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ABSTRACT. The field of epidemiology has presented fascinating areVagit questions for mathe-
maticians, primarily concerning the spread of viruses iarmmunity. The importance of this research
has greatly increased over time as its applications havaralqd to also include studies of electronic
and social networks and the spread of information and idé&sstudy virus propagation on a non-
linear hub and spoke graph (which models well many airlinevagks). We determine the long-term
behavior as a function of the cure and infection rates, abagghe number of spokes For eachn
we prove the existence of a critical threshold relating the tates. Below this threshold, the virus
always dies out; above this threshold, all non-trivialialitonditions iterate to a unique non-trivial
steady state. We end with some generalizations to otheoniew
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1. INTRODUCTION

1.1. Previous Work. The general problem of studying the propagation of a noatstithin a
large interconnected network of nodes has a wide range dicappns across domains, such as
studying computer virus propagation in computer scienglysng the penetration of a meme or
product in marketing and sociology, and studying the pragiag of an infection in epidemiology.
Many of the earliest investigations [Ba, KeWh, McK] assunteoanogenous network, where each
node has identical connections to all other nodes: for setiarks, the rate of virus propagation
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was then shown to be determined by the density of infectedsidd/hile mathematically tractable,
the results in [FFF, RiDo, RiFola] also suggested that suarhdgenous models fail to represent
many real networks. There has thus also been work on alteesab this strict homogeneous
model. For instance, [P-SV1, P-SV2, P-SV3, P-SV4, MP-S\Jfigtpower law networks, where
the probability of a node having neighbors is proportional to~” for some exponent > 0. Al-
though more realistic, [WKE] shows that even this model iswell-suited for many real networks.
Moreover, an issue with these results is that their models;ribing the propagation of node-states,
themselves are dependent on the network topology. In intrdhese, [WDWF] proposes a more
natural topology-agnostic model that relies on local naderactions. Specifically, their proposed
SIS (Susceptible Infected Susceptible) model is a dis¢nete model where each node is either
Susceptible (S) or Infected (I). A susceptible node is amilyehealthy, but at any time step can be
infected by its infected neighbors. At any time step moreoae infected node can be cured and
go back to being susceptible. The model parameterg atiee probability at any time step that
an infected node infects its neighbors, @andhe probability at any time step that an infected node
is cured. A central set of questions given this model for pggtion of a node-state through the
network are:

(1) Given a set of model parameters and a particular initedes does the system then reach a
steady state?

(2) If the system does reach a steady state, what are thectérastcs of that state?

(3) What is the dynamical behavior (rate of convergencehefsystem?

For the SIS model, Wang et al. [WDWF] gave a heuristic argurfama sufficient criterion for
the node infection probabilities to converge to a trividusion, so that the infection dies out. Using
a reasonable approximation to eliminate lower order tethes; conjecture a sufficient condition
for the virus to die out. For star graphs, this condition is (1 — a)/+/n, wherea = 1 — ¢ and
b = 3. One of the main contributions of this paper making this argat rigorous. Indeed, given the
nonlinear coupled dynamics of the SIS model, it is typicailyactable to argue rigorously about
asymptotic state characteristics. But for star graphs,re/@lale to show that the SIS model exhibits
phase transition behavior, and moreover that this threskdioth necessary and sufficient. Thus,
below this threshold the virus dies out, and above the systaverges to a non-trivial steady state
independenof the initial state (provided only that the initial statenisn-trivial). One consequence
of this is that even if a single spoke node is infected irlifjado long as the model parameters lie
beyond the phase transition point, the infection will n& dut (i.e., the node infection probabilities
will not converge to the trivial point). We prove our resultsough a novel two-step argument,
by first reducing the problem to one with a smaller graph sapel, then applying the intermediate
value theorem to the dynamics over the reduced graph.

1.2. Problem Setup. Y. Wang, C. Deepayan, C. Wang and C. Faloutsos [WDWF]| praptise
following propagation model. Denote I the probability at any time step that an infected node
infects its neighbors, and ky the probability at any time step that an infected node isadur

If p; . is the probability a nodeis infected at time, the SIS model is governed by the following
equation:

L—pir = (L= pis—1) Gt + 0pirGis, (1.1)
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FIGURE 1. Star graph with 1 central hub andspokes.

where(; , is the probability that a nodeis not infected by its neighbors at timeWe can express
¢, as follows:

G = [[pier (1= B)+ (L —pje—1) = [J(1 - Bpje-) (1.2)
J~ g~
(wherej ~ i means andj are neighbors — i.e., are connected by an edge of the grapten @e
non-linear coupled form of this system, a closed form exgagsfor p, , for the general topology
case seems infeasible.

We therefore consider a specific graph topology, that of agtph (see Figure 1). This is a
graph in which there is a single “hub” node which is connetteall the other nodes, the “spokes.”
Suppose the graph hast 1 nodes: the hub is numberédnd the spokes are numberethrough
n.

