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ABSTRACT. McKay proved the limiting spectral measures of the ensembfd-regular graphs
with N vertices converge to Kesten’s measuréVas+» co. Given a largeil-regular graph we assign
random weights, drawn from some distributigi, to its edges. We study the relationship between
W and the associated limiting spectral distribution obtdibg averaging over the weighted graphs.
We establish the existence of a unique ‘eigendistribut{anweight distributionV such that the
associated limiting spectral distribution is a rescalif@d). Initial investigations suggested that the
eigendistribution was the semi-circle distribution, whizy Wigner’'s Law is the limiting spectral
measure for real symmetric matrices. We prove this is not#se, though the deviation between
the eigendistribution and the semi-circular density islsiitlze first seven moments agree, and the
difference in each higher momenti¥1/d?)). Our analysis uses combinatorial results about closed
acyclic walks in large trees, which may be of independemtrast.

1. INTRODUCTION

The eigenvalues of adjacency matrices associated to gemglosle a wealth of information, and
are thus a natural and important object to study and unaetsté/e consideri-regular graphs
below. Thusd is always an eigenvalue of the adjacency matrix, and is tlgeesa eigenvalue in
absolute value. The simplest application of the eigeniluito determine if a graph is connected,
which happens if and only if is a simple eigenvalue. Our next application depends onithe d
ference between the second largest (in absolute value)wlye andi; this is called the spectral
gap. A large spectral gap implies many desirable properti&asch graphs are well-connected,
meaning the graph has very few edges but all vertices aretaldemmunicate with each other
very quickly. These graphs arise in communication netwbdoty, allowing the construction of
superconcentrators and non-blocking netwarks [Eien,ifPidpding theory[[SS] and in cryptogra-
phy [GILVZ]. Alon [Al] conjectured that asV — oo, for d > 3 and anye > 0, “most” d-regular
graphs onV vertices have their second largest (in absolute valueheaee at mos2v/d — 1 +¢;
it is known that the2\/d — 1 cannot be improved upon. Friedman [Fr1,IFr2,]Fr3] proves, thi
though the finer behavior around this critical thresholdils@pen (see[[MNS$] for numerics and
conjectures). For some basics of graph theory and conistingabf families of expanders (graphs
with a large spectral gap and thus good connectivity prigrtsee [DSV, LPS, Mar, Sarl, Sar2].

After investigating the largest two eigenvalues and theirsequences, it is natural to study the
rest of the spectrum. Thirty years ago, McKay [McK] inveatigd the distribution of eigenvalues
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of large, randona-regular graphsye always assume our graphs do not contain any self-loops or
multiple edges. When the number of cycles is small relative to the size ofjtla@h (which is true
for mostd-regular graphs as the number of vertices grows), he prdweeéxistence of a limiting
spectral distribution; depending only o, and gave an explicit formula fey;. Recent work([DP,
proves that if we renormalize; so that its associated density function has supjpert1],
then the sequence of renormalized measures converges telgigemicircle measure so long as
d — oo with the number of vertices. We explore the more complicai@gation for randomly
weighted regular graphs (seée [KSV] for a related problengnetihe graphs are not regular). We
weigh the graphs by attaching weights to each edge. Thenesistansive literature on properties of
weighted graphs (where we may weight either the edges or#pdg in the family) and weighted
ensembles; seé [ALHM, AL, BLMST, BM, Bo1, Bo2, ES, (Ga, M¢D1cBP, [Po/ Sb, Ven] and
the references therein for some results and applications.

More precisely, suppos#’ is a random variable with finite moments Brand density,,,, and
G € Ry, the set of simplel-regular graphs oV vertices with no self-loops. We weigh each
edge by independent identically distributed random védemlfiidrv’s) drawn from)V. In other
words, we replace all nonzero entries in the adjacency ratri- by iidrv’'s drawn from)V; this
is the same as taking the Hadamard product of a real symnwetight matrix with the graph’s
adjacency matrix. Denote the spectrum of the weighted géaply {\; < X2 < -+ < Ay}, and
consider the uniform measutg ,y on this spectrum:

va(A) = S #{T<N ) = A}, (L1)

As indicated by the subscripts, this measure depend§ 6h and)V. We are interested in the
limiting behavior, so rather than focusing on any particgi@phG we take a sequence of graphs
of increasing size. We first set some notation.

e Ry 4. The set of simple-regular graphs oV vertices without self-loops.

o |G, aij, neyi(k; G): |G| is the number of vertices,; = 1 if vertices: and;j are connected
by an edge and 0 otherwise, ang, (k; G) is the number of cycles of length

e ¢,,: We setc,, to be them™ moment of the semi-circle distribution, normalized to have
variance 1/4¢y,.1 = 0 andey, = m (%) (with &5 (%) thek™ Catalan number).

o 1x(k), px, X: For X a random variable whose density has finite momentsk) is its £
moment and, is the density associated £6. Finally, x is an N(N + 1)/2 vector (or,
equivalently, anV x N real symmetric matrix) of independent random variablgsirawn
from X. We typically takeX to be our weight random variablé.

o Gu, aw(k; G), naw(k): For afixedd, weight distributionV and grapl, G,, denotes the
graph obtained by weighting the edgesoby w, 1.4 (k; G) is the average (over weights
drawn fromW) k™ moment of the associated spectral meastigg,, while 1141y (k) is the
average Ofiqy (k; G) overG € Ry 4.

The following result is the starting point of our investigais. The unweighted case is due to
McKay [McK]; the existence proof in the general case prosesailarly.

Theorem 1.1. For any sequence af-regular graphs{G;} with |G;| — oo and n.u(k; G;) =

o(|G;|) for everyk > 3, the limiting distributionv,y (z) := lim, , v4¢, w(z) exists and depends

only ond andW. In the unweighted case (i.e., each weight is 1) the dersigywen by Kesten’s
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FIGURE 1. Evidence ‘supporting’ the semi-circular conjecture:0 regular
200 x 200 matrices. (Left) Unweighted eigenvalue density vs Kestenéasure.
(Right) Semi-circular weights vs the semi-circular distition.

measure:

) = {ﬁ =D =, |o] <2/a=T -

0 otherwise.
Note that asl — oo, Kesten's measure tends to the semi-circle distribution.

