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ABSTRACT. McKay proved the limiting spectral measures of the ensembles ofd-regular graphs
with N vertices converge to Kesten’s measure asN → ∞. Given a larged-regular graph we assign
random weights, drawn from some distributionW , to its edges. We study the relationship between
W and the associated limiting spectral distribution obtained by averaging over the weighted graphs.
We establish the existence of a unique ‘eigendistribution’(a weight distributionW such that the
associated limiting spectral distribution is a rescaling of W). Initial investigations suggested that the
eigendistribution was the semi-circle distribution, which by Wigner’s Law is the limiting spectral
measure for real symmetric matrices. We prove this is not thecase, though the deviation between
the eigendistribution and the semi-circular density is small (the first seven moments agree, and the
difference in each higher moment isO(1/d2)). Our analysis uses combinatorial results about closed
acyclic walks in large trees, which may be of independent interest.

1. INTRODUCTION

The eigenvalues of adjacency matrices associated to graphsencode a wealth of information, and
are thus a natural and important object to study and understand. We considerd-regular graphs
below. Thusd is always an eigenvalue of the adjacency matrix, and is the largest eigenvalue in
absolute value. The simplest application of the eigenvalues is to determine if a graph is connected,
which happens if and only ifd is a simple eigenvalue. Our next application depends on the dif-
ference between the second largest (in absolute value) eigenvalue andd; this is called the spectral
gap. A large spectral gap implies many desirable properties. Such graphs are well-connected,
meaning the graph has very few edges but all vertices are ableto communicate with each other
very quickly. These graphs arise in communication network theory, allowing the construction of
superconcentrators and non-blocking networks [Bien, Pi],in coding theory [SS] and in cryptogra-
phy [GILVZ]. Alon [Al] conjectured that asN → ∞, for d ≥ 3 and anyǫ > 0, “most” d-regular
graphs onN vertices have their second largest (in absolute value) eigenvalue at most2

√
d− 1+ ǫ;

it is known that the2
√
d− 1 cannot be improved upon. Friedman [Fr1, Fr2, Fr3] proved this,

though the finer behavior around this critical threshold is still open (see [MNS] for numerics and
conjectures). For some basics of graph theory and constructions of families of expanders (graphs
with a large spectral gap and thus good connectivity properties), see [DSV, LPS, Mar, Sar1, Sar2].

After investigating the largest two eigenvalues and their consequences, it is natural to study the
rest of the spectrum. Thirty years ago, McKay [McK] investigated the distribution of eigenvalues
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of large, randomd-regular graphs;we always assume our graphs do not contain any self-loops or
multiple edges. When the number of cycles is small relative to the size of thegraph (which is true
for mostd-regular graphs as the number of vertices grows), he proved the existence of a limiting
spectral distributionνd depending only ond, and gave an explicit formula forνd. Recent work [DP,
TVW] proves that if we renormalizeνd so that its associated density function has support[−1, 1],
then the sequence of renormalized measures converges to Wigner’s semicircle measure so long as
d → ∞ with the number of vertices. We explore the more complicatedsituation for randomly
weighted regular graphs (see [KSV] for a related problem, where the graphs are not regular). We
weigh the graphs by attaching weights to each edge. There is an extensive literature on properties of
weighted graphs (where we may weight either the edges or the graphs in the family) and weighted
ensembles; see [ALHM, AL, BLMST, BM, Bo1, Bo2, ES, Ga, McD1, McD2, Po, So, Ven] and
the references therein for some results and applications.

More precisely, supposeW is a random variable with finite moments onR and densitypW , and
G ∈ RN,d, the set of simpled-regular graphs onN vertices with no self-loops. We weigh each
edge by independent identically distributed random variables (iidrv’s) drawn fromW. In other
words, we replace all nonzero entries in the adjacency matrix of G by iidrv’s drawn fromW; this
is the same as taking the Hadamard product of a real symmetricweight matrix with the graph’s
adjacency matrix. Denote the spectrum of the weighted graphG by {λ1 6 λ2 6 · · · 6 λN}, and
consider the uniform measureνd,G,W on this spectrum:

νd,G,W(A) =
1

N
#
{

j 6 N : λj = A
}

. (1.1)

As indicated by the subscripts, this measure depends ond, G, andW. We are interested in the
limiting behavior, so rather than focusing on any particular graphG we take a sequence of graphs
of increasing size. We first set some notation.

• RN,d: The set of simpled-regular graphs onN vertices without self-loops.
• |G|, aij , ncyl(k;G): |G| is the number of vertices,aij = 1 if verticesi andj are connected

by an edge and 0 otherwise, andncyl(k;G) is the number of cycles of lengthk.
• cm: We setcm to be themth moment of the semi-circle distribution, normalized to have

variance 1/4;c2k+1 = 0 andc2k = 1
4k(k+1)

(

2k
k

)

(with 1
k+1

(

2k
k

)

thekth Catalan number).

• µX (k), pX , x: ForX a random variable whose density has finite moments,µX (k) is itskth

moment andpX is the density associated toX . Finally, x is anN(N + 1)/2 vector (or,
equivalently, anN ×N real symmetric matrix) of independent random variablesxij drawn
from X. We typically takeX to be our weight random variableW.

• Gw,µd,W(k;G), µd,W(k): For a fixedd, weight distributionW and graphG,Gw denotes the
graph obtained by weighting the edges ofG by w, µd,W(k;G) is the average (over weights
drawn fromW) kth moment of the associated spectral measureνd,Gw, whileµd,W(k) is the
average ofµd,W(k;G) overG ∈ RN,d.

