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ABSTRACT. We compare thd-Function Ratios Conjecture’s prediction with number ttyefor the
family of quadratic twists of a fixed elliptic curve with prerconductor, and show agreement in the
1-level density up to an error term of si2e— "= for test functions supported if+-o, o); this gives

us a power-savings far < 1. This test of the Ratios Conjecture introduces complicetioot seen

in previous cases (due to the level of the elliptic curve)rtiier, the results here are one of the key
ingredients in the companion paper [DHKMS2], where theyused to determine the effective matrix
size for modeling zeros near the central point for this famihe resulting model beautifully describes
the behavior of these low lying zeros for finite conductoxplaining the data observed by Miller in
[Mil3].

A key ingredientin our analysis is a generalization of &gibound for sums of quadratic characters
with the additional restriction that the fundamental disménant be congruent to a non-zero square
modulo a square-free integéf. This bound is needed for two purposes. The first is to analyze
terms in the explicit formula corresponding to charactaised to an odd power. The second is to
determine the main term in the 1-level density of quadratists of a fixed form orGL,,. Such an
analysis was performed by Rubinstein [Rub], who impliclysumed that Jutila’s bound held with
the additional restriction on the fundamental discrimisain this paper we show that assumption is
justified.
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1. INTRODUCTION

One of the most important areas in modern number theory isttiay of the distribution of the
zeros ofL-functions. These zeros encode crucial number theordbenration on subjects ranging
from the distribution of the primes (from simply the numbémpoimes at most: to biases in the
distribution of primes in various residue classes) to prige of class numbers to (conjecturally)
the geometric rank of the Mordell-Weil group of rationalidns of an elliptic curve. Further, the
observed behavior is similar to that found in nuclear ptg/sied other disciplines, suggesting deep
connections between this branch of mathematics and ottds.fieEhe General Riemann Hypothesis
(GRH), often considered the most important open questionathematics, is the conjecture that all
non-trivial zeros of thesé-functions have real part equal 1¢2. As powerful as this conjecture is,
there are many problems in number theory where just knowiageal parts aré/2 is not enough,
and we need to know finer properties of the distribution ofzées on the critical lin&(s) = 1/2.

As proofs of properties of these zeros have eluded researsiice Riemann’s seminal paper,
methods of modeling these zeros are indispensable in uaddisg and formulating appropriate
conjectures about-functions. Many models have had various degrees of sucBessaps the most
famous are those arising from Random Matrix Theory (see Xample [KaSal, KaSa2, KeSn1,
KeSn2, KeSn3] among others, and [FM] for some of the histdrhe interplay between nuclear
physics and number theory). Unfortunately, these model®aly able to predict the main term be-
havior in the problems of interest, and in many situatiomsahthmetic of the family of.-functions
only surfaces in lower order terms (see for instance [Mil26\MYo1]). This often requires the arith-
metic to be added in an ad-hoc fashion. Another approaclthitas the advantage of including the
arithmetic directly, is the hybrid model (see [GHK]), whet€functions are modeled by the prod-
uct of a partial Hadamard product of zeros (which is expettdoe described by Random Matrix
Theory) and a partial Euler product (which is expected tovipl®@the arithmetic).

In this work we discuss another method, thdéunction Ratios Conjecture of Conrey, Farmer and
Zirnbauer [CEZ1, CFZ2]. We concentrate on the family of qaéid twists of a fixed elliptic curve
of prime conductor. The paper is organized as follows. Wediescribe the statistic of interest (the
one-level density), and then discuss the Ratios Conjéstprediction and its implications. The rest
of the paper is devoted to proving the conjecture. We caleul®e number theory i 82, and show
for suitable test functions that it agrees with the Ratiaggdiction in §8. A key step in the analysis
is generalizing Jutila’s bound for character sums, whictdwén &4. In addition to being of use for
this problem, this result was also implicitly used by Rukens [Rub] in determining the main term
in the one-level density for twists of a fix&dL,, form.

1.1. One-Level Density of Low Lying Zeros. Assuming GRH, the non-trivial zeros éffunctions

lie on the critical line, and thus it makes sense to study ik&ildution of spacings. There is a
mix of theoretical and experimental evidence ([Mon,|Hej, RE81, Od2]) relating these normalized
spacings in the limit as we climb the critical line to the sthkpacings between eigenvalues of
random matrix ensembles as the matrix size tends to infimityally this suggested that the Gaussian
Unitary Ensemble (GUE) of matrices was the correct (and)amigdel needed for number theory;
however, Katz and Sarnak showed that the classical compagpg (subgroups aV x N unitary
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matrices) all have the samelevel correlations as the GUE @ — oc. There is thus more to the
story, and we need a statistic which is sensitive to finer @nigs of theL-functions.

One such statistic is the one-level density of the low lyiegps of a family ofL.-functions, which is
different for the scaling limits of the different classicaimpact groups. Fix a Schwartz test function
¢ such tha@ is supported in, say,—o,c). Let L be related to the local rescaling near the central
point, so that normalized zeros neat 1/2 have mean spacing one. For Affunction L(s, f), its

one-level density is defined by
L
D(f.0) =& (%) ; (1.1)
7

herel/2 + iv; runs over the non-trivial zeros of thefunction (which under GRH all have € R)
and L /7 is the scaling factor (it is related to the logarithm of thelstic conductorEl Using the
explicit formula (see for instance [Mes, RS]), we replaceshm ofp at the scaled zeros with sums
of gEat the logarithms of the primes, weighted by the Fourierfomehts of theL-function. As¢ is
a Schwartz function, it vanishes rapidly ja$ — oo and thus most of the contribution is from zeros
near the central point (relative to the local average sjggcin

Ideally we would use a delta spike instead of a Schwartz testtion to get a perfect picture at a
point; however, the delta spike has a Fourier transform firfite support, which leads to weighted
prime sums we cannot evaluate. As edcfunction only has a bounded number of zeros within
the average spacing of the central point, it is necessarydmge the one-level density over all
f in a family 7. This allows us to use results from number thandetermine the behavior on
average near the central point. The exact nature of just edredtitutes a family is still being deter-
mined; standard examples includefunctions attached to Dirichlet characters, cuspidalfoews,
and families of elliptic curves to name just a few.

We assume our family of-functionsF can be ordered by conductor, and denoteAiy)) all
elements of the family whose conductor is at m@sfThus the quantity of interest ends up being

D(F,¢) == lim ———= Y D(f¢) = lim —— > Y ¢ <—) . (1.2)
Q= | F(Q) S0 Q= | F(Q)] S 4 m

In other words, we consider the limiting behavior of the ager of the one-level densities as the
conductors grow. To date a large number of families have bmesstigated (such as Dirichlét-
functions, elliptic curves, cuspidal newforms, symmepievers, number fields, and convolutions of
such families, to name a few), and for suitably restrictatifienctions the main terms in the one-level
densities agree with the scaling limits of a classical corhgaoup; see for example [DM1, DM2,
Fl, [Gao, Gu, HM| HR| ILS, Mill, OS1, OS$2, RR, Ro, Rub, Yo2].

1.2. The Ratios Conjecture. While Random Matrix Theory has successfully predicted tteenm
term of the one-level density of all families studied to dattés insufficient as it is silent on lower
order terms. These terms are important for many reasondirtis that the arithmetic of the family
is often absent in the main term but present in lower ordens€see for instance [Mil2, Mil6, Yo1]).
For example, in[[Mil6] lower order effects were found relite the torsion group of the family of

IMany works in the literature usé’/2m; as this is a companion paper {0 [HKS] we use their notaticfad¢ditate
calling their equations.

