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ABSTRACT. The study of the limiting distribution of eigenvalues &f x N random matrices as
N — oo has many applications, including nuclear physics, nuntiesry and network theory. One
of the most studied ensembles is that of real symmetric oestrwith independent entries drawn
from identically distributed nice random variables, wh#e limiting rescaled spectral measure is
the semi-circle. Studies have also determined the limitasgaled spectral measures for many struc-
tured ensembles, such as Toeplitz and circulant matridesse'systems have very different behavior;
the limiting rescaled spectral measures for both have umihedisupport. Given a structured ensem-
ble such that (i) each random variable occu(d7) times in each row of matrices in the ensemble
and (i) the limiting rescaled spectral measuyrexists, we introduce a parameter to continuously
interpolate between these two behaviors. We fix @ [1/2,1] and study the ensemble of signed
structured matrices by multiplying the, 7)™ and (j, )" entries of a matrix by a randomly chosen
e;; € {1,—1}, with Prob(e;; = 1) = p (i.e., the Hadamard product). Fpr= 1/2 we prove that
the limiting signed rescaled spectral measure is the sewiecFor all othep, we prove the limiting
measure has bounded (resp., unbounded) suppetiéfs bounded (resp., unbounded) support, and
converges tq: asp — 1. Notably, these results hold for Toeplitz and circulantnxansembles.

The proofs are by Markov’s Method of Moments. The analysishef2k™ moment for such
distributions involves the pairings @k vertices on a circle. The contribution of each pairing in the
signed case is weighted by a factor depending and the number of vertices involved in at least one
crossing. These numbers are of interest in their own rigigearing in problems in combinatorics
and knot theory. The number of configurations with no vestiogolved in a crossing is well-studied,
and are the Catalan numbers. We discover and prove simitautas for configurations with, 6, 8
and 10 vertices in at least one crossing. We derive a closed-forpnession for the expected value
and determine the asymptotics for the variance for the nuwfheertices in at least one crossing. As
the variance converges to 4, these results allow us to demtoperties of the limiting measure.
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1. INTRODUCTION

1.1. Background. In this paper we study how the limiting spectral measuresdbn structured
families of random matrices behave under deformationsddiitisn to being of interest on its own,
the analysis requires us to study combinatorial objectsdhiae in a variety of other problems,
including knot theory. We isolate several results abouséhmbjects in the course of our investiga-
tions, which we describe after first motivating the randontrin@aheory ensembles and discussing
the method of proofs.

Though Random Matrix Theory began with statistics investans by Wishart [Wis], it was
through the work of Wigner [Wigl, Wig2, Wig3, Wig4, Wig5], Bgn [Dyl, Dy2] and others
that its true power and universality became apparent. Wigeeat insight was that ensembles
of matrices with randomly chosen entries model well manylearcphenomena. For example, in
guantum mechanics the fundamental equatioi s, = FE,V, (H is the Hamiltonian,¥,, the
energy eigenstate with eigenvaliég). Though H is too complicated to diagonalize, a typical
H behaves similarly to the average behavior of the ensemhigatrfices where each independent
entry is chosen independently from some fixed probabilisgrdiution. Depending on the physical
system, the matrix{ is constrained. The most commanis real-symmetric (where the limiting
rescaled spectral measure is the semi-circle) or Hermitlanaddition to physics, these matrix
ensembles successfully model diverse fields from numberyhf S, KS1, KS2, KeSn, Mon, RS]
to random graphs [JMRR, MNS] to bus routes in Mexico [BBDS$&].

The original ensembles studied had independent entrieseafoom a fixed probability distribu-
tion with mean 0, variance 1 and finite higher moments. Foh unsembles, the limiting rescaled
spectral measure could often be computed, though only tlgoeee [ERSY, ESY, TV1, TV2])
was the limiting spacing measure between normalized egjees determined for general distribu-
tions. See [Fo, Meh] for a general introduction to RandomrMatheory, and [Dy3, FM, Hay] for
a partial history.

Recently there has been much interest in studying highlggired sub-ensembles of the family
of real symmetric matrices. Here new limiting behavior egaest with the resulting measures de-
pending on the combinatorics of the problem. Examples dehand matrices, circulant matrices,
random abeliard7-circulant matrices, adjacency matrices associateregular graphs, and Han-
kel and Toeplitz matrices, among others [BasBo2, BasBotBBaBCG, BHS1, BHS2, BM, BDJ,
GKMN, HM, JMP, Kar, KKMSX, LW, MMS, McK, Me, Sch]. Two partidarly interesting cases
are the Toeplitz [BDJ, HM] and singly palindromic Toeplitzsemble [MMS], which we now gen-
eralize (though our arguments would follow through withyomiinor changes for other structured
ensembles). A real symmetric Toeplitz matrix is constamnglits diagonals, while its palindromic
variant has the additional property that its first row is armgibme. The limiting rescaled spectral
measures of these ensembles have been proven to exishat@atssian in the singly palindromic
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case, and almost a Gaussian in the Toeplitz case (the lgniéiscaled spectral measure has un-
bounded support, though the moments grow significantlystdian the Gaussian’s).

As these matrices are small sub-families of the family ofr@#ll symmetric matrices, it is not
surprising that new behavior is seen. A natural questiorskoiwhether or not there is a way to
‘fatten’ these ensembles and regain the behavior of thedallsymmetric ensemble. This is similar
to what happens for the adjacency matriceg-oégular graphs. For fixed the limiting rescaled
spectral measure is Kesten’s measure [McK], which congeagd — oo to the semi-circle (see
[GKMN] for the related problem of the limiting rescaled spet measure of weightedregular
graphs). We can ask similar questions about band matrindsagain see a transition in behavior
as a parameter grows [Sch].

Before stating our results, we first quickly review some dtad notation (see for example [HM,
IJMP, KKMSX, MMS]).

e Random matrix ensemble: In this paper a random matrix enigeisil collection of/V x
N (with N — oo) real symmetric matrices whose independent entries arendfizom
identically distributed random variables whose dengityas mean 0, variance 1 and finite
higher moments. We often study structured ensembles, vihere are additional relations
beyond the requirement of being real symmetric. The prdiyabieasure attached to the
N x N matrices in the ensemble is

Prob(A)dA = [ »lay)das;, (1.1)
(ivj)GIN

whereZy is a complete set of indices corresponding to the indepérmahenes of ourV x N
matrices. For example, for real symmetric Toeplitz matrittee only dependency condition
is thata;; = ay if |i — j| = |k — (|, and we may thus takey = {a11, a2, ..., an1}-

e Empirical spectral measure: Given anx N real symmetric matrix, its empirical spectral
measure is

pale) = 1 D760~ M(4), (1.2)

with 6(x) the Dirac delta functional and the.(A)’s are the eigenvalues of.
e Rescaled empirical spectral measure: The rescaled eml@pectral measure df, denoted

fia(z), is
N 1 & Me(A)
fia(x) = N E 0 <$ - ckW) ) (1.3)

k=1

notice

fia(x) = prajens(z). (1.4)
Typically the A’s are chosen from a random matrix ensemble, and we have ané pg
for all the A’s. In this paper usually = 1/2 (this is a consequence of the eigenvalue
trace lemma and the central limit theorem) as our randomixnatisembles are full (i.e.,
each entry is drawn from a random variable with mean 0 anchnee 1). The situation
would be drastically different if we considered matricesenehmany entries are forced to
be zero, such as the adjacency matrices associatédegular graphs (where= 0 as the
eigenvalues do not grow witN) or band matrices where the band width is small relative to
N.
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e Hadamard products: Given real symmetkicx N matricesA = (a;;) andB = (b;;), their
Hadamard product, denotetlo B, is the matrix whoséi, 7)™ entry isa;;b,;; its empirical
spectral measure js4.5(x).

e Limiting spectral measure: If the limit of the sequence oérage moments of a random
matrix ensemble,

A}l_{r(l)o/ / 2* i 4(x)Prob(A)dA (k a positive integer), (1.5)
exists and uniquely determines a measure, that measuried ttee limiting spectral mea-
sure of the ensemble.

e Limiting signed rescaled spectral measure: ket [1/2, 1] and consider the random matrix
ensemble of real symmetric matricE€s= (¢;;) with the independent entries independent
identically distributed random variables that are 1 witbhability p and -1 with probability
1 — p; we call this thesignedor weightedensemble. Given a random matrix ensemble with
matricesA, consider the signed random matrix ensemble with matriceS. The ensemble
has measure

(H pUiten/2(1 — p)ﬂ—w)/?) Prod(A)dA. (1.6)
i<j

We rescale the eigenvalues of the Hadamard product by the fotor we used for the
unsigned matrices; thus

face () = puajenryos(T). (1.7)

The averagé™™ moment is

/ . / H Z / T po (2)pIH)/2 (1 — p) =) 2Prod(A)dz dA.  (1.8)

®1<<G<N ee{~1,1}

The key to our analysis is the Eigenvalue Trace Lemma, winighlies that theé:! moment of
fiais
I Trace( A¥)
Myn(A) = / e ia(z)de = TN (1.9)

The advantage of this formulation is that we convert what vaatwo study (the eigenvalues) to
something we understand (the matrix entries, which areamhgdchosen). We now integrate the
above over the family, reducing the computation to ave@g@iolynomials of the matrix elements
over the family. Determining the answer frequently invalg®lving difficult combinatorial prob-

lems to count the number of configurations with a given cbnotron, with the structure of the

ensemble determining the combinatorics.