The following result is the starting point of our investigations. The unweighted case is due to
McKay [McK]; the existence proof in the general case proceeds similarly.

Theorem 1.1. For any sequence ofd-regular graphs{Gi} with |Gi| → ∞ and ncyl(k;Gi) =
o(|Gi|) for everyk > 3, the limiting distributionνd,W(x) := limi→∞ νd,Gi,W(x) exists and depends
only ond andW. In the unweighted case (i.e., each weight is 1) the density is given by Kesten’s
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FIGURE 1. Evidence ‘supporting’ the semi-circular conjecture: 100 4-regular
200 × 200 matrices. (Left) Unweighted eigenvalue density vs Kesten’s measure.
(Right) Semi-circular weights vs the semi-circular distribution.

measure:

f(x) =

{

d
2π(d2−x2)

√

4(d− 1)− x2, |x| ≤ 2
√
d− 1

0 otherwise.
(1.2)

Note that asd → ∞, Kesten’s measure tends to the semi-circle distribution.

The difficulty is deriving good, closed-form expressions when the weights are non-trivial. To
this end, we study the one-parameter family of maps

Td : W 7−→ νd,W (1.3)

(see Theorem 1.1 for a definition ofνd,W). To understand the behavior ofTd, we investigate its
eigendistributions, a concept we now explain. Recall that any measureν can be rescaled by a real
λ > 0 to form a new measureν(λ) by setting

ν(λ)(A) := ν(λA) (for all A ⊆ R). (1.4)

If a distributionW satisfies
TdW = W(λ) (1.5)

for someλ > 0, we sayW is an eigendistribution ofTd with eigenvalueλ. We prove in §3 that
for eachd the mapTd has a unique eigendistribution, up to rescaling; this existence proof is a
straightforward application of standard techniques.

Thus the natural question is to determine the eigendistribution for eachd. Explicit formulas exist
for the moments, but quickly become very involved. Brute force computations show that the first
seven moments of the eigendistribution agree with the moments of a semi-circular distribution,
suggesting that the semi-circle is the answer. If true this is quite interesting, as the semi-circle is
the limiting spectral measure for real symmetric matrices (Wigner’s law); moreover, asd → ∞ the
limiting spectral measure of the unweighted ensemble ofd-regular graphs converges to the semi-
circle. In fact, the motivation for this research was the following question: What weights must be
introduced so that the weighted ensemble has the semi-circle as its density?

While a determination of the first few moments and numerical investigations (see Figure 1)
seemed to support the semi-circle as the eigendistribution, this conjecture is false, though the
two distributions are close and agree asd → ∞. For another ensemble where numerical data and
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heuristic arguments suggested a specific limiting spectralmeasure which was close to but not equal
to the answer, see the work on real symmetric Toeplitz matrices [BDJ, HM].

To state our results precisely, we switch to the language of moments. In §2 we define our
notation, which relates the moments ofW andTdW in terms ofclosed acyclic path patterns, a
combinatorial notion we develop in §2.1. From this we deduceour main result.

Theorem 1.2. There is a unique eigendistribution ofTd which has second moment equal to1/4,
which we denoteWd. LetµWd

(k) denote thekth moment ofWd. Then for all non-negative integer
k we haveµWd

(2k + 1) = 0 and

µWd
(2k) = c2k +O

(

1/d2
)

, (1.6)

wherecm is themth moment of the semi-circle distribution normalized to have second moment
1/4. We haveµWd

(2) = 1/4, µWd
(4) = 1/8, µWd

(6) = 5/64 (all agreeing with the normalized
semi-circular density), but instead of 7/128 (the eight moment of the semi-circle) we find

µWd
(8) =

7

128
+

1

128(d2 + d+ 1)
. (1.7)

The eighth moment shows our error term is optimal. The fact that the error decays like1/d2,
and not1/d, is the consequence of a beautiful combinatorial alignment(see Lemma 2.6).

We concentrate on deriving results about the eigendistribution Wd and not on the convergence
of the individual weighted spectral measures to the average, as the techniques from [McK] and
standard arguments (see for example [Bai, Bi, HM, Ta]) suffice to prove such convergence. We
only quoted part of Theorem 1.1 of [McK]; the rest of it refersto convergence of the corresponding
cumulative distribution functions for graphs satisfying the two conditions in the theorem, and his
argument applies with trivial modifications in our setting.

One could also investigate the distribution of gaps betweenadjacent, normalized eigenvalues.
This was studied in [JMRR] ford-regular graphs. Their numerics support a GOE spacing law,
which also governs the behavior for the ensemble of real symmetric matrices, but we are far from
having a proof in this setting. The distribution of gaps is significantly harder than the density of
eigenvalues, and it was only recently (see [ERSY, ESY, TV1, TV2]) where these spacing measures
were determined for non-Gaussian random matrix ensembles.There is now a large body of work
on the density of eigenvalues and the gaps between them for different structured random matrix
ensembles; see [FM, Fo, Meh] for a partial history and the general theory, and [BLMST, BCG,
BHS1, BHS2, HM, KKMSX] and their references for some resultson structured ensembles.

2. COMBINATORIAL PRELIMINARIES

Below we expand upon the ideas in the introduction, and develop needed combinatorial notions.
In particular, we introduce closed acyclic path patterns, which play a crucial role in our work.