Proposition 1.1. For any initial configuration, as time evolves all the spokesverge to a common
behavior.

Proof. (1.1) becomes

n

por = 1—(1—poi-1) H (1= Bju-1) —5p0tH(1—5pj,t—1)

Jj=1 j=1
pir = 1= —=pis—1)(1—=PBpot—1)—6pir (L —PBpos—1), 1 <n < n+1l. (1.3)

We can immediately observe that all the spokes assume ¢déméilues quite rapidly. We prove
— p;| = 0ast — oo. We have

Pix — Pit = (pi,t—l - pj,t—l) (1 - ﬁpo,t—ﬁ -0 (pi,t - pj,t) (1 - 5p0,t—1)
1 — Bpot—
- - it—1 — T t—1- 14
(1 +5<1 _ 5])0715_1)) p,t 1 pj,t 1 ( )

Thus we have

1 — Bpos— '
|p ,t p],t| <1 + 5(1 _ 5])0715_1)) ‘p ,0 p],(]‘ ( )

Since the quantity to th&" power cannot stabilize at 1 as the denominator is at least and the
numerator is at most 1, the right-hand side in (1.5) decaysast — oc. O

An important consequence of this observation is that itaadlas to simplify our model to a model
in terms ofz;, the probability that the hub is infected, amdthe probability that a spoke is infected.

These then evolve according to
T4 - F Ty (16)
Yi+1 Y )’



where
_ ( hmy) ) _ (1= —2)(1=py)" —ox(l—py)"
Flay) = <f2<x,y>) —< 1= (1= y) (1 - Bz) — oy (1 — ) )

I1—(1—ax)(1—=0by)" \ .
(1—(1—ay)(1—bx) ) (1.7)

recall that we have defined:= 1 — 6 andb := [ to simplify the algebra.
1.3. Main Results and Consequences. Our main result is the following.

Theorem 1.2. Leta,b € (0,1) and F" as in(1.7) describes the limiting behavior of the spoke and
star network.

I 1f b < (1 —a)/y/n, then

(a) the unique fixed point df is (0, 0), and
(b) the system converges to this fixed point, that is, thes\dress out.

Il. If b > (1 —a)/+/n then, so long as the initial configuration is not the trivialipt (0, 0),

(a) F has a unique, non-trivial fixed poirit s, y ), wherex; andy, are functions of:, b andn,
and
(b) the system evolves to this non-trivial fixed point.

Remark 1.3. In the notation of WDWF], the critical threshold for the epidemic i&/0 < 1/A; 4,
where )\, 4 is the largest eigenvalue of the adjacency mattixf the network. For a star graph
with n spokes connected to the central hib,, = /n. Recalling oura = 1 — 6 andb = 3, their
condition is equivalent t6 = (1 — a)//n, exactly the condition we have.

While previous work suggested the veracity of the abovengl@ was through heuristic argu-
ments and numerical simulations. We opted for a theoretiwaltigation, so as to lend additional
plausibility to the general conjecture and to develop sabriques potentially useful for eventu-
ally resolving it.

The proof of this theorem is distributed over the next fewtises. In 82, we prove parts I(a) and
[I(a) by determining the fixed points @f . Using convexity arguments, we show that the trivial fixed
point is the only fixed pointib < (1—a)/+/n, but there is a unique, additional fixed point for larger
b. We prove I(b) in 83, namely that for< (1—a)/+/n (sobis at or below the critical threshold) all
initial configurations evolve to the trivial fixed point. Tleoof involves linearly approximating the
map F' near the trivial fixed point and controlling the resultingenvalues. Finally, we show Ii(b)
in 84, where we prove that all non-trivial initial configu@is converge to the unique non-trivial
fixed pointwherb > (1—a)/y/n. This last case is handled by noting that there is a naturttipa
of the domain[0, 1]? of F' into four regions (see Figure 3), where the partitions adeiéed from
functions related to determining the location/g§ fixed points. The analysis df on all of [0, 1]?
is complicated, but the restrictions of each region lea#l teaving simple behavior in each region.
We end with a discussion of the rate of convergence and ttwéctemn of F' to these regions in 85,
and discuss some generalizations to other graph topologies

2. DETERMINATION OF FIXED POINTS OF F'

In this section we determine the behavior of the fixed poifthe system as a function of the
parameters;, b andn, proving Theorem 1.2, I(a) and ll(a). The proof relies on samuxiliary
lemmas, which we first show. Specifically, the proofs lookgartial fixed points, namely points
where either the: or y-coordinate is unchanged. We prove that the set of partiadifpoints can be
defined by continuous functiong and¢,, whose intersections are the fixed points of the system
(see Figure 2).