The difficulty is deriving good, closed-form expressionsewtithe weights are non-trivial. To
this end, we study the one-parameter family of maps

Td W — Va,w (13)

(see Theorerh 1.1 for a definition of,y). To understand the behavior ©f, we investigate its
eigendistributions, a concept we now explain. Recall thgtraeasure can be rescaled by a real
A > 0 to form a new measurg™ by setting

vN(A) == v(AA)  (forall A CR). (1.4)

If a distribution)V satisfies

W =wW (1.5)
for someX > 0, we say)V is an eigendistribution of; with eigenvalue\. We prove in EB that
for eachd the map7, has a unique eigendistribution, up to rescaling; this eris¢ proof is a
straightforward application of standard techniques.

Thus the natural question is to determine the eigendigtabdor eachl. Explicit formulas exist
for the moments, but quickly become very involved. Bruteéocomputations show that the first
seven moments of the eigendistribution agree with the mésnana semi-circular distribution,
suggesting that the semi-circle is the answer. If true thguite interesting, as the semi-circle is
the limiting spectral measure for real symmetric matria®gfer’s law); moreover, a¢ — oo the
limiting spectral measure of the unweighted ensemblé gular graphs converges to the semi-
circle. In fact, the motivation for this research was thédwing question: What weights must be
introduced so that the weighted ensemble has the semeé@isalts density?

While a determination of the first few moments and numerinaéstigations (see Figufke 1)
seemed to support the semi-circle as the eigendistributios conjecture is false, though the

two distributions are close and agreedas> oo. For another ensemble where numerical data and
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heuristic arguments suggested a specific limiting specteasure which was close to but not equal
to the answer, see the work on real symmetric Toeplitz megfiEDJ/ HM].

To state our results precisely, we switch to the language amhents. In B2 we define our
notation, which relates the moments)af and7,,)V in terms ofclosed acyclic path patterns
combinatorial notion we develop i &2.1. From this we dedusemain result.

Theorem 1.2. There is a unique eigendistribution @f which has second moment equalltat,
which we denot&V,. Letuyy, (k) denote the:' moment o#V,. Then for all non-negative integer
k we haveuyy,(2k +1) =0and

i, (2k) = ¢ + O (1/d%), (1.6)

wherec,, is them™ moment of the semi-circle distribution normalized to haeeosid moment
1/4. We haveuy,(2) = 1/4, pw,(4) = 1/8, uw,(6) = 5/64 (all agreeing with the normalized
semi-circular density), but instead of 7/128 (the eight reotof the semi-circle) we find
7o

128 128(d?+d+1)

o, (8) = (1.7)

The eighth moment shows our error term is optimal. The faat the error decays like/d?,
and notl/d, is the consequence of a beautiful combinatorial alignriee® Lemma 26).

We concentrate on deriving results about the eigendigtobi),; and not on the convergence
of the individual weighted spectral measures to the averag¢he techniques from [M¢K] and
standard arguments (see for example [Bai[BI,/HM, Ta]) seffac prove such convergence. We
only quoted part of Theorem 1.1 6f [M¢K]; the rest of it refewsonvergence of the corresponding
cumulative distribution functions for graphs satisfyimg two conditions in the theorem, and his
argument applies with trivial modifications in our setting.

One could also investigate the distribution of gaps betwadjacent, normalized eigenvalues.
This was studied in_[JMRR] fod-regular graphs. Their numerics support a GOE spacing law,
which also governs the behavior for the ensemble of real sstmermatrices, but we are far from
having a proof in this setting. The distribution of gaps ngicantly harder than the density of
eigenvalues, and it was only recently (See [ERSY, ESY, TWR2[J where these spacing measures
were determined for non-Gaussian random matrix ensemblese is now a large body of work
on the density of eigenvalues and the gaps between themfferetiit structured random matrix
ensembles; seé [EM, Fo, Meh] for a partial history and theeg@rtheory, and [BLMSIT, BCG,
BHS1,BHS2 HM[ KKMSX] and their references for some resahtsstructured ensembles.

2. COMBINATORIAL PRELIMINARIES

Below we expand upon the ideas in the introduction, and deveteded combinatorial notions.
In particular, we introduce closed acyclic path patterrsctv play a crucial role in our work.

We begin by formalizing the notion of a randomly weightedpira Suppose as before that
G € Rngq has adjacency matrid = (aij), and let)V be a random variable whose probability
density has finite moments. Let = {wij 1<i<j< N} denote a set of independent random
variables drawn from¥V, and form anV x N matrix A, = (bij), where

" Wi otherwise. '
4



Observe that\,, is a real symmetric matrix, and thigt, = 0 for all n. We may therefore interpret
A, as the adjacency matrix of a weighted gra@h whose edges are weighted by the random
variablesw; equivalently,GG,, is the Hadamard product of our weight matrix afits adjacency
matrix. We also note that at mogdV of the entries),; are nonzero.

We are interested in the relationship between the distabd’ and the corresponding spectral
distribution. Denote the eigenvalues &f, by \; < Ay < --- < Ay, and lety, ¢, be the uniform
measure on this spectrum, as[in{1.1); its density is thus

dvga, (z Z 6z — (2.2)

whered(u) is the Dirac delta functionEI.WhiIe we do not need the subscripasG,, implicitly
encodes the degree of regularitywe prefer to be explicit and highlight the role of this imzot
parameter. By definition and the eigenvalue trace formhks;'t momenty,, . (k) is

Fvg 6, (K) = / vy g, (v Z/\’“ = —Tr (Ab); (2.3)

we write u,, . (k) to emphasize that s fixed and we are studying a specific weighted gragh
The following approach is standard and allows us to connéotination on the matrix elements
of A,, (which we know) to information on the eigenvalues (which vesice). We have

Z Z Z blll2 i3 " " zkzl (24)

i1=112=1 =1

Thus we see that thé" moment of the spectral distribution associated'{pis the average weight
of a closed walk of lengtlt in G (where by the weight of a walk we mean the product of the
weights of all edges traversed, counted with multiplicity)

Since we are interested in the dependence on the distnibUtionot on the specific values of
the N(N + 1)/2 random variable® = (w;;)1<; j<n, We average ovex drawn fromV'’s density
py to obtain the ‘typical’k™ momentu,y (k; G) of the weighted spectral distributions:

taw(k; G) 3:/ Fug,c ( dW—/ / &) T pw(wy)dws;,  (2.5)
- 1<i<j<N

wherep,y, is the density function corresponding to distributidh
To build intuition for the later calculations, we calculdive first and second moments.