We begin by formalizing the notion of a randomly weighted graph. Suppose as before that
G ∈ RN,d has adjacency matrixA =

(

aij
)

, and letW be a random variable whose probability
density has finite moments. Letw =

{

wij : 1 6 i 6 j 6 N
}

denote a set of independent random
variables drawn fromW, and form anN ×N matrixAw =

(

bij
)

, where

bij =

{

wijaij if i 6 j

wjiaji otherwise.
(2.1)
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Observe thatAw is a real symmetric matrix, and thatbnn = 0 for all n. We may therefore interpret
Aw as the adjacency matrix of a weighted graphGw whose edges are weighted by the random
variablesw; equivalently,Gw is the Hadamard product of our weight matrix andG’s adjacency
matrix. We also note that at mostdN of the entriesbij are nonzero.

We are interested in the relationship between the distributionW and the corresponding spectral
distribution. Denote the eigenvalues ofAw by λ1 6 λ2 6 · · · 6 λN , and letνd,Gw be the uniform
measure on this spectrum, as in (1.1); its density is thus

dνd,Gw(x) =
1

N

N
∑

n=1

δ(x− λn)dx, (2.2)

whereδ(u) is the Dirac delta functional.1 While we do not need the subscriptd asGw implicitly
encodes the degree of regularityd, we prefer to be explicit and highlight the role of this important
parameter. By definition and the eigenvalue trace formula, thekth momentµνd,Gw

(k) is

µνd,Gw
(k) =

∫ ∞

−∞

xkdνd,Gw(x) =
1

N

N
∑

n=1

λk
n =

1

N
Tr(Ak

w); (2.3)

we writeµνd,Gw
(k) to emphasize thatd is fixed and we are studying a specific weighted graphGw.

The following approach is standard and allows us to convert information on the matrix elements
of Aw (which we know) to information on the eigenvalues (which we desire). We have

Tr(Ak
w) =

N
∑

i1=1

N
∑

i2=1

· · ·
N
∑

ik=1

bi1i2bi2i3 · · · biki1 . (2.4)

Thus we see that thekth moment of the spectral distribution associated toGw is the average weight
of a closed walk of lengthk in G (where by the weight of a walk we mean the product of the
weights of all edges traversed, counted with multiplicity).

Since we are interested in the dependence on the distribution W, not on the specific values of
theN(N + 1)/2 random variablesw = (wij)1≤i,j≤N , we average overw drawn fromW ’s density
pW to obtain the ‘typical’kth momentµd,W(k;G) of the weighted spectral distributions:

µd,W(k;G) :=

∫ ∞

−∞

µνd,Gw
(k)dw =

∫ ∞

−∞

· · ·
∫ ∞

−∞

µνd,Gw
(k)

∏

1≤i≤j≤N

pW(wij)dwij, (2.5)

wherepW is the density function corresponding to distributionW.
To build intuition for the later calculations, we calculatethe first and second moments.

Lemma 2.1. Fix d, G ∈ RN,d andW. We haveµd,W(1;G) = 0 andµd,W(2;G) = dµW(2), where
µW(k) is thekth moment ofW. Thusµd,W(1) = 0 andµd,W(2) = dµW(2).

Proof. Sincebnn = 0 for all n, we see that

µd,W(1;G) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

µνd,Gw
(1)dw =

∫ ∞

−∞

· · ·
∫ ∞

−∞

1

N

N
∑

n=1

bnn
∏

1≤i≤j≤N

pW(wij)dwij = 0.

(2.6)

1We writed for the degree of regularity, andd for differentials.
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For the second moment, we useG is d-regular,bij = aijwij , andbnn = 0 andbij = bji. The
number of non-zeroaij is dN/2 (each vertex hasd edges emanating from it, and each edge is
doubly counted), and recallµW(2) denotes the second moment of the weight distributionW. Thus

µd,W(2;G) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

µνd,Gw
(2)dw =

∫ ∞

−∞

· · ·
∫ ∞

−∞

2

N

∑

16i<j6N

b2ijpW(wij)dwij

=
2

N

∑

16i<j6N
aij=1

∫ ∞

−∞

w2
ijpW(wij)dwij =

2

N

∑

16i<j6N
aij=1

µW(2)

=
2

N
· dN

2
µW(2) = dµw(2). (2.7)

�

The first two moments are independent ofG; however, this is not the case for higher moments
(for example, in the third moment we have the possibility of aloop). For these higher moments,
we need to perform an averaging overG as well, and study

µd,W(k) =
1

|RN,d|
∑

G∈RN,d

µd,W(k;G). (2.8)

While we can compute anyµd,W(k), the calculations quickly become very involved, and indicate
the need for a unified approach if we desire a tractable closedform expression. For example, the
average (over weights drawn from a fixedW andG ∈ RN,d) for the next two even moments are

µd,W(4) = dµW(4) + 2d(d− 1)µW(2)2

µd,W(6) = dµW(6) + 6d(d− 1)µW(4)µW(2) + [3d(d− 1)2 + 2d(d− 1)(d− 2)]µW(2)3,

(2.9)

where as alwaysµW(k) denotes thekth moment of the weight distributionW (the odd moments
are easily shown to vanish). We prove these formulas in Lemma2.4.