We concentrate on the family of highly palindromic real syetrit Toeplitz matrices, introduced
in [JMP] and defined below, for several reasons. This is a-stelllied family, with certain special
cases corresponding to some of the more important classisgimbles. Further, the structure of
these matrices is conducive to obtaining tractable closad &xpressions for many of the quanti-
ties. It is straightforward to generalize these resultstheostructured ensembles whose limiting
rescaled spectral measure exists, and we sketch the proof.
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Definition 1.1. For fixedn, a(degreen) N x N highly palindromic real symmetric Toeplitz matrix

is one in which the first row i8" copies of a palindrome, where the entries are iidrv whosesitign
p has mean 0, variance 1 and finite higher moments; for brevétyoften omit “real symmetric”
below. We always assun¥éto be a multiple o2” so that each element occurs exactly! times

in the first row. Ifn = 0 we say it is asingly palindromic Toeplitz matrix. If a;; is the entry in the
" row and;™ column of4, then we sely;_; = a;; (if the ensemble is at least doubly palindromic,
then theb’s are not distinct and satisfy additional relations duehe palindromicity). For example,
a doubly palindromic Toeplitz matrix is of the form

by b o b by by bbb
bi by o by by bp by oo by by
by by -+ by by by by --- by by
Ay = | & i i
by by oo bo b by by oo b by
bioby oo by by by by oo b by
by b o by by by b b b

The entries of the matrices are constant along diagonalsthHeumore, entries on two diagonals
that are N/2" diagonals apart from each other are also equal. Finally,rezst on two diagonals
symmetric within a palindrome are also equal.

We prove our results on the limiting behavior (averaged tdveensemble) via Markov’s Method
of Moments (see for example [Bi, Ta]) by showing that the agermoments over the ensemble
converge to the moments of a nice distribution. This, plusesgontrol over the variance and the
rate of convergence (done through a counting argument argeal to Chebyshev’s inequality
and the Borel-Cantelli lemma) suffice to prove various tygleonvergence of the limiting rescaled
spectral measure to a fixed distribution. These convergageenents are standard; see for example
[HM].

1.2. Results. We fix ap € [1/2, 1] and study ensembles of signed structured matrices formed by
multiplying the (i, j)" and (j,7)" entries of a matrix in our structured ensemble by a randomly
choser;; € {1, —1}, with Prob(e;; = 1) = p. As we varyp, we continuously interpolate between
highly structured (whep = 1) and less structured (when= 1/2) ensembles. As described above,
our weighting is equivalent to taking the Hadamard matroduoict of our original matrix and a real-
symmetric sign matrixe;; ). See [GKMN] for results on Hadamard products of weight ncasiand

the adjacency matrices associatedt@gular graphs.

Unfortunately, due to combinatorial obstructions in gahéris very hard to obtain closed-form
expressions for the limiting rescaled spectral measuraefgions are the Gaussian behavior in
singly palindromic Toeplitz and related behavior in blogicalant ensembles [MMS, KKMSX],
and Kesten’s measure fdfregular graphs [McK]); however, we are still able to provamm results
about the moments of our signed, structured ensemblesxorme, consider the Toeplitz ensem-
bles. Using the expansion from the Eigenvalue Trace Lemrdageee of freedom argument shows
that the elements in the trace expansions must be matchedr#) fhe difficulty is figuring out the
contribution of each (which greatly depends on the strectdithe matrix). The odd moments triv-
ially vanish, and for even moments, the only contributiothi@ limit comes from when the indices
are matched in pairs with opposite orientation. We showwleaimay view these terms as pairings
of 2k vertices(iy, i) , (i2,43), . . ., (i2x, 71), ON @ circle.
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We concentrate below on Toeplitz and related ensemblesfbotase of presentation and be-
cause we can obtain more closed form results in some of ttesss ¢han is possible in general
(and these results are related to questions in knot thebiighvwve discuss below), though our tech-
niques apply to more general structured ensembles and waefesywords about these. Our main
result is to show that the depression of the contributionaahepairinge in the unsigned case for
Toeplitz and singly palindromic Toeplitz matrices depeadly one (c), wheree (¢) is the number
of vertices in crossing pairs in the pairing (we define thesems in 83). This extends previous
results. Whemp = 1/2, we are reduced almost completely to the real symmetric edsieh means
the limiting rescaled spectral measure is the semi-cirslgidution (allowing special dependencies
between matrix elements); our result also implies thatralésing configurations contribute and
all non-crossing configurations contribuite This gives us k" moment equal to thé" Catalan
number, which is both the number of non-crossing pairingsafbjects and thek" moment of the
semi-circle density.By contrast, whep = 1 we are reduced to the unsigned case, and indeed our
theorem implies that each configuration contributes whadiditin the unsigned case. In addition,
any distribution that had unbounded or bounded supportEtdweighting still has unbounded or
bounded, respectively, support after weighting.

Our main result is the following.

Theorem 1.2. Consider any ensemble of x N real-symmetric structured matrices, where the
independent entries are drawn from a distributiprwith mean 0, variance 1 and finite higher
moments. We assume the following about our random matreneis.

(1) As N — oo the associated rescaled empirical spectral measures cgeve a measure,
which we call the limiting rescaled spectral measure of tinectured ensemble and denote
by 1.

(2) Each of the independent random variables ocays) times in each row of the matrices
for this ensemble.

Fix ap € [1/2,1] and consider the Hadamard product of our ensemble and reahsstric
signed matricege;;) (So¢€;; = €;;), where the entries are independently chosen f{enh, 1} with
Prob(e;; = 1) = p. We call this new ensemble the signed, structured ensemble.

For p = 1/2, the limiting rescaled spectral measures for these sigagdctured ensembles are
the semi-circle. For all othep, the limiting signed rescaled spectral measure has bouriebsgp.
unbounded) support if the original ensemble’s limitingcaed spectral measure has bounded
(resp. unbounded) support, and the convergence is almeoaslysfiadditionally the density is
even.

Remark 1.3. It is imperative that each independent random variable og@i mosto( V) times;
if one occurred orderN times degenerate behavior could happen. This precludeg $oghly

structured matrices ensembles, such as those of theé‘ogjj‘\jv fgg ) (with Oy the N/2 x N/2

matrix all of whose entries are 1), where the limiting regch$pectral measure is essentially a delta
spike at the origin. Another interesting ensemble is thgHitiangle” family, wherew;; = bing j)

The normalized semi-circular density fig.(z) = Ly1- (%)2 if || < 2 and 0 otherwise, and the even moments
are the Catalan numbers.

2Little-oh notation: f () = o(g(x)) if lim, .~ f(x)/g(z) = 0; in particular, this meang(z) grows significantly
more slowly thary(z).
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(so there areV independent random variables):

by by b
by by by ---
by by by --- |- (1.10)

Notice both of these families have rows with ordécopies of the same random variable, and they
have different behavior in their limiting spectral measire

Corollary 1.4. Theorem 1.2 holds for real-symmetric Toeplitz and singlinpegomic Toeplitz ma-
trices. More is true; see Theorem 3.4 for an explicit, clokath expression for the depression of
the moments of these ensembleg as 1/2.

The controlling factor in the real-symmetric Toeplitz amagty palindromic Toeplitz cases (and
in a limited manner the highly palindromic Toeplitz casagking in Corollary 1.4 is how many
vertices are involved in a crossing; we make this preciseinthis reduces our problem to one in
combinatorics. Our problem turns out to be related to issuksot theory as well, which provided
additional motivation for and applications of this workeder example [CM, KT, Kl2, Kont, FN,
Rio, Sto]). In the course of our investigations, we proveesalinteresting combinatorial results
(many of the coefficients have been previously tabulatechenQEIS; see for example Remark
3.19), which we isolate below.

