
=

1

N `/2+1

 ∑
weight I<`/2+1

E [ζI ] +
∑

weight I=`/2+1

E [ζI ] +
∑

weight I>`/2+1

E [ζI ]


=

1

N `/2+1

(
o(N `/2+1) + C`/2

(
N `/2+1

(
k − 1

k

)`/2
+ o

(
N `/2+1

))
+ 0

)

= C`/2

(
k − 1

k

)`/2
+ o(1) (2.3)

Hence

lim
N→∞

E
[
ν

(`)
AN

]
=

{(
R
2

)`
C`/2 if ` is even

0 otherwise,
(2.4)

which are the moments of the semicircle distribution of radius R. �
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3. THE BLIP SPECTRAL MEASURE

To appropriately modify the measure in (1.4), we weight by the polynomial

fn(x) = x2n(x− 2)2n (3.1)

and study the following spectral measure. As discussed in Remark 1.8, the particular choice of
weighting functions is unimportant, provided that they are essentially constant at 1 (dfn

dx
|x=1 = 0)

and vanish to sufficiently high order at 0 to remove the contribution of the bulk.

Definition 1.6. The empirical blip spectral measure associated to an N × N k-checkerboard
matrix A is

µA,N :=
1

k

∑
λ eigenvalue of A

fn(N)

(
kλ

N

)
δ

(
x−

(
λ− N

k

))
(1.10)

where n(N) is a function for which there exists some ε so thatN ε � n(N)� N1−ε; the particular
choice is not important as long as these conditions are satisfied.

The modified spectral measure of Definition 1.6 weights eigenvalues within the blip by almost
exactly 1, due to the scaling, and those in the bulk are weighted by almost exactly zero. We shift
the eigenvalues by subtracting roughly mean of the blip in order to center the blip rather than the
bulk. This does not truly center the blip, but causes the center to remain fixed as N → ∞; we
compute the limiting moments of this measure and center later.

First, we explicitly derive a formula for the expected mth moment of the blip spectral measure
given in (1.10), where the expectation is taken over the N ×N k-checkerboard ensemble.

Lemma 3.1. The expected mth moment of the blip empirical spectral measure, µA,N , is

E[µ
(m)
A,N ] =

1

k

(
k

N

)2n 2n∑
j=0

(
2n

j

)m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
E Tr A2n+i, (3.2)

where both expectations are taken over the N ×N k-checkerboard ensemble.

Proof. We have

E[µ
(m)
A,N ] =

1

k
E

[∑
λ

fn

(
λ

N/k

)(
λ− N

k

)m]

=
1

k
E

[∑
λ

(
kλ

N

)2n 2n∑
j=0

(
2n

j

)
(−1)j

(
k

N

)j (
−N
k

)j m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
λi

]

=
1

k

(
k

N

)2n 2n∑
j=0

(
2n

j

)m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
E

[∑
λ

λ2n+i

]

=
1

k

(
k

N

)2n 2n∑
j=0

(
2n

j

)m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
E Tr A2n+i, (3.3)

where the first equality comes from straightforward algebra by binomial expansion on the term
(kλ/N − 2)2n in the function fn and the term (λ − N/k)m; the last equality comes from the
eigenvalue-trace lemma. �

10



Now, recall that
E Tr Mn =

∑
1≤i1,...,in≤N

E[mi1i2mi2i3 · · ·mini1 ], (3.4)

where as in Section 2 we refer to the terms mi1i2mi2i3 · · ·mini1 as cyclic products and m’s as
entries of cyclic products. By Lemma 3.1, it suffices to understand the cyclic products making
up E Tr A2n+i, which reduces to a combinatorics problem of understanding the contributions of
different cyclic products. We develop the following vocabulary to classify types of cyclic products
according to the aspects of their structure that determine overall contributions.

Definition 3.2. A block is a set of adjacent a’s surrounded by w’s in a cyclic product, where the
last entry of a cyclic product is considered to be adjacent to the first. We refer to a block of length
` as an `-block or sometimes a block of size `.

Example 3.3. A cyclic product of the form awaaawwa has one 2-block (accounting for wrapping)
and one 3-block.

Definition 3.4. A configuration is the set of all cyclic products for which it is specified (a) how
many blocks there are, and of what lengths, and (b) in what order these blocks appear (up to cyclic
permutation). However, it is not specified how many w’s there are between each block.

Example 3.5. The set of all cyclic products of the form w · · ·waaw · · ·waaaw · · ·waw · · ·w,
where each · · · represents a string of w’s and the indices are not yet specified, is a configu-
ration with 3 blocks of lengths 2, 3, 1 in that order. This is not the same as the configuration
w · · ·waaaw · · ·waaw · · ·waw · · ·w, because the ordering of the block sizes is different, but it is
the same as the configuration w · · ·waaaw · · ·waw · · ·waaw · · ·w, which only differs by a cyclic
permutation.

Definition 3.6. Let S be a multiset of natural numbers. An S-class, or class when S is clear from
context, is the set of all configurations for which there exists a unique s-block for every s ∈ S
counting multiplicity. In other words, two configurations in the same class must have the same
blocks but they may be ordered differently and have different numbers of w’s between them.

When we speak of the contribution of a configuration or class to E Tr A2n+i, we assume that
the length of the cyclic product is fixed at 2n + i. Note that the length of the cyclic product is
suppressed in the definitions of configuration and class; this is because n(N) varies with N , and
we wish to consider the contribution of a configuration or class as N →∞.

Definition 3.7. Given a configuration, a matching is an equivalence relation ∼ on the a’s in the
cyclic product which constrains the ways of indexing (see Definition 3.10) the a’s as follows: an
indexing of a’s conforms to a matching∼ if, for any two a’s ai`,i`+1

and ait,it+1 , we have {i`, i`+1} =
{it, it+1} if and only if ai`i`+1

∼ ait,it+1 . We further constrain that each a is matched with at least
one other by any matching ∼.

Remark 3.8. Noting that the aij are drawn from a mean-0 distribution, any matching with an
unmatched a would not contribute in expectation, hence it suffices to only consider those with the
a’s matched at least in pairs.

Example 3.9. Given a configuration ai1i2wi2i3ai3i4wi4i5ai5i6wi6i7ai7i8wi8i1 (the indices are not yet
specified because this is a configuration), if ai1i2 ∼ ai5i6 we must have either i1 = i5 and i2 = i6
or i1 = i6 and i2 = i5.
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Definition 3.10. Given a configuration, matching, and length of the cyclic product, then an index-
ing is a choice of

(1) the (positive) number of w’s between each pair of adjacent blocks (in the cyclic sense), and
(2) the integer indices of each a and w in the cyclic product.

Two comments on these definitions are in order.

Remark 3.11. It is very important to note that the definitions of class, configuration, and matching
do not fix the length of the cyclic product and hence we may consider their contribution as n(N)
grows; however, because the length of the product directly affects the number of indexings, we must
take it into account when summing over them.

Remark 3.12. Note that the choice of indexings is constrained by the configuration as well as the
matching, because entries aij have i 6≡ j (mod k) and wij have i ≡ j (mod k). This is important
later.

With the above vocabulary, we have

E Tr Aη =
∑

S-classes
C

∑
configurations

C∈C

∑
matchings M

∑
indexings

I given M,C ,η

E[Π] (3.5)

where Π is the cyclic product given by the choice of indexing.
We will see later in the proof that for a givenm, the contributions to themth moment of all classes

with fewer than m blocks cancel, and the contributions of all classes with more than m blocks
become insignificant in the limit as N →∞ because they have fewer degrees of freedom. Among
those classes with m blocks, many have fewer degrees of freedom and hence do not contribute in
the limit; the following lemma classifies those which have the greatest possible number of degrees
of freedom.