Recall that our goal is to find a distributionW so thatTdW = W(λ) for someλ, normalized to
have second moment equal to 1/4 (the second moment of the semi-circle). Our second moment
calculation in Lemma 2.1 suggests thatλ =

√
d. If the semi-circle is a fixed eigendistribution,

then we must haveµd,W(4) = d2/8 andµd,W(6) = 5d3/64. From (2.9), we see that if we choose
W so that the fourth moment is 1/8 then we do getµd,W(4) = d2/8, and if the sixth moment ofW
is also5/64 thenµd,W(6) = 5d3/64. These results suggest that we can inductively show that the
semi-circle is a fixed eigendistribution, but a more involved calculation (see Lemma 2.4) shows
this breaks down at the eighth moment:

µd,W(8) = dµW(8) + 8d(d− 1)µW(6)µW(2) + 6d(d− 1)µW(4)2

+ 16d(d− 1)2µW(4)µW(2)2 + 12d(d− 1)(d− 2)µW(4)µW(2)2

+ 4d(d− 1)3µW(2)4 + 8d(d− 1)2(d− 2)µW(2)4

+ 2d(d− 1)(d− 2)(d− 3)µW(2)4. (2.10)

If W is an eigendistribution ofTd with λ =
√
d thenµd,W(8) must equald4µW(8), which implies

µW(8) =
7

128
+

1

128(d2 + d+ 1)
. (2.11)
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This is almost, but not quite, 7/128, the eighth moment of thenormalized semi-circle.
To unify the derivation of (2.9) and (2.10), as well as the higher moments, we introduce some

notation. This allows us to give a compact, tractable closedform expression for these moments,
and helps us prove that there is a unique eigendistribution (and determine its moments).

2.1. Closed acyclic path patterns.From (2.3) and (2.4), it is clear that moments of the spectral
distribution are closely related to the set of closed walks in G. Moreover, we shall demonstrate
below that it suffices to restrict our attention to walks containing no cycles, as all the walks with at
least one closed cycle contribute a negligible amount to (2.4). We now introduce a combinatorial
object which will keep track of all closed walks on a large tree.

Definition 2.2. A closed acyclic path pattern(CAPP) is a string of symbols such that

(1) every symbol which appears at all appears an even number of times; and
(2) in the substring of symbols between any two consecutive instances of the same symbol,

every symbol which appears at all appears an even number of times.

We call twoCAPPs equivalentif they differ only by a relabeling of the symbols. The following
is theraison d’êtrefor our definition.

Lemma 2.3(Classification of closed walks). The closed acyclic path patterns classify the closed
walks beginning at a given vertex in a large tree.

Proof. There is a natural map from the set of paths (closed or not) in alarge tree to the set of
sequences, where we treat the edges as symbols and just record the edges used in order. It is
evident that this map is “injective” (the relevant equivalence relations on paths and sequences
coincide). There are two issues. We must show

(1) every closed path corresponds to a sequence which is aCAPP; and
(2) everyCAPP is realizable as the edge sequence of some path.

These are not hard to see. Removing any edge from a tree disconnects the tree into two connected
components, so we can ask if two vertices are on the “same side” of an edge or on “opposite
sides”. Furthermore two vertices are on the same side ofeveryedge if and only if they are the
same vertex. If we follow a path in a tree, then the start and end points are on the same side of an
edge if and only if we traverse that edge an even number of times. By a straightforward induction
on the length of the path/sequence, a sequence corresponds to an actual path in a tree if and only if
the second condition in the definition of aCAPPholds. Likewise, a path is closed if and only if the
corresponding sequence satisfies the first condition in the definition of aCAPP holds. �

We can now define the terms that will appear in Lemma 2.4, our closed form expression for the
momentsµd,W(k). Given aCAPPπ, let e1, e2, e3, . . . , er denote all the distinct symbols appearing
in π, in order of appearance. Equivalently, theei denote the edges composing the walk represented
by π, ordered by first traversal. We need the following definitions.

• We denote the set of (equivalence classes of)CAPPs of lengthk by Pk. NotePk is empty
for k odd. Forπ ∈ P2k, we define thediagram of π to be the minimal ordered, rooted tree
which is traversed by the path described by the pattern, withedges repeated according to
how often the edge is traversed in each direction.

• Themultiplicity of a CAPPπ is mπ(d), wheremπ is the polynomial

mπ(x) =
r
∏

j=1

(x− αj), (2.12)
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FIGURE 2. A realization of a particularCAPP in ad-regular graph withd = 4; this
illustrates the multiplicity formula as an instance of standard counting principles.

whereαj := #{i < j : ei is adjacent toej}; we callαj the multiplicity of edgeej. Note
that(d− αj)/d is the proportion of edges emanating from vertexj that are not yet used in
π when vertexj is first visited. This is used in calculating contributions to the moments, as
d − αj represents the number of possibilities available in choosing the next distinct edge.
We measure adjacency by looking at the edges on the tree,not by the ordering of the edges
in our symbol. Thus ifπ = abccbddbeeba the multiplicity ofa is 0, that ofb and ofc is 1,
and that ofd and ofe is 2. Figure 2 illustrates (in the case of a 4-regular graph) how the
number of choices at each stage depends on the shape of the path so far.

• Thesignature of π is
σ(π) := (n1, n2, . . . , nr), (2.13)

whereni denotes the number of times the symbolei appears inπ. Thus eachni is a positive
integer. Ifπ ∈ Pk then the sum of the entries of its signature isk.

⋄: P(2)
k is the set of allCAPPs inPk with signature(2, 2, . . . , 2).

⋄: P(4)
k is the set of allCAPPs inPk with signature(4, 2, . . . , 2).

⋄: P◦
k is the set of allCAPPs inPk excluding the pattern with signature(k).

• Given a signatureσ(π) = (n1, n2, . . . , nr) and a random variableW, themoment contri-
bution associated toπ with respect toW is

µW(σ(π)) := µW(n1)µW(n2) · · ·µW(nr). (2.14)

We can now give a complete description of the moments of the limiting spectral distribution
(averaging over weights drawn from a fixedW and averaging overG ∈ RN,d with N → ∞). Our
answer is in terms of the moments of the weight distributionW and some combinatorial data.