2The needed result depends of course on the family beingestuBor Dirichlet.-functions one uses the orthogonality
of the characters, for elliptic curves one uses properfissims of Legendre symbols, while for cuspidal newforms one
uses the Petersson formula.
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elliptic curve L-functions. Further, these lower order terms are impoytasthey control the rate
of convergence to the predicted limiting behavior. This kvsrmotivated by the companion paper
[DHKMSZ2]. The authors there discuss a proposed model whxgitaens the observed repulsion
found by Miller [Mil3] of zeros of elliptic curvelL-functions near the central point. One of the two
main ingredients in the model is the first lower order termhi@ tne-level density in elliptic curve
families, which is needed to determine the effective magibe. The Ratios’ prediction of this was
worked out in another companion papér, [HKS]; the purposthisfpaper is to verify the Ratios’
prediction (at least for suitably restricted support).

The L-function Ratios Conjecture of Conrey, Farmer and Zirnb§QEZ1, CFZ2] (see also [CS1]
for many worked out examples of the conjecture’s predigtawa formulas for the averages over fam-
ilies of L-functions of ratios of products of shiftddfunctions. Their “recipe” for performing these
calculations starts by using the approximate functionabéiqn, where the error term is discarded,
to expand thd.-functions in the numerator; thie-functions in the denominator are expanded via the
Mobius function. They then average over the family, andimebaly the diagonal pieces. These are
restricted sums over integers, but are then completed aedded to sums over all integers; again
the error term introduced is ignored. These methods, faplsinto implement than rigorous anal-
ysis, have easily predicted the answers to many difficultppatations, and have shown remarkable
accuracy. The resulting formulas make very detailed pteis on numerous problems, ranging
from moments to spacings between adjacent zeros and vdldetiactions.

A standard test of the Ratios Conjecture is to compare thef@bnjecture’s predictions for the
one-level density of a family of-functions with the corresponding rigorous calculatiogréement
has been found for suitably restricted test functions fonyrfamilies. See [CS1, GIMMNPP, Mil3,
Mil5] Mile,) MilMon], as well as [BCY,,[CS1] CS2] for agreemeniith other statistics. In addition
to strengthening the credibility of the conjecture, theslewations provide insight into the signifi-
cance of the terms that arise in the number theoretic caicnlwhose corresponding terms in the
Ratios Conjecture’s predictions are more clearly undedshle. For example, in [Mil5] the Ratios
Conjecture’s prediction allows the interpretation of adowrder term in the behavior of the family
of quadratic Dirichlet characters as arising from the nonal zeros of the Riemann zeta function.

Our primary object of study is the collection of quadrati¢gis of a fixed elliptic curve of prime
conductorM . The families associated to elliptic curves are of consiblerimportance, as they are
the best laboratories (see [Mil3]) to see the effect of mpldtzeros on nearby zeros. By work of
C. Breuil, B. Conrad, F. Diamond. R. Taylor and A. Wiles [BCDIW, [Wi], the L-function of an
elliptic curve agrees with that of a weight 2 cuspidal newfaf level N (where the integeN > 1
is the conductor of the elliptic curve). The Ratios’ premintwas computed ir [HKS], and was one
of the key inputs inf[DHKMSZR] in explaining the observed régpon of zeros near the central point
in families of elliptic curveL-functions (see [DHKMS1] for an analysis of random matriagtities
relevant for the model and comparison). We perform the nurtiteoretic calculations of the zero
statistics for the one-level density for this family, andrgmare our results to the Ratios Conjecture’s
prediction. For a similar case sée [MilMor], which perfor@mparable calculations for the family
of quadratic twists of thé.-function associated to Ramanujan’s tau function, and deagreement
with the Ratios’ prediction up to a power-savings error teffheseL-functions are similar to our
elliptic curve L-functions but without the bad prime. The simpler case mtedia useful guide for
performing the more complicated analysis found in this pape

We first set some notation for the paper. We always denote lbptieecurve by E, which we
assume has prime conductbf and even functional equation. We consider the family of gata
twists,
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F(X)={0<d < X :dan even fundamental discriminant apg —M )wgr = 1} (1.3)

and set

(1.4)

X' = |F(X)], Lzlog(mX>.

2T

The Ratios Conjecture’s prediction for these lower ordemsge computed in [HKS], has been
inputted in some of these models, but has not yet been verifiéd main obstacle in verifying
the prediction, at least for suitably restricted test fiond, is the presence of the levél in the
Euler products in the prediction. This leads to more conapdid formulas than in [Mil5], where we
studied just quadratic Dirichlet characters. While theultasg Euler products are harder to analyze
than other cases, we are still able to show agreement witlvarsavings.

Our main (number theory) result is the following:

Theorem 1.1. Let £ be an elliptic curve with even functional equation and priconeductorM and
g an even Schwartz test function whose Fourier transfgiisisupported inf—o, o). The one-level
density of the family of even quadratic twistsfoby even fundamental discriminants at masts

1
dG}'(X Yd

_ @+ﬁ/_®og(f) Z)[mog(\/_'d‘) +F<1+¢%)+%<1—¢%)] dr

0 deF(X

1 [* ¢ 2miT Ly 9 2miT (MY —1)log M
— —= 1 - : d
+L/ 9(7)< C < 7 )+LE (Sym’ ) o meEEne |

/=1

log M L[ logp =A™ ) = A@™)
__Z/ D) —oraen Tt L/_ a(m) P+ 1) > pEFDIFT) dr

o0 ptM k=0

YO (X—% log® X) . (1.5)

Much of the work in determining the Ratios’ prediction wasdan [HKS]. In this work we finish
the analysis, rewriting the expansion fram [HKS] to faeité comparisons with number theory.
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Theorem 1.2. Notation as in Theorein 1.1, the prediction from the Ratiosj€cture is

VdL>
dG}'(X Yd
1 e vV M]|d| I inT I inT
= 2log [ )+ = (1+ =) + =(1-=2) | d
2LX*/_oog(T) 2 [ Og( o >+r( ) (=) |
deF(X)
1 [ ¢ ( 2m‘7) LY, < 27?2'7‘) (MY —1)log M
++ T + +—£ (sym?® 1+ - > dr
L/ 9(7) ( ¢ L ) Ls\Y L ; IViC=aT
log M 1 /°° logp = A@P**?) = A(p™)
-7 wir) ———————d7 + — g(T) — dr
Z/ N+ L) o % (p+1) ; p(k+1)(1+ )
RG> (md')‘z’”“r(l 27) (1 + 27) Lig(syn, 1 — 27)
* g\ i7rT
CLX* ) P 27 L1+ 95) Lg(syn?, 1)
ITT ATT —1/2+4ey.
xAE< == ) dr + O(X V), (1.6)

see BB for a definition ofl .

A mentioned above, the main difficulty in showing agreemesttiMeen number theory and the
above prediction is the presence of the level of the ellipticve (which was not present in the
symplectic family studied iri [Mil5]). By a careful analysi$the Euler products, we prove

Theorem 1.3. Notation as injheoretﬂ.l, assuming GRH the Ratios Comgsforediction agrees
with number theory fosupp(¢) C (—o, o), up to error terms of siz& (X ~(1-9)/2),

2. THE NUMBER THEORY RESULT

The starting point of all one-level density investigatiasghe explicit formula; modifying [Mes,
RS] (among others; sele [HMM] for a proof) one finds the follogi

Lemma 2.1. The one-level density for the family of quadratic twists bgrefundamental discrimi-
nants of a fixed elliptic curv& with even functional equation and prime conducidris

LTy

de]—' Yd
1 o VM|d I’ _
ZQLX*/—wg(T)de;X) [210g< M] |>+ - (1+ L>+F<1—ZW—£> dr

k 1 k
_ = Z ZZ (o + 5 ,ffi )OgP§<lo2g£) ) 21)

de}‘(X ) k=1 p

whereF(X), X*, and L are as defined in Equations 1.3 and]1.4.
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We prove Theorem 1.1 by analyzing the expansion above. Astibgral term is also found in the
Ratios’ prediction, we need only study

(ay + B5)xi(p) logp_ (log p*
- 2LX* Z ZZ k/2 g( 27, - Seven+Sodd, (22)

deF(X) k=1 p

where

1 a —i—ﬁka()logpA log p*
Sow = = 3 LY R ()

deF(X) k=1 p

Z ZZ 2k+1+ﬁ2k+1) d(p) logp/\ logp%ﬂ (2 3)
p(2k+1)/2L g 2L '

de]—' ) k=0 p

Sodd

(note thaty,(p) = x2**!(p) for anyk € N). We splitS..., further by noting that

1 ifptd
2 = 2.4
and write
Seven = even,1 + Seven,Z (25)
with
e (Oégk + 5519) logpA logpk
Seveml - - zp: kz:; pkL g L
2k 2k
+ 52%) 1o log p*
Semz = = D > L SRt () 26)
de]—'(X ) k=1

We prove Theorerh 1.1 by analyzir},c, and Soaa IN a series of lemmata below, frequently
breaking these summands down further.

