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ABSTRACT. The study of the limiting distribution of eigenvalues ofN × N random matrices as
N → ∞ has many applications, including nuclear physics, number theory and network theory. One
of the most studied ensembles is that of real symmetric matrices with independent entries drawn
from identically distributed nice random variables, wherethe limiting rescaled spectral measure is
the semi-circle. Studies have also determined the limitingrescaled spectral measures for many struc-
tured ensembles, such as Toeplitz and circulant matrices. These systems have very different behavior;
the limiting rescaled spectral measures for both have unbounded support. Given a structured ensem-
ble such that (i) each random variable occurso(N) times in each row of matrices in the ensemble
and (ii) the limiting rescaled spectral measureµ̃ exists, we introduce a parameter to continuously
interpolate between these two behaviors. We fix ap ∈ [1/2, 1] and study the ensemble of signed
structured matrices by multiplying the(i, j)th and(j, i)th entries of a matrix by a randomly chosen
ǫij ∈ {1,−1}, with Prob(ǫij = 1) = p (i.e., the Hadamard product). Forp = 1/2 we prove that
the limiting signed rescaled spectral measure is the semi-circle. For all otherp, we prove the limiting
measure has bounded (resp., unbounded) support ifµ̃ has bounded (resp., unbounded) support, and
converges tõµ asp → 1. Notably, these results hold for Toeplitz and circulant matrix ensembles.

The proofs are by Markov’s Method of Moments. The analysis ofthe 2kth moment for such
distributions involves the pairings of2k vertices on a circle. The contribution of each pairing in the
signed case is weighted by a factor depending onp and the number of vertices involved in at least one
crossing. These numbers are of interest in their own right, appearing in problems in combinatorics
and knot theory. The number of configurations with no vertices involved in a crossing is well-studied,
and are the Catalan numbers. We discover and prove similar formulas for configurations with4, 6, 8
and10 vertices in at least one crossing. We derive a closed-form expression for the expected value
and determine the asymptotics for the variance for the number of vertices in at least one crossing. As
the variance converges to 4, these results allow us to deduceproperties of the limiting measure.
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1. INTRODUCTION

1.1. Background. In this paper we study how the limiting spectral measures of certain structured
families of random matrices behave under deformations. In addition to being of interest on its own,
the analysis requires us to study combinatorial objects that arise in a variety of other problems,
including knot theory. We isolate several results about these objects in the course of our investiga-
tions, which we describe after first motivating the random matrix theory ensembles and discussing
the method of proofs.

Though Random Matrix Theory began with statistics investigations by Wishart [Wis], it was
through the work of Wigner [Wig1, Wig2, Wig3, Wig4, Wig5], Dyson [Dy1, Dy2] and others
that its true power and universality became apparent. Wigner’s great insight was that ensembles
of matrices with randomly chosen entries model well many nuclear phenomena. For example, in
quantum mechanics the fundamental equation isHΨn = EnΨn (H is the Hamiltonian,Ψn the
energy eigenstate with eigenvalueEn). ThoughH is too complicated to diagonalize, a typical
H behaves similarly to the average behavior of the ensemble ofmatrices where each independent
entry is chosen independently from some fixed probability distribution. Depending on the physical
system, the matrixH is constrained. The most commonH is real-symmetric (where the limiting
rescaled spectral measure is the semi-circle) or Hermitian. In addition to physics, these matrix
ensembles successfully model diverse fields from number theory [ILS, KS1, KS2, KeSn, Mon, RS]
to random graphs [JMRR, MNS] to bus routes in Mexico [BBDS, KrSe].

The original ensembles studied had independent entries chosen from a fixed probability distribu-
tion with mean 0, variance 1 and finite higher moments. For such ensembles, the limiting rescaled
spectral measure could often be computed, though only recently (see [ERSY, ESY, TV1, TV2])
was the limiting spacing measure between normalized eigenvalues determined for general distribu-
tions. See [Fo, Meh] for a general introduction to Random Matrix Theory, and [Dy3, FM, Hay] for
a partial history.