Lemma 2.4(Moment Expansion). Fix a weightW and a degree of regularityd. LetµW(k) be the
kth moment ofW, µd,W(k) the average overG ∈ RN,d and over weightswij drawn fromW of the
kth moments of the measuresνd,Gw , andPk the collection of allCAPPs of lengthk. Then

µd,W(k) =
∑

π∈Pk

mπ(d)µW(σ(π)), (2.15)

wheremπ(d), σ(π) andµW(σ(π)) are defined in(2.12)through(2.14), and as Carleman’s condi-
tion is satisfied the moments uniquely determine a probability distribution.
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AsPk is trivially empty fork odd, Lemma 2.4 implies all odd moments vanish in the limit.

2.2. Proof of Lemma 2.4. Before proving Lemma 2.4, we show it is reasonable by deriving its
prediction for the moment expansions of (2.9) (we leave the eighth moment, (2.10), to the reader).
For the fourth moment, we need allCAPPs of length 4. We have

P4 = {π4;1 = e1e1e1e1, π4;2 = e1e2e2e1, π4;3 = e1e1e2e2} . (2.16)

The signatures areσ(π4;1) = (4), σ(π4;2) = (2, 2), σ(π4;3) = (2, 2). Recall the multiplicityαj of
π is the number ofi < j such thatei is adjacent toej . We have

mπ4,1(d) = d− 0, mπ4;2(d) = (d− 0)(d− 1), mπ4;3(d) = (d− 0)(d− 1). (2.17)

Thus
∑

π∈P4

mπ(d)µW(σ(π)) = dµW(4) + 2d(d− 1)µW(2)µW(2), (2.18)

in agreement with the first part of (2.9).
The calculation of the sixth moment is more involved, as we need to carefully determine the

multiplicities. There are three cases. Note the sum of the entries of the signatures must equal 6, so
there are only three possibilities:(6), (4, 2), and(2, 2, 2).

• Signature of(6): The onlyπ that gives this ise1e1e1e1e1e1. The multiplicity isd − 0, and
the contribution isdµW(6).

• Signature of(4, 2): There are six possibilities:e1e1e1e1e2e2, e1e1e1e2e2e1, e1e1e2e2e1e1,
e1e2e2e1e1e1, e1e2e2e2e2e1 ande1e1e2e2e2e2. We always havee1 occur first, but note that
either e1 or e2 could be the most frequently occurring symbol. The other possibilities
violate some of the conditions; for example, bothe1e1e2e1e1e2 ande1e2e1e1e2e1 violate
the second condition in Definition 2.2 as each has the consecutive string e1e2e1. Each
of the six valid choices has signatured(d − 1), and the total contribution is thus6d(d −
1)µW(4)µW(2).

• Signature of(2, 2, 2): This is the first non-trivial case, as we have to carefully look and see
where we are in our walk to determine the multiplicity. Thereare five terms. Three have
multiplicity d(d − 1)2; they aree1e1e2e3e3e2, e1e2e3e3e2e1 ande1e2e2e1e3e3. Two have
multiplicity d(d− 1)(d− 2); they aree1e1e2e2e3e3 ande1e2e2e3e3e1. For example, for the
last one we start at vertex 0 and move to vertex 1 bye1, then to vertex 2 bye2, then back to
vertex 1 bye2, then to vertex 3 bye3, back to vertex 1 bye3 and then return to vertex 0 by
e1. As all edges include vertex 1, they are all adjacent, thusα1 = 0, α2 = 1 andα3 = 2.
The contribution from these five terms is3d(d− 1)2µW(2)3 + 2d(d− 1)(d− 2)µW(2)3.

We now turn to the proof of the Moment Expansion Lemma. We start with an informal discus-
sion of the issues. We know that we can write thenth spectral moment of ad-regular graph (not
worrying yet about a limit along a sequence of graphs or averaging over the weights) as a sum
of terms, where each term corresponds to a closed path in the graph of lengthn. On the other
hand, the summation in Lemma 2.4 can also be thought of as a sumof similar terms if we interpret
the summandmπ(d)µW(σ(π)) asmπ(d) separate summandsµW(σ(π)), one for each of the paths
starting and ending at a given vertex with patternπ. While these summations are similar, they
arenot identical, sinceG is not a tree but rather a specificd-regular graph which may or may not
contain cycles. There are qualitatively different types ofdiscrepancy here, both caused by small
cycles:

9



• Paths which actually include a non-trivial cycle have no corresponding summand in our
formula, since there is no path through ad-ary tree involving a cycle.

• Paths which go partway around a cycle in both directions may have a corresponding sum-
mand in our formula, but their weights do not match. For example, suppose there is a
triangle with verticesu, v, w, whereu is the root. Then the length 8 pathu, v, w, v,
u, w, v, w, u uses edgeuv twice, edgeuw twice, and edgevw four times, so this path
contributesµW(2)2µW(4) to the summation. This gives the “pattern”abbacbbc, which is
not a CAPP because of the substringbacb. The closest analogous path in anacyclicgraph
would involve four different edges, since the two edges which are at distance 2 from the
root in opposite directions cannot be the same edge. This path doescorrespond to a term in
our formula,abbacddc, but the signature is different. That path contributesµW(2)4 to our
formula (2.15).

The idea of the proof is to determine the contribution from a tree, and bound the average devia-
tion of ourd-regular graphs from being a tree. Although (2.15) does not give the correct spectral
moments for individual graphs, it can give the correct limiting spectral moments for a sequence of
graphs. The technical condition that the number of small cycles in the graphs is growing slowly
is precisely what is needed to guarantee that these discrepancies vanish in the limit. Fortunately
there exist good bounds on the numbers of such small cycles inthe familyRN,d.