Example 3.13. Suppose we have the configurationw · · ·wai1i2w · · ·wai3i4ai4i5w · · ·wai6i7w · · ·w,
with i1, . . . , i7 not yet specified. Suppose the first two a’s are matched together and the second two
are matched in a separate pair. Then for each indexing, we may choose i1 and i2 freely subject to
the restriction that they come from different congruence classes modulo k. Because all w’s have
both indices coming from the same congruence class modulo k, we have i3 ≡ i2 (mod k), so we
must have i3 = i2 (rather than i3 = i1, the other alternative allowed by this matching) and hence
i4 = i1 by our matching. i5 may now be chosen arbitrarily, subject to the restriction that i5 6≡ i4
modulo k, and once it is chosen we must have i6 = i5 and i7 = i4 by the same argument as before.
Hence specifying all indices requires only that 3 indices are chosen freely (subject perhaps to a
congruence restraint), so this matching has 3 degrees of freedom.

However, if instead the two 1-blocks were matched together and both a’s in the 2-block were
matched, we could choose i1 and i2 freely (thus specifying i6 and i7), and choose i3 and i4 freely
(thus specifying i5, and of course subject to the constraints i3 ≡ i2 and i5 ≡ i6 (mod k)), so there
are 4 degrees of freedom. The following lemma shows that matching 1- and 2-blocks of this type
actually achieves the greatest possible number of degrees of freedom.

Lemma 3.14. Fix the number of blocks β, and consider all classes with β blocks. Then the classes
among these with the highest number of degrees of freedom are exactly those which contain only
1- or 2-blocks, 1-blocks are matched with exactly one other 1-block, and both a’s in any 2-block
are matched with their adjacent entry and no others.

12



Proof. We refer to the power of N in the contribution of our class as its number of degrees of
freedom; each degree of freedom corresponds to the choice of an index in the cyclic product. For
a fixed configuration, we consider the total number of degrees of freedom lost by the constraints
placed by a matching. Because we have fixed the number of blocks, we may then talk about the
average number of degrees of freedom lost per block. Given a 2-block aijaj`, matching the two a’s
constrains ` = i and hence loses one degree of freedom; if two singletons aij and at` are matched
then {i, j} = {t, `} so two degrees of freedom are lost. Therefore if all blocks have size 1 or 2 and
the matchings are as in the hypotheses, then one degree of freedom per block is lost when averaged
over all blocks, no matter the configuration or length of the cyclic product. Thus classes in which
more than one degree of freedom per block is lost do not contribute in the N → ∞ limit, so it
suffices to show any classes and matchings which are not as specified in the lemma statement lose
more than one degree of freedom per block.

Fix a configuration C with α a’s and a matching ∼. Then ∼ partitions the a’s in C into equiv-
alence classes T1, . . . , Ts. If there were no matching restrictions, only the restriction that the first
index of an a matches the second index of the last one, then the number of degrees of freedom
from choosing the indices of the a’s would be

M =
∑

blocks b

(len(b) + 1) = β + α. (3.6)

Let F be the actual number of degrees of freedom from choosing the indices of the a’s, given
our configuration and matching. Naively, we may choose two indices for each matching class
T1, . . . , Ts, but then there may be restrictions from a’s from different matching classes being adja-
cent that cause a loss of degrees of freedom. Letting c be the number of degrees of freedom lost to
such crossovers, the number of degrees of freedom we have is 2s− c. Then the number of degrees
of freedom lost per block is

M − (2s− c)
β

= 1 +
α + c− 2s

β
. (3.7)

It thus suffices to show that our configuration and matching are of the form specified in the lemma
statement if and only if α + c − 2s = 0, or equivalently α+c

s
= 2, and α+c

s
> 2 for any other

configuration and matching. The forward direction was proven in the beginning of this proof.
For the backward direction, because |Ti| ≥ 2 for all i by the definition of matching, we imme-

diately have α
s
≥ 2. If there is some Ti with |Ti| > 2 then we have α

s
> 2, and if there exist i, j

such that an a from Ti is adjacent to an a from Tj then we have c
s
> 0. Therefore if α+c

s
= 2 then

there is no Ti with |Ti| > 2 or i, j such that an a from Ti is adjacent to an a from Tj , i.e., the a’s
are matched in pairs and no unmatched a’s are adjacent. This proves the lemma. �

We now explicitly compute the contributions of each of these classes.

Proposition 3.15. The total contribution to E Tr Aη of an S-class C with m1 1-blocks and
(|S| −m1) 2-blocks

p(η)

(
|S|
m1

)
(k − 1)|S|−m1Ek Tr Bm1

((
N

k

)η−|S|
+O

((
N

k

)η−|S|−1
))

(3.8)

where

p(η) =
η|S|

|S|!
+O(η|S|−1) (3.9)
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and the expectation Ek Tr Bm1 is taken over the k × k hollow GOE as defined in Definition 1.5.

Proof. Let A = m1 + 2(m − m2) denote the number of a’s in C. Let p(η) be the number of
ways to arrange |S| blocks and (η −A) w’s into a cyclic product of length η, where the blocks are
taken to be indistinguishable. We first compute p(η). We may think of the configurations in C by
bijectively identifying them with the set of (η − (A − |S|))-gons with |S| non-adjacent vertices
labeled by a (these correspond to blocks of any size, not just 1-blocks) and the rest labeled by
w. Each a vertex corresponds to a particular block and each w vertex corresponds to a w in the
configuration; these are on a polygon rather than a straight line because the first and last entry of a
cyclic product are considered adjacent (see Definition 3.2).

We may calculate p(η) by first examining all possible choices of
(
η−(A−|S|)
|S|

)
distinct vertices,

then subtracting off all the cases for which at least one pair of the vertices selected are adjacent.
If one pair is adjacent, then–with no other restrictions placed upon the other vertices–there are
η − (A − |S|) possible locations for the 2-block to be placed. This leaves

(
η−A+|S|−2
|S|−2

)
possible

locations for the remaining labels. As such, the term that must be subtracted off has degree in η
strictly less than |S|. Hence

p(η) =

(
η − (A− |S|)

|S|

)
+O(η|S|−1) =

η|S|

|S|!
+O

(
η|S|−1

)
. (3.10)

Having specified the locations of the blocks, there are
(|S|
m1

)
ways to choose which locations have

a 1-block and which have a 2-block.
By Definition 1.1, we have that for any entry aij , i 6≡ j mod k, and for any entry wij , i ≡ j

mod k. We consider what conditions this places on the indices in a given configuration.

Example 3.16. Consider the configuration

· · · ai1i2wi2i3wi3i4ai4i5ai5i4wi4i6ai6i7 · · · . (3.11)

Then we have
i2 ≡ i3 ≡ i4 ≡ i6 (mod k) (3.12)

and these are not congruent to i1, i5 or i7 mod k.

We thus see that the congruence class of the second index of a 1-block determines the congru-
ence classes of the indices of the string of w’s to its right. Similarly, the leftmost index i of a
matched 2-block aijaji determines the rightmost index. Thus the congruence class modulo k of
the second index of a 1-block propagates through w’s and 2-blocks, and hence determines the con-
gruence class modulo k of the first index of the next 1-block, where ‘next’ is taken in the cyclic
sense for the last 1-block in the cyclic product.

We now claim that the number of ways to choose congruence classes of the indices of the 1-
blocks, such that there exists a consistent choice of indices for the other entries given the constraints
discussed above, is Ek Tr Bm1 . First, note that by the above considerations, the number of ways
to choose congruence classes mod k of the indices of the 1-blocks is equal to the number of ways
to choose indices of the cyclic product bi1i2bi2i3 · · · bim1 i1

with i1, . . . , im1 ∈ {1, . . . , k} under the
restriction ij 6= ij+1 for all j.