2.1. Analysisof Seven1. We consideiSey., 1 and have

1 = (@) + ") logp_ (log p
chcn,l = _E Z Z K P g &0 = Sovon,l,l + chcn,1,27

k
p k=1 p L
where
1 o (2% + B#Ylog M __ (log M*
Seven = -
b L; M NI

1 = (aZF 4 B2F) logp__ (log p*
= —— . 2.7
Seven,l,Z I Z pk g L ( )

ptM k=1

Lemma2.2. We have

1 <= log M __[log M* - log M
Seven,l,l = _Z Z N2k g ( ) = Z Z/ W(Z’T (28)
k=1

k=1
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Proof. For M we have

WE 2k B
2% | gok _ (W) = M (2.9)
Using (2.9) and unwinding the Fourier transform gives ttancl O

Lemma 2.3. Notation as above,

Sovon,1,2 =

g(0) 1 /°° ¢’ 2mit\ Ll ) 2miT = (M*—1)log M
AN —> (1 i 1 - _ dr.
5 +L _oog(f) C + 7 +LE sym*®, 1+ 7 ; V7O T
(2.10)

Proof of Lemm& 2]3Let
(@? +a*)logp ifn=p'ptM
A = p p 2.11
5(n) {0 otherwise. ( )
We have

o0

1 Ag(n logn
even12 = _EZ < ) (212)

We use Perron’s formula to re-writg,.,.; as a contour integral. For amy> 0 set

L= - g <<22 - 2),1°g‘4) yo Al (2.13)
R(z)=1+e€

271 47y n?
n=1

we will later takeA = VM X /27, so thatlog A = L. We writez = 1 + ¢ + iy and use[(B.2)
(replacingg with g) to write g(x + iy) in terms of the integral of(u). We have

Ap(n) 1= (ylogA iclog A\ iy,
7 _ L . iylogn; g
[oe} A 1 [e] o yog
— EI<">— / {/ [G(u)ect o5 4] =2~ Audu} e VB dy. (2.14)
n=1 nite 2m - -
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We leth.(u) = g(u)e°e4. Note thath, is a smooth, compactly supported function aindu)

he(—w). Thus
= Ap(n) 1 [* ~ ( ylogA\ _,,
[ h _ 1Y ognd
nzz:l nlte 27 /_OO 6( 27 ‘ Y
. Ag(n) 1 /°° ~ —omi g 2mdy
_ il h.
g nlte 27 (y)e log A

Ag(n) 1 }f _logn
‘ log A

- AE(”) IS <1Ogn) elogn
= Z 1+ 9 €
< nite log A log A

B 1 &= Ag(n) _[logn
B 1ogAnz:; n g(logA ' (2.15)

By taking A = v/M X /27 we find

Ag( 1
even12 - __Z E <0gn> - —Il. (216)

We now re-write/; by shifting contours; we will not pass any poles as we shifir #éachy > 0
we consider the contour made up of three pie€és: ico, 1 — id], Cs, and[1 — 4, 1 + ico), where
={z:2—-1=10e" 0 € [-n/2,m/2]} is the semi-circle going counter-clockwise frdm- i to
1+ id. By Cauchy’s residue theorem, we may shift the contouy ifiom R(z) = 1 + ¢ to the three
curves above.
Before analyzing this integral, we rewri}e, Az (n)n~* as the sum of logarithmic derivatives of
L-functions. From (3.15) and (3.16) of [ILS], we have

Lp(sym®s) = [ (1 — a_§>_1 (1 - %)4 (1 — 5—2> 11 (1 - Slﬂ)_l, (2.17)
it p p )i p

asa,3, = 1for pt M. Taking the logarithmic derivative yields

I s a2£+1—|—5 )logp = logp
T2 (sym?,5) = -yt =22 e
b ptM (=1 p|M (= 1 P

o

20 1
_ _Zza +B ogp_zzlogp ZZ 18%557 (2.18)

ptM (=1 ptM =1 \J\/[Zl
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SO
00 00 a%_l_ﬂ% logp
S awn — Y3
n=1 ptM =1
B logp = logp L,
- _ZZ ZZ (s+1)€ sym s)
ptM =1 ot =1 P
¢ Ly logp logp
- Z(s)——sym 18 +ZZ ZZ (s+1)¢
|M =1 ot =1 P
¢ ’E (M* —1)log M
= Z( s) — i (sym?, s +Z TG (2.19)

We use this in replaciny_,, Ax(n)n~* in the integral definition of; in (2.13). We find

14400 -
o [ (e
e 1—ioo Cs 1446 4mi - n
1 / / /1“00 (22 —2)log A
a 27Ti 1—ioo Cs 146 4

g’ Ly —1 logM

The integral over’s is easily evaluated. Shimura [Sh] proved that(sym?, s) is entire, and thus
S0 too is its logarithmic derivative. Thus there is no cdmttion from the symmetric square piece
in the limit asé — 0. As((s) has a pole at = 1, ('(s)/((s) = —1/(s — 1) + - - -, and we must
multiply the contribution from the residue byl because of the pole. We get just minus half the

residue ofy M), which yields the contribution from th@; piece is—g(0)/2.

47e
We now take the limitag — 0:

[ ()

/ < (M —1)log M
( 2<>+L_E<sym -y B e )dy

/=1

(2.21)

As g is an even Schwartz function, the limit of the integral ab®vevell-defined (for largey this
follows from the decay of;, while for smally it follows from the fact thatl’(1 + iy)/{(1 + iy)

has a simple pole at = 0 andg is even). We again také = /M X/27, and change variables to
T =yL/2m. Thus

[ ’ . I
L = —@—%/_mg(ﬂ< C(<1+27ZT)+L_§(SYIH 1—|—27ZT)

o (M —1)log M p
— ()
= _Seven,l,Za (222)
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which completes the proof of LemrhaR.3.

2.2. Analysisof Seyen 2.

Lemma 2.4. We have

Sovon,2 = %/j:)g Z ;Oili Z)\

=0 p

2k+2 -\ (ka)

k—i—l (1+27rrr)

Proof. Recall Seyen 2 IS

Seven 2 =

Oz%—l—ﬁ% logp 1
D ID I ().

deF(X) k=1 p|d

and a change of order of summation gives

evcn2 = LX* E g < ) E 1.
p k=1 deF(X)
pld

From Lemma A.lL we find that

deF(X) If p| M.
pld

Using (2.25) in[(2.214) yields

1 > (@2F + %) log p <1ogp’“>
Sovon - - P P q —|—O X1/210 log X).
2 L%; Forn I\ ( glog X)

Substituting

]. k -__lo; pk LT
§< Og[p ) = / g(r)e T dr = / g(r)p~ T kdr
into (2.26) yields

chcn,2 =

a2k+ 2k 10 T
Z( <pﬁ +)1> gp/ g(r)p~ " E*dr + O(X"loglog X)

1

72
ptM k=1

1 Z Z (O‘% + 5%) log p

L YA pF(p+1)

_ L[ logp ¢~ (03" + 57") P
B E/_OOQ(T)Z(p_i_l); p(1+2mT dr + O(X/*loglog X).