Recently there has been much interest in studying highly structured sub-ensembles of the family
of real symmetric matrices. Here new limiting behavior emerges, with the resulting measures de-
pending on the combinatorics of the problem. Examples include band matrices, circulant matrices,
random abelianG-circulant matrices, adjacency matrices associated tod-regular graphs, and Han-
kel and Toeplitz matrices, among others [BasBo2, BasBo1, BanBo, BCG, BHS1, BHS2, BM, BDJ,
GKMN, HM, JMP, Kar, KKMSX, LW, MMS, McK, Me, Sch]. Two particularly interesting cases
are the Toeplitz [BDJ, HM] and singly palindromic Toeplitz ensemble [MMS], which we now gen-
eralize (though our arguments would follow through with only minor changes for other structured
ensembles). A real symmetric Toeplitz matrix is constant along its diagonals, while its palindromic
variant has the additional property that its first row is a palindrome. The limiting rescaled spectral
measures of these ensembles have been proven to exist; it is the Gaussian in the singly palindromic
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case, and almost a Gaussian in the Toeplitz case (the limiting rescaled spectral measure has un-
bounded support, though the moments grow significantly slower than the Gaussian’s).

As these matrices are small sub-families of the family of allreal symmetric matrices, it is not
surprising that new behavior is seen. A natural question to ask is whether or not there is a way to
‘fatten’ these ensembles and regain the behavior of the fullreal symmetric ensemble. This is similar
to what happens for the adjacency matrices ofd-regular graphs. For fixedd the limiting rescaled
spectral measure is Kesten’s measure [McK], which converges asd → ∞ to the semi-circle (see
[GKMN] for the related problem of the limiting rescaled spectral measure of weightedd-regular
graphs). We can ask similar questions about band matrices, and again see a transition in behavior
as a parameter grows [Sch].

Before stating our results, we first quickly review some standard notation (see for example [HM,
JMP, KKMSX, MMS]).

• Random matrix ensemble: In this paper a random matrix ensemble is a collection ofN ×
N (with N → ∞) real symmetric matrices whose independent entries are drawn from
identically distributed random variables whose densityp has mean 0, variance 1 and finite
higher moments. We often study structured ensembles, wherethere are additional relations
beyond the requirement of being real symmetric. The probability measure attached to the
N ×N matrices in the ensemble is

Prob(A)dA =
∏

(i,j)∈IN

p(aij)daij , (1.1)

whereIN is a complete set of indices corresponding to the independent entries of ourN×N
matrices. For example, for real symmetric Toeplitz matrices the only dependency condition
is thataij = akℓ if |i− j| = |k − ℓ|, and we may thus takeIN = {a11, a12, . . . , aN1}.

• Empirical spectral measure: Given anN×N real symmetric matrixA, its empirical spectral
measure is

µA(x) =
1

N

N∑

k=1

δ(x− λk(A)), (1.2)

with δ(x) the Dirac delta functional and theλk(A)’s are the eigenvalues ofA.
• Rescaled empirical spectral measure: The rescaled empirical spectral measure ofA, denoted
µ̃A(x), is

µ̃A(x) =
1

N

N∑

k=1

δ

(
x−

λk(A)

cN r

)
; (1.3)

notice

µ̃A(x) = µA/cNr(x). (1.4)

Typically theA’s are chosen from a random matrix ensemble, and we have one pair (c, r)
for all the A’s. In this paper usuallyr = 1/2 (this is a consequence of the eigenvalue
trace lemma and the central limit theorem) as our random matrix ensembles are full (i.e.,
each entry is drawn from a random variable with mean 0 and variance 1). The situation
would be drastically different if we considered matrices where many entries are forced to
be zero, such as the adjacency matrices associated tod-regular graphs (wherer = 0 as the
eigenvalues do not grow withN) or band matrices where the band width is small relative to
N .
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• Hadamard products: Given real symmetricN ×N matricesA = (aij) andB = (bij), their
Hadamard product, denotedA ◦ B, is the matrix whose(i, j)th entry isaijbij ; its empirical
spectral measure isµA◦B(x).