Theorem 1.5. Consider all(2k — 1)!! pairings of2k vertices on a circle. LeCry 2, denote the
number of these pairings where exacly vertices are involved in a crossing, and (8t denote
the k' Catalan numberk%r1 (2:) For small values ofn, we obtain the exact formulas folry 2,
listed below; for largek (and thus a large range of possibte) we prove the limiting behavior of
the expected value and variance of the number of verticedvied in at least one crossing.

e Form < 10 we have

Croro = Cg

Crope = 0

Craes = <k2—k2)

Cropg = 4 (k2_k3)

Crops = 31 (;f_kgl) + § (k _Qf_ d) (4+d)
Crang = 288 (k2_1€5> + 8§ (k _25k_ d) (5+d). (1.11)

e The expected number of vertices involved in a crossing is

— 2k —2— — 2k —1) o1 (1,1/2+ k,3/2; —1 1.12
2k_1< 2k — 3 ( )2 1(7/+ 73/7 ) ’ ( )
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which is
k k2

ask — oo; here, I is the hypergeometric function. Further, the variance eftlumber of
vertices involved in a crossing convergestto

%—2-240 (i) (1.13)

We review the basic framework and definitions used in stuglyfire moments in 82. In 83 we
determine formulas for the moments, and prove the first garheorem 1.5 in the Toeplitz case,
completing the proof by determining the limiting behavinr§4 and discussing the minor changes
needed for the general case. All that remains to prove Thedr2 is to handle the convergence
iIssues; this analysis is standard, and is quickly reviewesbi

2. MOMENT PRELIMINARIES

Note: For ease of exposition we consider (real symmetric) Toeptitensembles below, though
minor modifications yield similar results for other real symmetric structured ensembles where
the limiting rescaled spectral measure exists and each raman variable occurso(/N) times in
each row of matrices in the ensemble. In particular, we takéc, ) to be (1,1/2).

We briefly summarize the needed expansions from previou& yg@e [HM, JMP, KKMSX,
MMS] for complete details). We use a standard method to céenthe moments. For a fixed
N x N matrix A drawn from a Toeplitz ensemble, th® moment of its rescaled empirical spectral
measure is )

Mk,N (A) = k Qjyiy Aigig * * * Aigiq (2.1)
Nat 1§i1§kSN
which when applied to our signed Toeplitz and palindromiefldz matrices (where the entries of
the unsigned ensemble are constant along diagonals) piaes t

1
My N (4) = Z €i1i2b\i1—z‘2\Gigigb\i2—z‘3\ o 'Eikilb\ik—i1\~ (2.2)

k
S+1
Nz2T0 TN

By linearity of expectation,

E (Mk,N (A)) = N§+1 Z E <€i1i2b|i1—i2|€i2i3b‘i2—i3| e Eikh b|ik—i1|) ) (23)
1<iy,..,ix <N
and we set
N—oo
Of the N* terms in the above sum corresponding toAffechoices of(is, . . ., i;,) in the above sum,

we can immediately see that some contribute zero in the &BsW — oo by using the following
lemmas.

Lemma 2.1. Let &£ be an integer and consider any Toeplitz ensemble. The omtysten (2.3)
that can have a non-zero contribution in the limit &— oo to M, have each,, in the product
appearing exactly twice. Further, all such terms have adintntribution.

Proof. We first prove that any term that doesn’t have evergppearing at least twice does not con-
tribute. As the expected value of a product of independerdbves is the product of the expected
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values, since eadh, is drawn from a distribution with mean zero, there is no dbation in this
case. Thus eadh, occurs at least twice if the term is to contribute.

We now show that any term that has sobp@ppearing more than twice cannot contribute in the
limit. If each b, appears exactly twice, then there a@re values ofb, to choose. Recall (see for
example [HM]) that for Toeplitz matrices,; ;,,,| is paired withb;, _;, | if and only if

iy — i1 = (i — ige). (2.5)

Once we have specified ths and one index;, there are at most two values for each remaining
index. Thus there ar@ <N§+1> terms where thé,’s are matched in exactly pairs. By contrast,

any term that has sonte appearing more than twice has fewer trgam 1 degrees of freedom, and
thus does not contribute in the limit as we divide §§/>*!.

Finally, we show that the sum of the contributions from alivie arising from matching in pairs
is O (1). Suppose there are < k differente,’s ands < k differentb,’s in the product, say
€y1y -5 €y, @ANAD,,, ..., ba,, With eache, occurringn; times and each,, occurringm; times.
Such a term contributef[;_, E (7)) [T;—, E (ba; ). Since the probability distributions of thés
andb’s have finite moments, this contribution is thiig (1), and thus the sum of all such contribu-
tions is finite in the limit. O

Remark 2.2. For singly palindromic Toeplitz and highly palindromic Tz matrices, a similar
result holds once we identify the appropridtg After correcting equations (2.7) and (2.8) of
[JMP] to fix an omission and to tak@ € {(—|led| 4k — D& ke {1,...,2"}} and

4 4 N/27L
C € {(| 55 + k)& — 11k € {1,...,2"}} into account, we have that, ; ., is paired with
bjip—ir,,| If @and only if
ij —ij1 = £k —ixp1) +Cryp- (2.6)

For singly palindromic Toeplitz matrices, it is easy to chéieat the only possible values afg,,
equalst(N — 1) or 0. Moreover, it is not hard to see that the number of possibleesfor each
C.,, depends on the momentbeing computed and on the levebf palindromicity of the ensemble,
but is independent a¥, a fact which will be crucially important in later proofs.

Lemma 2.3. For Toeplitz and (highly) palindromic Toeplitz ensembligg odd moments of the
limiting rescaled spectral measure vanish.

Proof. For the Toeplitz ensemble, this follows directly from Lem&a (since the odd moments
have an odd number éfs, they cannot be matched exactly in pairs). For the singlindromic

and highly palindromic cases, soriemust appear an odd number of times. If it appears exactly
once, it must vanish because the distribution is mean zdride Whe number of terms where some
b, appears three or more times is insignificant by a simple @sgfrfrfeedom argument. (For a more
detailed exposition, see [JMP].) O

Since the odd moments vanish, we concern ourselves in thefrdse paper with the limiting
behavior of the even momentsl,,. Further, in the moment expansion for the even moments, we
only have to consider terms in which thg's are matched in exactly pairs. With the next lemma,
we further reduce the number of terms we must consider by islgativat only those terms where
every pairing between thigs is with a minus sign in (2.5) contribute in the limit. Thdl@wing
proof is adapted from [HM].
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Lemma 2.4. For all the Toeplitz ensembles, the only terms that contelva /5, the2&™ moment
of the limiting rescaled spectral measure, are terms whieeé’'s are matched in exactly pairs and
have a minus sign in each of thesquations of the forr{2.5).

Proof. We do the proof for the Toeplitz case, as the other casesrailasiFor each term, there ake
corresponding equations of the form (2.5). Weidgt. . . , x;, be the values of thg, — ¢, in these
equations, and let, . . ., ;. be the choices of sign in these equations. We furthei,let i; — i,
To = lg — i3,...,Tor, = 1o, — 1. We know the only contribution td/,, arises from terms where
thed’s are matched in pairs. Thus given somgthere must be an = n(m) such that,, = +z,,.
Then each of the previousequations can be written as

Ii'm - (5jfl~fn, 5]' S {—1,1} (27)
By definition, there is somg; = +1 such thatt,, = n;z;. Thenz,, = d,n;z;, SO

k
Ty +To+ -+ X9, = an(1+5j)l'j. (28)
j=1
Finally, notice that
i’l—i-.i’g—'——'—i’gk - Zl—ZQ+12—Zg++12k—Zl - O (29)
Thus
k
j=1

If any 6; = 1, then (2.10) gives us a linear dependence between thiRecall from the proof of
Lemma 2.1 that we require afl; to be independently chosen for a pairing to contribute; tise,
there are fewer thak + 1 degrees of freedom. Thus, the only terms that contribute leach
(Sj - —1

From [JMP], the analogous result holds for the singly pafingic and highly-palindromic Toeplitz
ensembles, i.e.,

ij—ij41 = —(ix — 1) £Cppp- (2.11)
0

The above results motivate the following definition.

Definition 2.5 (Pairing) A pairingis a matching of the vertices, i, . . . , is;, such that the vertices
are matched exactly in pairs, and with a negative sig(2i). There are(2k — 1)!! pairings of the
2k vertices. As argued above in the proof of Lemma 2.1, thesepaicorrespond t@) (N**1)
terms in the sum i(2.3)for the 2k moment.