We begin with the following lemma characterizing these esrv
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FIGURE 2. Partial fixed points fromp; and ¢, when (from left to right)b <

(1—a)/v/mb=(1—a)/y/mb>(l—a)/y/n(b=3n=4a=.1,4,7).

Lemma 2.1. Consider the mag’ given by(1.7).

(1) There exists a continuous, twice differentiable convegtfan¢, : [0, 1] — [0, 1] such that,
for eachy € [0, 1], there is ay’ € [0, 1] with F(¢1(y),y) = (61(y), ).

(2) There exists a continuous, twice differentiable concawetfan ¢, : [0,1] — [0, 1] such
that, for eachr € [0, 1], there is am’ € [0, 1] with F'(z, ¢o(x)) = (2, ¢o(2)).

Proof. We define

g@,y) = 1-(1—az)(1-by)") -z (2.1)
and

g(z,y) = (1— (1 —ay)(l—bx)) —y. (2.2)

We first analyze the set of paifs,y) € [0,1]*> whereg, (z,y) = 0. We immediately see

that ¢,(0,0) = 0, ¢1(0,y) > 0 fory € (0,1], andg;(1,y) < 0 fory € [0,1]. Thus by the
Intermediate Value Theorem, for eaghe (0, 1] there is a number (which we denote by(y))
such thatg, (¢1(y),y) = 0 and¢,(y) € [0,1]. Itis easy to see that;(y) is a continuous and
differentiable function ofy; in fact,

1= =y
Gy = mUZal-br 2:3)

(1 —a(l—0by)")*
Noteo,(y) € [0, 1]: itis clearly positive, anef_‘—acc > 1forc > 0 onlywhena > 1. Asa,b € (0,1),

¢ (y) > 0. Thuse, (y) is strictly increasing.
We analyzey;(x,y) = 0 similarly. We find

g(z,y) = (1= (1—ay)(l-bz))—y = 0. (2.4)

Note g»(0,0) = 0, ga(x,0) > 0 for z € (0, 1], andga(x, 1) < 0 for x € [0, 1]. Solving yields

bx
y = ¢a(z) = T atabr (2.5)
We can rewrite this as a function gfas follows:
(1-a)y
This is clearly continuously differentiable, and
1—a

! = — . 27

Thusgs(y) is an increasing function of.



We now prove that); (y) is convex andy, (y) is concave. Straightforward differentiation and
some algebra gives

v’n(l—a)(1—by)" 2 - (n—1+a(l—by)" +aln+1)(1—by)")

" o .
= (1=l b)) <0
2a (1 —a)
“ = ——= > 0. 2.8
Thus ¢, (y) is convex whileg, (y) is concave. Direct inspection shows each function is twice
continuously differentiable. O

The next lemma is useful in determining the number and lonaif fixed points of our map'.

Lemma 2.2. Let hy, hy be twice continuously differentiable functions such thatz) is convex
andh, (x) is concave. If there exists somesuch thati) (p) < R, (p) and hy (p) = ha (p), then
hy (x) # hy (x) forall z > p.

Proof. As h, (z) is convex andh, (x) is concave ) (z) is decreasing and, (x) is increasing.
Thus, sincey) (p) < kY (p), by (z) < hhy (z) forall x > p. As hy (p) = ha (p), this implies that
hy () < hy (x) forall z > p. O

We now determine the location of the fixed points.
Proof of Theorem 1.2, I(a)Note that
bn 1—a

¢,1 (0) = 1_a ¢,2 (0) = b (2.9)
From these equations, we can see #ig)) > ¢/ (0) whenb < (1 —a)/+/n. Thus by Lemma 2.2,
(

whenb < (1 —a)/+/n, there is nay > 0 such that, (y) = ¢, (y). The trivial fixed point is thus
the unique fixed point if0, 1. O

We next prove that fob > (1 — a)/\/n, there exists a unique non-trivial fixed point. The key
ingredient is the following lemma.

Lemma 2.3. Lethy, hy : [0,1] — [0, 1] be twice continuously differentiable functions such that
hi(x) is convexhs(z) is concaveh(0) = he(0) = 0 andhy(x) # ho(x) for z > 0 sufficiently
small. Then there exists at most one other 0 for whichh, (x) = ha(z).