However, there are two restrictions on our choices of indices. Firstly given any pair of congru-
ence classes mod k, any contributing cyclic product must have an even number of a’s with both
indices coming from that pair of congruence classes, because the a’s must be matched in pairs by
Lemma 3.14. Secondly, if there are more than two 1-block a’s with indices from the same pair of
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congruence classes, then there is a choice as to how to match them1. Specifically, if there are 2q
a’s with indices from the same pair of congruence classes, then there are (2q − 1)!! ways to match
them into pairs.

This means that if we have q a’s with indices from the same pair of congruence classes, then
there are 0 ways to get a contributing matching if q is odd and (q− 1)!! ways if q is even. But these
are exactly the moments of a Gaussian, so given a configuration, the number of ways to specify the
congruence classes of the 1-blocks and specify a matching which will contribute in the limit is∑

1≤i1,...,ir≤k distinct

E[bi1i2bi2i3 · · · biki1 ] (3.13)

with each bij ∼ N (0, 1) i.i.d. under the restriction that bij = bji and bii = 0 for all i. This is the
k × k hollow GOE as defined in Definition 1.5

Finally, after specifying these congruence classes, the congruence classes of the indices of the
w’s and the outer indices i of pairs aijaji are determined as argued previously. However, there are
still k− 1 possible choices of congruence class for each inner index j in each 2-block, because the
congruence class of the inner index j must be different from that of the outer one, which is already
determined. Therefore there are (k − 1)|S|−m1 ways to choose these congruence classes. After
all congruence classes are determined, there are N/k choices for each index. However, because
there are |S| blocks, by the proof of Lemma 3.14 there are |S| indices which are determined by
another. Therefore the contribution from actually specifying the indices is

(
N
k

)η−|S|. Therefore,
the contribution from choosing the locations of blocks, then locations of 1-blocks, then congruence
classes of indices, and finally the indices themselves is

p(η)

(
|S|
m1

)
(k − 1)|S|−m1Ek Tr Bm1

((
N

k

)η−|S|
+O

((
N

k

)η−|S|−1
))

, (3.14)

where the lower order terms in N come from matchings which were proven in Lemma 3.14 to
yield fewer degrees of freedom in N . �

When computing the mth moment, the following combinatorial lemma allows us to cancel the
contributions of classes with fewer than m blocks.

Lemma 3.17. For any 0 ≤ p < m,
m∑
j=0

(−1)j
(
m

j

)
jp = 0. (3.15)

Furthermore
m∑
j=0

(−1)m−j
(
m

j

)
jm = m!. (3.16)

The proof is a straightforward calculation; see Appendix C.
We are now ready to prove our main result on the moments.

1Recall that we have specified that the indices come from the same congruence class, but we must still specify pairs
of a’s with indices actually equal.
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Theorem 3.18. Denote the centered moments of the empirical blip spectral measure of the N ×N
k-checkerboard ensemble by µ(m)

A,N . Then

lim
N→∞

E[µ
(m)
A,N ] =

1

k
Ek Tr Bm. (3.17)

Proof. Recall that by Lemma 3.1,

E[µ
(m)
A,N ] =

1

k

(
k

N

)2n 2n∑
j=0

(
2n

j

)m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
E Tr A2n+i. (3.18)

We consider which values of |S| allow a class to actually contribute in the limit. For fixed j, by
the formula for the expected mth moment of µ given in (3.2) and Lemma 3.17, the contribution of
an S-class cancels if p(η) has degree less than m + j. Hence by the expression for the degree of
p given in Proposition 3.15, an S-class cancels if |S| < m + j. However, again by Proposition
3.15, the contribution of an S-class to E Tr Aη is O(Nη−|S|), which if |S| > m contributes a
o(1) term to (3.18) after multiplying with the (k/N)2n term. Hence the only contributing S-classes
have m+ j ≤ |S| ≤ m, i.e., |S| = m and j = 0.

Then we may remove the sum over j to yield

E[µ
(m)
A,N ] =

1

k

(
k

N

)2n m∑
i=0

(
m

i

)(
−N
k

)m−i
E Tr A2n+i. (3.19)

By the previous discussion, Lemma 3.14, the terms which contribute to E Tr A2n+i and do not
vanish in the limit arise from classes with m1 1-blocks and (m − m1) 2-blocks. By Proposition
3.15, these are of the form

p(2n+ i)

(
m

m1

)
(k − 1)m−m1Ek Tr Bm1

((
N

k

)(2n+i)−m

+O

((
N

k

)(2n+i)−m−1
))

. (3.20)

Hence the contribution of such a class to E[µ
(m)
A,N ] in the limit is

1

k

(
k

N

)2n m∑
i=0

(
m

i

)(
−N
k

)m−i
p(2n+ i)

(
m

m1

)
(k − 1)m−m1Ek Tr Bm1

(
N

k

)(2n+i)−m

=
1

k

(
m

m1

)
(k − 1)m−m1Ek Tr Bm1

m∑
i=0

(−1)m−i
(
m

i

)
p(2n+ i). (3.21)

By the first part of Lemma 3.17, all terms in p(2n + i) of degree lower than m in i cancel. Since
p is of degree m by Lemma 3.14, only the highest degree term in i contributes, and this term is
equal to im/(m!) by the same lemma. Applying the second part of the Lemma 3.17, we have that
the contribution from our class to the limiting expected mth moment is

1

k

(
m

m1

)
(k − 1)m−m1Ek Tr Bm1

1

m!
m! =

1

k

(
m

m1

)
(k − 1)m−m1Ek Tr Bm1 . (3.22)

Summing the above contributions over m1, we have that

lim
N→∞

E
[
µ

(m)
A,N

]
=

1

k

m∑
m1=0

(
m

m1

)
(k − 1)m−m1 · Ek TrBm1 . (3.23)
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It is natural to compute the centered moments of the distribution. The uncentered mean is

E
[
µ

(1)
A,N

]
= k − 1. (3.24)

It is not trivial from the definition that centering the limiting expected moments of µA,N yields
the limiting expected centered moments of µA,N , but this can be shown straightforwardly from the
definitions so we omit the proof. Now, applying the definition of centered moment to the moments
given in (3.23) and reindexing summations gives us that the limiting expected centered moments
are

µ(m)
c := lim

N→∞
E[

∫
(x− µ(1)

A,N)mdµA,N ]

=
m∑

m1=0

(
m

m1

)
(−(k − 1))m−m1E

[
µ

(m1)
A,N

]
=

m∑
m1=0

[(
m

m1

)
(−1)m−m1(k − 1)m−m1

1

k

m1∑
i=0

(
m1

i

)
(k − 1)m1−i · Ek Tr Bj

]

=
m∑

m1=0

[(
m

m1

)
(−1)m−m1

m1∑
i=0

(
m1

i

)
(k − 1)m−i

1

k
Ek Tr Bi

]

=
m∑
j=0

[(
m

i

)
(k − 1)m−j

1

k
Ek Tr Bi

m∑
m1=i

(
m− j
m1 − i

)
(−1)m−m1

]
. (3.25)

Now consider the inner sum in (3.25), which is equal to
m−j∑
m1=0

(
m− j
m1

)
(−1)m−m1 . (3.26)

In fact, this is exactly equal to (−1)mδmj where δmj is the Kronecker delta function. From this, the
limiting expected centered moments are

µ(m)
c =

(−1)m

k
Ek Tr Bm. (3.27)

Because Ek Tr Bm = 0 for m odd, we remove the (−1)m factor, completing the proof. �

Although the formula given by Theorem 3.18 is implicit, it enables us to compute any mth

centered moment of the limiting empirical blip spectral measure of the N × N k-checkerboard
ensemble by combinatorics on the indices of the corresponding k × k hollow GOE. We illustrate
this with the first few cases.