As suggested above, we find that a good way to investigateothieiloution of each potentially
contributing term, i.e., each choice or tuple(af, . . ., is;), is to associate each term with a pairing
of 2k vertices on a circle, where the vertices &ke— is|, |ia — i3], ..., |iox — i1|. Because what
matters are not the values of the — ¢4 |’s, but rather the pattern of how they are matched, any
terms associated with the same pairing of 2tkevertices will have the same contribution. Thus,
pairings that are the same up to a rotation of the verticesibote the same since it is not the values
of 7; that matter but rather the distance between each vertexsintatching and the indices of the
other pairs. Therefore, to further simplify the moment gsil, we make the following definition.
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semi- ] jk
adjacen|,
@

FIGURE 1. The five distinct configurations for thé'Bnoment where vertices are
matched exactly in pairs. The multiplicity under rotatidrtee five patterns are 2, 3,
6, 3 and 1 (for example, rotating the first pattern twice meut to its initial configu-
ration, while the third requires six rotations). The nomatwae is from [KKMSX],
and is not relevant to our purposes here.

FIGURE 2. A pairing of10 vertices with8 crossing vertices (in two symmetric sets
of 4 vertices), an@ dividing vertices (connected by a main diagonal).

Definition 2.6 (Configuration) Two pairings{ (ia,, ta; ) , (tas, tay) » - - - » (Tage 1+ tage ) } ANA{ (it iy ),
(ibg%by)s - - -+ (inys 4+ 76y ) } @re said to be in the same configuration if they are equivalgnto a
relabeling by rotating the vertices; i.e., there is somestant/ such that; = a; + 1 mod 2k.

For example, we display the five distinct configurations eeefdr the sixth moment in Figure
1. The problem of determining the moments is thus reduceetierchining for each configuration
both the contribution of a pairing belonging to that confagion to the sum in (2.3) and the number
of pairings belonging to that configuration.

3. DETERMINING THE MOMENTS

By Lemma 2.1, for the rest of the paper we may assume the gsidi@ matched in exactly pairs.
We distinguish between three types of vertices in thesenggir

Definition 3.1 (Crossing, non-crossingyVe say that a pair of verticgs, b), a < b, is in acrossing
if there exists a pair of vertices, ) such that the order of the four vertices, as we travel closkwi
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around the circle, is eithet, x, b, y or =, a, y, b. A pair(a, b) isnon-crossing if for every pair(z, y),
x is between andb (as we travel clockwise around the circle franto b) if and only ify is.

Pictorially, a pair is crossing if the line contained in thcke connecting its two vertices crosses
another line connecting two other vertices. In Figure 1fiiseétwo configurations have no crossing
vertices, the third has four, while all vertices are croggor the fourth and fifth. Note the number
of crossing vertices is always even and never two.

Definition 3.2. We say that a non-crossing pair of vertices b) (with a < b) is dividing if the
following two conditions hold:

(1) There exist two pairs of crossing verticés, y) and (w, z), such that as we travel around
the circle froma to b we haver, y, w and z are betweem andb.

(2) There exist two pairs of crossing verticés, q) and(r, s), such that as we travel around the
circle fromb to a we havep, ¢, » and s are betweer anda.

All other pairs are callechon-crossing non-dividing pairs.

Pictorially, a pair is dividing if it “divides” the circle ito two regions of pairs (no pair can cross
a dividing edge since it must be non-crossing), where eagiomecontains at least one crossing
pair; see Figure 2 for an illustration. From the definitiorg, ee that at lea$0 vertices are needed
for a “dividing” pair to exist, and thus it is possible thatwé&ehaviors or complications arise in
studying the higher moments (a similar situation ariseséightedd-regular graphs, where there
is a marked change in behavior at the eighth moment; see [GKbtN etails).

Note that all pairings belonging to a given configurationénthe same number of crossing pairs
and the same number of dividing pairs.

We show in this section that the contribution of each painmifpe unsigned case is weighted by a
factor depending on the number of crossing pairs in thairpikVe then prove some combinatorial
formulas that allow us to obtain closed form expressiongifemumber of pairings with: vertices
crossing for smalk. As the combinatorics becomes prohibitively difficult fargek, we determine
the limiting behavior in 84.

3.1. Weighted Contributions. The following theorem is central to our determination of the-
ments. It reduces the calculations to two parts. First, veglne know the contribution of a pairing
in the non-signed case (equivalently, wher= 1). While this is known precisely for the singly
palindromic Toeplitz case, where each pairing contribdtas the Toeplitz case we only have up-
per and lower bounds on the contribution of all pairing. $eave need to determine the number
of vertices involved in crossing pairs, which we do in parg?2.

Remark 3.3. For ease of exposition, we prove the following lemmas in theplitz case, and
comment on the proofs (or barriers to proof) in the singlyipatomic and highly palindromic
cases. For the palindromic case, by (2.7) and (2.9))MP], there should be sontg and(C, terms
added into equation (2.5) as well as parts of the proof for ren2.4; however, some minor changes
to the proofs show that these lemmas still hold in the patindc Toeplitz case.

Theorem 3.4. For each choice of a pairing of the verticegiy, . .., is), let z(c) denote the con-
tribution of this tuple in the unsigned case. Then, for theplivz and singly palindromic Toeplitz
ensembles, the contribution in the signed case i$(2p — 1)°(¢), wheree(c) represents the number
of vertices in crossing pairs in the configuration corresgimg toc.
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Recall that the contribution from any choice(@f, . . . , iz ) IS
E(€i1i50)iy —in| €inigDlin—is| * * * ingir Vip—in |) = El€inin€inis * * * i JE(Biy —in| = Ojiy—in|)
= E(Ei1i2€i2i3 T Eizkh)x(c)' (31)
Thus, we want to show th&@(e;,;, €, - - - €i,,5,) = (20 — 1)(). We do this by showing that for
each pair(i;, i;j11) , (ix, ix1) Whereb;,

—ij1] = b\ik—ik+1\’

(2p —1)% if (i;,4,41) , (ix, ir41) @re a crossing pair
E (€561 €ipi = ; 3.2
(6 i1 i ’““) {1 otherwise. (3.2)
Notice that
E(eg) = 1-p+(=1)-(1—p) = 2p—1, E(eg) = 1. (3.3)

Therefore, ifm epsilons are chosen independently, the expected valueiopttoduct is(2p — 1)™.
Before stating and proving some lemmas needed in the prodhebrem 3.4, we introduce a
convenient notation.

Definition 3.5 (Vertex ordering) Fix an integer2k and consider the circle withk vertices spaced
uniformly, labeled 1, 2,. ., 2k. If a, b andz are three of these vertices, by © < y we mean that
we pass through vertexas we travel clockwise about the circle from verieo vertexb.

Lemma 3.6. For the Toeplitz and singly palindromic Toeplitz enseml&s;, i, €y, - - - €inpir) >
(2p — 1)),

Proof. To proveE(e;, i, €ii; - - - €iniy ) = (2p — 1)), we show that pairs not in a crossing contribute
1. Consider a non-crossing pair., i,+1) , (i,, i,+1) (corresponding to verticesandp on the circle
with 2k labeled vertices), with < p. For each(i,, i,+1) paired with(i,/, i,41), we haver < g < p

if and only if r < ¢’ < p. Recall from (2.5) and Lemma 2.4 that in the Toeplitz case,

ig —igr1 = —(ig —ig11), (3.4)

while in the singly palindromic Toeplitz case,

'L.q - iq+1 = _(iq’ - Z-q’-i-l) + Q(Q7 q/)v where Q(Q7 q/) € {_(N - 1)7 07 N — 1} (35)
Thus

p
> ik —ikp1) = HN = 1) (3.6)
k=r
for some integet because each difference in the sum is paired with its a@ditwverse, which is
also in the sum. As
p
Z(@k —ipg1) = (ip = dpg1) + (Gpg1 = Gpg1) + o+ (Gp = ipp1) = G — lpt1, (3.7)
k=r
we must have, = i, £ t(N — 1). Itis clearly impossible to havg| > 1, and if¢ = £1, this
forces{i,,i,+1} = {1, N}; thust = 0. Since this situation uses up a degree of freedom, this@spli
thati, = i,.,. By a similar argument applied to the sum
> ik —in1) (3.8)
k=p
(taking indices cyclically);j, 1 = i,. Thereforee;; ., = €, ., and henceél(e; ; . €, ,,) =
1. O
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Lemma 3.7. For the Toeplitz, singly palindromic Toeplitz, and highblipdromic Toeplitz ensem-
bleS1E(€i1i2€i2i3 e eizkh) < (2]3 - 1)8(0)'

Proof. We ShowE(€;, 1, €55, - - - €i,,4,) < (2p — 1)°(©) by showing that if;,;, ., = €;,i,,,, @ < b, then
(4, 7a41) , (%, ip41) @re non-crossing. This suffices to prove the result sincetiy dependency
between the’s arises from the requirement that the matrix is real symimefThus, we have a
dependency betweef); ., ande; ; , if and only if we know they are equal. In showing that a
dependency betweets implies the corresponding vertex pair must be non-cragsive show that
crossing pairs imply independet$ and thus contributé&p — 1)2.