/ g(T)p_%_LideT + O(Xl/2 log log X)

Forp t M we have
apf + 5 = M) = A),

dr + O(X?loglog X).

11

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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thus

1 > log p = )\(p%)_)\(p%_z) 1/2
Seven2 = Z/_ g(ﬂ% o+ 1) ; T dr + O(X/“loglog X)

> logp )\<p2k+2) - )\(p%) 1/2
/_OO g(7) o+ 1) 2= i) dr + O(X/*loglog X). (2.30)

2.3. Analysis of S,qq. We now analyzes,qq by applying Theorerh 411, which generalizes Jutila’s
bound. In the sums below/ is an odd prime and is an even fundamental discriminant congruent
to a non-zero square moduld. We modify the analysis of,4q from [Mil4], where theS,qq term

iS now

odd -

2k+1 2k+1

+ 1 1 2k+1

Z ZZ ik+1)/)2 lr) ngﬁ( oep ) : (2.31)
P L 2L

de]—' ) k=0 p

with the d-sum over fundamental discriminants such t&uals a non-zero square modulo If
pt M thenaZFt + g2+ = Ap(p**) — Ap(p** 1), provided we sehp(p~') = 0; if p|M then

By =0, a, = A\p(p) and therefore ™! = Ap(p)***'. Thus we may re-write our sum as

A 2k+1 -\ 2k—1 lo R lo 2k+1
S Ae(@* ™) = Ap(p*"))logp_. (logp al®)
pe+1)/2], 27,
k=0 ptM deF(X)
d=0%#0 mod M
2k+1 logp logp2k+1

q . 2.32

w X () X o e

k=0 p|M
p‘ d=0%#0 mod M

Lemma 2.5. We have

R > log M 1o, ¢
Sodd = _E/ g(’T) [Z W d’T—l— OM (X log X) . (233)

k=0

Proof. We write S,qq @S Seaa(p t M ) + waa(p|M). We first analyzeS,qq(p|M), the contribution
from M. Asd = O # 0 mod M, xq(M) = (&) = 1. Thed-sum is justX*, and hence these terms
contribute

o )\E( 2k+1 logM log M 2R+
- Z M(2k+1 iz 9 5L - (2.34)
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We apply Cauchy-Schwartz t&,q44(p t M), and from Theorern 4.1 (our generalization of Jutila’s
bound) find

1/2
1 log p _(log p*+1\ |7
[Soaa(pt M| < X+ Z 2 pHD/2log X g( log X
0=0 p2t+l<xo
ptM
2y 1/2
> > | X )
0=0 p2l+l<xo d<X
(p,M)=1 d=0%#0 mod M
1 1 1/2
140
= - X2 log” X
« L (g};n> 5 log
< X2 logb X; (2.35)
thus there is a power savingsif< 1.
We substitute fofj((log M?**1)/2L) its expansion as an integral, and find
1 [ = A M 2’f+11 M .
Soad = ——/ o) | 5 ) B\ dr + Om (X‘lTlog6X). (2.36)
LJ_ —~ =)
Forp|M we have
w 1
Ap(p) = w/p'? = Ap(M)P*H = —Fo = — (2.37)
T2 M7
since our elliptic curve? has even functional equation. Thus
1 [ > log M 1o g
Sodd = —Z/_mg(T)[;m dr + Oy <X = log X). (2.38)

2.4. Proof of Theorem 1.1

Proof of Theorerh 111The proof of [1.5) follows by collecting the above lemmatd aticing that
from equation[(Z8) foS.y., 1.1 and equatior (2.33) fof,qq wWe have

log M
Seven,l,l _|_ Sodd Z/ M2k 1+7‘rz7’) dT
1 - log M 1o
0[S s oo (7t
k=0
1 o log M _l-o
I Z /oog N kD)) Qe T On ( = log” X) ' (2.39)

O
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3. THE RATIOS CONJECTURES PREDICTION

The purpose of this section is to prove Theofen 1.3, speltifitteat if supp(g/bf) C (—o,0) then
the Ratios’ prediction agrees with number theory up to srafrsizeO(X~179)/2), The starting
point in the analysis is the following expansion for the BatConjecture’s prediction:

Theorem 3.1 (Theorem 2.3 and equation (3.11) in [HKSWVith notation as in Theorem 1.1, the
prediction from the Ratios Conjecture for the one-leveldiignof the familyF(X) of even qua-
dratic twists of an elliptic curve L-functioh(s) of even functional equation by even fundamental
discriminants at mosk is

= X Yo%)

dG}'(X Yd
1 > VvV M|d| I inT
- 21 —(1 —)
2LX*/_009(T) 2 [ Og( ) TTUTT
deF(X)

/ /1 2imT L/ S rn2 1 2T . .
F<1_ﬂ)+2[_é(+2 ) Lg(sy +2 ) E(ﬂﬂ)
r L C(1+ ZF) Lg(syn?, 1+ ””) L L

\/7|d| _QWT/LF(I ””) (1—|—2””) p(Synt, 1—2’ﬂ) A( i ZWT)} p
o (1 + &) Lu(syn®, 1) SRRV |

+O(X/2te, (3.1)
whereAp is defined inB.2)and L Ag (o, ) |acy—r = AL(r, 7).

Much of the expansion above is already found in our numbesrtheesult, Theorerh 1l1. The
proof of Theoreni_1l3 is thus reduced to determining the dmrtton from the Az and A}, terms,
which we now proceed to do in the lemmata below. We first demseful expressions for these
pieces and the related quantities that arise in the analgsisilar to [Mil4], the proof is completed
by bounding the contribution of the resulting Euler prodogshifting contours.

3.1. Analysisof A},. Before determining the contribution ¢f}, we first obtain a useful expansion
for it. The Euler product z(«, ) is given by

Ap(a,7)
= )< ] (Z ( Alp) A" )w?l)) «
pIM \ m=0 m(l/ o - pt/2er pr(/2te)
AP AP AP T S AT
+ 3.2
p]JF_A/‘[I ( P + 1 (; pm 1+2a 1+a+“/ mz::o pm(1+2a) p1+2~/ mz::o pm(1+2a) ( )
where
C(1+2y)Lp(syn?, 1 + 2a)
Y) = . 3.3
plan) C(1+a+~vy)Le(sym?,1+a+7) (3-3)
Note that

Ag(r,r) = 1. (3.4)
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Rewriting Ag(«, v) gives
1
Agp(a,y) :H (1 - 1+2’y) (1 —
p
p|M

y i Ap™wg  Ap) Apmwi*!
pm(1/2+a) p1/2+'y pm(1/2+a)

m=0

11 (1_ 1 ) (1_ Ap?) | A 1
iy pl+2y plt2e | p2(1+20)  p3(1+420)
-1
o (1 A A1
p1+a+'y p2(1+a+~/) p3(1+a+~/)

A(p)? 1\
1(—1:2)04) (1 - 1+a+ ) (1 -
p p K

A(p)? )_1

p1+a+“/

-1
o
) ( p1+a+7)