For ease of notation, we define

Mk,m :=
1

k
Ek Tr Bm. (3.28)

For a fixed value of k, the Mk,m’s are the moments of a spectral measure defined upon the k × k
hollow GOE. Some elementary consequences of this are relevant to our purposes, and we present
these below.

Proposition 3.19. For k = 2, we have that the Mk,m’s are the moments of the standard Gaussian.
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Proof. For k = 2, matrices B in the hollow GOE are of the form

B =

[
0 b
b 0

]
(3.29)

for b ∼ NR(0, 1).
The eigenvalues of B are λ = ±b, and the proposition follows immediately. �

Proposition 3.20. We have Mk,2 = k − 1.

Proof. For B a hollow GOE matrix, we have
1

k
Ek Tr B2 =

1

k

∑
1≤i,j≤k

E[bijbji] =
1

k
(k2 − k) = k − 1 (3.30)

upon noting that E[bijbji] = 1 and bii = 0. �

4. GENERALIZATIONS TO C AND H

We generalize the result of the previous section to complex and quaternion ensembles. Both
cases can be reduced to the arguments of the real case in exactly the same manner, so we show
only the proof of the quaternion case. The ensembles were defined in Definition 1.1; note we are
using î, ĵ and k̂ for the imaginary units to avoid confusion with indices i, j, k.

Analogously, we define the hollow GUE and GSE.

Definition 4.1. The k × k hollow Gaussian unitary ensemble and hollow Gaussian symplectic
ensemble are the ensembles of matrices B = (bij) given by

bij =

{
NC(0, 1) (resp. NH(0, 1)) if i 6= j

0 if i = j
(4.1)

under the restriction bij = bji. We denote the expectation over these ensemble with respect to the
natural product probability measures by EC

k Tr and EH
k Tr .

We define in addition one new combinatorial notation.

Definition 4.2. A congruence configuration is a configuration together with a choice of the con-
gruence class modulo k of every index of a 1-block.

The following generalizes Theorem 3.18 to complex and quaternion ensembles.

Theorem 4.3. Let D = C,H, and let
D
E
[
µ

(m)
AN

]
be the expected mth moments of the empirical blip

spectral measures over the N ×N complex or quaternion k-checkerboard ensemble defined as in
(3.2). Then

lim
N→∞ D

E
[
µ

(m)
AN

]
=

1

k
EDk Tr[Bm]. (4.2)

Proof. We prove the quaternion case, and the complex case follows similarly.
To begin, notice that the first statement in Lemma 3.14 regarding counting the arrangements of

blocks applies to this case exactly as it was stated.
Now, notice that the S-classes for which blocks have size one or two, which were shown to be

the only contributing classes in Lemma 3.14, still have the same number of degrees of freedom in
the quaternion case. It is apparent that a configuration in the quaternion case cannot have more
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degrees of freedom than the analogous configuration given above in the real case. It follows that
configurations which do not contribute in the real case also do not contribute in the quaternion
case.

Note that because the quaternions are not commutative, we must take care in computing the
expectations of the cyclic products. Consider a configuration. Note that thew’s in the configuration
are real. Further, the matched 2-blocks, i.e., aijaji = |aij|2, are also real. Therefore, all the
quarternion-valued 1-blocks in the configuration commute with the w’s and the matched 2-blocks.
Hence, for all cyclic products, we have that the expectation breaks down as

E[Cyclic Product] = E[1-blocks (In the order they appear)] · E[2-blocks and w’s]. (4.3)

By Lemma 3.14 we need only consider matchings where the 1-blocks have different indices
from the 2-blocks. Also, given a choice of the congruence classes of the indices of the 1-blocks,
we may construct a corresponding product of the entries in the k× k hollow GSE given by entries
in the k × k hollow GSE whose indices are those prescribing the congruence class choices on the
indices of the 1-blocks.

Now, suppose that Π1 is a congruence configuration of the k-checkerboard matrix, and suppose
that Π2 is the corresponding product of entries of the k × k hollow GSE. The aij’s that make up
these products are quaternions, and hence they do not necessarily commute under multiplication.
To deal with this issue, we distribute the product and commute the summed terms to make sure that
all the copies of a distinct random variable are placed adjacently in the product. Upon doing this we
can use independence of the random variables to convert the expectation of the product into a prod-
uct of expectations which allows us to compute the expectation using the moments of the Gaussian.

In particular, we let aij =
rij+îxij+ĵyij+k̂zij

2
. Distributing, we get

ai1i2 · · · aini1 =
1

2n

∑
cij

∏
1≤`≤n

ci`i`+1
, (4.4)

where the sum over cij is over all choices of cij ∈ {rij, îxij, ĵyij, k̂zij} for each ij = i`i`+1 and the
indices are taken cyclically. Note that this expansion is the same for a product of 1-blocks in the
k-checkerboard ensemble and a product of entries in the hollow GSE.

Π1 distributes into a product of Gaussian terms times 1, a product of Gaussian terms times î,
a product of Gaussian terms times ĵ, and a product of Gaussian terms times k̂. We denote these
products by ΠRe

1 , Πî
1, Πĵ

1, and Πk̂
1, respectively. Similarly define ΠRe

2 , Πî
2, Πĵ

2, and Πk̂
2. Now,

distribution yields

Π1 =
1

2n

(
ΠRe

1 + Πî
1î+ Πĵ

1ĵ + Πk̂
1k̂
)

(4.5)

on the k-checkerboard side, and

Π2 =
1

2n

(
ΠRe

2 + Πî
2î+ Πĵ

2ĵ + Πk̂
2k̂
)

(4.6)

on the hollow GSE side. Note that the E[Πî
1], E[Πĵ

1], and E[Πk̂
1] terms are all zero, because a

nonreal coefficient can only occur when there is an unpaired 1-block xij, yij or zij . Hence only the
real parts E[ΠRe

1 ] and E[ΠRe
2 ] remain.
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Using (4.5), we have

E

[ ∑
matchings

∑
indexings

Π1

]
= E

[ ∑
matchings

∑
r,x,y or z choices

∑
indexings

Π′Re
1

]
(4.7)

where Π′Re
1 is summed over all matchings, all 4length(Π1)/2 ways to substitute in either r, x, y or z

for each matched pair, and finally all indexings of these products.
Similarly, on the hollow GSE side, we have

E [Π2] = E

[ ∑
r,x,y or z choices

Π′Re
2

]
. (4.8)

where again the sum is over all ways to substitute an r, x, y or z for the entries in Π′2 so that there
are an even number of each. Hence to show equality of the two sides, it suffices to show termwise
equality for each summand of

∑
r,x,y or z choices. Specifically, we must show(

k

N

)m1 ∑
matchings

∑
indexings

E[Π′Re
1 ] = E[Π′Re

2 ]. (4.9)

By the same argument as in the GOE case, when there are, say, 2q x terms in Π′Re
1 , there are

(2q−1)!! ways to choose a matching of them on the LHS, while on the RHS the expectation of the
2q x terms contribute the Gaussian moment (2q − 1)!!. For any product and choice of matchings
there are

(
N
k

)m1 ways to choose indexings, cancelling the
(
k
N

)m1 on the LHS. Therefore (4.9)
holds, completing the proof of the quaternion case.

The complex case may be proven by the exact same technique of distributing out products of
complex Gaussians into products of real Gaussians and arguing as in the real case on these prod-
ucts, proving the theorem. �

Remark 4.4. It is possible to prove the complex case directly by a more complicated version of
the GOE argument, which was the course first taken by the authors before solving the quaternion
case. However, the approach outlined in the proof of Theorem 4.3 is cleaner and more general.