• Limiting spectral measure: If the limit of the sequence of average moments of a random
matrix ensemble,

lim
N→∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

xkµ̃A(x)Prob(A)dA (k a positive integer), (1.5)

exists and uniquely determines a measure, that measure is called the limiting spectral mea-
sure of the ensemble.

• Limiting signed rescaled spectral measure: Letp ∈ [1/2, 1] and consider the random matrix
ensemble of real symmetric matricesE = (ǫij) with the independent entries independent
identically distributed random variables that are 1 with probabilityp and -1 with probability
1− p; we call this thesignedor weightedensemble. Given a random matrix ensemble with
matricesA, consider the signed random matrix ensemble with matricesA◦E . The ensemble
has measure (

∏

i≤j

p(1+ǫij)/2(1− p)(1−ǫij)/2

)
Prod(A)dA. (1.6)

We rescale the eigenvalues of the Hadamard product by the same factor we used for the
unsigned matrices; thus

µ̃A◦E(x) = µ(A/cNr)◦E(x). (1.7)

The averagekth moment is
∫ ∞

−∞

· · ·

∫ ∞

−∞

∏

1≤i≤j≤N

∑

ǫij∈{−1,1}

∫ ∞

x=−∞

xkµ̃A◦E(x)p
(1+ǫij)/2(1− p)(1−ǫij)/2Prod(A)dx dA. (1.8)

The key to our analysis is the Eigenvalue Trace Lemma, which implies that thekth moment of
µ̃A is

Mk;N(A) =

∫ ∞

−∞

xkµ̃A(x)dx =
Trace(Ak)

ckN rk+1
. (1.9)

The advantage of this formulation is that we convert what we want to study (the eigenvalues) to
something we understand (the matrix entries, which are randomly chosen). We now integrate the
above over the family, reducing the computation to averaging polynomials of the matrix elements
over the family. Determining the answer frequently involves solving difficult combinatorial prob-
lems to count the number of configurations with a given contribution, with the structure of the
ensemble determining the combinatorics.

We concentrate on the family of highly palindromic real symmetric Toeplitz matrices, introduced
in [JMP] and defined below, for several reasons. This is a well-studied family, with certain special
cases corresponding to some of the more important classicalensembles. Further, the structure of
these matrices is conducive to obtaining tractable closed form expressions for many of the quanti-
ties. It is straightforward to generalize these results to other structured ensembles whose limiting
rescaled spectral measure exists, and we sketch the proof.
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Definition 1.1. For fixedn, a (degree n) N×N highly palindromic real symmetric Toeplitz matrix
is one in which the first row is2n copies of a palindrome, where the entries are iidrv whose density
p has mean 0, variance 1 and finite higher moments; for brevity we often omit “real symmetric”
below. We always assumeN to be a multiple of2n so that each element occurs exactly2n+1 times
in the first row. Ifn = 0 we say it is asingly palindromic Toeplitz matrix. If aij is the entry in the
ith row andj th column ofA, then we setb|i−j| = aij (if the ensemble is at least doubly palindromic,
then theb’s are not distinct and satisfy additional relations due to the palindromicity). For example,
a doubly palindromic Toeplitz matrix is of the form

AN =




b0 b1 · · · b1 b0 b0 b1 · · · b1 b0
b1 b0 · · · b2 b1 b0 b0 · · · b2 b1
b2 b1 · · · b3 b2 b1 b0 · · · b3 b2
...

...
. . .

...
...

...
...

. . .
...

...
b2 b3 · · · b0 b1 b2 b3 · · · b1 b2
b1 b2 · · · b0 b0 b1 b2 · · · b0 b1
b0 b1 · · · b1 b0 b0 b1 · · · b1 b0




.

The entries of the matrices are constant along diagonals. Furthermore, entries on two diagonals
that areN/2n diagonals apart from each other are also equal. Finally, entries on two diagonals
symmetric within a palindrome are also equal.