P [ AP D) A
X <1 + <Z m(14+2a) pltaty Z pm(1+2a)

p+1 —~p

m=0

I = A(p*™)
+ p1+27 Z pm(1+2a) ’

m=0

We find
d
_AE
T As(a,7)
2X(p)? 1 A(p)?
p1+2a p1+a+’y p1+a+'y
=Ap(a ZIOgP 122 - 1 AP
p|M - plt2a pltoty - pltoty
— 3 mAPTMWE  mA(p) Ap™Mwi !
m=0 pm(l/Q“FQ) p1/2+W pm(1/2+a)
—"_ 1
s (A M) Mpm)wit
m=0 p"”(l/2+a) p1/2+"/ pm(1/2+(¥)
20(p%) _ _®?) + 1
1+2a 2(1+2a) 3(1+2a) 1+oa+y
E log p b -2
1 — 2@ AP 1 1 1
1+2a p2(i+2a) p3aT2a) pltoty
_ A0 2% 3
+ pl+a+’y p2(1+a+'y) p3(1+a+w)
1 - 0% Ap?) 1
p1+a+W p2(1+a+'y) p3(1+a+’y)
D oo 2mA(p*™) A(p) oo (2m+1)A(p2mt!) 2mA(p?™)
p+1 <_ Zmzl pm(1+20) + pltaty Zm:O pm(1+2a) - 1+2’Y Zm =0 pM(1+204)
)\(p2m+1 )\(p2m :
1+2W Zm 0 pm(1+2a)

oo A(P*™) Ap) oo
(1 + p+l <Zm:1 pm(IF20) ety 2um=0 pm(iFza) T
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Specializing tax = v = r we find that

d
T Ap(0, ) amy=r = Alp(r,7)
A(p)? Ap)? .
_ Z logp 119)2)7‘ pl(f)Qr pl*lFQT )\(pm-i-l)wgl-i-l
- 2 - 2 - m T
p|M 11— ;\1(5)27" 11— ;\1(5)27“ I 1+27" =0 p( +D(A/2+r)
220(p°) _ _AAP?) 46 _AP?) + 2% 3 1
! pl+ar p2(+2r) p3aFan) pitar p2(+2r) p3aT2r) plter
* Z ng[ A(p?) A(p?) 1 1 — A A(p?) T
Y — piter + P20F2r) 3 - piter + p2(F2r) . p3Fen) pl+ar
LN AP AP L o M) — M) (3.5)
— p(m+1)(1+2r) p+1 — p(m+1)(1+2r)

Next, we identity terms if(3]5) involving the logarithmierivatives of¢ (s) and L (syn¥, s). Sim-
ple calculations show

C 1 + 27“ 1+27"
lo 3.6
C 1 + 2T Z gp - 1+27‘ ( )
and
Ap Ap?) 2X\(p?) 3
L’E(sym?, 1+ 27" Z 1+2'r Pl T 20+ + SRR
logp Z logp > . (3.7)
LE(Symzv 1+ QT p|M - ;\gzr ptM - ;\1(527‘ p2>2(1}~)k2)r') - p3<11+27-)
Also note that
¢(I+2r) C (14 2r) (3.8)
C(1+2r) C(1+2r) '
where
C(s) = ¢ N(s); (3.9

similarly we have
L, (sym?, 1+ 2r) L, (syn?, 1+ 2r)

- _= 3.10
Lp(syn¥, 1+ 2r) Lp(syne, 1+ 2r) (3.10)
where
Lp(sym?, 1+ 2r) = Ly'(syn?, 1+ 2r). (3.11)
Using (3.6) and(317) ir(315) yields
AL (rr)  L(sym?, 1+ 2r) L’E(sym?, 1+2r)  ¢(1+2r)
B Lp(syn?,1+42r) = Lg(symt,1+2r)  ((1+2r)
pm-‘rl m+1
_ZIngZ P 1/2-‘1-7“
p|M
)\(p2m+2) _ )\(p2m ©© )\ 2m+2 )\(pZm)
+ Z lng[ Z p(m+1)(1+27’ p +1 Z m+1 )(14-2r) ]

ptM m=0
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Hence

1

Lip(sym?, 1+2r)  ¢'(142r) P wi "
Aj =-——£ ’
B )= syn® 14 21) +5 ¢(1+2r) 2t pz plmED/2n. <1/2+"

pIM
0 )\ 2m+2 ( ) 1 0 )\(p2m+2)_)\(p2m)
_'_Zlogp[ Z m+1)(1+2r + m~+1)(1+2r ] (312)
oy — p(+(+) p_'_lm:O p(+)(+)
Lemma 3.2 (Contribution ofAL). We have
1 L [(imT oamT
LX*/ Z Ag < )dT
deF(X)
L Z ngz p(m+1 (14r)
pIM
log p ~— )\(p%”) (MY —1)log M
+Zp+ - > o Z ST dr.  (3.13)
M k=0 P =1

Proof. The signe; of a modular formf of weightk and level)M is (see equation (3.5) cf [ILS])
er = i*u(M)NM)VM. (3.14)

In our case we denotg with wg. Ask is 2 andM is a prime,i* = i*> = —1 andu(M) = —1, so

Wg

wp = (=1)(=D)AXM)VM = \(M) = Tk (3.15)
In particular we obtain fop| M that
W m+1
)\(pm+1)wgn+1 _ <p1_1/32> w%n—i-l _ p—(m+1)/27 (3.16)
and forp| M we have
wE

Hence in[(3.1R) we have

m+1
- Z logp Z pm+D) (1/2-1—7’ Z log p Z (m+l ISR (3.18)

p|M p|M
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Collecting terms, we find

_L/E(sym?, 1+2r)  ¢'(1+2r)
L(syn®, 1+27’) C(1+27’)

> )\(pzm+2) _ )\(pZm)
— Z log p Z (m+l s Z logp Z PO+ D(1+2r)

Ap(rr) =

p|M ptM m=0
I Z log p i )\(pzm+2) - )\(p2m)
m—~+1)(1+2r
oy p+1 — plm+1)( )
logp 2m+2 )\(p2m)
- Z lng Z m+1 (14r) Z Z m+1 )(142r) + B(Tv ’l“),
p|M

(3.19)

where B(r,r) is the sum of the first pair of terms and the fourth term. Exjpamthe logarithmic
derlvatlveé (see Equatiori(2.18), etc.) and using the identity*™) — A\(p*" %) = o)™ + 2", we
have

/ / 2m 2 2m
B(T’T):_LE(symz,le%) C'(1+2r) Zlogpz ) = Ap*™)

Le(sym?, 1+2r)  ((1+2r) Y m+1 )(1+2r)
L (gt + B2 log p log p log p
- Z Z P2 Z Z (1+2r)0 Z Z P2+
ptM (=1 vt =1 P p|M =1
>, logp N
- Z Z p(+2r)e Z logp Z m(1+2r)
p L= 1 p’rM
p
o Z logpz 1+2r)e
ptM
— logp log p
- Z Z p(+2r)e Z Z p((+2r)+1)¢
ptM =1 ot =1 P

= (M*—1)log M
- Z Mer2e (3.20)
/=1

This calculation implies that

1 2m+2 )\ 2m
AL(r,7) Zlogpz P Z = Z P+ 1+2E;§9 )

p|M m=
= (Mf—1)log M

- Z M2 (3.21)
(=1

3if Re(r) > 0 the series converge and the cancelation is justified; thdtteslds for allr by analytic continuation.
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We are concerned with the term
1 ITT AT
I / Z Ap < ) dr (3.22)
o0 de]—‘

from the Ratios’ prediction. Usin§ (3.21) yleldﬂfjl.ls)nqnietlng the proof. O

3.2. Analysisof Ag. Recapping our analysis to date, we have shown the Ratiodigbi@n is

(%)

dG}'(X Yd
1 e Vv M|d| I inT I inT
= 21 —(1+=—)+=(1-—)|d
QLX*/_OOQ(T) 2 [ Og( o >+r( ) (=) |
deF(X)
[ ¢ omit\ L ) 2T (MY —1)log M
+L/ Q(T)< T ( + i )+ T sym®, 1 + i ; 17 ) dr
log M 1 / > logp = A@P**?) = A(p™)
A LT dT + T g(T) ey dT
Z/ N kD)) L) o % (p+1) ; p(k+1)(1+QT)
RGPS (md')‘z’”“r(l i27) (14 27) Lp(syn?, 1 — 20)
* g\ i7rT
CLX* ) P 27 L1+ 975) Lg(syn?, 1)
ITT 1T C1/24e
><AE< . ) dr + O(X~1/2+9), (3.23)