5. ALMOST-SURE CONVERGENCE

The traditional way to show weak convergence of empirical spectral measures to a limiting
spectral measure in probability (resp. almost-surely) is to show that the variance (resp. fourth
moment) of the mth moment, averaged over the N ×N ensemble, is O( 1

N
) (resp. O

(
1
N2

)
). In the

case of the blip spectral measure, we encounter a problem: both assertions are false. Heuristically,
asN grows, the empirical spectral measures ofN×N matrices from most standard ensembles will
all be similar because there is a large and growing number of eigenvalues to average over and so the
behavior of individual eigenvalues is drowned out by the average. However, for a k-checkerboard
matrix there are only k eigenvalues in the blip, so each blip spectral measure is just a collection of k
isolated delta spikes distributed randomly according to the limiting spectral computed in Theorem
3.18. As such, for fixed k the variance and fourth moment over the ensemble of the general mth

moment do not go to 0. We therefore define a modified spectral measure which averages over the
eigenvalues of many matrices in order to extend standard techniques.

In order to facilitate the proof of the main convergence result (Theorem 5.5) we first introduce
some new notation. In all that follows we fix k and suppress k-dependence in our notation for
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simplicity. Let ΩN be the probability space of N × N k-checkerboard matrices with the natural
probability measure. Then we define the product probability space

Ω :=
∏
N∈N

ΩN . (5.1)

By Kolmogorov’s extension theorem, this is equipped with a probability measure which agrees
with the probability measures on ΩN when projected to the N th coordinate. Given {AN}N∈N ∈ Ω,
we denote by AN the N × N matrix given by projection to the N th coordinate. In what follows,
we suppress the subscript N ∈ N on elements of Ω, writing them as {AN}.

Remark 5.1. [KKMSX] employs a similar construction using product space, while [HM] views
elements of Ω as infinite matrices and the projection map Ω → ΩN as simply choosing the upper
left N ×N minor.

Previously we treated the mth moment of an empirical spectral measure µ(m)
A,N as a random vari-

able on ΩN , but we may equivalently treat it as a random variable on Ω. To highlight this, we
define the random variable Xm,N on Ω

Xm,N({AN}) := µ
(m)
AN ,N

. (5.2)

These have centered rth moment

X
(r)
m,N := E[(Xm,N − E[Xm,N ])r]. (5.3)

Per our motivating discussion at the beginning of this section, because we wish to average over
a growing number of matrices of the same size, it is advantageous to work over ΩN; this again is
equipped with a natural probability measure by Kolmogorov’s extension theorem. Its elements are
sequences of sequences of matrices, and we denote them by A = {A(i)}i∈N where A(i) ∈ Ω. We
now give a more abstract definition of the averaged blip spectral measure defined in Definition 1.9.

Definition 5.2. Fix a function g : N → N. The averaged empirical blip spectral measure associ-
ated to A ∈ ΩN is

µN,g,A :=
1

g(N)

g(N)∑
i=1

µ
A

(i)
N ,N

. (5.4)

In other words, we project onto the N th coordinate in each copy of Ω and then average over the
first g(N) of these N ×N matrices.

Remark 5.3. If one wishes to avoid defining an empirical spectral measure which takes eigenval-
ues of multiple matrices, one may use the (rather contrived) construction of a N× N block matrix
with independent N ×N checkerboard matrix blocks.

Analogously to Xm,N , we denote by Ym,N,g the random variable on ΩN defined by the moments
of the averaged empirical blip spectral measure

Ym,N,g(A) := µ
(m)

N,g,A
. (5.5)

The centered rth moment (over ΩN) of this random variable will be denoted by Y (r)
m,N,g.

We now prove almost-sure weak convergence of the averaged blip spectral measures under a
growth assumption on g. Recall the following definition.
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Definition 5.4. A sequence of random measures {µN}N∈N on a probability space Ω converges
weakly almost-surely to a fixed measure µ if, with probability 1 over ΩN, we have

lim
N→∞

∫
fdµN =

∫
fdµ (5.6)

for all f ∈ Cb(R) (continuous and bounded functions).

Theorem 5.5. Let g : N → N be such that there exists an δ > 0 for which g(N) = ω(N δ). Then,
as N → ∞, the averaged empirical spectral measures µN,g,A of the k-checkerboard ensemble
converge weakly almost-surely to the measure with moments Mk,m = 1

k
Ek Tr [Bm], the limiting

expected moments computed in Theorem 3.18.

Proof. For simplicity of notation, we suppress k and denote Mk,m by Mm. By the triangle inequal-
ity, we have

|Ym,N,g −Mm| ≤ |Ym,N,g − E[Ym,N,g]|+ |E[Ym,N,g]−Mm|. (5.7)

From Theorem 3.18, we know that E[Xm,N ]→ Mm, and it follows that E[Ym,N,g]→ Mm. Hence
to show that Ym,N,g →Mm almost surely, it suffices to show that |Ym,N,g − E[Ym,N,g]| → 0 almost
surely as N → ∞. We show that the limit as N → ∞ of all moments over ΩN of any arbitrary
moment of the empirical spectral measure exists, and that we may always choose a sufficiently
high moment2 such that the standard method of Chebyshev’s inequality and the Borel-Cantelli
lemma (Lemma 5.8) gives that |Ym,N,g − E[Ym,N,g]| → 0. Finally, the moment convergence the-
orem (Proposition 5.9) gives almost-sure weak convergence to the limiting averaged blip spectral
measure.

Lemma 5.6. Let Xm,N be as defined in (5.2). Then for any t ∈ N, the rth centered moment of
Xm,N satisfies

X
(r)
m,N = E [(Xm,N − E[Xm,N ])r] = Om,r(1) (5.8)

as N goes to infinity.

Proof. Firstly, we have

E [(Xm,N − E[Xm,N ])r] = E

[
r∑
`=0

(
r

`

)
(Xm,N)` (E[Xm,N ])r−`

]

=
r∑
`=0

(
r

`

)
E
[
(Xm,N)`

]
(E[Xm,N ])r−` . (5.9)

2Note the difference between this and the standard technique of, for instance, [HM], which uses only the fourth
moment.
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By (3.23), we have E[Xm,N ] = Om(1) hence (E[Xm,N ])r−` = Om,r,`(1) for all `. As such, it
suffices to show that E

[
(Xm,N)`

]
= Om,`(1). By (3.2), we have that

E[X`
m,N ] (5.10)

=

(
k

N

)2n`

E

( 2n∑
j=0

(
2n

j

)m+j∑
i=0

(
m+ j

i

)(
−N
k

)m−i
TrA2n+i

)`


=

(
k

N

)2n`

E

[
2n∑
j1=0

· · ·
2n∑
j`=0

[∏̀
u=1

(
2n

ju

)]m+j1∑
i1=0

· · ·
m+j`∑
i`=0

[∏̀
v=1

(
m+ jv
iv

)(
−N
k

)m−iv
TrA2n+iv

]]

=

(
k

N

)2n` 2n∑
j1=0

· · ·
2n∑
j`=0

[∏̀
u=1

(
2n

ju

)]m+j1∑
i1=0

· · ·
m+j`∑
i`=0

[∏̀
v=1

(
m+ jv
iv

)(
−N
k

)m−iv]
E

[∏̀
v=1

TrA2n+iv

]
.