Proof. The claim is trivial if there is only one point of interseaticso assume there are at least two.
Without loss of generality we may assume- 0 is the first point above zero whehg andh, agree.
Such a smallest point exists by continuity, as we have assanie) # h(x) for x > 0 sufficiently
small; if there are infinitely many points, where they are equal, let= lim inf,, ,, > 0.
Becauseh, (z) is convex,h(z) is increasing. By the Mean Value Theorem there is a point

¢1 € (0, p) such that
hi(p) — h h
W (er) = 1(p) —m(0) _ 1(p). (2.10)
p—0 p
As 1/ is increasing, we havi|(p) > hi(c1); further, b (z) > hy(cy) for all z > p. As hy(z) is
concave ), (z) is decreasing. Again by the Mean Value Theorem there is & pgia (0, p) such

e hafp) = ba(0) _ halp)
pP)— p
hy(cs) = — - 02 = 2p , (2.11)
hy(p) < hy(ca), andhl(z) < hy(cy) for all = > p. But sinceh, (p) = ha (p), ki (c1) = hy(ca), SO
Ry (x) > hi(x) for all x > p. Thus we know from Lemma 2.2 that there cannot be anothet pbin

intersection aftep. U

We are now ready to complete the analysis.



Theorem 1.2, ll(a) We first prove existence and then uniqueness. Wher{1 —a)/+/n, we know
from the proof of Theorem 1.2, I(a) (see (2.9)) that(y) is aboveg, (y) near the origin since
¢, (0) > ¢4 (0). The existence of the non-trivial point of intersectioridals from the Intermediate
Value Theorem. We recall that= ¢,(x) is defined in[0, 1] for all z € [0,1], andz = ¢ (y) is
defined in[0, 1] for all y € [0,1]. Asxz — 1 we havep,(x) tends to a number strictly less than 1.
Thus the curve) = ¢,(x) hits the linez = 1 below (1, 1). Similarly the curver = ¢, (y) hits the
liney = 1tothe left of(1, 1). Thus the two curves flip as to which is above the other, inmglyhat
there must be one point where the two curves are equal.

We now have two fixed points, the trivial fixed point and the +tiovial fixed point from the
second intersection of the two curves. By Lemmas 2.1 andh2s@tare no other fixed points, and
thus there is a unique, non-trivial fixed point. O

3. DYNAMICAL BEHAVIOR: b < (1 —a)/+/n

In this section we show how an eigenvalue perspective capletely determine the dynamics if
b < (1—a)/+/n, proving Theorem 1.2, I(b). As these methods fail for lafgeve adopt a different
perspective in §4.

3.1. Technical Preliminaries. Our analysis of the dynamical behavior relies on the follayvi
lemma.

Lemma3.1. Leta,b € (0,1) withd < (1 — a)//n, and letA\; > )\, denote the eigenvalues of the

matrix( ZC; Tff ),wherea,ﬁ,%é € [0,1]. Then—1 < Ay, Ay < 1.

Proof. The sum of the eigenvalues is the trace of the matrix (whiet{ds+ 9)), and the product
of the eigenvalues is the determinant (whicluia:d — nb?/3v). Thus the eigenvalues satisfy the
characteristic equation

N —a(a+ 0N+ (a*ad — nb?By). (3.1)

The eigenvalues are therefore

a0 +0) & /@o 4 O —A(@ad —nlP5y) _ ala )= \/aa 0P T 4B o
2 - 2 . .
As the discriminant is positive, the eigenvalues are refices(a + §) > 0, we havel | < Ay,

where

ala+ 8) + v/a2(a — )2 + 4nb? By

0< )\ = . (3.3)
As By < 1,nb* < (1 —a)? andv/u + v < /u + /v for u,v > 0 we find
N o Matd)+ Va2 (@ = 0)? + /A(T — a)?
_ a(a+5)+a|a—5|2+ 2(1—a)
_ 2 max(a, 0) —i—22(1 —a)
= 1-(1- ma2x(a,5))a <1, (3.4)

where the last claim follows from, «, § € [0, 1]. O



3.2. Proofs. Armed with the following, we now prove the first half of our maesult, the dynam-
ical behavior at or below the critical threshold.

We prove the claim by using the Mean Value Theorem and aneadigmanalysis of the resulting
matrix. From Theorem 1.2, I(a) we kno\, 0) is the unique fixed point. We have

I << . )) N ( 11_—<(11_—CZZ>)((11__%12; ) : (3.5)

c(t)=(1—t)(8)+t(”y“"), c’(t):(‘;j). (3.6)

Thusc(t) is the line connecting the trivial fixed pointté ;C ) with ¢(0) = ( 8 ) andc(1l) =

(1)

Let

F(t) = flct) = ( 11—_ ( (11—_ ajg)((ll—_ bgt@)” ) . (3.7)
Then simple algebra (or the chain rule) yields
v [ a(l=0ty)" nb(1 — atx)(1 — bty)"* x
Flt) = ( b(1 — a%) ! a(l — btzu) ’ ) ( y ) ' (3-8)

We now apply the one-dimensional chain rule twice, once éa:thoordinate function and once
to they-coordinate function. We find there are valuesindt, such that

() /((2)) - (327 gt ) ;) oo

To see this, look at the-coordinate ofF (t): h(t) = 1 — (1 — atx)(1 — bty)"™. We haveh(1) — h(0)
= h(1) =K' (t1)(1 — 0) for somet;. As