Comparing[(3.23) and the one-level density from numberrgh€theoreni 1.11), we see that we have
agreement in all but two terms — first, the constaftt) /2; second, a term froni_(3.23) requiring
analysis, namely

1 /00 o Y [<\/M|d|)-2“”/ﬂr(1 — 1) ¢(1+ 25T) [ (syn?, 1 — 227)
)

(3.24)

LX* et 27 (1 + 27) Lp(synt, 1)

ITT AT
< A= T)]dT'
The proof of Theorern 113 is thus reduced to proving

Lemma 3.3. The contribution from the4E term to the Ratios’ prediction, given §8.24) equals
¢(0)/2 plus an error term bounded b9 (X ~"2").

Before proving Lemma_3l3 we first derive a useful expansiom dbdhsider the following term

from (3.29):

((1+ 2T) Ly(syn?, 1 — 217) A ( T i7r7‘>
Lp(syn?, 1) P\ )

Our goal is to replace this with a uniformly convergent Ewesduct times( (1 + 2inw7/L), with

the residue at = 0 readily computable. We let > 1 be a free parameter. From the expansion of

T(r) = (3.25)
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Ag(a,) in 3.2) we have
1) = (o (- o ) (- o )

where (se€ [HKS], equations (2.17) and (2.18)) we introduloe following to improve convergence:

N P 20 Ap) AP L AT
Vila,v) = H (1 + (Z m(i+20)  pltaty Z pr(i+2a) + P2y Z pr(i+2a)

(3.26)

s=1

ptM p + 1 m=1 p m=0 m=0
— (Ap™)wg  ApAP™)wi !
V|(0477) - H (Z (pm(1/2+a) o pr1/2+a)+1/2+y ) (3.27)
p|M \m=0

From [HKS], equation (2.31) we have

Ap?) AP +1 1
Vila,7) = H (1 + pit2a — pltaty + P T ) (3.28)
pIM

where the - - indicate terms that converge likg¢p*> whena and~ are small.
In (3.26) the contribution from the lone bad primé is readily managed, and does not affect the
convergence or divergence of the product. We are left with

P(r) = (<<s>xw(—m§$’m77s>) i

\(p? \(p? 1 1 1
_ H<1+ l(fiw)T — (p°) + + — +) (1+_S+...)
» p_ T S +2Ls p

p p s=1
A(p? Ap?) +1 1 1
- (H (1 + 1—(5”2'5 - <p; - 14237 g + E
; pr pTr
A(p? Ap?) +1 1
+ 1 (pzi)w‘r - (p 1)-‘1-8 + 1 2i7r7' e
P +s—27-s D P +s+27=s o

H A(p? A(p? 1 1 1
= (1 _l_ 1(5”2 _ (p ) + - 2””— _ (1 _ S_l) _I_ .. .)
. pt=2r s P pttars p P

Note that thg(1/p) (1 — 1/p*~!) term goes td) ass — 1. Also note that (cf. [[HKS], (2.32) and
(2.33))

s=1

(3.29)

I o1 — 2 _ A(P?)
(sym?, 1= 2irr/L) = [ (1+ -+ ) (3.30)
p p r

1 _ A(p?) iTT\ 1
m—l}(l— » —i—...>, C(l—l—QT) —1;[<1+p1+2i7%+”.>_(3_31)
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Thus "
Lg(synr,1 —2in7t/L) i
T(r) = K 14+2— .32
(1) = K()x =55 ey x ¢ (12 (332)
where K (1) is a convergent Euler product that converges uniformly gnrégion of interest and
equals 1 whemr = 0 (the last claim follows from analyzing our above expansion a= 0 and
comparing with the expressions in§3.1). In particular, wew thatK (7) = [[, (1 + O(1/p?)); if
there were any higher order terms, we would have a term ofhigtder thatl /p? in the expansion
of T'(7) besides those already accounted for, which does not occur.

Proof of Lemma& 3]3Instead of analyzind (3.24), it suffices to show

g VT (- )
g 3) == 5z oo Z)[( ) e

> deF(X

Lg(syn¥, 1 — 2ir7/L) inT
Ty 1) R xc L+ 27 ) dr
is g(0)/2 + O(X~="). Recall from[1.#) that
L = log <WX> . (3.33)
2
By LemmdA.2
— 2T -1
3 (VQM‘Z> — XFe 2T (1 . 27;”) +O(XY210g X). (3.34)
deF(X) T

The O(X'/?) term yields a contribution of siz&(X~'/2), which is negligible. Thus it suffices to
study the main term, which we denakg (g, X).
We replacer with 7 — iw% with w = 0 (we will shift the contour in a moment). Thus

X+ e L (i D1 — & — 177
R % _ e —2m(7——zwﬁ) 2 L
1(g:X) LX* /_oog(T “”27r)6 (1+ %+ &)

Lg(sym?, 1 —w — 2in7/L) inT
: G -K(T)-(<1+w+2T)

We now shift the contour taw = 3/2. Remembering we are assuming the GRH ¢¢¢) and
Lg(syn?, p) (so that if¢(p) = 0 or Lg(syn¥,s) = 0 then eithep = 1 + iy for somey € Ror p s
a negative even integer), there are two different residagributions as we shift, arising from

e the pole of¢ (1 +w + ZT) atw = 7 = 0;

e the zeros of_ g (synt,1 — w — 2ir7/L) whenw = 1/2 andr = v£.

dr. (3.35)

We claim the contribution from the pole gf(syn?, 1 + w + 227) atw = 7 = 0is g(0)/2. As
the pole of¢(s) is1/(s — 1), sinces = 1 + 2~ the1/r term from the zeta function has coefficient
. We lose the factor of /27i when we apply the residue theorem, there is a minus signdeutsi

the integral and another from the direction we integrate r@ptace the integral from-e to ¢ with




22 DUC KHIEM HUYNH, STEVEN J. MILLER, AND RALPH MORRISON

a semi-circle oriented clockwise; this gives us a minus sigmwell as a factor of /2 since we only
have half the contour), and everything else evaluated=at is ¢(0) (rememberx (0) = 1).

We now analyze the contribution from the zeros Iof(syn¥, s) as we shiftw to 3/2. The
contributions from the non-trivial zeros arise when= 1/2, and we sum over = v with

Lg(sym?, 1 +iy) = 0. Theexp (—2mi(r — iw)) term isO(exp(—L/2)) = O(X~'/?), and the
K-piece is bounded as it is uniformly convergent in this ragio
From (3) of LemmaBIl we have

L 1L
s o/2(.2 —B
g (727r i3 27r) < X717+ 1) (3.36)
forany B > 0. From (4) of LemmaBl1, we see that the ratio of the Gamma fagsobounded by
a power of|r|. Finally, the zeta function in the numeratorig1). Thus the contribution from the
critical zeros ofL z(syn¥, s) is bounded by

dl l1—0o
—1/2~yr0/2 -2
g X2 xe/ /7( > 1)8 < X2 (3.37)

>
Ly (sym?, & +iy)=0

for sufficiently largeB. Thus there is a power savings in this term so long as 1; note, however,
that wedo not obtain square-root cancellation in this error termeioy support. This is very different
than [Mil4], and is due to the different ratio df-functions arising in this case, leading to a more
complicated Euler product.