(5.11)

Now, recall that

E

[∏̀
v=1

TrA2n+iv

]
=

∑
α1
1,...,α

1
2n+i1

≤N

· · ·
∑

α`
1,...,α

`
2n+i`

≤N

E

[∏̀
j=1

aαj
1,α

j
2
. . . aαj

2n+ij
,αj

1

]
. (5.12)

We have now reached a combinatorial problem similar to the one we encounter in §3. For each
j, since the length of the cyclic product aαj

1,α
j
2
. . . aαj

2n+ij
,αj

1
is fixed at 2n + ij , we can choose the

number of blocks (determining the class), the location of the blocks (determining the configura-
tion), the matchings and indexings. By Lemma 3.14, we have that the main contribution from
configurations of length (2n + ij) in Bj-class is (2n+ij)Bj

Bj !
. By the same arguments made in §3,

the number of ways we can choose the number of blocks having one a and two a’s as well as the
number of ways to choose matchings across the ` cyclic products are independent of N , j’s and
ij’s, so for simplicity, we are denoting them as C. Finally, the contribution from choosing the
indices of all the blocks and w’s is Ok(N

2n`+i1+···+i`−B1−···−B`). As such, if B1, . . . , B` ≥ m, the
total contribution is Om,k(1). If there exists Bj′ < m, then the overall contribution is

CN `m−B1−···−B`

∏̀
u=1

[
2n∑
ju=0

(
2n

ju

)m+ju∑
iu=0

(
m+ ju
iu

)
(−1)m−iu

(2n+ iu)
Bu

Bu!

]
= 0. (5.13)

since the sum over ju = j′ is equal to 0 by by Lemma 3.17. As such, the total contribution of
E[X`

m,N ] is simply Om,`(1) (suppressing k), as desired. �

We apply the following Theorem (Theorem 1.2 of [Fer]) withX = Xm,N−E [Xm,N ], s = g(N)

and µi = X
(i)
m,N .

Proposition 5.7. Let r ∈ N and letX1, . . . , Xs be i.i.d. copies of some mean-zero random variable
X with absolute moments E[|X|`] <∞ for all ` ∈ N. Then

E

[(
s∑
i=1

Xi

)r]
=

∑
1≤m≤ r

2

Bm,r(µ2, µ3, . . . , µr)

(
s

m

)
(5.14)

where µi are the moments of X and Bm,r is a function independent of s, the details of which are
given in [Fer].
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We must first show boundedness of the absolute moments of Xm,N . For even `, the moments

X
(`)
m,N are equal to the corresponding absolute moments E

[
|Xm,N − E[Xm,N ]|`

]
, hence are finite

by Lemma 5.6. However, for odd ` the absolute moments may be greater than the usual moments
and it requires slightly more work to show they are bounded. We may bound the odd absolute
moments by the even absolute moments, since by Cauchy-Schwarz,(∫

|x2`+1|dµXm,N

)2

≤
∫
|x|2dµXm,N

·
∫
|x|4`dµXm,N

, (5.15)

where µXm,N
is the probability measure on Ω given by the density of Xm,N . Hence, finiteness of

all even moments shows that all odd absolute moments are finite as well. Therefore Proposition
5.7 applies, yielding

E

g(N)∑
i=1

Xm,N,i − E [Xm,N,i]

r =
∑

1≤m≤ r
2

Bm,r(X
(2)
m,N , X

(3)
m,N , . . . , X

(r)
m,N)

(
g(N)

m

)
. (5.16)

where the Xm,N,i are i-indexed i.i.d. copies of Xm,N . By Lemma 5.6, for sufficiently high N ,
X

(t)
m,N are uniformly bounded above by some constant K for 1 ≤ t ≤ m, so there exists C such

that Bm,r(X
(2)
m,N , X

(3)
m,N , . . . , X

(r)
m,N) < C for all sufficiently large N and for all 1 ≤ m ≤ r/2.

Hence

E

g(N)∑
i=1

Xm,N,i − E [Xm,N,i]

r ≤ ∑
1≤m≤ r

2

C

(
g(N)

m

)
. (5.17)

As such, we have

Y
(r)
m,N,g =

1

g(N)r
E

g(N)∑
i=1

Xm,N,i − E [Xm,N,i]

r ≤ ∑
1≤m≤ r

2

C

g(N)r

(
g(N)

m

)
= O

(
1

g(N)r/2

)
.

(5.18)
Since g(N) = ω(N δ), we may choose r sufficiently large so that

Y
(r)
m,N,g = O

(
1

N2

)
. (5.19)

Then by Chebyshev’s inequality,

Pr(|Ym,N,g − E[Ym,N,g]| > ε) ≤ E [(Ym,N,g − E[Ym,N,g])
r]

εr
=

Y
(r)
m,N,g

εr
= O

(
1

N2

)
. (5.20)

We now apply the following.

Lemma 5.8 (Borel-Cantelli). Let Bi be a sequence of events with
∑

i Pr(Bi) <∞. Then

Pr

(
∞⋂
j=1

∞⋃
`=j

B`

)
= 0. (5.21)

Define the events

B
(m,d,g)
N :=

{
A ∈ ΩN : |Ym,N,g(A)− E[Ym,N,g]| ≥

1

d

}
. (5.22)
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Then Pr(B
(m,d,g)
N ) ≤ Cmdr

N2 , so for fixed m, d, the conditions of the Borel-Cantelli lemma (Lemma
5.8) are satisfied. Hence

Pr

(
∞⋂
j=1

∞⋃
`=j

B
(m,d,g)
`

)
= 0. (5.23)

Taking a union of these measure-zero sets over d ∈ N we have

Pr (Ym,N,g 6= E[Ym,N,g] for infinitely many N) = 0, (5.24)

and taking the union over m ∈ Z≥0,

Pr (∃m such that Ym,N,g 6= E[Ym,N,g] for infinitely many N) = 0. (5.25)

Therefore with probability 1 over ΩN, |Ym,N,g−E[Y m,N, g]| → 0 for each m. This, together with
(5.7) and the discussion following it, yields that the moments µ(m)

N,g = Ym,N,g →Mm almost surely.
We now use the following to show almost-sure weak convergence of measures (see for example
[Ta]).

Proposition 5.9 (Moment Convergence Theorem). Let µ be a measure on R with finite moments
µ(m) for all m ∈ Z≥0, and µ1, µ2, . . . a sequence of measures with finite moments µ(m)

n such that
limn→∞ µ

(m)
n = µ(m) for all m ∈ Z≥0. If in addition the moments µ(m) uniquely characterize a

measure, then the sequence µn converges weakly to µ.

Since Proposition 5.9 is usually stated when all measures are assumed to be probability mea-
sures, we include a proof of the version above in Appendix D for completeness. To show that the
moments µ(m) uniquely characterize a measure we use the following classical result.

Proposition 5.10 (Carleman’s condition). Let µ be a measure with all moments µ(m) finite for
m ≥ 0. If ∑

n≥1

(µ(2n))−
1
2n =∞, (5.26)

then µ is the unique measure with moments µ(m).

To show the above is satisfied for the limiting moments Mm, we show that Mm are bounded
above by the moments of the Gaussian, which is known (and can be easily checked) to satisfy
Proposition 5.10. The odd moments M2m+1 vanish, and by Theorem 3.18 the even moments are
given by

M2m =
1

k
Ek Tr A2m =

∑
1≤i1,...,i2m≤k

E[ai1i2ai2i3 . . . ai2mi1 ], (5.27)

and as E[ai1i2ai2i3 . . . aini1 ] is maximized when all ai`i`+1
are equal,

M2m ≤
∑

1≤i1,...,i2m≤k

(2m− 1)!! = k2m(2m− 1)!!. (5.28)

These are the moments of N (0, k) so Proposition 5.10 is satisfied, thus we let µ be the unique
measure determined by the moments Mm. Choose A ∈ ΩN. Then the preceding argument showed
that, with probability 1 over A chosen from ΩN, all moments µ(m)

N,g,A
of the measures µN,g,A con-

verge to Mm. Then by Proposition 5.9 the measures µN,g,A converge weakly to µ with probability
1, completing the proof. �
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APPENDIX A. DETAILS FOR THE BULK

In this appendix we give additional details related to §2. First, we verify that the expected higher
moments of the (k, 1)-checkerboard ensemble do not converge as N → ∞. We then demonstrate
almost sure weak convergence of the bulk eigenvalues to a semicircle.