If €,i.1 = €i,i,,, then it must be true that the unordered g€tsi,., } and{i, i, } are equal.
This implies thati, —iq.1| = |9 — ip11], SO (0, tas1) s (7, 7p41) MuUSt be paired on the circle. Since
the only contributing terms are when they are paired in oppasientation, we then know that
1q = lp+1, SO

b
> ik = ikp1) = ia— i1 = ) £Cr,. (3.9)
k=a k
We can rewrite this sum as

d
> Oulie ikl = Y £Cn,, (3.10)
k=b k

whered, is £+1 if the vertexk is paired with is less thaa or greater thar, and0 if and only if
the vertexk is paired with is between andb. However, since the number of possible values for
> £C,, isindependent aV, a linear dependence among the differences is impossgles aeed

to have N**! degrees of freedom for each configuration (see the proof nfrha 2.1). So each
0, = 0, and each vertex between verticeandb is paired with something else betweemandb.
Thus, no edges cross the edge between verdiceslb. O

Proof of Theorem 3.4For Toeplitz and singly palindromic Toeplitz matrices, wa/é shown that
an epsilon is unmatched if and only if its edge is in a crossiiys, an epsilon is not paired if and
only if its edge is not in a crossing. Therefore the contiiluts weighted byE(e;, i, €ipis - - - €inyi )
which by Lemmas 3.6 and 3.7 {8p — 1)), completing the proof. O

Remark 3.8. In the doubly palindromic Toeplitz case, Lemma 3.6 does alat for the sixth mo-
ment, as we shall see in Lemma 3.11. In particular, this mélamsletermination of the limiting
rescaled spectral measures for general signed ensembtegeareral is harder.

Lemma 3.9. For the Toeplitz, singly palindromic Toeplitz, and highblipdromic Toeplitz ensem-
bles, if the contribution from a non-crossing configuratiwasx before the weighting, it is at most
(2p — 1)}z — 1) + 1 after applying the weighting.

Proof. In the Toeplitz and singly palindromic Toeplitz cases= 1 and the claim is trivial. In
the highly palindromic case, we note that there is a coniobuof 1 from the terms which also
contribute in the real symmetric case. The remaining terargain at least 2 pairs of vertices
which are not matched in the real symmetric case, since osmatched pair (relative to the real
symmetric ensemble) implies a second mismatched paire §Eﬁ@1(ik —1,41) = 0. Hence, for
these termsE(€;,, €1y * - €101, ) < (2p — 1)*, which completes the proof. O

Remark 3.10. A slightly modified version of this proof shows that for otresl symmetric ensem-
bles, if the contribution from a non-crossing configuratiwasx before the weighting, it is at most
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(2p — 1)*(z — 1) + 1 after applying the weighting. Similarly, for crossing capuiiations, if the
contribution wasr before the weighting, it is at mo&p — 1)%x after applying the weighting.

Lemma 3.11. For the sixth moment of sighed doubly palindromic Toephtzeenbles, the contribu-
tion from a configuration is not determined uniquely by thenber of crossings.

Proof. We prove that the adjacent configuration and the non-adjasamcrossing configuration
(the upper-left and upper-middle configurations in Figureespectively) have different contribu-
tions to the sixth moment.

The main idea is that in the ‘adjacent configuration’, evargtabuting term has either all three
pairings of the formu;;a;;, or exactly one pairing of this form. Since we know that thatabution
when all three pairings are of this form isthe contribution when there is exactly one pairing of
this form is(z — 1). In this situation, the contribution to the moment is weeghby (2p — 1)4,
giving a total of(2p — 1)*(z — 1) + 1.

Specifically, we have that

it — i1 = —(lp1 = drg2) £ Crpy g, (3.11)

whereC,,, ., = N/2or N/2 —1or0. (N-andN — 1 are ruled out because we would lose a degree
of freedom by forcing one value to deand the other to bé/.) Moreover(,, ., = 0 if and only
if €,i01 = €iprins- NOW, if we choose three values frof0, +N/2,+N/2 — 1} that add up ta@),
we must choose either one or three of the values t@ @de cases where all three @reontribute
fully while the case where two are non-zero is depresse@py- 1), so that contribution to the
moment in the signed ensemble is exa¢Bly — 1)*(x — 1) + 1.

In the other non-crossing configuration, the moment is attii¥ps— 1)*(z — 1) + 1 by the proof
of Lemma 3.9. Hence, to show the moment is smaller than thagllisuffice to find a contributing
group of terms whose moment is reduced by more {2an- 1)*. As one example, we can take
the vertices to be; ;, a; iy n/2, GiyN/2,k4+N/2, GkrN/2,05 Ak, Ok, Wherei, k < N/2. While there is an
additional inequality betweeirand; and betweelk and, this does not remove a degree of freedom
since there are still ordel possible values. Hence, some portion of {lie- 1) contribution is
reduced by a factor of2p — 1)® < (2p — 1)*. Since the remaining portion of the contribution
is reduced to at mog2p — 1)* times its original value, the contribution to th& Ghoment of the
non-adjacent non-crossing configuration in the signed lyquadindromic case is strictly less than
(2p — 1)*(x — 1) + 1, and is therefore not equal to the contribution from the @gfjnon-crossing
configuration. O

3.2. Counting Crossing Configurations. Theorem 3.4 reduces the determination of the moments
to counting the number of pairings with a given contributicia), and then weighting those by

(2p — 1)°9), wheree(c) is the number of vertices involved in crossings in the comfiian. As
remarked above, in the singly palindromic Toeplitz casée#ac) = 1, while in the general Toeplitz
case we only have bounds on thg)’s, and thus must leave these as parameters in the final answer
(though any specifie(c) may be computed by brute force, we do not have a closed fornessijon

in general).

In this section we turn to computing tléc)’s for various configurations. As previously men-
tioned, these and similar numbers have also been studieubiritkeory where these chord diagrams
are used in the study of Vassiliev invariants (see [KT, K&, Rio, Sto]). While we cannot deter-
mine exact formulas in general, we are able to solve manyapsses, which we now describe.
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Definition 3.12 (Cryy 2n). Let Cryy o, denote the number of pairings involvig vertices where
exactly2m vertices are involved in a crossing.

Let C), = 1 (%) denote the:™ Catalan number (see [AGZ] for statements and proofs of their
needed properties). One of its many definitions is as the eumwibways to matcl2k objects on
a circle in pairs without any crossings; this interpretati® the reason why Wigner’'s Semi-Circle

Law holds. Thus, we immediately deduce the following.
Lemma 3.13. We haveCry, o = C.

We use this result to prove the following theorem, which &ramental in the counting we need
to do.

Theorem 3.14.Consider2k vertices on the circle, with a partial pairing on a subseRofvertices.
The number of ways to place the remainitig— 2v vertices in non-crossing, non-dividing pairs is
(k‘z—kv) )

Proof. Let JV denote the desired quantity. Notice that each of the remgitk — 2v vertices must
be placed between two of tRe already paired vertices on the circle. Th@seertices have created
2v regions. A necessary and sufficient condition for th#&¥se- 2v vertices to be in non-crossing,
non-dividing pairs is that the vertices in each of thesaegions pair only with other vertices in
that region in a non-crossing configuration.

Thus, if there ar@s vertices in one of these regions, by Lemma 3.13 the numbealaf ways
they can pair i€5,. As the number of valid matchings in each region depends@amiyne number
of vertices in that region and not on the matchings in the rotegions, we obtain a factor of
02310252 s CQSQU, Where281 + 289 + -+ + 289, = 2k — 2u.