The proof is completed by a standard argument showing tleaintegral overv = 3/2 is neg-
ligible. Arguing as above shows the integral is boundeddgyX —3/2+37/2), |t suffices to obtain
polynomial inT bounds forLz(syn?, —1/2 — 2wit/L); see for instance [IK]. This completes the
proof of Lemma 3.8, which also finishes the proof of Theore& 1. O

Remark 3.4. We sketch an alternate start of the proof of the above lemmee difficulty is that
Ri(g; X) is defined as an integral and there is a pole on the line ofiatien. We may write

C(s) = (s=1)7" + (¢(s) = (s—1)71). (3.38)

For uss = 1 + £, so the first factor is justZ-. As g(7) is an even function, the main term of the
integral of this piece is

0 e—27ri7' o] e—27ri7' e27ri7'
/oog(T) 2mT r = /_oog(T) < Amit 4m’7‘) dr

_ _/_°° g(r)SRCrT) _@, (3.39)

. 27T

where the last equality is a consequencewip(g) C (—1,1). The other terms from thes — 1)~!
factor and the terms from ths) — (s — 1) ! piece are analyzed in a similar manner as the terms in
the proof of Lemma 3]3.

Remark 3.5. The proof of Lemma 3]3 follows from shifting contours and jieg track of poles of
ratios of Gamma, zeta andfunctions. Arguing as in Remark 2.3 of [Mil3] we can proveetated
result with significantly less work, specifically, agreernep to any power of the logarithm.
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4. GENERALIZING JUTILA’S BOUND

In these notes we generalize Jutila’s bound, and show howaytle applied to analyze the con-
tribution from odd powers of primes to the 1-level densityfarhilies of quadratic twists of a fixed
GL, form. While we are most interested in the case when the fixed f®an elliptic curve of prime
conductor, we prove our bound in greater generality as tlaig be of use to other researchers. In
particular, this result was implicitly assumed by Rubins{Rubi] in his analysis of the main term in
the 1-level density of quadratic twists of a fixed form.

Recall Jutila’s bound (see (3.4) of [Ju3]) is

> > xan)| < NXlog'N, (4.1)

1<n<N 0<d<X
m non—square d fund. disc.

where thed-sum is over even fundamental discriminants at m0sFor many applications we need
to modify it further. LetM be a square-free integer. We often need to restrict/them to be over
d relatively prime toM that are congruent to a non-zero square moduloWe havey,(n) = (%)

where(g) is the Kronecker symbol. We can encode the restriction ond-them by noting

1 if dis a non-zero square moduld and(d, M) =1

4.2
0 otherwise; (4.2)

(Xa(M)* + xq(M)) = {

N —

if instead we wanted to detedta non-square moduld/ we would usexy(M)? — xqa(M).

Theorem 4.1 (Generalization of Jutila’s bound).et M/ be a square-free positive integer. Then

2

> Y xun) | < NM’Xlog'®(NM). (4.3)
1<n<N,(n,M)=1 d<X,(d,M)=1
n non—square d=0%#0 mod M

The same bound holds if instead we restrictdk®um to be over non-squares moduilo

Proof. In all sums belowd andd’ denote an even fundamental discriminant. Lettffigv, M, X)
denote our sum of interest, we find

2

S(N,M,X) = 3 > xaln)
1<n<N,(n,M)=1 d<X,(d,M)=1
n non—square d=0%#0 mod M
1 2
= 1 > (Z Xa(n)xa(M)* + Xd(n)Xd(M)>
1<n<N,(n,M)=1 \d<X d<X

T non-—square

= S1(N,M,X)+ S(N, M, X) (4.4)
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(using the estimaté: + b)? < 4a? + 4b?), where

Si(N, M, X) = > (Zxd(n>xd(M>2>

1<7L§N,((L,M):1 d<X
2
So(N, M, X) = 3 (ZXd(n)Xd(M>> : (4.5)
1<n<N,(n,M)=1 dSX

The first sum,S; (N, M, z), is easily estimated using Jutila’s bound. Note that?)y.(M?) =
xa(nM?), and ifn is not a square at mosaf thennA/? is not a square at mosf)/2. Thus
Si(N,M,X) < NM*Xlog""(NM?) < NM?X log"(NM) (4.6)

(while Jutila’s bound is over all square-freg as it is a sum of squares we can restrict the sum
overn). The second sum is handled similarly, usingn)xq«(M) = xqa(nM). As M is prime and
(n, M) = 1,nM is not a square at most)/. Thus

Sy(N, M, X) < NMX log"(NM). (4.7)

We therefore find
S(N,M,X) < NM?*Xlog'""(NM). (4.8)
O

Remark 4.2. Not surprisingly, we restrict ta relatively prime toM in Theoreni 4.1; if» = M then
sinced = O # 0 mod d, x4(n) would equal 1 and these terms would contribute on the ordéfof
to the sum.

Remark 4.3. Rubinstein[[Rub] calculated the main term in the 1-leveldignfor the family of
guadratic twists of a fixed form o@L,,, where the fundamental discriminants used in twisting were
additionally restricted so that the family had constantsig his work he implicitly assumed that Ju-
tila’s bound (which was the key arithmetic ingredient in thenber theory calculations of the 1-level
density for the family of quadratic characters) still heldem the fundamental discriminants were
further restricted as above; Theoréml 4.1 justifies thisrapsion, and almost suffices to complete
the analysis. Unlike our present work, where we are attergpb determine all lower order terms
up to square-root cancelation, in [Rub] the goal is just mshgreement between the main term and
the predictions from random matrix theory. Thus we do notrteadentify the term corresponding
to thel/L term from [2.38). We thus simply follow the argumentlin [Raoid trivially bound the
contribution from primes dividing/ (which we now assume is just square-free and not necessarily
prime).

APPENDIXA. SUMS OVER FUNDAMENTAL DISCRIMINANTS

We generalize the calculations in Appendix Blof [Mil4] to féeour family, which has the added
restriction of requiring our even fundamental discrimitsaito be a non-zero square modulo a prime
M. We can encode the restriction on theum by noting

L (M) 4 xaM)) = {

1 if dis a non-zero square moduld and(d, M) = 1

A.l
0 otherwise; (A1)

2

if instead we wanted to detedta non-square moduld/ we would usexy(M)? — xq(M).
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LemmaA.l. Letd denote an even fundamental discriminant at mosand set

Xt= > 1 (A.2)

d<X
d=0%#0 mod M

for an odd primeM. Thefi

3 M
Xt = x. - X1/2 A.
=% oy TOX (A3)
and forp < X'/2 we have
X X2 ifpr M
S 1= e PO (A4)
et 0 if p|M.

d=0%#0 mod M

Proof. We first prove the claim foX*, and then indicate how to modify the proof whejd. We
could show this by recognizing certain products as ratiozetd functions or by using a Tauberian
theorem; instead we shall give a straightforward proof sstgd to us by Tim Browning (see also
[OST)).