R'(t1) = ax(l—btyy)" 4+ nby(l — atix)(1 — btyy)" "
= (a(l =bt1y)", nb(l — atiz)(1—bty)" ") ( Zj ) , (3.10)

the claim follows; a similar argument yields the claim foe thcoordinate (though we might have to
use a different value df and thus denote the value arising from applying the Meane/aheorem
here byt,). We therefore have

F((3) = (G0t e Gty ()
- A(a,b,x,y,tl,tg)(z). (3.11)

To show thatf is a contraction mapping, it is enough to show that, fordllwith b < (1—a)/y/n
and allz,y € [0,1] that the eigenvalues ol(a, b, z,y,t1,t,) are less than 1 in absolute value;
however, this is exactly what Lemma 3.1 gives (note our agsioms imply thate = (1 — btyy)”
throughd = (1 — btox) are all in(0,1)). Let us denoté\,,.x(a, b) the maximum value ol for
fixed a andb as we varyt,, to, z,y € [0,1]. As we have a continuous function on a compact set,
it attains its maximum and minimum. Ak, is always less than 1, so is the maximum. Here it
is important that we allow ourselves to hayet, € [0, 1], so that we have a closed and bounded
set; it is immaterial (from a compactness point of view) that € (0,1) as they are fixed. As
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FIGURE 3. The four regions determined by and¢, whenb > (1 —a)/y/n.

0 <a,b<1,we haven, 3,7,6 < 1 and thus the inequalities claimed in Lemma 3.1 hold. For any
matrix M we have||Mv|| < [Auax|||v]]; thus
xXr
< )\max aab
< a5

[ ()]

as\uax(a,b) < 1 we have a contraction map. Therefore any non- erZ/é iterates to the trivial

' : (3.12)

fixed pointifb < (1 —a)/+/n andn > 2. In particular, the trivial fixed point is the only fixed point
(if not, A(a, b, z,y,t1,t2)v = v for v a fixed point, but we knowW A(a, b, z, y,t1, ta)v|| < ||v]| if v
is not the zero vector).

Remark 3.2. Unfortunately this eigenvalue approach does not work imapde, closed form man-
ner for generab > (1 — a)/y/n. We include details of such an attempted analysis in AppeBdi
of the arxiv version of this papdBGKMRS].

4. DYNAMICAL BEHAVIOR: b > (1 —a)/\/n

In this section we prove Theorem 1.2, lI(b), establishingvesgence to the non-trivial fixed
point.

4.1. Properties of the Four Regions. Unfortunately, the method of eigenvalues does not seem to
naturally generalize to largle While it is possible to compute the eigenvalues of the aaset
matrix, it does not appear feasible to obtain a workable esgon that can be understood as the
parameters vary; however, breaking the analysis ofto regions induced from the maps andg,
of 82 turns out to be very fruitful. This is because these esetermine partial fixed points. See
Figure 3 for the four regions.

We first study the effect of’ in Regions | and Ill. Our first lemma provides some generairinf
mation about the image of these regions undewhich we then use to show in the next lemma that
F maps each of these Regions | and Il to themselves.

Lemma4.l. Letb > (1 — a)/+/n. Points in Region strictly increase inc andy on iteration byF’,
and points in Regioifll strictly decrease in: andy on iteration.

Proof. A point (z, y) in Region | satisfies the inequalities

1—(1—by)"
r < T a(l = by)" (4.2)




and

bx
_ 4.2
y< 1—a+abx (4.2)
By multiplying by the denominator on both sides for both inalifies, we find that
r—ar(l—>0by)" < 1—(1-0by)"

y—ay+abry < bzx. (4.3)

Rearranging these terms gives
r<1—0=by)"+ax(l—-0by)" =1—(1—azx)(l-0by)" = fi(z,y) (4.4)

and

y < ay+br—abry = 1—(1—ay)(l—0bzx) = fo(z,y). (4.5)

Thus, ther andy coordinates of the iterate of a point in Region | are strigtlgater than the and
y coordinates of the initial point.
The proof for points in Region Il is exactly analogous exosjth the inequalities flipped. Thus

1—(1—by)"

Teac a(l —by)n (4.6)

and
v = 1—jiabx (4.7)

imply that

xr>1—1—ax)(1=0by)" = fi(z,y) (4.8)

and
y > 1-(1—-ay)(l—bz) = f2(z,y), (4.9)
i.e., thex andy coordinates of the iterate of a point in Region Il are slyitéss than the: andy
coordinates of the initial point. O

Lemma4.2. Letb > (1 — a)/+/n. The image of Regiohunder [ is contained in, and the image
of Regionlll under F is contained in Regiofil .