Proof of Lemma 2.4.We first recall some notation. Given ad-regular graphG onN vertices (so
G ∈ RN,d) and a probability distributionW, we form the weighted graphGw whose edges are
weighed by iidrv’s drawn fromW. We denote average (with respect to the weightswij being
drawn fromW) of the kth moment of the associated spectral distributionsνd,Gw by µd,W(k;G).
From (2.3) and (2.4) we know thatµd,W(k;G) is the average weight of a closed walk of lengthk
in G. The first step in the proof is to show that only acyclic walks contribute significantly to this
average; i.e., all walks which contain cycles contribute a negligible amount.

We thus consider a closed path of lengthk, denoting the vertices byi1, i2, . . . , ik. Let

Cd,Gw(k) :=
∑

〈i1,i2,...,ik,i1〉
contains a cycle

bi1i2bi2i3 · · · biki1 (2.19)

denote the contribution to thekth moment ofνd,Gw from paths containing a cycle, and

Ad,Gw(k) :=
∑

〈i1,i2,...,ik,i1〉
contains no cycles

bi1i2bi2i3 · · · biki1 (2.20)

the contribution from the acyclic closed paths. We may thus rewrite equations (2.3) and (2.4) as

µd,Gw(k) =
1

N
Cd,Gw(k) +

1

N
Ad,Gw(k). (2.21)

We prove that the first term tends to 0 asN → ∞, which implies thatµd,W(k) only depends on
paths with no cycles (i.e.,CAPPs). From Lemma 2.1 we may assumek ≥ 3. Fix aG ∈ RN,d and a
weight vectorw with components independently drawn fromW. We may take all butNd/2 of the
entries ofw to be0 without affecting the weighted adjacency matrix; for notational convenience
we label those weights which aren’t necessarily0 by {w1, w2, . . . , ws} (wheres = Nd/2).

Choose somek-cycle in G; as it can only traverse these weighted edges, its contribution is
wr1

1 wr2
2 · · ·wrs

s , whereri > 0 and
∑

ri = k. Hereri represents the total number of times our
10



k-cycle traverses the edge with weightwi. Averaging overW and using the independence of the
weights, we have that the expected contribution of ak-cycle is

E[wr1
1 · · ·wrs

s ] = E[wr1
1 ] · · ·E[wrs

s ]

= µW(r1)µW(r2) · · ·µW(rs)

= µW(1)β1µW(2)β2 · · ·µW(s)βs

(2.22)

for some non-negative integersβi satisfying
∑s

i=1 iβi = k. This immediately impliesαk+1 =
αk+2 = · · · = αs = 0, whence

E[wr1
1 · · ·wrs

s ] = µW(1)α1 · · ·µW(k)αk . (2.23)

Let

M = max

{

µW(1)α1µW(2)α2 · · ·µW(k)αk : αi > 0,
k
∑

i=1

iαi = k

}

. (2.24)

Note thatM depends only{µW(i)}ki=1 (the firstk moments ofW) andk; in particular, it is bounded
independent ofN . We highlight this fact by writingM = M(W, k).

Let CG,i be the number ofi-cycles inG, and letCi,N,d be the average number of of cycles of
length i in the ensemble ofd-regular graphs onN vertices. For a fixed weight distributionW,
the contribution of paths with cycles toµd,W(k) from averaging over weights drawn fromW and
graphsG ∈ RN,d is

1

|RN,d|
∑

G∈RN,d

∫ ∞

−∞

· · ·
∫ ∞

−∞

1

N
Cd,Gw(k)

∏

1≤i≤j≤N

pW(wij)dwij

≤ 1

|RN,d|
∑

G∈RN,d

(

1

N

k
∑

i=3

CG,iM(W, k)

)

=
M(W, k)

N
·

k
∑

i=3

1

|RN,d|
∑

G∈RN,d

CG,i =
M(W, k)

N
·

k
∑

i=3

Ci,N,d, (2.25)

Herei > 3, as otherwiseG has no cycles. By Lemma 4.1 of [McK], fori ≥ 3 we have

lim
N→∞

Ci,N,d =
(d− 1)i

2i
. (2.26)

Combining this with the above, we deduce that the contribution from the paths with a cycle to
µd,W(k) is O(1/N), and thus negligible asN → ∞. In particular, this implies

µd,W(k) = lim
N→∞

1

|RN,d|

∫ ∞

−∞

· · ·
∫ ∞

−∞

1

N
Ad,Gw(k)

∏

1≤i≤j≤N

pW(wij)dwij . (2.27)

The proof is completed by noting that this is equivalent to
∑

π∈Pk
mπ(d)µW(σ(π)). This follows

from the definition ofCAPPs, multiplicities and signatures, and similar arguments asin [McK].
The factorµW(σ(π)) comes from how often each weight occurs and averaging over the weights.

The factormπ(d) requires a bit more work. As we take the limit asN → ∞, there is no loss
in assuming we have a tree. As we need a closed path to have a contribution, eachk must be even
and each edge must be traversed an even number of times (as we have a tree, there are no cycles).
By Lemma 2.3 there is a one-to-one correspondence betweenCAPPs and legal walks along edges.
Each time we hit a vertex and go off along a new edge, the numberof choices we have equalsd

11



(the regularity degree) minus the number of edges we have already taken from the vertex. This is
why the multiplicity of edgeej is d minus the number of edgesei adjacent toej with i < j, and
adjacency is measured relative to the tree andnot the string of edges. This completes the proof.�

While Lemma 2.4 gives a closed form expression for the limiting moments, it is not imme-
diately apparent that it is ausefulexpansion. We need a way of computing the sum overπ of
mπ(d)µW(σ(π)), which is our next subject.