We first assume that = 1 mod 4, so we are considering even fundamental discriminguits:
X :d=1mod4,u(d)?=1,d=0% 0mod M}, itis trivial to modify the arguments below fa
such that//4 = 2 or 3 modulo4 andy(d/4)* = 1. Let x4(n) be the non-trivial character modulo 4:
x4(2m) = 0 and

1 fn=1mod4
_ A5
xa(n) {O if n =3 mod 4. (A-5)

S(X) = > 1

d<X, d=0%0 mod M
u(d)2=1, d=1 mod 4

— Z p(d)? - 14 xa(d) xa(M)? + xa(M)

2 2
d<X
2d
1 1
= 7 > wd)?+ 1 > uld)? [xa(d) (xa(M)? + xa(M)) = Xa(d)*xa(M)]
d<X d<X
(2M,d)=1 -
= S1(X) 4+ Sz (X). (A.6)
By M0obius inversion
1 if dis square-free
_ A7
n;d”(m) {O otherwise. (A1

“We chose to writeX * to facilitate comparison with the cardinality of the copeading family from [Mil4], where
we did not impose the constraint thhgqual a non-zero square modulb.
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Thus

A

S5i1(X) = > > um)

d<X  m2|d
(2M,d)=1

> oum)- Y1

m§X1/2 d < X/m?2
(2M,m)=1 (2M,d)=1

S um) (mﬁﬁzj\f) +0<1>)

mSXl/2
(2M,m)=1

(2M m) 1

IM—1 6 1\’ 1\ 12
= 5 M@ (1_§) (1_W) Ao

1 M
X 1/2 A.
T M+1 ( ) (A-8)

RS

RSy

(because we are missing the factors correspondirydad M in 1/{(2) above). To make this
comparable to the sum from [Mil4] (where we did not have thedition thatd = O £ 0 mod M)
we may rewrite the above as

S (X) = %X : 2(M7M+1) (A.9)

Arguing in a similar manner shows (X) = O(X/2); this is due to the presence of a non-principal
character in each of the three sums of modulus at ®bs{we use quadratic reciprocity to replace
xa(M) with a character of conductor at mast/). For example, lety denote any of the three
non-principal characters in the expansiorbefX ). Such a term contributes

: > xmum) > x(d) < X'V (A.10)

4
m<X1/2 d<X/m?

(because we are summingat consecutive integers, and thus this sum is at BubSt
A similar analysis shows that the number of even fundameligaliminants! < X with d/4 = 2

or3modulod is 5 X - gty + O(X'/?). Thus

3 M
§ j 1=X"= “x—— XV, A.11
X 7T2 Q(M_'_ 1) +O< ) ( )
d_an ’ev_er? ‘fl?ngx.ogiévcj.

We may trivially modify the above calculations to determihe number of even fundamental
discriminants! < X with p|d for a fixed primep. We first assumg = 1 mod 4. In (A.6) we replace
w(d)? with u(pd)?, d < X with d < X/p, (2M,d) = 1 with (2Mp,d) = 1. Asd andp are now
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relatively prime (after this change of variableg)pd) = u(p)u(d) and the main term becomes

SpX) = 7 S S ulm

a<X/p  m2|d
(2Mp,d)=1

1
= 7 Yoo oum)- Y1
m<(X/p)t/? d < (X/p)/m?
(2Mp,m)=1 (2Mp,d)=1
1 X/p o(2Mp
-1 = u(m)<m/2 Rt )+0<1>)
m<(X/p)t/? p
(2Mp,m)=1
( - 1) ,u 1/2
= X /
8 M p? Z )
(2]\{pm) 1
16 N AN LT - (- X
-~ 8¢(2) 22 p? M? Mp?
+O(XY?%)
2X M 2X*/3
= +O(XV?% = =12 4 O(XY?), A.12
(p+1)m22(M +1) X p+1 X (A.12)

and the cardinality of this piece is reduced(by-1)~! (note above we used{n < Y : (2p,n) = 1}
= 1Y + O(1)). A similar analysis as before shows that,(X) = O(X'/?); the case of even
fundamental discriminantéwith d/4 = 2 or 3 modulo4 follows analogously.

We need to trivially modify the above argument®if 3 mod 4 (if p = M these arguments are
not applicable, although in this case the result is cleaghp as we are only considering= O #
0 mod M, and suchi are never divisible by/). If for instance we requiré = 1 mod 4 then instead
of using the factoy(d)?(1+x4(d))/2 we useu(pd)*(1—x4(d))/2, and the rest of the proof proceeds
similarly.

It is a completely different story ip = 2. Note if d = 1 mod 4 then 2neverdividesd while
if d/4 = 2 or 3 modulo 4 then alwaysdlwdesd There are3X/x? - M+1) + o(X1/?) even

fundamental discriminants at makt and X /72 2(M+1 + O(z'/?) of these are divisible by 2. Thus,

if our family is all even fundamental discriminants, we da tee factor ofl/(p + 1) for p = 2, as
one-third (which isl /(2 + 1) of the fundamental discriminants in this family are divisiby2. [

In our analysis of the terms from thefunctions Ratios Conjecture, we shall need a partial sum-
mation consequence of LemmaA.1.

LemmaA.2. Let F(X) denote all even fundamental discriminants congruent torazeyo square
moduloM that are at mosfX, and setX* = 3, » 1. Letz = 7 — iwk withw € [0,1/2] and

= log(v/MX/27). Then

_ 2miz

= . -1
> (¢m> _ yprgamis (1_27”2) L O(X'2 " log X). (A13)

27 L
deF(X)
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Proof. Note

N A Vil /2
Z ( o > = Z exp( 2miz L/ >exp(
deF(X)

-
— 722 log d)
deF(X
log X
= exp( Oz + 2miz—2 ) Z d-r=/L, (A.14)
deF(X)
We now analyze_,»y, d~>"*/". By LemmaA.1 we have
3u M
1= S——— + 0. A.15
2 Zaars o Tow) (A.15)
deF (u)
Therefore by partial summation we have

Z d—2mz/L

= (X*+Oo(XY)) X~
deF(X)

X .
Ju M 1/2 _2riz —2m12 du
/1 (722(M+1)+O(“ >)“ T W

u

(A.16)
Asw € [0,1/2], the error terms contribute at ma3t X /2~ log X) (we need to add thieg X as if
w = 1/2 the integral of the error ikg X); further, we may absorb the lower boundary term of the
integral in theO (X /2~ log X) error term, and we find

Z d—27rzz/L

deF(X)

omizlog X 3 M X1HE
_ Xtexp (_%%_2(

Aoz O s X)
2mizlog X
— X*exp <_ mizlog
L
+ O(X? ™ ]og X)

L
. 2mizlog X 2miz = [ 2miz\"
7 )—l—X exp(—i)—i- 7 V:0< L)
2mizlog X 2miz\
= X*exp _EmEO8 A ) (g 2T + O(X* v og X).
L L
Substituting yields the claim

(A.17)
[
APPENDIX B. SCHWARTZ FUNCTION EXPANSIONS
Let ¢ be an even Schwartz function ande its Fourier transfornxb( = [ ¢(x)e ?™¢dr); we
often assumeupp(¢) C (—o, o) for somes < co. We set

(B.1)
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While H (s) is initially define only whenR(s) = 1/2, because of the compact supportjofve may
extend it to all ofC:

or) = / T B

satiy) = [ dgemermeag
H(z+iy) = / h [a(g)e%(r—@]f?ﬂyﬁdg. (B.2)

Note thatH (x + iy) is rapidly decreasing ip (for a fixedz it is the Fourier transform of a nice
function, and thus the claim follows from the Riemann-Leheslemma).
The following result is useful in expanding some terms inRatios’ prediction.
LemmaB.1. Letsupp(g) C (—o,0) C (—1,1) and L = log(vV M X/2r).
(1) Forw >0, g (1 —iwk) < X7 (72 + (w%?)_B forany B > 0.

™

(2) For 0 < a < bwe havel'(a + iy)/T'(b + iy)| = Oup(1).
Proof. (1): Asg(7) = [ g(£)e*™*7d¢, we have

ol —iy) = / §(€)FCege

[e.e]

= [ g - i) e

< (T —ay)) T (B.3)

the claim follows by taking) = wL/2x.
(2): As|I'(x — dy)| = |I'(x + 1y)|, we may assume all signs are positive. The claim follows from
the definition of the Beta function:

F(a+zy)F(b—a) _ ! atiy—1/1 _ 4\b—a—1 __
b 1 iy) = /Ot (1—1) = Oap(1). (B.4)

O
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