We need only determine how many pairings this factor cooedp to. First we notice that by
specifying one index ang, s», . . ., s2, ), We have completely specified a pairing of fievertices.
However, as we are pairing on a circle, this specificatiorsechat uniquely determine a pairing since

the labelling of(sy, so, ..., s9,) IS arbitrary. Each pairing can in fact be written as any of2he
circular permutations of some choice @, so, . . ., s2,) and one index. Thus the quantity we are
interested in is ol

W= > Cy,Cy, - C, . (3.12)

251+280+-+259,=2k—2v
To evaluate this expression, we use thfold self-convolution identity of Catalan numbers [Fo,
Reg], which states

on —
S i Gy = < " r). (3.13)
, ‘ 2n —r n
11+ Fir=n
Settingi; = s; + 1, r = 2v andn = k + v, we obtain
20 [ 2k
L Coy Oy = = . 3.14
> = 57 (319

s1+s2+ 82y +2v=k+v
We may rewrite this as

2k 2k
.« .. pu— -1
o E Cs,Cs, -+ Csy, ( I ) , (3.15)

U o1 4254t 2520 =2k—20 v
which completes the proof as the left hand side is just (3.12) U
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Given Theorem 3.14, our ability to find formulas fOiy 5, rests on our ability to find the
number of ways to paitv vertices wher@m vertices are crossing ad —2m vertices are dividing.
We are able to do this for small values wf, but for largem, the combinatorics becomes very
involved.

Definition 3.15 (P 2,4, partitions) Let Py o,,,; represent the number of pairings 2% vertices
with 2m crossing vertices in partitions. We define a partition to be a set of crossing cedi
separated from all other sets of crossing vertices by attleas dividing edge.

It takes a minimum oft vertices to form a partition, so the maximum number of parig
possible is 2m/4|. Our method of counting involves writing

[2m/4]

Crogom = Z Pok.om.i- (3.16)
=1

Our first combinatorial result is the following.

Lemma 3.16. We have

2k
P2k,2m,1 = Cl"2m,2m< ) (3-17)

k—m

Proof. The proof follows immediately from Theorem 3.14. If ther@rdy one partition, then there
can be no dividing edges. Therefore, we simply multiply thember of ways we can choogk—2m
non-crossing non-dividing pairs by the number of ways tottleoose how them crossing vertices
are paired. O

Our next result is

Lemma 3.17.We have

k—m
2k
Pokoma = Z (k; o d) (m +d) ( Z Cl"za,zaCI"Qm—2a,2m—2a> : (3.18)

d=1 0<a<m

Proof. We letd be the number of dividing edges. In order to have two parnt#j@t least one of the
k — m non-crossing edges must be a dividing edge. We thus sumdidvem 1 to £ — m. Given

d, we know that we can pair and place the non-crossing nowldiyiedges ir(k_i’;’_d) ways from
Theorem 3.14. We then choose a way to pair2iecrossing vertices intd partitions, one witt2a
vertices, the other witBb vertices. Ifa = b, there aren + d distinct spots where we may place the
dividing edge. Ifa # b, there ar&m + 2d spots. Since each choice @t~ b appears twice in the
above sum, the result follows. O

DeterminingPy; 2, 3 requires the analysis of several more cases, and we weréeuodind a
nice way to generalize the results of Lemmas 3.16 and 3.1WekMer, these two results do allow
us to write down the following formulas.



18 OLIVIABECKWITH, VICTOR LUO, STEVEN J. MILLER, KAREN SHENAND NICHOLAS TRIANTAFILLOU

Lemma 3.18.We have

2k
Crzk,4 = <k:—2)

2k
= 4
Crake (k B 3)
2%k 1 2%k
— 1 4
Craes 3<k—4)+;<k—4—d)( +d)
2% g 2%
Crogio = 288(k B 5) + 8; (k e d) (5+4d). (3.19)
Proof. We recall that
szk,o = Oy
Cl"gkg = 0, (320)

where the second equation follows from the fact that at léastrtices are needed for a crossing.
From (3.16) and (3.16) we find

2k
Cropa = Pogan = Cray (l{:—Q)' (3.21)

We can calculat€r, 4 by using (3.20) and the fact that

k
> Craom = (2k— 1. (3.22)
m=0

This follows because the number of ways to matktobjects in pairs of 2 with order not mattering
is (2k — 1)!!, and thus the sum of all our matchings in pairs must equal Mage that this number
is also the2k™ moment of the standard normal; this is the reason the sirglpgromic Toeplitz
have a limiting rescaled spectral measure that is normaaels contribution contributes fully. We
thus find

CI‘474 = (2 -2 — 1)” - CI‘472 - CI‘470 =3-2 =1. (323)

This completes the proof of the first formul@ry, , = ().
The other coefficients are calculated in a similar recurfaghion — essentially, once we have

values forCry o for i = 0,1,2,...,m — 1, we can findCra,, 2, by using (3.22), which allows us
to write the general formulas above f0rs; »,,. We show the calculations below. We have
CI‘676 = (6 - 1)” - CI‘674 - CI‘672 - CI‘670
6
= 5!!—(1)—0—(]3:15—6—0—5:4, (3.24)

s0Cry 6 = 4(,%,), and thus
CI‘g’g = (8 — 1)” — CI‘&G — CI‘874 — CI‘&Q — CI‘&Q
7!!—4(?) - (8) —0-Cy = 105-32—28 — 14 = 31. (3.25)

2
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To finish the calculation fo€ry;, s we compute

Z CrgagaCrg_ng_ga = Cr2720r676 -+ CI‘474CI474 -+ Cr676‘Cr272 =0 + 1 -+ 0= 1. (326)

0<a<4

so that we ge€ry,s = 31(2,) + > 01 (L) (4 +4d).
For the formula foiCryy 1,

Crlo,lo = (10 - 1)” - Cflo,s - ClV10,6 - Cr10,4 - Cf10,2 - Cflo,o
1
10 10 10 10
= 9l — 131 4+d)| -4 - —0-
o= (n() e () ) -a(5) - (5) -0-cs
= 945 — (310 +5) —4(45) — 120 — 0 — 42 = 288, (3.27)
and finally
Z Croq,2¢Cri0-240,10-2¢ = Cr22Crgg + Cry4Crgp + CrgCraq + CrggCrao
0<a<b
= 0444440 = 8, (3.28)
S0Crap10 = 288(%) +850 0 (L% ) 5+ a). O

Notice that by using the formulas in Lemma 3.18 to calculagertumber of terms with each of
the possible contributions given in Theorem 3.4, we are @iblealculate up to thé2™ moment
exactly (where for the2'" moment we use the same recursive procedure as in the proehafia
3.18+to0 Ca|CU|atéjI'12712).

Remark 3.19. The coefficients in front of the binomial coefficient of tragliag term ofCry »,,, are
sequence A081054 from the OFK3L] .

4. LIMITING BEHAVIOR OF THE MOMENTS

As we are unable to find exact expressions for the number ahgaiwith exactly2m crossing
vertices for allm, we determine the expected value and variance of the nunfbarices in a
crossing. Such expressions, and the limiting behavioregelexpressions, are useful for obtaining
bounds for the moments. To find these, we make frequent usguingnts about the probabilities
of certain pairings, recognizing that since all configurasi are equally likely, the probability that
a vertex; pairs with a vertey is justwl_l.

Theorem 4.1. The expected number of vertices involved in a crossiryg ekrtices paired on the
circle is

2k <2k o, 2R(13/25/2 - k1)

2k — 1 ok — 3 —(2k —1) 2F1(1,1/2+k,3/2;—1)) ., (4.1

which is

2 1
2k—2—E+O(ﬁ) (4.2)

ask — oo.



20 OLIVIABECKWITH, VICTOR LUO, STEVEN J. MILLER, KAREN SHEN AND NICHOLAS TRIANTAFILLOU

Proof. In our main applications (such as computing the asymptaiabior of the mean and the
variance), we only need the asymptotic expression (4.2i)ciwive prove elementarily below. We
give the proof of (4.1) in Appendix A, which involves convad the expansions below to differ-
ences of hypergeometric series.

For a given pairing o2k vertices, letX; = 1 if vertexi is involved in a crossing aneotherwise.
ThenY;, = Zfﬁl X; is the number of vertices involved in a crossing in this pajriBy linearity
of expectation,

}/ék = [ <ZX> 2/{ZE X) = Qkpcr0557 (43)

wherep...ss IS the probability that a given vertex is in a crossing as, yipmsetry, this is the same
for all vertices. Thus, without loss of generality, we maynkof p....; as the probability that vertex
1isin a crossing. We notice that

(1) If vertex 1 is matched with another odd indexed vertexicWhappens with probability
% 1, then it must be involved in a crossing, since there are anmuohdber of vertices
in the two regions created by the matching, meaning thatebg®mns cannot only pair by
themselves.