Lemma 2.1.Fix d, G € RyqandW. We haveu,(1; G) = 0 andpgw(2; G) = duw(2), where
pw (k) is thek™ moment obV. Thusyig (1) = 0 and pgw(2) = duw(2).

Proof. Sinceb,,,, = 0 for all n, we see that
o0 o0 o 1
,ud,w(l;G) = / / :ul/d,cw(l)dw = / / ann H Pw 'LUZJ d’wzj =
- - 1<i<j<N
(2.6)

Iwe write d for the degree of regularity, antifor differentials.
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For the second moment, we u&eis d-regular,b;; = a;;w;;, andb,,, = 0 andb;; = b;;. The
number of non-zera,;; is dN/2 (each vertex had edges emanating from it, and each edge is
doubly counted), and recalh, (2) denotes the second moment of the weight distributdanThus

o 2
taw(2;G) = / / Fug,c ( dW—/ / > bpwl(wiy)dw

1<2<3<N
- Z / ijW wij)dwg; = N Z pw(2)
1<z<]<N 1§Z§]:§1N
2 dN
= = —w(2) = duy(2). 2.7
~ g w(2) = duu(2) (2.7)

O

The first two moments are independentgfhowever, this is not the case for higher moments
(for example, in the third moment we have the possibility ¢d@p). For these higher moments,
we need to perform an averaging overs well, and study

Haw (k) = |RNd| Z Haw(k; G). (2.8)
GeERN

While we can compute any; v (k), the calculatlons quickly become very involved, and intica
the need for a unified approach if we desire a tractable cltmed expression. For example, the
average (over weights drawn from a fixed andG € Ry 4) for the next two even moments are

paw(4) = dpw(4) +2d(d — 1)pw(2)°
paw(6) = dpw(6) +6d(d — 1)pw(4)pw(2) + [3d(d — 1)* + 2d(d — 1)(d — 2)]uw(2)°,
(2.9)

where as always,y (k) denotes thé'™ moment of the weight distribution (the odd moments
are easily shown to vanish). We prove these formulas in Leidha

Recall that our goal is to find a distributiof so thatZ;,)V = W®™ for some), normalized to
have second moment equal to 1/4 (the second moment of thecaele). Our second moment
calculation in Lemm&2]1 suggests that= v/d. If the semi-circle is a fixed eigendistribution,
then we must have, v (4) = d?/8 and g (6) = 5d%/64. From [2.9), we see that if we choose
W so that the fourth moment is 1/8 then we do ggty(4) = d?/8, and if the sixth moment ofV
is also5/64 thenyy(6) = 5d/64. These results suggest that we can inductively show that the
semi-circle is a fixed eigendistribution, but a more invahalculation (see Lemnia 2.4) shows
this breaks down at the eighth moment:

paw(8) = dpw(8) +8d(d — 1)uw(6)w(2) + 6d(d — 1)pw(4)?
+16d(d — 1) w(4) pw(2)? +12d(d — 1)(d — 2)pw (4) o (2)?
+4d(d — 1)°pw(2)* + 8d(d — 1)*(d — 2)pw(2)*

+2d(d — 1)(d — 2)(d — 3)uw(2)™. (2.10)

If W is an eigendistribution of; with A = \/d thenyiy,y(8) must equali* 11,y (8), which implies
7 1

pw(8) = (2.11)

28 T IR@+d+ )
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This is almost, but not quite, 7/128, the eighth moment ofrttvenalized semi-circle.

To unify the derivation of[(2]9) and (2.110), as well as thehleigmoments, we introduce some
notation. This allows us to give a compact, tractable cldseah expression for these moments,
and helps us prove that there is a unique eigendistribugiod etermine its moments).

2.1. Closed acyclic path patterns.From [2.3) and[{214), it is clear that moments of the spectral
distribution are closely related to the set of closed watk&'i Moreover, we shall demonstrate
below that it suffices to restrict our attention to walks @nitng no cycles, as all the walks with at
least one closed cycle contribute a negligible amourit #) (2Ve now introduce a combinatorial
object which will keep track of all closed walks on a largeetre

Definition 2.2. A closed acyclic path pattefcAPP) is a string of symbols such that

(1) every symbol which appears at all appears an even numbemesttiand
(2) in the substring of symbols between any two consecutivanioss of the same symbol,
every symbol which appears at all appears an even numbemesti

We call twocAPPs equivalentf they differ only by a relabeling of the symbols. The followg
is theraison d’étrefor our definition.

Lemma 2.3(Classification of closed walks)'he closed acyclic path patterns classify the closed
walks beginning at a given vertex in a large tree.

Proof. There is a natural map from the set of paths (closed or not)large tree to the set of
sequences, where we treat the edges as symbols and just theoedges used in order. It is
evident that this map is “injective” (the relevant equivale relations on paths and sequences
coincide). There are two issues. We must show

(1) every closed path corresponds to a sequence whichA®g and
(2) everycAPPis realizable as the edge sequence of some path.

These are not hard to see. Removing any edge from a tree dsttsrihe tree into two connected
components, so we can ask if two vertices are on the “samé giden edge or on “opposite
sides”. Furthermore two vertices are on the same sidevefyedge if and only if they are the
same vertex. If we follow a path in a tree, then the start antpaints are on the same side of an
edge if and only if we traverse that edge an even number oftilBg a straightforward induction
on the length of the path/sequence, a sequence corresmoaaiattual path in a tree if and only if
the second condition in the definition ofapPpr holds. Likewise, a path is closed if and only if the
corresponding sequence satisfies the first condition ingfirition of acapPp holds. O

We can now define the terms that will appear in Lenimé 2.4, msed form expression for the
momentsug (k). Given aCAPP T, letey, es, €3, . . ., e, denote all the distinct symbols appearing
in 7, in order of appearance. Equivalently, hh@&enote the edges composing the walk represented
by 7, ordered by first traversal. We need the following definision

e We denote the set of (equivalence classesafprs of lengthk by P,. Note P, is empty
for k odd. Forr € P,,, we define theliagram of 7 to be the minimal ordered, rooted tree
which is traversed by the path described by the pattern, @dtfes repeated according to
how often the edge is traversed in each direction.

e Themultiplicity of acAPP ism,(d), wherem, is the polynomial

mq(z) = H(x — o), (2.12)
j=1
7
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FIGURE 2. Arealization of a particulatApPPin ad-regular graph withl = 4; this
illustrates the multiplicity formula as an instance of stard counting principles.