Proposition A.1. The average moments diverge in the bulk case, namely

E
[
ν

(`)
AN

]
= Ω(N `/2−1). (A.1)

Proof. By the eigenvalue-trace lemma, we have that

E
[
ν

(`)
AN

]
=

1

N `/2+1
E
[
Tr(A`N)

]
=

1

N `/2+1

∑
1≤i1,...,i`≤N

E
[
ai1i2 · · · ai`−1i`ai`i1

]
. (A.2)

Note that the expectation of any term in the sum is non-negative. We now count the number
of terms where each aij = 1. Each such term uniquely corresponds to a choice of i1, ..., i` all
congruent to each other modulo k. Hence the contribution of these terms is Ω(N `), which gives
the result. �

In §2, we established convergence in expectation of the moments. We now show how to extend
this to almost sure weak convergence of the empirical densities. This verification is standard, for
instance, see [Fe]. To do this, we establish the following lemma.

Lemma A.2. Let AN be an N ×N (k, 0)-checkerboard matrix. Then for each fixed `,

Var(ν
(`)
AN

) = O(1/N2). (A.3)

From this lemma, we can obtain almost sure convergence as follows. Firstly, by Chebyshev’s
inequality and the previous lemma,

∞∑
N=1

Pr
(∣∣∣ν(`)

AN
− E

[
ν

(`)
AN

]∣∣∣ > ε
)
≤ 1

ε2

∞∑
N=1

Var(ν
(`)
AN

) <∞. (A.4)

Hence, by Borel-Cantelli (Lemma 5.8), Pr
(

lim supN

∣∣∣ν(`)
AN
− E

[
ν

(`)
AN

]∣∣∣ > ε
)

= 0, so ν(`)
AN
→

limN→∞ E
[
ν

(`)
AN

]
almost surely as N →∞, giving us Theorem 1.4 by the method of moments.

Proof of Lemma A.2. This proof is combinatorics. By the eigenvalue trace lemma∣∣∣∣E [(ν(`)
AN

)2
]
−
[
E(ν

(`)
AN

)
]2
∣∣∣∣ =

1

N `+2

∣∣∣E [tr(A`N)2
]
−
(
E
[
tr(A`N)

])2
∣∣∣

=
1

N `+2

∑
I,I′
|E[ζIζI′ ]− E[ζI]E[ζI′ ]| , (A.5)

where ζI is a stand-in for writing out the product ai1i2 · · · ai`−1i`ai`i1 associated to the sequence
I = i1 . . . i`, where 1 ≤ i1, . . . , i` ≤ N ; hence the sum over pairs (I, I′). Moreover, as in Lemma
2.1, each pair corresponds to a pair of walks on a graph with vertices V(I,I′) = {i1, . . . i`, i′1, . . . i′`}
and with edges that we denote as E(I,I′). We say that two such pairs of walks are equivalent if they
are equivalent up to relabeling the underlying set of nodes. We then define the weight of (I, I′) to
be |V(I,I′)|.
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We claim that the pairs of weight t ≤ ` contribute O(N t) to the sum. Each equivalence class
of weight t gives rise to O(N t) equivalent pairs as we are choosing t distinct nodes for the labels.
Moreover, the contribution of each term is O(1) as the moments of the random entries are finite.

We now consider the entries with weight t ≥ ` + 1. Note that for the expectation of the term
(I, I′) to be nonzero, each edge in E(I,I′) must be traversed twice. In addition, the graphs induced
by I and I′ must share an edge, as otherwise, E[ζIζI′ ] = E[ζI]E[ζI′ ] by independence. Since each
edge is traversed twice there are at most ` unique edges in E(I,I′), which is too few to form a
connected graph on ` + 2 nodes. Therefore, no pair satisfying the two aforementioned conditions
can have weight `+ 2. Furthermore, in the case of weight `+ 1, there is no such pair either. In this
case there are ` + 1 nodes and at most ` unique edges in E(I,I′). Hence as the graph is connected
it is a tree. As the walk induced by I in this graph begins and ends at i1, each edge in the walk is
traversed twice: once in each direction. An identical statement holds for the walk induced by I′.
Hence as there are exactly two of each edge in E(I,I′) the walks induced by I and I′ are disjoint, a
contradiction. Hence, no pairs of weight greater than ` contribute to the sum, which, together with
(A.5), gives us Lemma A.2. �

Remark A.3. We note that the previous lemma also establishes that Var(Tr(A`N)) = O(N `).

APPENDIX B. PROOF OF TWO REGIMES

This appendix is based on work done by Manuel Fernandez (manuelf@andrew.cmu.edu) and Nicholas Sieger
(nsieger@andrew.cmu.edu) at Carnegie Mellon under the supervision of the fifth named author, expanded
by the third, seventh and eighth named authors.

In this appendix we demonstrate that checkerboard matrices almost surely have two regimes
of eigenvalues, one that is O(N1/2+ε) (the bulk) and the other of order N (the blip). To do this,
we rely on matrix perturbation theory. In particular, we view a (k, w)-checkerboard matrix as the
sum of a (k, 0)-checkerboard matrix and a fixed matrix Z where Zij = wχ{i ≡ j mod k}. In that
sense, we view the (k, w)-checkerboard matrix as a perturbation of the matrix Z. Then, as the
spectral radius of the (k, 0)-checkerboard matrix is O(N1/2+ε), we obtain by standard results in
the theory of matrix perturbations that the spectrum of the (k, w)-checkerboard matrix is the same
as that of matrix Z up to an order N1/2+ε perturbation.

We begin with the following observation on the spectrum of the matrix Z:

Lemma B.1. The matrix Z has exactly k non-zero eigenvalues, all of which are equal to Nw/k.

Proof. For 1 ≤ j ≤ k the vectors
∑(N−1)/k

i=0 eki+j are eigenvectors with eigenvalues Nw/k. Fur-
thermore, for 1 ≤ i ≤ N and 1 ≤ j < k the vector eki+j − eki+j+1 are eigenvectors with
eigenvalues equal to 0. �

Weyl’s inequality gives the following:

Lemma B.2. (Weyl’s inequality) [HJ] Let H,P be N ×N Hermitian matrices, and let the eigen-
values of H , P , and H + P be arranged in increasing order. Then for every pair of integers such
that 1 ≤ j, k ≤ n and j + k ≥ n+ 1 we have

λj+k−n(H + P ) ≤ λj(H) + λk(P ), (B.1)

and for every pair of integers j, k such that 1 ≤ j, k ≤ n and j + k ≤ n+ 1 we have

λj(H) + λk(P ) ≤ λj+k−1(H + P ). (B.2)
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Let ‖P‖op denote maxi |λi(P )|. By using the fact that |λk(P )| ≤ ‖P‖op and taking k = n in
(B.2), we obtain that λj(H + P ) ≤ λj(H) + ‖P‖op. Taking k = 1 in (B.2) gives the inequality on
the other side, hence |λj(H + P )− λj(H)| ≤ ‖P‖op.

The above lemma gives that if the spectral radius of P is O(f) then the size of the perturbations
will be O(f) as well. Hence it suffices to demonstrate that almost surely the spectral radius of a
sequence of (k, 0)-checkerboard matrices is O(N1/2+ε).