(2) If vertex 1 is matched with an even indexed vertex, thas imvolved in a crossing if and
only if it does not partition the remaining vertices into twarts that pair exclusively with
themselves. Suppose it is matched with vettex(which happens with probability,jj).
Then its edge divides the vertices into a regio?af— 2 and a region o2k — 2m vertices.
As the number of ways to matcd¥ objects in pairs with order immaterial {8¢ — 1)!! =
(2¢—1) (2¢—3)--- 31, the probability that each region pairs only with itself is

(2m — 3 (2k — 2m — 1!

4.4
(2k — 3)!! (4.4)
Thus, the probability that vertex 1 is involved in a crosssg
k—1
k-1 1 (2m — 3! (2k — 2m — 1)!!
cross T 1—
P 2k—1+%2k—1< (2k — 3)1
_ 2k-3 1 Z (2m — 3N (2k — 2m — 1)!!
T 2%k—1 2k-1 (2k — 3)!!
2% -3 1 % (2m — 3)1 (2k — 2m)! (2k — 4)!!
T 2%k—1 2k—1 ¢ (2m — 41 (2k — 2m)!! (2k — 3)!
_2%-3 1 g (2m — 3)! (2k — 2m)12+=2 (k — 2)!
O 2k—1  2k—14=2m2(m — 2)12k=m (K —m)! (2k — 3)!
k—1 (k-2
2k — 3 1
= BT moT (;7;?”)' (4-5)
m=2 (2m—3)
Therefore
k—1 k—2
2k — 3 1 (5 7)
E(Yor) = 2 = (2k 2k mes 4.
( 2k) kpcross ( )2]{7—1 ( )2]{;_17”2:2 (222__;;) ( 6)
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In the above sum, the first and last terms are lggﬂg as form = 2 we have

(o) _ 1 (4.7)

(2"?1—3) 2k —3’

and form = k — 1 we have

R G R »
@3y T (&N T Rk-3)(2k—4)  2%k-3 .
Looking at the ratio of subsequent terms, straightforwégelaa shows
(2D a1 »
(n2)/G)  2k—2m =1

Thus form up to the halfway point, each term in the sum is less than teeiqus. In particular,
them = 3 term is5/(2k — 7) times them = 2 term, and hence all of these terms arel /k?).
Similarly, working fromm = k — 2 to the middle we find all of these terms are af3@l /%), and
thus the sum in (4.6) can be rewritten, giving

B(Ya) = (21{:)3::?_(%)2/’{;1—1<2k2—3+0<%>)
2 1
- 2k—2—E+O<ﬁ). (4.10)

O

Theorem 4.2. The variance of the number of vertices involved in a crosapgoachest ask —
Q0.

Proof. We need to calculat®ar (V) = E(Y2) — E(Ya)?. As we know the second term by
Theorem 4.1, we concentrate on the first term:

E(Yy) = Y EXX). (4.11)

The above sum has:? terms.

For 2k of those terms; = j SOE (X, X;) = E(X?) = E(X;) = paos @s theX,’s are binary
indicator variables with probability of succegs..s. For anotherk terms, we have and; are
paired on the same edge, BA.X;X;) = E (X;) = peross @S before.

For the remainingk? — 4k terms,i and; are on different edges, and we must find the probability
that both those edges are in crossings. We separate thiahpligbinto two disjoint probabilities,
the probabilityp, that they cross each other, and the probability that thelt doyss each other but
are each crossed by at least one other pairing. We denotsetbisd probability by1 — p,) ps,
where p, is the conditional probability they are each crossing gitteat they don’t cross each
other. We will find these probabilities by taking sums over llacements ok, m, p, ¢ above as
appropriate and calculating for each the probability ofeslasg one of our desired configurations.
We have shown

E ()/é%f) = 4kpcross + (4k2 - 4k) (pa + (1 - pa) pb) ) (412)
thus reducing the problem to the determinatioppéndp;.
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Without loss of generality, we label our edges{asm} and {p, ¢q}. They cross each other if
and only if one of{p, ¢} is one of then — 2 vertices betweem andm, and the other is one of the
2k — m vertices betweem and2k. Thus

2k

1 m—2 2k—m
, = 9. :
P ;2k—1 % —2 2k—3

2
- BT D3 [Z 4k — Zm + (2k 4 2) Zm]. (4.13)

By using the formulas for the sum of the firsintegers and the first squares, we simplify the
second factor to

(2% — 1) (—4k) — <2k (2 + ? (k1) 1) b (2k +2) (% - 1) L (414
which gives
- 2 (2k—1)(2k—2)(2k—3) 1
Pa = 0k —1)(2k —2) (2k — 3) 6 EY (4.19)

We now calculate, the probability tha 1, m} and{p, ¢} are both involved in crossings given
they don’t cross each other. We must pldtem} , {p, ¢}. Relabeling if necessary, we may assume
1 <m < p < ¢; such alabeling is possible if and only{if, m} and{p, ¢} do not cross each other.
We compute the complement of our desired probability by figdhe number of configurations
where one or less dfl, m} and{p, ¢} is in a crossing. We denote the number of such configurations
bY Ni.m.p,q @and can thus write

1 2k—2 2k—1 Nkmpq (4 16)
-2 > Z ST -
m=2 p= m+1q—p+1

Since there ar¢”;") terms in the above sum (corresponding to {ffe') possible choices of

m, p,q Since we have specified the location of verieand the order ofn, p, ¢), we can rewrite
(4.16) as

2k—2 \—2k—1
E Zp m+1 Lag= p+1Nkmpq
(2k 1) (2]{7 5)

All that remains to be done is to evaluate the sum in the abrgeession. To do so, we first
define the following functior (k), which counts the number of waysrertices can be paired with
each other:

p = 1— (4.17)

0 if k&is odd
P(x) = <1 if k=0 (4.18)
(k—1)I' otherwise.
Next we think of these two edges as dividing the remainingices into three regions: those
between{1, m} and{p, ¢}, of which there are\l = p — m — 1 + 2k — ¢, those on the side
of {1, m}, of which there ared. = m — 2, and those on the side ¢p, ¢}, of which there are

R = q—p— 1. We know that{1, m} will not be crossed if the. vertices between andm pair
exclusively with each other. Likewisép, ¢} will not be crossed if the vertices betweeandq pair
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exclusively with each other. Our desired quantity is thiessuhion of these two events less their
intersection:

P(L+M)P(R)+P(R+M)P(L)—P(L)P(M)P(R). (4.19)

Notice thatif L or Ris0, one of{1,m}, {p, ¢} is an adjacent edge, and therefore is not crossing.
Thus

N @2k =5 if LorRisO
bmpd = p(L+ M)YP(R)+ P(R+M)P(L)— P(L)P(M)P(R) otherwise.
(4.20)
We now investigate the limiting behavior pf (given in (4.16)) by using the cases in (4.20).

e For the first case, we haveor R is zero, and thus$Vy, ,,, , , = (2k — 5)!l. We are reduced to
counting the number of terms with or R zero. Note thal, = 0 whenm = 2, andR = 0
wheng = p + 1. Each of these events happens(?@‘z) pairings (we have fixed either
m or ¢, and the othe® vertices are chosen from the remaini2ig— 2 vertices), and their
intersection iiz’fl‘?’) (p is the only free index) pairings. In the limit, this case g¢inites

(2(2k2—2) _ (2k1—3)) (2k =51 3 L0 ( 1 ) . (4.21)

(1) (2k — 5)!! ok k3

e For the second casé, and R are non-zero. We first evaluate the contribution of the first
two terms (notice that they will contribute the same in thesince you can simply relabel
{1, m} and{p, ¢}) and then the third term, recalling that we only have to lcmktérms that
are at leasO (> ) since we can see in (4.12) that any other terms will not coutei in the
limitask — oc.