wherea; := #{i < j : ¢; is adjacent te; }; we call a; the multiplicity of edgee;. Note
that(d — «;)/d is the proportion of edges emanating from veriakat are not yet used in
7w when vertex; is first visited. This is used in calculating contributionghhe moments, as
d — «a; represents the number of possibilities available in chap#ie next distinct edge.
We measure adjacency by looking at the edges on therto¢by the ordering of the edges
in our symbol. Thus ifr = abceebddbeeba the multiplicity of a is 0, that ofb and ofc is 1,
and that ofd and ofe is 2. Figurd 2 illustrates (in the case of a 4-regular grajhy the
number of choices at each stage depends on the shape of ireofat.
Thesignature of r is
o(m) == (ny,ng,...,n.), (2.13)

wheren; denotes the number of times the symbappears inr. Thus each; is a positive
integer. Ifr € Py, then the sum of the entries of its signaturé.is

o 73,52) is the set of alcAPPs in P, with signature(2,2,. .., 2).

o P,£4) is the set of alcapps in P, with signature(4, 2, ..., 2).

o: Pg is the set of alcaPps in P, excluding the pattern with signatugg).

e Given a signature(r) = (ny,ns, ..., n,) and a random variable’, themoment contri-
bution associated tor with respect toW is

pw(o(m)) = pw(ni)pw(ng) - - pw(n,). (2.14)

We can now give a complete description of the moments of théitig spectral distribution
(averaging over weights drawn from a fixgd and averaging ove¥ € Ry 4 with N — o). Our
answer is in terms of the moments of the weight distributiBrand some combinatorial data.

Lemma 2.4(Moment Expansion)Fix a weight/V and a degree of regularity. Let (k) be the
k" moment obV, 14,y (k) the average ove: € Ry, and over weightsv;; drawn fromW of the
k™ moments of the measuresg,,, and Py the collection of allcapps of lengthk. Then

paw(k) = D ma(d)pw(o(r)), (2.15)

TEPy

wherem,(d), o(7) and (o (7)) are defined i2.12)through(2.14) and as Carleman’s condi-
tion is satisfied the moments uniquely determine a prolgliistribution.
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As P, is trivially empty fork odd, Lemma&2}4 implies all odd moments vanish in the limit.

2.2. Proof of Lemmal[2.4. Before proving Lemma&a2l4, we show it is reasonable by degiis
prediction for the moment expansions|of {2.9) (we leave etk moment,[(2.10), to the reader).
For the fourth moment, we need alhprs of length 4. We have

Py = {7T4;1 = €1€1€1€1, Ty2 = €1€2€2€1, Ty.3 = 6’1616’262}~ (2-16)

The signatures are(my.1) = (4), o(m12) = (2,2), o(m3) = (2,2). Recall the multiplicityo; of
7 is the number of < j such thak; is adjacent te;. We have

My (d> = d— 07 My (d) = (d - 0)(d - 1)? My (d> = (d - O) (d - 1) (217)
Thus
> ma(d)pw(o(r)) = duw(4) +2d(d — 1) (2) pw(2), (2.18)

TEP,
in agreement with the first part df (2.9).
The calculation of the sixth moment is more involved, as wedn® carefully determine the
multiplicities. There are three cases. Note the sum of thesrof the signatures must equal 6, so
there are only three possibilitied), (4,2), and(2, 2, 2).

e Signature of 6): The onlyr that gives this i e eie1e1e1. The multiplicity isd — 0, and
the contribution i1y (6).

° Signature Of(4, 2) There are six pOSSibi"tieSﬁ’l6161616262, €1€1€1€62€9€1, €1€1€E2€69€1€1,
€1€2€2€1€1€1, €1€69€9€E2€E2€7 and616162626262. We always havel occur first, but note that
eithere; or e, could be the most frequently occurring symbol. The othersiigies
violate some of the conditions; for example, betl,e,eie1e5 ande eseieieqseq violate
the second condition in Definitidn 2.2 as each has the cotisecstring e;ese;. Each
of the six valid choices has signatufél — 1), and the total contribution is thul(d —

1) gy (4) o (2).

e Signature of 2, 2, 2): This is the first non-trivial case, as we have to carefulhkland see
where we are in our walk to determine the multiplicity. Thare five terms. Three have
mUltIp'lClty d(d — 1)2, they aleejejeqeseszea, €1€2€3€63€9€1 and e1€9€9€1e3e3. TWO have
multiplicity d(d — 1)(d — 2); they aree;ejese0e3e3 andejesesesese;. For example, for the
last one we start at vertex 0 and move to vertex thyhen to vertex 2 by,, then back to
vertex 1 bye,, then to vertex 3 bys, back to vertex 1 bys and then return to vertex 0 by
e1. As all edges include vertex 1, they are all adjacent, thus- 0, a; = 1 andagz = 2.
The contribution from these five termsdg(d — 1)1y (2)® + 2d(d — 1)(d — 2)uw(2)3.

We now turn to the proof of the Moment Expansion Lemma. We stdh an informal discus-
sion of the issues. We know that we can write tifespectral moment of d-regular graph (not
worrying yet about a limit along a sequence of graphs or amegaover the weights) as a sum
of terms, where each term corresponds to a closed path inrépd @f lengthn. On the other
hand, the summation in LemrhaP.4 can also be thought of as afsimilar terms if we interpret
the summanan.. (d)uy(o(m)) asm,(d) separate summangsy(o(m)), one for each of the paths
starting and ending at a given vertex with pattetnWhile these summations are similar, they
arenotidentical, since~ is not a tree but rather a specitieregular graph which may or may not
contain cycles. There are qualitatively different typesliscrepancy here, both caused by small

cycles:
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e Paths which actually include a non-trivial cycle have noregponding summand in our
formula, since there is no path through-ary tree involving a cycle.

e Paths which go partway around a cycle in both directions naag la corresponding sum-
mand in our formula, but their weights do not match. For examguppose there is a
triangle with verticesu, v, w, wherew is the root. Then the length 8 path v, w, v,
u, w, v, w, u uses edgew twice, edgeuw twice, and edgew four times, so this path
contributesuyy (2)?uyy(4) to the summation. This gives the “patterabbacbbe, which is
not a CAPP because of the substriagb. The closest analogous path inacyclicgraph
would involve four different edges, since the two edges Wlae at distance 2 from the
root in opposite directions cannot be the same edge. Thidpaiscorrespond to a term in
our formula,abbacdde, but the signature is different. That path contribytgs(2)* to our

formula [2.15).