Proof. We prove that for a pointz, y) in Region |, its iterated x-coordinate satisfies (4.1) asd it
iterated y-coordinate satisfies (4.2).

x-Coordinate Iteration:
We must show that
1-(1=b(1— (1 —ay)(d —bx))"
1—(1-— 1—by)" 4.1
B e [t ) EL

We'll do this by first showing the left hand side is less th%?ﬁ(llbig’ > 1— (1 —ax)(1—by)",
which we then show is less than the right hand side.

Since(x, y) is in Region |, we know that

r < 1—(1—ax)(1->by", (4.11)

which implies that
x

1—(1—azx)(l—>byn
Sincel < a, b,y < 1, we know that(1 — by)™ > 0. Thus,
ax(l —by)"
1—(1—azx)(l—>by)n

< 1. (4.12)

1— > 1 —a(l —by)". (4.13)



We simplify the left side of the inequality:

1— (1 —ax)(1 = by)" az(1 — by)" §
—(—a)( by T-(-a) sy ~ U=
1— (1 —by)" + ax(l —by)" az(1 — by)" §
—(—a)0-by  I-(—a)—tyy = ' —ol-%
1—(1—by)"

—(—an)(l—byr ~ a(l—by)".  (4.14)

Finally, we rearrange the inequality, and obtain our intxirate step:

11__;(11__?;; > 1—(1—az)(1—by)" (4.15)
For the second part of the proof, recall that
y < 1—(1—ay)(l-—bx), (4.16)
which implies
(1—=0(1—(1—=ay)(l—=0x)))" < (1—"0by)". (4.17)

Now we let(1 — b(1 — (1 —ay)(1 —bz)))" = cand(1 — by)" = ¢+ d where0 < ¢ < 1andj > 0
such that < ¢+ § < 1. Then we can write
—0 —ad
l—c—06—ac+ac®+ acd 1—c¢—ac+ac® — ad + ade
(1—ac)(l—c—=96) < (I1—ac—ad)(l—rc)

ANAN

1—(c+9) 1—c
1—a(c+9) D (4.18)
Thus
1—(1-b(1—(1—ay)(1—b2))" _ 1—(1—by)" (4.19)
1—a(l—=0b1—-(1-ay)(l—bx)))" 1—a(l—0by)n '
The desired result follows from (4.15) and (4.19).
y-Coordinate Iteration:
We must show that
= (1= ay)(1 —ba) < — = —a)1 = by)") (4.20)

1—a+ab(l—(1—ax)(l—by)")

We argue similarly as before, first showing the left hand sdess tha _(1_;;“"/‘)(1_@), which we

then show is less than the right hand side. Since) is in Region I, we know that
y < 1—(1—ay)(l—bx), (4.21)

which implies that
)
1—(1—=ay)(1l—bx)

Sincel < a, b, x < 1, we know thatubx — a < 0. Thus,

< 1. (4.22)

y(abr — a)
1—(1—=ay)(1l—bx)

1+ > 1—a+ abx. (4.23)



We simplify the left side of the inequality:

1—(1—ay)(l—bx) y(abr — a)
1 —
—(—an—br) Ty —bn) ~ L-ataw
ay + bx — abxy abry — ay
=0 —ap)(i—tz)  T=(—api —bwy ~ 1 eta
bx
=1 = ay)(1 = ba) > 1—a+ abx. (4.24)
Rearranging the inequality yields our intermediate step:
bx
For the second part of the proof, recall that for a point iniBed
r < 1—(1—=ax)(1->by". (4.26)

This allows us to writel — (1 — ax)(1 — by)" = = + ¢ for somec > 0 such thatr < = + ¢ < 1.
Sincec > 0 anda, b < 1 we see that

bc —abc > 0
bx + be — abx — abe + ab*x? + ab’xe > br — abx + ab*x? + ab’xe

b(x+c)(1—a+abr) > bx(l—a+ablz+c)). (4.27)
Thus
b(z + c) bx
1 —a+ab(x+c) - 1—a+ abx’ (4.28)
that is,
b(1— (1 —az)(1—>by)") bx (4.29)

I —a+ab(l—(L—ar)l—by)") ~ 1—atabz
The desired result follows from (4.25) and (4.29).
The proof showing that all points in Region Ill iterate insidegion Il undett” is essentially the
same, now taking (4.8) and (4.9) as the initial inequalitidsus given a point in Region Ill, we find
that its iterated x-coordinate satisfies (4.6) and its ieztg-coordinate satisfies (4.7). O

4.2. Limiting Behavior. Before proving Theorem 1.2, li(b) in general, we conceetran the
special case when the initial state is in Region | or .

Lemma4.3. Letb > (1—a)/+/n. All non-trivial points in Regionsandlll iterate to the non-trivial
fixed point under'.