— For P (L + M) P (R), the largest terms are from when either- M = 2, or when
R = 2. In these casesyj ,,, = (2k — 7). If R = 2theng = p+ 3 andm, p are
free so there aré*;*) such terms corresponding to t{&; *) choices ofn andp. If
L+ M = 2andL # 0 then there are only two possible terms: eitlier= 1, M =
I,R=2k—60orL =2 M = 0,R = 2k — 6. Including the symmetric terms for
P(R+ M) P (L), these terms thus have a combined contribution of

2(( ) +2) k-7 i+0<1). (4.22)

CEY (k-5 2k k3

— For the third term—P (L) P (M) P (R), the largest contributions are when two re-
gions combine for exactlg vertices, which gives a contribution ¢2k — 7)!!. If we
disregard the requirement thatand R are nonzero in order to obtain an upper bound
on the magnitude of this contribution, there &@ossible terms. The next largest
contribution will be when two regions combine for exactlyertices which gives a
contribution of (2k — 9)!!. Proceeding with these diagonal terms, we know that the
third term contributes at most in magnitude

(2k — 7)! (2k — 9)! (2k — 11)! (1
(*1) (2k — 5)! ’ (1) (2k — 5)! ! CN @k —sn T X (k?») ’

(4.23)

so they do not contribute to the main term in the limit.
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Mear Mean . Varance

~0.015f

FIGURE 3. Numerical confirmation of formulas for the expected valod variance

of vertices involved in crossing. The first plot is the exeelctalue for2k vertices
(solid line is theory) versuk, the second plot is a plot of the deviations from theory,
and the third plot is the observed variance; all plots arenf®00,000 randomly
chosen matchings @i vertices in pairs.

Thus we have that, ds— oo,

3 3 1

pb—l—E—m—FO(E). (424)

Therefore if we substitute fqr, andp, in (4.12) we find

1 2 3 3
IE(Yzi,) = 4k—4+(4k2—4k) <§+§<1—E—m)> (4.25)
= 4k*—8k+O <%) . (4.26)
Using (4.10), we also have that
2 1\\? 1

E(Yy) = (26—2-Z= — = 4k* — 8k —4 —). 4.27
(Yar) ( k+0<k2)) k? — 8k +o<k) (4.27)
The variance i (Y2) — E (Ya;)?, which is4 + O(1/k) ask — . O

Figure 3 provides a numerical verification of the above fdasudor the expected values and
variances.

5. LIMITING SPECTRAL MEASURE

We now complete the proof of Theorem 1.2 by showing convergemd determining the sup-
port.

Proof of Theorem 1.2The proof of the claimed convergence is standard, and faliownediately
from similar arguments in [HM, MMS, JMP, KKMSX]. Those argents rely only on degree of
freedom counting arguments, and are thus applicable havelas/Ne are left with determining the
limiting rescaled spectral measures.

e p =1/2: If p = 1/2, we know from (3.4) that only those configurations with nossro
ings contribute. In particular, we may apply this to thé real symmetric weight matrix.
Moreover, in the crossing configurations, it is simple toaththat in(N — n - o(N))" =~
N™ — o(N™) of the N terms for thenth moment computation each random variable from
the coefficients of the matrix ensemble occurs exactly twiSence the moments of the
original distribution are finite, the remaining/N") terms do not contribute. Thus, we may
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assume that each random variable occurs exactly twice imteam (and the variables are
otherwise independent.) The claim follows directly froroaking that the number of non-
crossing configurations are simply the Catalan numbersf¢ges=ample [Fo]), which are

also the moments of the semi-circle distribution.

e p > 1/2: We consider the case when(the limiting rescaled spectral measure) has un-
bounded support; the case of bounded support is similarh@w shat the limiting signed
rescaled spectral measure has unbounded support it sufiisk®w that the moments of
our distribution grow faster than any exponential boured, that for allB there exists some
k such thatM,, > B?*. Assume the moments of the unsigned ensemble grow faster tha
exponentially. We prove that our distribution similarlyshanbounded support using this
fact and by considering the “worst-case” scenario alloveedihder Theorem 3.4. Namely,
we suppose that each term contributés) (2p — 1)**, which gives us the smallest moment
possible. In this casell,, is decreased from the unsigned case by a fact¢zpf- 1),
and thus the growth is still faster than any exponential lboun

O

6. CONCLUDING REMARKS AND FUTURE WORK

In our analysis of the limiting rescaled spectral measursigried structured ensembles, it was
crucial each random variable occursV) times in each row of matrices in the ensemble and that
the original structured ensemble have its empirical restgpectral measures converge to a limiting
measure; we plan to revisit cases where these assumptibissith as the examples in Remark 1.3)
in a sequel paper. The key to our analysis is Remark 3.10. Tmeents of the signed ensemble are
depressed by a factor which depends on the structure of tirece®a If p = 1/2 then there is no
contribution from the configurations with crossings (asrtbentribution is at most2p — 1)? times
its unweighted value). This leaves the contribution frommlon-crossing configurations. These are
governed by the Catalan numbers; as everything is matchgalriswithout crossing, each of these
configurations gives 1 and we regain the semi-circle. Thepedations become more involved and
more dependent on the structure foe (1/2, 1], as the structure of the matrix can force repeated
indices in the product of the weights, which of course affétst expected value and contribution.

In addition to obtaining limiting measures for signed staned ensembles, we isolate some com-
binatorial results which are related to issues in knot thésuch as Theorem 1.5). We also obtain
asymptotics for the number of pairings 2 vertices with exactly2m crossing vertices. While we
can derive a closed form expression for the expected nunilofem 4.1), the formula for the
variance is more involved and we content ourselves here agtbrmining its asymptotic, and a
natural future project is to see if explicit formulas for thigher moments of the number of pairings
with a given number of crossing vertices exist (or, evendogetd see if a nice distribution governs
the behavior ag andm tend to infinity).

APPENDIX A. EXACT FORMULA FOR MEAN NUMBER OF CROSSINGS

To prove (4.1), it suffices to simplify the sum in the expansid p...s in (4.5). We first extend
them sum to includen = k; this adds 1 to the sum which must then be subtracted frometihe t
outside. For notational convenience, set k£ — 2. We re-index and let: run from0 to »n, and are
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thus reduced to analyzing
S(n) = Z%. (A.1)
m=0 \2m+1

The following notation and properties are standard (seeetample [GR]). The Pochhammer
symbol(z),, is defined form > 0 by

(x)m:W:x(x+l)~~(x+m—l), (A.2)

and the hypergeometric function?; by

o

o Fi(a,b,c; 2) Z m" (A.3)

—0 m

which converges for allz| < 1 so long as: is not a negative integer.
For ease of exposition, we work backwards from the andwasing I'(1 + z) = 2I'(z) and
['(1+ ¢) = ¢! (for integral?), we find

oty = 3 W32 (1"

2F1(1,3/2,1/2 — 12— ) i

B S L(1+m)T(3/2+m) T(1/2—n) (=1)™
- n;) @) r'3/2) r'd/2-—n+m) m!
=: Ti(n) + Ta(n), (A.4)

whereT’ (n) is the sum ovem < n and7y(n) is the sum ovem > n. From the functional equation
of the Gamma function and usidy = ¢(¢ — 2)(¢ — 4) --- down to 2 or 1, we find

I'(3/2+m) = 2™2m+ 1)IT(3/2)
N1/2—-n+m) = (=1)™2"2n—1)(2n—3)---(2n —2m + 1)I'(1/2 —n). (A.5)
Substituting, we find

o @m+ D20 —2m = 1)l

Tl(n) - mzz:o (2n . 1)”
"L (2m+ 1)1(2n — 2m — 1) 2n(2n — 2)!!

- ZZO( (Q)n(—l)!Qn ) ((Qm)!!) (2n = 2m =)

o @m+1)(2n - 2m)! 2"

B 1;::0 (2n+1)! (Zn+1)- (2n —2m)2"=tm!(n —m — 1)!

= (2n+1) i (2(7;jr)1) ; (A.6)

3Mathematica is able to evaluate such sums and suggest tteetthypergeometric combinations. One has to be a
little careful, though, as Mathematica incorrectly evédaeS (n), erroneously stating that there was zero contribution
if we extend the sum to ath. In other words, it thought'(n) = T (n) = T1(n) + T>(n) in the notation introduced

below.
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note this is our desired sum. Thus

(1) oF1(1,3/2,1/2 —n,—1) — T(n)
2 T ey ’ D

and the proof is completed by analyzifig(n). To determine this term’s contribution, we re-index.
Writing m = n + 1 + u, we find

TQ(TL)

B iF(1+n+1+u)F(3/2+n+l+u) I'(1/2 —n) (=Dl

I r(1) 1'(3/2) L(1/2—n+n+1+u)(n+1+u)ul

T +wTB/2+n+uw)T(1/2—n) (1) (=1)

=) '(3/2) T(3/2+u) u!

_ (=)"MD(1/2—=n)D(5/2+n) i F(1+u)0(5/2+n+u) T(3/2) (-1)*

B 1'(3/2)2 ~ T(1)  T(B/2+n) TE/2+u) ul

= —2n+3)2n+1) 2/ (1,1/24+k,3/2, 1), (A.8)

where we usedl(1—2)I'(z) = 7/ sin(rz) with z = n+ 1 to simplify the Gamma factors depending
only onn. Combining the above proves (4.1).
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