The idea of the proof is to determine the contribution fromea tand bound the average devia-
tion of ourd-regular graphs from being a tree. Althou@h (2.15) does i@t the correct spectral
moments for individual graphs, it can give the correct lingtspectral moments for a sequence of
graphs. The technical condition that the number of smallesym the graphs is growing slowly
is precisely what is needed to guarantee that these dismigsavanish in the limit. Fortunately
there exist good bounds on the numbers of such small cycleeifamily R y 4.

Proof of Lemma& 2]4We first recall some notation. Givendaregular graph on N vertices (so
G € Rngq) and a probability distribution), we form the weighted grap&¥,, whose edges are
weighed by iidrv’'s drawn from/. We denote average (with respect to the weightsbeing
drawn fromW) of the £ moment of the associated spectral distributions,, by 14w (k; G).
From (2.3) and[(Z]4) we know that; v (k; G) is the average weight of a closed walk of length
in G. The first step in the proof is to show that only acyclic walksitribute significantly to this
average,; i.e., all walks which contain cycles contributegligible amount.

We thus consider a closed path of lengtldenoting the vertices biy, io, . . ., i;. Let

Cd’GW(k) = Z bili2 bi2i3 T bikil (2.19)
(81,02 eyif,01)

contains a cycle

denote the contribution to tHé" moment ofy, 5, from paths containing a cycle, and

Ad7GW(k) = Z bi1i2 bigig e bikil (220)

<i1 7i_27"'7ik7i1>
contains no cycles

the contribution from the acyclic closed paths. We may tleugite equationg (213) and (2.4) as

1 1
(k) = ch,cw(k)ﬂLN

We prove that the first term tends to 08s— oo, which implies thaf., (k) only depends on
paths with no cycles (i.eGAPPs). From Lemma&2]1 we may assume 3. FixaG € Ryqand a
weight vectow with components independently drawn from. We may take all butvd/2 of the
entries ofw to be0 without affecting the weighted adjacency matrix; for nwmaal convenience
we label those weights which aren’t necessarityy {w;, ws, ..., ws} (Wheres = Nd/2).

Choose somé-cycle in G; as it can only traverse these weighted edges, its contibis

witwy? - - -whe, wherer; > 0and> r; = k. Herer; represents the total number of times our
10
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k-cycle traverses the edge with weight Averaging ovedV and using the independence of the
weights, we have that the expected contribution bfcycle is

Elwi - wg] = Efwy'] - Elw{’]

= pw(r)pw(rz) - - - pw(rs) (2.22)
= (D)7 (2)7 - ()™
for some non-negative integefs satisfying)";_, i3; = k. This immediately impliesy,, =
apio = -+ = a, = 0, whence
Efwi' - wg] = pw(1)™ - (k). (2.23)

Let .
M = max {uw(l)o‘luw(2)a2 s (k)Y oy = 0, Ziai = k} . (2.24)
i=1

Note that)/ depends only uy (i) }5_, (the firstk moments of/)) andk; in particular, it is bounded
independent ofV. We highlight this fact by writing\/ = M (W, k).

Let C,; be the number of-cycles inG, and letC; x4 be the average number of of cycles of
lengthi in the ensemble ofi-regular graphs oV vertices. For a fixed weight distribution,
the contribution of paths with cycles {g;,y (k) from averaging over weights drawn frovy and
graphsG € Ry 4 Is

1 o oo 1
RNl Z /OO"‘/_OONCd,GW(/f) H pw(wij)dw;

GeRnag” ™ 1<i<j<N

k
1 1
< Yo (=D CaiMW,k
= Rl (N - aiM( >>

GGRNyd

MW, k) 1 MW, E) &
- N ZZ; R Z Coi = 7';Ci,N,d, (2.25)

N7d| GERN,d N

Herei > 3, as otherwisé&- has no cycles. By Lemma 4.1 6¢f [McK], fer> 3 we have

d—1)
lim Cz'Nd = ( - )
N—oo Y 21

Combining this with the above, we deduce that the controufrom the paths with a cycle to
waw (k) is O(1/N), and thus negligible a& — oco. In particular, this implies

/.Ldﬂ/\}(k’) = ]\}1_{{1)0 m /_oo .. /_OO NACLGW(I{:) 1<E<pr(wij)dwij. (227)
RSV
The proof is completed by noting that this is equivalen}to_, m(d)uw(o(m)). This follows
from the definition ofcApps, multiplicities and signatures, and similar argumentsgdIcK].
The factoruy, (o (m)) comes from how often each weight occurs and averaging oeexéights.
The factorm,(d) requires a bit more work. As we take the limit As— oo, there is no loss
in assuming we have a tree. As we need a closed path to havérdbgtion, eacht must be even
and each edge must be traversed an even number of times (av&va tree, there are no cycles).
By LemmdZ.3B there is a one-to-one correspondence betasers and legal walks along edges.

Each time we hit a vertex and go off along a new edge, the nuofoshroices we have equads
11
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(the regularity degree) minus the number of edges we hagadjrtaken from the vertex. This is
why the multiplicity of edgez; is d minus the number of edges adjacent ta:; with 7 < j, and
adjacency is measured relative to the treeramtdhe string of edges. This completes the prodf]

While Lemma 2.4 gives a closed form expression for the limgitmoments, it is not imme-
diately apparent that it is msefulexpansion. We need a way of computing the sum ovef
m.(d) (o (7)), which is our next subject.

2.3. Counting walks by signature. We conclude this section by showing how to count walks
with certain simple signatures. We use these results taepgravtheorems on eigendistributions in
g3. We first recall some notation.

° ,5,2) is the set of alcaPps in P, with signaturg(2,2,2, ..., 2).
o P is the set of alAPPs in P, with signature(4,2,2, ..., 2).
e 7, is the set of all triplegr, =, y), wherer € 7?,5,2) andzx, y are symbols corresponding to

distinguished edges in the diagram, which must be adjacetirst traversed in that order.
e P} is the set of alcAPrs in P, excluding the pattern with signatutg).