Proof. Consider any non-trivial poiniy = (o, yo) in Region |. Define a sequence by setting, =

F (z). By Lemma 4.1, we know that; is monotonically increasing in each component, and is
always in Region I. Furthermore, we know thatis bounded by(z, y;) (the unique, non-trivial
fixed point). Thusz; must converge. Suppose it converges’ta.e.,lim;_,., z; = 2’. We consider
the iterate of:’. Sincel’ is continuous, we have

F(?) = F(lim zt) = lim F(2) = lim z,; = limz = 2. (4.30)
t—o00 t—o0 t—o0 t—o0

Thus, 2’ is a fixed point. Since;, > (0,0) and z; is increasing,z’ cannot be the trivial fixed
point. Thusz’ must be the unique non-trivial fixed point. For Region Ill, ineve a monotonically
decreasing and bounded sequencihat must thus converge to a fixed point. By Lemma 4.2, this
fixed point must be in Region Il and thus can only be the unigpe-trivial fixed point. O



4.3. Proofs. The essential idea is the following. Consider any rectaimgle, 1] whose lower left
vertex is not(0, 0) (the trivial fixed point introduces some complications, vet can bypass these
by simply taking larger and larger rectangles). Assumedtet left and upper right vertices are in
Regions | and Il respectively. We show that the image ofttsangle undeF’ is strictly contained
in the rectangle by showing that the image of the lower lefsdectively, upper right) point has both
coordinates smaller (respectively, larger) than any oitieeate. As the lower left and upper right
vertices iterate to the non-trivial fixed points (since tlaeg in Regions | and Ill), so too do all the
other points in the rectangle, as the diameters of the itersbf the rectangle tend to zero.

We make the above argument precise. Let the rectangle beiatsz, y) € [0, 1]? with z, <
r < my andy[ < Y < Yu- RecaIIF(x,y) = (fl(x,y),fg(x,y)). We choose a pOin¢‘T7y>
in our rectangle and lety(z,y) = = andzps(x,y) = y. We define the sequeneg(z,y) =
(ze1(,y), 2e2(7, y)) (t a positive integer) by, 1 1(z,y) = fi(21(2,y), 2t2(2, y)) andzi12(z, y)
= fo(ze1(z,y), ze2(x,y)). We show by induction that; ; (z/, ye) < ze1(x,y) < 2ze1(2y, yu) and
2eo(ze,ye) < ze2(x,y) < zi2(xy, yu). 1IN Other words, the image of any of our rectangles is coethin
in the rectangle, and the lower left vertex iterates to theeloleft vertex of the new region (and
similarly for the top right vertex).

The base case is given by our choic€.of y,) and(x.,, v, ), SO we proceed to show the inductive

step. Suppose that we havg (s, y,) < z1(x,y) andz o (xe, yo) < z2(x,y). Then
L—az(ve,ye) > 1—aza(r,y)
1 - bzt,?(xb yé) 2 Zt,?(xv y)v (431)

which implies that
(1 —aze1(@e, ye) ) (1 = bzea(ze, ye))" = (1 —azea(w,y))(1 — bza(z,y))" (4.32)
foranyn > 1. Then
1= (1 —aza(zeye)) (1 —bza(ze,ye)” < 1= (1—az(z,y))(1 —bza(z,y)".  (4.33)
Thatis,z;111(x, yo) < zi111(x, y). Furthermore, we have that
11— azt,z(l'é, y) > 11— azt,2($> Y)
1 —bzei(xe,ye) > 1 —bza(x,y), (4.34)
which implies that
(1= azez(ze, ye)) (1 = bza(ze,ye)) 2 (1= aza(z,y))(1 = bza(z,y)). (4.35)
Then
1— (1 —aza(xe,ye)) (1 —bzea(xe,ye) < 1—(1—aza(z,y))(1 —bzei(x,y)). (4.36)

That iS,Zt_i_l’Q(l’g, yz) < Zt+1,2<x7 y)
By a similar argument, we see thati (z,y) < 2z:1(%u, yu) aNdz2(z,y) < z12(24, yu) implies

thatz, 11 (2, y) < 211 (20, Yu) @NA 201 2(2, ) < 2eg1,2( T, Yu)-

Thusz 1 (e, ye) < ze1(2,y) < 201 (Tus Yu) @A 2 0(20, y0) < 2e2(2,y) < 20(y, y,,) for all
t € N. Taking the limit, we have

lim Zt,l(l'b yé) < lim Zt,l(l'» y) < lim Zt,l(l'm yu) (4.37)
t—00 t—00 t—r00

and
lim Zt,z(l'b ye) < lim Zt72(1'> y) < lim Zt,z(l'm Yu) (4.38)
t—00 t—00 t—00

Since(x, y,) is in Region | andx,,, y,,) is in Region lll, the inequalities become
zy < tlim ze1(z,y) < xy (4.39)
—00



and
yr < lim zs(z,y) <y (4.40)

Thuslimy_, o z¢1(x,y) = xp andlim,_,« 2 2(z,y) = yy, thatis,(z, y) iterates taz ¢, yy).
We can isolate from the proof Theorem 1.2, li(b) informatadoout the rapidity of convergence.