2.3. Counting walks by signature. We conclude this section by showing how to count walks
with certain simple signatures. We use these results to prove our theorems on eigendistributions in
§3. We first recall some notation.

• P(2)
k is the set of allCAPPs inPk with signature(2, 2, 2, . . . , 2).

• P(4)
k is the set of allCAPPs inPk with signature(4, 2, 2, . . . , 2).

• Tk is the set of all triples(π, x, y), whereπ ∈ P(2)
k andx, y are symbols corresponding to

distinguished edges in the diagram, which must be adjacent and first traversed in that order.
• P◦

k is the set of allCAPPs inPk excluding the pattern with signature(k).

Lemma 2.5(Counting Walks without Repeated Edges). There are exactly1
k+1

(

2k
k

)

CAPPs of length

2k and signature(2, 2, 2, . . . , 2). That is,|P(2)
2k | = 1

k+1

(

2k
k

)

.

Proof. Walks of signature(2, 2, 2, . . . , 2) use each edge exactly twice. Such a walk is determined
by its diagram, regarded as an ordered tree (in the sense thatthe children of each vertex “remember”
in which order they were visited). It is well-known that the Catalan numbers count such trees, and
appear throughout random matrix theory (see for example [AGZ]). �

The following lemma plays a key role in computing the lower order term to the moments in
Theorem 1.2, and allows us to improve our error fromO(1/d) to O(1/d2).

Lemma 2.6(Serendipitous Correspondence). There is a two-to-one correspondence between length-
2k CAPPs whose signature is(2, 2, 2, . . . , 2) with a distinguished pair of adjacent edges, and
length-2k CAPPs with signature(4, 2, 2, . . . , 2). That is,|T2k| = 2|P(4)

2k |.
Proof. In this proof, we always use the symbolsx, y (in that order) as the distinguished symbols
for an object inT2k. These symbols will occur either in the orderxyyx or xxyy (the order cannot
bexyxy or theCAPP condition would be violated). Consider sequencesAxByCyDxE (case 1)
or AxBxCyDyE (case 2), where capital letters denote substrings, where every symbol occurring
in ABCDE does so exactly twice in total. In order for this to bea genuine pattern, for each non-
distinguished symbol that occurs, one of the following mustbe true.

(1) Both occurrences are in the same substring (A, B, C, D, orE).
(2) One occurrence is inA and the other is inE.
(3) One occurrence is inB and the other is inD (case 1 only).
(4) One occurrence is inC and the other is inA orE (case 2 only).

Sincex andy are adjacent edges, the last two possibilities are ruled out. But now it is not hard
to see that elements ofP(4)

2k have the formAzBzCzDzE, with precisely the same conditions on
A,B,C,D,E. Then we correspond the patternsAxByCyDxE andAxBxCyDyE to the pattern
AzBzCzDzE, giving the desired two-to-one correspondence. �
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3. THE EIGENDISTRIBUTION

Our goal is to find the eigendistributionsW(λ) of the mapsTd from (1.3). Recall thatTd maps a
given weight distributionW to a spectral distribution. In this section we prove that foreachd there
exists a unique (up to rescaling) eigendistribution ofTd. To do this, we first apply Lemma 2.4 to
obtain a recursive identity on the moments of any eigendistribution; it will then be seen that there
exists a distribution possessing these moments. Moreover,we show that after appropriate rescal-
ing, the moments grow very similarly to those of the semicircle distribution. The two distributions
are not exactly the same, and we quantify the extent to which they differ.

We first prove that for any fixedd, Td has at most one eigenvalue. Given any distributionW
with densitypW and anyλ > 0, let µW(k) denote thekth moment ofW andµW(λ)(k) denote the
kth moment of the rescaled distributionW(λ) (see (1.4) for the effect of scaling byλ). We have

µW(λ)(k) =

∫ ∞

−∞

xk dW(λ)(x) =

∫ ∞

−∞

xkλ pW(λx) dx =

∫ ∞

−∞

(x

λ

)k

pW(x) dx =
1

λk
µW(k).

(3.1)
In particular, ifW is an eigendistribution with eigenvalueλ, andµd,W(k) denotes the moments
of the spectral distributionTdW = W(λ), thenµd,W(2) = λ−2µW(2). On the other hand, from
Lemma 2.1 we know thatd−1µd,W(2) = µW(2), whenceλ = d−1/2. We thus obtain a relation for
the even moments of an eigendistribution:

µd,W(2k) = dkµW(2k). (3.2)

Substituting this into Lemma 2.4 and simplifying yields thefollowing formula.

Lemma 3.1 (Eigenmoment Formulas). SupposeWd is an eigendistribution ofTd, i.e., TdWd =

W(λ)
d for someλ > 0. Denote the moments ofWd by µWd

(k). We may assume (without loss
of generality) thatWd is scaled so thatµWd

(2) = 1/4 (the second moment of the normalized
semi-circle distribution). ThenµWd

(k) = 0 for all oddk, and

µWd
(2k) =

1

dk − d

∑

π∈P◦

2k

mπ(d)µWd
(σ(π)). (3.3)

We can now prove Theorem 1.2, namely that there exists a unique eigendistribution, as well as
determine properties of its moments.

Proof of Theorem 1.2.As the signatureσ(π) involves numbers strictly smaller than2k for all π ∈
P◦

2k, (3.3) gives a recursive formula for the moments. Thus, if aneigendistributionWd exists,
then its moments are uniquely specified. The even moments areeasily bounded above by 1 and
below by the moments of the normalized semi-circular distribution. Thus Carleman’s condition
is satisfied (

∑∞
k=1 µWd

(2k)−1/2k = ∞), and the moments uniquely determine a distribution (see
[Bi, Ta]).