Lemma 2.5(Counting Walks without Repeated EdgeEhere are exactly-~ (**) capps of length

2k and signature2,2,2, ..., 2). Thatis,|P\) | = = ()

Proof. Walks of signaturé2,2,2,...,2) use each edge exactly twice. Such a walk is determined
by its diagram, regarded as an ordered tree (in the sengbdtildren of each vertex “remember”

in which order they were visited). It is well-known that that@lan numbers count such trees, and
appear throughout random matrix theory (see for exampleZJAG O

The following lemma plays a key role in computing the lowedearterm to the moments in
TheoreniLR, and allows us to improve our error froii /d) to O(1/d?).

Lemma 2.6(Serendipitous Correspondencé&here is a two-to-one correspondence between length-
2k capps whose signature i€2,2,2,...,2) with a distinguished pair of adjacent edges, and

length2k CAPPs with signaturg4, 2,2, ...,2). Thatis,| Tz | = 2|73§i)|.

Proof. In this proof, we always use the symbalsgy (in that order) as the distinguished symbols
for an object in7;,.. These symbols will occur either in the ordeyyx or xxyy (the order cannot
be xyzy or thecapp condition would be violated). Consider sequendes3yCyDxE (case 1)
or AxBxCyDyFE (case 2), where capital letters denote substrings, whemy symbol occurring

in ABCDE does so exactly twice in total. In order for this todgenuine pattern, for each non-
distinguished symbol that occurs, one of the following maestrue.

(1) Both occurrences are in the same substrihgHX, C, D, or E).
(2) One occurrence is id and the other is irk.

(3) One occurrence is i and the other is itD (case 1 only).

(4) One occurrence is i@ and the other is il or E (case 2 only).

Sincex andy are adjacent edges, the last two possibilities are ruledButtnow it is not hard
to see that elements @féi) have the formdzB:2CzDzE, with precisely the same conditions on
A, B,C, D, E. Then we correspond the pattetns ByCyDxE and Az BxCyDyFE to the pattern
AzBzCzDzF, giving the desired two-to-one correspondence. O
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3. THE EIGENDISTRIBUTION

Our goal is to find the eigendistributiod®™ of the maps/; from (1.3). Recall thaf; maps a
given weight distribution/V to a spectral distribution. In this section we prove thagfachd there
exists a unique (up to rescaling) eigendistributio@af To do this, we first apply Lemnia 2.4 to
obtain a recursive identity on the moments of any eigentigion; it will then be seen that there
exists a distribution possessing these moments. Moreageshow that after appropriate rescal-
ing, the moments grow very similarly to those of the semieidistribution. The two distributions
are not exactly the same, and we quantify the extent to whiep differ.

We first prove that for any fixed, T, has at most one eigenvalue. Given any distribulign
with densitypy, and any\ > 0, let uy, (k) denote thei™ moment of W and i,y (k) denote the
k" moment of the rescaled distributiot*) (see [T.4) for the effect of scaling bBy. We have

[e.e] [e.e] k
o (k) = / F dWN(z) = / " Apw(\r)dz = / (;) pw(z)dr = %,uw(k).

h h h (3.1)
In particular, if W is an eigendistribution with eigenvalug and .4,y (k) denotes the moments
of the spectral distributiofy)yV = W™, thenjigw(2) = A 2up(2). On the other hand, from
LemmdZ.1 we know that1i411(2) = 1w (2), whencel = d~'/2. We thus obtain a relation for
the even moments of an eigendistribution:

paw(2k) = d"w(2k). (3.2)
Substituting this into Lemma 2.4 and simplifying yields tbéowing formula.

[e.e]

Lemma 3.1 (Eigenmoment FormulasSupposeV, is an eigendistribution of , i.e., T,WW,; =
Wy) for someA > 0. Denote the moments 0¥, by uw, (k). We may assume (without loss
of generality) thatW, is scaled so thafuy,(2) = 1/4 (the second moment of the normalized
semi-circle distribution). Thep,y, (k) = 0 for all odd %, and

i 2) = 2 3 me(d)pw, (o (). (3.3)

TEPS,

We can now prove Theorelm 1.2, namely that there exists a emimendistribution, as well as
determine properties of its moments.

Proof of Theorerh 1]2As the signature () involves numbers strictly smaller than for all 7 €
Ps,., (3.3) gives a recursive formula for the moments. Thus, ieaendistribution/V, exists,
then its moments are uniquely specified. The even momensaaily bounded above by 1 and
below by the moments of the normalized semi-circular dstion. Thus Carleman’s condition
is satisfied §0° | pw, (2k) /% = o0), and the moments uniquely determine a distribution (see
[Bil Tal).

From Lemma 31 we easily fingdy, (2) = 1/4, uw,(4) = 1/8, uw,(6) = 5/64, and

7 1

mwa®) = gt @ a1

From this data it seems safe to guess that the main teym,of2%) is

1 2k
Cop, = m<k) (3.5)
13
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(the2k™ moment of the normalized semi-circular distribution), efive now prove. We first show

(k) = e+ O(1/d), (3.6)

and then with a bit more work improve the error®¢1 /d?).

For oddk there is nothing to prove, since bothy, (k) andc, vanish. We thus restrict our
attention to evelk, and proceed by induction; to emphasize that we have evestspts we write
2k for k. For2k < 8, we have already verified the conjecture. The only role ofitiaeictive
hypothesis is to ensure that, when computing, (2k), we can treat all lower eigenmoments as
O(1). The recursion formula(3.3) gives

(d° = D, (2k) = Y ma(d)pw, (o (). (3.7)

TEPS,

The total contribution from thosewhich involve fewer thai symbols isO(d*~1). Thus, the main
term must come from the patterns involvihgdges, i.e.;r whose signature(7) = (2,2, ...,2).

RecaIIP,f) is the set of allcapps of length%k which possess a signature of this form. Note
[, (2) = 1/4 andpy, (4) = 1/8, so ifr € PL) thenuyw, (o(w)) = (1/4)F, while if = € P then
pw, (o(m)) = (1/8)(1/4)*1. We have

(d° = Dpw,(2k) =Y ma(d)pw,(o(m) +O(d" )

WEPQ(?