Corollary 4.4. Assumé > (1 — a)/y/n. Given a point(z,y) € (0,1)2, consider a rectangle
with (x,y) on the boundary and verticésy, y;) in Regionl and (z, yiir) in Regionlll. Then the
amount of time it takes fqtr, y) to converge to the unique, non-trivial fixed point is the nmraxin

of the time it take$xy, y1) and (xy, yip) to converge.

5. FUTURE RESEARCH

While we are able to determine the limiting behavior of angfeguration, a fascinating question
is to understand the path iterates take when convergingetidxdd point. Based on some numerical
computations and some partial theoretical results, we riakéollowing conjecture.

Conjecture 5.1. Letb > (1 — a)/+/n. Points in Region$l and IV exhibit one of two behaviors,
depending om, b, n. Either:

(1) All points in Regionl iterate outside Regiol and all points in RegiotV iterate outside
RegionlV (“flipping behavior"), or

(2) All points in Regionrll iterate outside RegiolV and all points in RegioiV iterate outside
Regionll ("non-flipping behavior").

It would be interesting to find simple conditions involviagh andn for each of the two possi-
bilities.

Another topic for future research is to apply the methodsi paper to more general models.
We present some partial results to a system which quicklgwofrom our arguments. We may
consider star graphs with more than two levels, i.e., gragitose spokes are themselves surrounded
by additional spokes, which might themselves be surrouyealdditional spokes, et cetera. We
recall that (1.1) and (1.2) give us the following generaksys

pie = (I —=pis-1) H (1 — Bpji-1) + 0pis H (1= Bpje-1)
jri i
= 1—(L—apy—) [ =bpj). (5.1)

g

We keep the simplifying assumption that at each level, tihebeu of spokes is the sammn the
3-level case, this means that we consider a graph mithpoke nodes around a hub node, and
spoke nodes around each of thespokes. Generalizing our result in the 2-dimensional daastan
the limit all spokes have the same behavior, we can argueduction that all nodes on the same
‘level’ approach a common, limiting value. Thus, in thelimensional case, we are reduced to a
system in unknowns.

We first consider th8-dimensional case. If we let, be the probability that the hub is infected
(the level 1 node)y, be the probability that a spoke of the hub is infected (thell@emnodes), and
z; be the probability a spoke of a spoke is infected (the levadd@es), (5.1) gives us the following
system:

x 1—(1—ax)(l—0by™
Fly |l =1|1-01-ay)(1—0x)(1—-0b2)" |. (5.2)
2 I1—(1—=az2)(1-"0by)



We again look for partial fixed points by solving

r = fl (xuyaz)
Yy = f2 (xuyaz)
z = f3 (xvyvz)a (53)
which gives the following surfaces:
B o I=(1=by)™
¢1 (yv Z) = T = 1—a (1 — by)nl
B 1 —=(1=bx) (L —0b2)™
e2(w.2) =y = T—ay(1—>bx)(l—0b2)"
bs(ry) = 2= — B (5.4)
s\HY) =  1l—a+aby’ '

If we take the intersection af; with the plane defined bys; and ¢, with the plane defined by
¢3, We get two curves that look a lot like our curves from the iiad)(2-dimensional) case. We can
express these curves in termsoéndy. The first curve is already done. For the second, we can
write

y—1 1

T ==t b (®-5)

Since we know that = by/ (1 — a + aby) we can write this as

—1 1
.Z’ = y b2 T3 —'— E. (5.6)
b1 —ay) (1 - =)

We now have two curves); (y) ande, (y). If we take their derivatives @t we obtain

bn
6o = ;-
—CL2— 2n2
o0 = Lo 57)

Doing some analysis on their second derivatives showsdhég) < 0 and¢j (y) > 0 for all

y € [0,1]. Thuse, (y) is convex and, (y) is concave. All the pieces are now in place to argue as
in the proof of Theorem 1.2, I(a) and Il(a). We find that thexs&s a unique nontrivial fixed point

if and only if

¢1(0) > ¢5(0), (5.8)
ie.,
R Sl (5.9)
Vi + ng

This leads to the following conjecture (which is known foe 2 or 3).

Conjecture 5.2. Consider a generalized spoke and star graph witbvels. Level one consists of
one node (the hub), level two consistsipspokes connected to the central hub, and for each node
of levelk there aren;, nodes connected to it (and these are the Iévell nodes). There is a unique,
non-trivial fixed point if and only ib > (1 — a)/\/ny + -+ + ng—1.
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