Let AN be a (k, 0)-checkerboard matrix. By the remark A.3 we have that Var(Tr(A2m
N )) =

O(N2m) and by the proof of 2.1 we get E [Tr(A2m
N )] = O(Nm+1).

Lemma B.3. Let m ∈ Z+ and let {AN}N∈N be a sequence of (k, 0)-checkerboard matrices, then
almost surely, as N →∞, ‖AN‖op = O(N1/2+1/(2m)).

Proof. To begin note that by the eigenvalue trace lemma ‖AN‖op ≤ Tr(A2m
N )1/2m. Hence it suffices

to give the analogous result for Tr(A2m
N ). Let XN = Tr(A2m

N )/Nm+1. Then E [XN ] = O(1)
because E[Tr(A2m

N )] = O(Nm+1). Similarly, Var(XN) = O(1/N2) because Var(Tr(A2m
N )) =

O(N2m). So, by an application of Chebyshev’s inequality and Borel-Cantelli (Lemma 5.8) similar
to (A.4), we find that XN = O(1) almost surely. Hence Tr(A2m

N ) = O(Nm+1) almost surely.
Taking roots then gives that Tr(A2m

N ) = O(N1/2+1/(2m)) almost surely. �

Since Lemma B.3 holds for all m ∈ Z+, we have that almost surely ‖AN‖op is O(N1/2+ε).
Together with Lemma B.1 and Lemma B.2, we obtain

Theorem 1.2. Let {AN}N∈N be a sequence of (k, w)-checkerboard matrices. Then almost surely
as N →∞ the eigenvalues of AN fall into two regimes: N − k of the eigenvalues are O(N1/2+ε)
and k eigenvalues are of magnitude Nw/k +O(N1/2+ε).

APPENDIX C. PROOF OF LEMMA 3.17

In §3, we introduced Lemma 3.17 without proof. Here we provide a short proof of it.

Proof. Consider the function

f0(x) = (1− x)m =
m∑
j=0

(−1)j
(
m

j

)
xj. (C.1)

We inductively define, for each 0 ≤ p < m− 1, the function fp+1(x) = xf ′p(x). One can prove by
straightforward induction that

fp(x) =

p∑
i=1

ci,px
i(1− x)m−i, (C.2)

for each 0 ≤ p < m, with ci,p ∈ R, by using the product rule. Therefore, for each 0 ≤ p < m

0 = fp(1) =
m∑
j=0

(−1)j
(
m

j

)
jp. (C.3)

By the same reasoning,
m∑
j=0

(−1)j
(
m

j

)
jm = fm(1) = (−1)mm! (C.4)

and the second claim follows. �
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APPENDIX D. MOMENT CONVERGENCE THEOREM

The following argument is standard (though usually assumes all measures concerned are proba-
bility measures), and is given for completeness.

Definition D.1. A sequence of measures (µn)n≥1 on R is uniformly tight if, for every ε > 0, there
is a compact set K such that supn≥1 µn(R \K) <∞.

We are now ready to prove the moment convergence theorem for general finite measures, largely
following the treatment of [Cha].

Proof of Proposition 5.9. By convergence of moments, we have that

Ck := sup
n≥1

∫
R
xkdµn (D.1)

is bounded. For any R > 0 we then have by Chebyshev’s inequality that

µn(R \ [−R,R]) ≤
∫
R x

2dµn

R2
≤ C2

R2
. (D.2)

Given any ε > 0, letR be such that C2/R
2 < ε. Then,K = [−R,R] is compact and supn≥1 µn(R\

K) < ε by equation D.2. Therefore the µn are uniformly tight. Hence by Prokhorov’s theorem
for general measures (see [Bog], Theorem 8.6.2), every subsequence of (µn)n≥1 contains a weakly
convergent subsequence which converges to some measure ν.

For any subsequence (µn`
)`≥1 converging weakly to some measure ν, we show that ν = µ. Fix

some k ∈ Z≥0 and R ∈ R>0. Let ϕR be a continuous function such that

1[−R,R] ≤ ϕR ≤ 1[−R−1,R+1]. (D.3)

We may split the integral as∫
xkdµn`

=

∫
xkϕRdµn`

+

∫
xk(1− ϕR)dµn`

. (D.4)

By the Cauchy-Schwarz inequality,∣∣∣∣∫ xk(1− ϕR)dµn`

∣∣∣∣2 ≤ ∫ x2kdµn`
·
∫

(1−ϕR)2dµn`
≤
∫
x2kdµn`

·µn`
(R \ [−R,R]), (D.5)

and by our moment bounds and the definition of ϕR, this is ≤ C2·C2k

R2 . Therefore, we have

lim
R→∞

∫
xkϕRdµn`

=

∫
xkdµn`

. (D.6)

By the moment convergence assumption

lim
`→∞

∫
xkdµn`

=

∫
xkdµ (D.7)

and by weak convergence,

lim
`→∞

∫
xkϕRdµn`

=

∫
xkϕRdν. (D.8)

We must now show

lim
`→∞

lim
R→∞

∫
xkϕRdµn`

= lim
R→∞

lim
`→∞

∫
xkϕRdµn`

. (D.9)
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For this, it suffices to show that
∫
xkϕRdµn`

converges uniformly with respect to R as `→∞. In
the following argument, we assume k is even so that xk is nonnegative, but this may be modified
easily for k odd. By the same argument for uniform tightness as in Equation (D.2), there exists C
such that for all ` (and when replacing µn`

by ν),∫
R\[−K,K]

xkϕRdµn`
≤
∫
R\[−K,K]

xkdµn`
≤ C

K2
. (D.10)

Hence for any ε > 0, there exists some K such that∫
R\[−K,K]

xkϕRdµn`
< ε/3 (D.11)

unconditionally on `. By weak convergence, for any fixed R, there also exists an NR so that∣∣∣∣∫ xkϕRdµn`
−
∫
xkϕRdν

∣∣∣∣ < ε/3 (D.12)

for all ` > NR. Therefore, letting N = supR∈N
R≤K

NR, we have that for ` > N and any R,∣∣∣∣∫ xkϕRdµn`
−
∫
xkϕRdν

∣∣∣∣
≤
∣∣∣∣∫

[−K,K]

xkϕRdµn`
−
∫

[−K,K]

xkϕRdν

∣∣∣∣+

∣∣∣∣∫
R\[−K,K]

xkϕRdµn`

∣∣∣∣+

∣∣∣∣∫
R\[−K,K]

xkϕRdν

∣∣∣∣
<

∣∣∣∣∫
R
xkϕ(K−1)dµn`

−
∫
R
xkϕ(K−1)dν

∣∣∣∣+
2

3
ε

< ε (D.13)

Thus we have uniform convergence, so the limits may be switched. Putting all this together,

lim
R→∞

∫
xkϕRdν = lim

R→∞
lim
`→∞

∫
xkϕRdµn`

= lim
`→∞

lim
R→∞

∫
xkϕRdµn`

= lim
`→∞

∫
xkdµn`

=

∫
xkdµ (D.14)

with the last equality following by the moment convergence hypothesis. We have ϕRx
2k ≤

ϕR+1x
2k and both are nonnegative, so by the monotone convergence theorem∫

x2kdµ = lim
R→∞

∫
ϕRx

2kdν =

∫
x2kdν. (D.15)

Hence xk ∈ L2(ν), so xk ∈ L1(ν). Since ϕRxk ≤ xk, by the dominated convergence theorem∫
xkdµ = lim

R→∞

∫
ϕRx

kdν =

∫
xkdν. (D.16)
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Since µ is uniquely characterized by its moments, ν = µ. Since every subsequence of (µn)n≥1

has a subsequence weakly converging to µ, standard arguments give that µn converges weakly to
µ. �
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