From Lemma 3.1 we easily findµWd
(2) = 1/4, µWd

(4) = 1/8, µWd
(6) = 5/64, and

µWd
(8) =

7

128
+

1

128(d2 + d+ 1)
. (3.4)

From this data it seems safe to guess that the main term ofµWd
(2k) is

c2k :=
1

4k(k + 1)

(

2k

k

)

(3.5)
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(the2kth moment of the normalized semi-circular distribution), which we now prove. We first show

µWd
(k) = ck +O(1/d), (3.6)

and then with a bit more work improve the error toO(1/d2).
For oddk there is nothing to prove, since bothµWd

(k) and ck vanish. We thus restrict our
attention to evenk, and proceed by induction; to emphasize that we have even subscripts we write
2k for k. For 2k ≤ 8, we have already verified the conjecture. The only role of theinductive
hypothesis is to ensure that, when computingµWd

(2k), we can treat all lower eigenmoments as
O(1). The recursion formula (3.3) gives

(dk − d)µWd
(2k) =

∑

π∈P◦

2k

mπ(d)µWd
(σ(π)). (3.7)

The total contribution from thoseπ which involve fewer thank symbols isO(dk−1). Thus, the main
term must come from the patterns involvingk edges, i.e.,π whose signatureσ(π) = (2, 2, . . . , 2).
RecallP(2)

k is the set of allCAPPs of lengthk which possess a signature of this form. Note
µWd

(2) = 1/4 andµWd
(4) = 1/8, so ifπ ∈ P(2)

2k thenµWd
(σ(π)) = (1/4)k, while if π ∈ P(4)

2k then
µWd

(σ(π)) = (1/8)(1/4)k−1. We have

(dk − d)µWd
(2k) =

∑

π∈P
(2)
2k

mπ(d)µWd
(σ(π)) +O(dk−1)

=







∑

π∈P
(2)
2k

µWd
(σ(π))






dk + O(dk−1) = |P(2)

2k |2−2kdk +O(dk−1), (3.8)

where we used forπ ∈ P(2)
2k

mπ(d) =

k
∏

i=1

(d− αi) = dk +O(dk−1) (3.9)

(whereαi is the number of edges prior to theith which are adjacent to theith as in (2.12)). Lemma
2.5 yields the desired conclusion.

The serendipitous correspondence from Lemma 2.6 allows us to improve the error to

µWd
(2k) = c2k +O(1/d2). (3.10)

As above, we have already verified the theorem (with no error term) in the cases whenk is odd
or at most 8. Henceforth we assume that2k > 8. We analyze the contribution from patterns with
at leastk−1 distinct symbols (in other words, we allow at most one repetition), and trivially bound

14



the contribution from the remaining byO(dk−2). We have

(dk − d)µWd
(2k) =

∑

π∈P◦

2k

mπ(d)µWd
(σ(π))

=







∑

π∈(P
(2)
2k ∪P

(4)
2k )

mπ(d)µWd
(σ(π))






+O(dk−2)

= (1/4)k







∑

π∈P
(2)
2k

mπ(d)






+ (1/8)(1/4)k−1







∑

π∈P
(4)
2k

mπ(d)






+O(dk−2)

= (1/4)k







∑

π∈P
(2)
2k

mπ(d) + 2
∑

π∈P
(4)
2k

mπ(d)






+O(dk−2). (3.11)

The strategy is to compute the secondary terms ofmπ(d), multiply them by the correct factor and
then substitute back into (3.11). Ifπ ∈ P(2)

2k , then

mπ(d) =

k
∏

i=1

(d− αi) = dk −
(

k
∑

i=1

αi

)

dk−1 +O(dk−2), (3.12)

whereαi is the number of edges prior to theith which are adjacent to theith as in (2.12). Summing
overi gives the number of pairs of adjacent edges in the diagram. Summing overP(2)

2k , we obtain
∑

π∈P
(2)
2k

mπ(d) = |P(2)
2k |dk − |T2k|dk−1 +O(dk−2). (3.13)

All of these terms have the same value forµWd
(σ(π)), namely(1/4)k.

For the other summation we need only the dominant term:
∑

π∈P
(4)
2k

mπ(d) = |P(4)
2k |dk−1 +O(dk−2). (3.14)

All of these terms have the same value forµWd
(σ(π)), namely(1/8)(1/4)k−1 = (1/2)(1/4)k.

Using the above, we find that the contribution fromπ ∈ P(2)
2k ∪ P(4)

2k to (3.11) is

|P(2)
2k |

dk

4k
− |T2k|

dk−1

4k
+ |P(4)

2k |
dk−1

2 · 4k +O
(

(d/4)k−2
)

; (3.15)

however, by Lemma 2.6|P(4)
2k | = 2|T2k|, and thus the orderdk−1 terms above cancel, yielding

µWd
(2k) = |P(2)

2k |
dk

4k(dk − d)
+O

(

dk−2

4k(dk − d)

)

. (3.16)

From Lemma 2.5 we have|P(2)
2k | = 1

k+1

(

2k
k

)

= 4kc2k (wherec2k is the2kth moment of the semi-
circle distribution normalized to have variance 1/4), and thus

µWd
(2k) = c2k +O

( c2k
dk−1

)

+O

(

1

4kd2

)

; (3.17)
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ask > 3 the second error term dominates. We conclude that the error isO(1/d2), as claimed. �
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