= | > o) | &+ 0@ = [PP27%d" + 0(d*), (3.8)

WEPQ(?

where we used for € 7?2(?

k
ma(d) = [J(d-a;) = d*+0(d@") (3.9)

i=1

(whereq; is the number of edges prior to tifé which are adjacent to th& as in [2.12)). Lemma
[2.3 yields the desired conclusion.
The serendipitous correspondence from Lerhmh 2.6 allows inggrove the error to

fow, (2K) = cap + O(1/d?). (3.10)

As above, we have already verified the theorem (with no eemon} in the cases wheéhnis odd
or at most 8. Henceforth we assume thlat> 8. We analyze the contribution from patterns with

at leastt — 1 distinct symbols (in other words, we allow at most one rejuet), and trivially bound
14



the contribution from the remaining y(d*~2). We have

(d" = d)uw,(2k) = Y ma(d)pw,(o(r))

TEPS,

- Z M (d) iy, (o (7)) | + O(d"?)

re(PPUPLY)
= (/| Y mald) | + QBT DD mald) | + 0@
7r€732<i) WEPQ(?
= (/D[ DD mad)+2 > ma(d) | +0(d?). (3.11)
rePfy) TePsy)

The strategy is to compute the secondary terms.Qfd), multiply them by the correct factor and
then substitute back intb (3111).4fc 73% , then

k k
ma(d) = [J(d— o) = d* - (Z ai> d*1 + O(d"?), (3.12)

=1 i=1
whereq; is the number of edges prior to ti#ewhich are adjacent to th& as in [2.12). Summing
overi gives the number of pairs of adjacent edges in the diagramn8og overPéz), we obtain

> ma(d) = |PY|d" — [Told" ™ + O(d"2). (3.13)
7r€732(i)
All of these terms have the same value fgg, (o (7)), namely(1/4)*.
For the other summation we need only the dominant term:
> ma(d) = [Py]d !+ O(d" ), (3.14)
wePQ(i)
All of these terms have the same value fgy, (o (7)), namely(1/8)(1/4)’f L= (1/2)(1/4)k.
Using the above, we find that the contribution frane P, U P\ to (311) is

dk 1 dlc—l

+ 0 ((d/9)"?); (3.15)

~! terms above cancel, yielding

(2k) = |7>(2’\d7k Y (3.16)
HWa SR = 1o i (e — ) F(dF—dy ) '
From Lemmd_2J5 we hav|é72(z)| = k%rl(%f) = 4% ¢y, (Wherecy;, is the2k™ moment of the semi-
circle distribution normalized to have variance 1/4), amast
Cole 1
wa(2k) = en+0 (Z25) +0 <4kd2) (3.17)
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ask > 3 the second error term dominates. We conclude that the era(li/d?), as claimed. O

[ALHM]

[Al]
[AL]

[AGZ]
[Bai]
[BLMST]
[Bien]

[Bi]
[Bol]

[Bo2]
[BCG]

[BHS1]

[BHS2]

[BDJ]
(BM]

[DSV]

[DP]

[ES]

[ERSY]
[ESY]
[FM]
[Fo]
[Fr1]

[Fr2]

REFERENCES

D. Allen, T.-C. Lu, D. Huber and H. MoonHierarchical Random Graphs for Networks with Weighted
Edges and Multiple Edge Attributegniversidad Nacional de General Sarmiento, May 2011.
N. Alon, Eigenvalues and expandefSombinatoricé (1986), no. 2, 83—96.
H. Amini and M. Lelargey, The Diameter Of Weighted Random Graptw appear in the Annals of
Applied Probabilityht tp: //arxi v. org/ abs/1112. 6330.
G. W. Anderson, A. Guionnetand O. ZeitouAin Introduction to Random Matrice€ambridge Studies
in Advanced Mathematick18 Cambridge University Press, 2010.
Z. Bai, Methodologies in spectral analysis of large-dimensioreldom matrices, a reviewstatist.
Sinica9 (1999), no. 3, 611-677.
O. Beckwith, V. Luo, S. J. Miller, K. Shen and N. Tritafillou, Distribution of Eigenvalues of Weighted,
Structured Matrix Ensemblgpreprint, 2014htt p: //arxi v. or g/ abs/ 1112. 3719
F. Bien,Constructions of telephone networks by group represetgtNotices of the AMS36 (1989),
no. 1, 5-22.
P. Billingsley, Probability and Measuréthird edition), Wiley, New York, 1995.
M. Bolla, Distribution of the eigenvalues of random block-matrideis. Alg. Appl. 377 (2004), 219—
240.
M. Bolla, Noisy random graphs and their Laplacigmliscrete Mathematic308(2008) 4221-4230.
A. Bose, S. Chatterjee, and S. Gangopadhlyagiting spectral distributions of large dimensional ran-
dom matricesJ. Indian Statist. Assod.1(2003), 221-259.
A. Bose, R. S. Hazra, and K. Sah&atterned random matrices and notions of inde-
pendence Technical report R3/2010 (2010), Stat-Math Unit, KolkatAvailable online at
http://wwv i sical.ac.in/~statnmath.
A. Bose, R. S. Hazra, and K. Saliratterned random matrices and method of momentRroceedings
of the International Congress of Mathematicians Hyderabadia, 2010, 2203-2230. (Invited article).
World Scientific, Singapore and Imperial College Press, UK.
W. Bryc, A. Dembo, T. JiangSpectral measure of large random Hankel, Markov and Taepiatrices
Ann. Probab34 (2006), no. 1, 1-38.
A.Bose and S. S. Mukherje®ulk behaviour of Schur-Hadamard products of symmetriclcan matri-
ces to appear in Random Matrices: Theory and Applications4201
G. Davidoff, P. Sarnak, and A. Valett&lementary Number Theory, Group Theory, and Ramanujan
Graphs London Mathematical Society, Student Texts, Vol. 55, Cadge University Press, Cambridge
2003.
I. Dumitriu and S. PalSparse regular random graphs: spectral density and eigetovg Ann. Probab.
40(2012), no. 5, 2197-2235.
Y. Emek and Y. ShavittApproximating the Statistics of various Properties in Raméy Weighted
Graphs Proceeding SODA '11 Proceedings of the Twenty-Second AhACM-SIAM Symposium
on Discrete Algorithms, 2011, Pages 1455-1467.
L. Erdds, J. A. Ramirez, B. Schlein, and H.-T. Y&8uylk Universality for Wigner MatricesComm. Pure
Appl. Math.63(2010), no. 7, 895-925.
L. Erdds, B. Schlein, and H.-T. YaW/egner estimate and level repulsion for Wigner random roegri
Int. Math. Res. Not. IMRN 2010, no. 3, 436—-479.
F. W. K. Firk and S. J. MillerNuclei, Primes and the Random Matrix ConnectiSgmmetryl (2009),
64-105; doi:10.3390/sym1010064.
P. J. Forrestet,0g-Gases and Random Matricé®ndon Mathematical Society Monogra@# Prince-
ton University Press, Princeton, NJ 2010.
J. FriedmanSome geometric aspects of graphs and their eigenfunctizuiee Math. J69 (1993), no.
3, 487-525.
J. FriedmanA proof of Alon’s second eigenvalue conjectuPeoceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing, 720-724 (electram¢IM, New York, 2003.

16


http://arxiv.org/abs/1112.6330
http://arxiv.org/abs/1112.3719

[Fr3]
[Ga]

[GILVZ]

[HM]

[JMRR]

[KSV]
[KKMSX]
[LPS]
[Mar]
[McD1]
[McD2]
[McK]

[McW]

[Meh]
[MNS]

[Pi]
[Po]

[Sarl]

[Sar2]
[So]

[SS]
[Ta]
[TV1]
[TV2]
[Tvw]

[Ven]

J. FriedmanA proof of Alon’s second eigenvalue conjecture and relatettlpms Mem. Amer. Math.
S0c¢.195(2008), no. 910, viii+100 pp.

D. GarlaschelliThe weighted random graph modBlew J. Phys11 (2009) 073005, do0i:10.1088/1367-
2630/11/7/073005.
O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatas, and D. Zuckermargecurity preserving ampli-
fication of hardnessin 31st Annual Symposium on Foundations of Computer Seiegkol. I, 1l (St.
Louis, MO, 1990), 318—-326, IEEE Comput. Soc. Press, Los A@nCA, 1990.

C. Hammond and S. J. MillerEigenvalue spacing distribution for the ensemble of reahmsyetric
Toeplitz matricesJournal of Theoretical Probability8 (2005), no. 3, 537-566.

D. Jakobson, S. D. Miller, I. Rivin, and Z. Rudnickjgenvalue spacings for regular graphBages
317-327 inEmerging Applications of Number Theory (Minneapolis, 19%6e IMA Volumes in Math-
ematics and its Applications, Vol. 109, Springer, New Ydr99.

O. Khorunzhy, M. Shcherbinal and V. Vengerovskjgenvalue distribution of large weighted random
graphs Journal of Mathematical Physid$ (2004), no. 4, 1968-1672.
G. S. Kopp, M. Kologlu, S. J. Miller, F. Strauch and W. Xion@,he Limiting Spectral Measure for
Ensembles of Symmetric Block Circulant Matricésurnal of Theoretical Probabili®6 (2013), no. 4,
1020-1060.

A. Lubotzky, R. Phillips, and P. SarnaRamanujan graph<ombinatorica (1988), no. 3, 261-277.
G. A. Margulis,Explicit group-theoretic constructions of combinators@hemes and their applications
in the construction of expanders and concentrators (Ra$sRroblemy Peredachi Informat2i (1988),
no. 1, 51-60; translation in Problems Inform. Transmis&41(1988), no. 1, 39-46.

C. McDiarmid,Random graphs from a weighted minor-closed ¢ld$e Electronic Journal of Combi-
natorics20(2013), no. 2, #P52

C. McDiarmid, Connectivity for random graphs from a weighted bridge-duldalass The Electronic
Journal of Combinatoric9 (2012), no. 4, #P53.

B. McKay, The expected eigenvalue distribution of a large regularpigalinear Algebra Appl.40
(1981), 203-216.

B. McKay and N. WormaldThe degree sequence of a random graph. I. The mogalsdom Structures
& Algorithms 11 (1997), no. 2, 97-117.

M. Mehta,Random Matrices2nd edition, Academic Press, Boston, 1991.

S. J. Miller, T. Novikoff and A. SabelliThe distribution of the second largest eigenvalue in fagibf
random regular graphsExperimental Mathematicsr (2008), no. 2, 231-244.

PippengerSuper concentrator$SIAM Journal Comp6 (1977), 298-304.

M. Porfiri, Synchronization in Random Weighted Directed Netwo@kscuits and Systems |: Regular
Papers, IEEE Transactions on (Volume:55, Issue: 10), 2008)-3177.

P. Sarnaksome applications of modular formSambridge Trusts in Mathemetics, Vol. 99, Cambridge
University Press, Cambridge, 1990.

P. SarnakVhat is an ExpanderNotices of the AMS1 (2004), no. 7, 762-763.

S. Sodin,An estimate for the average spectral measure of random batdams J. Stat. Physl44
(2011), no. 1, 46-59.

M. Sipser and D. A. Spielmaikxpander codedEEE Trans. Inform. Theor¢2 (1996), no. 6, part 1,
1710-1722.

L. Takacs A Moment Convergence Theorehtne American Mathematical Month88 (Oct., 1991), no.
8, 742—-746.

T. Tao and V. H. Vu,From the Littlewood-Offord problem to the Circular Law: wersality of the
spectral distribution of random matriceBull. Amer. Math. Soc46 (2009), 377-396.

T. Tao and V. H. VuRandom matrices: universality of local eigenvalue staisstip to the edgeComm.
Math. Phys298(2010), no. 2, 549-572.

L. V. Tran, V. H. Vu and K. Wang,Sparse random graphs: eigenvalues and eigenveciRasndom
Structures Algorithmg2 (2013), no. 1, 110-134.

V. VengerovskyEigenvalue distribution of large weighted bipartite ramdgraphs Zh. Mat. Fiz. Anal.
Geom.10(2014), no. 2, 240-255.

17



DEPARTMENT OFMATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA, USA
E-mail addressLeo. Gol dmakher @v | 1 ans. edu

DEPARTMENT OFMATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI, USA
E-mail addresspr of . cap. Khoury@nai [ . com

DEPARTMENT OFMATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA, USA
E-mail addresss) nil@u I I 1 ans. edu, Steven. Ml ler.MC 96@ya. yal e. edu

INSTITUTE FORCOMPUTATIONAL AND MATHEMATICAL ENGINEERING, STANFORD UNIVERSITY, STANFORD,

CA, USA
E-mail addresseveve @t anf or d. edu

18


mailto:Leo.Goldmakher@williams.edu
mailto:prof.cap.khoury@gmail.com
mailto:sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu
mailto:eveve@stanford.edu

	1. Introduction
	2. Combinatorial Preliminaries
	2.1. Closed acyclic path patterns
	2.2. Proof of Lemma 2.4
	2.3. Counting walks by signature

	3. The eigendistribution
	References