We prove our results on the limiting behavior (averaged overthe ensemble) via Markov’s Method
of Moments (see for example [Bi, Ta]) by showing that the average moments over the ensemble
converge to the moments of a nice distribution. This, plus some control over the variance and the
rate of convergence (done through a counting argument and anappeal to Chebyshev’s inequality
and the Borel-Cantelli lemma) suffice to prove various typesof convergence of the limiting rescaled
spectral measure to a fixed distribution. These convergencearguments are standard; see for example
[HM].

1.2. Results. We fix ap ∈ [1/2, 1] and study ensembles of signed structured matrices formed by
multiplying the (i, j)th and (j, i)th entries of a matrix in our structured ensemble by a randomly
chosenǫij ∈ {1,−1}, with Prob(ǫij = 1) = p. As we varyp, we continuously interpolate between
highly structured (whenp = 1) and less structured (whenp = 1/2) ensembles. As described above,
our weighting is equivalent to taking the Hadamard matrix product of our original matrix and a real-
symmetric sign matrix(ǫij). See [GKMN] for results on Hadamard products of weight matrices and
the adjacency matrices associated tod-regular graphs.

Unfortunately, due to combinatorial obstructions in general it is very hard to obtain closed-form
expressions for the limiting rescaled spectral measures (exceptions are the Gaussian behavior in
singly palindromic Toeplitz and related behavior in block circulant ensembles [MMS, KKMSX],
and Kesten’s measure ford-regular graphs [McK]); however, we are still able to prove many results
about the moments of our signed, structured ensembles. For example, consider the Toeplitz ensem-
bles. Using the expansion from the Eigenvalue Trace Lemma, adegree of freedom argument shows
that the elements in the trace expansions must be matched in pairs; the difficulty is figuring out the
contribution of each (which greatly depends on the structure of the matrix). The odd moments triv-
ially vanish, and for even moments, the only contribution inthe limit comes from when the indices
are matched in pairs with opposite orientation. We show thatwe may view these terms as pairings
of 2k vertices,(i1, i2) , (i2, i3) , . . . , (i2k, i1), on a circle.
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We concentrate below on Toeplitz and related ensembles bothfor ease of presentation and be-
cause we can obtain more closed form results in some of these cases than is possible in general
(and these results are related to questions in knot theory, which we discuss below), though our tech-
niques apply to more general structured ensembles and we saya few words about these. Our main
result is to show that the depression of the contribution of each pairingc in the unsigned case for
Toeplitz and singly palindromic Toeplitz matrices dependsonly one (c), wheree (c) is the number
of vertices in crossing pairs in the pairing (we define these terms in §3). This extends previous
results. Whenp = 1/2, we are reduced almost completely to the real symmetric case, which means
the limiting rescaled spectral measure is the semi-circle distribution (allowing special dependencies
between matrix elements); our result also implies that all crossing configurations contribute0, and
all non-crossing configurations contribute1. This gives us a2kth moment equal to thekth Catalan
number, which is both the number of non-crossing pairings of2k objects and the2kth moment of the
semi-circle density.1 By contrast, whenp = 1 we are reduced to the unsigned case, and indeed our
theorem implies that each configuration contributes what itdid in the unsigned case. In addition,
any distribution that had unbounded or bounded supported before weighting still has unbounded or
bounded, respectively, support after weighting.

Our main result is the following.

Theorem 1.2. Consider any ensemble ofN × N real-symmetric structured matrices, where the
independent entries are drawn from a distributionp with mean 0, variance 1 and finite higher
moments. We assume the following about our random matrix ensemble.

(1) AsN → ∞ the associated rescaled empirical spectral measures converge to a measure,
which we call the limiting rescaled spectral measure of the structured ensemble and denote
by µ̃.

(2) Each of the independent random variables occurso(N) times2 in each row of the matrices
for this ensemble.

Fix a p ∈ [1/2, 1] and consider the Hadamard product of our ensemble and real symmetric
signed matrices(ǫij) (soǫij = ǫji), where the entries are independently chosen from{−1, 1} with
Prob(ǫij = 1) = p. We call this new ensemble the signed, structured ensemble.

For p = 1/2, the limiting rescaled spectral measures for these signed,structured ensembles are
the semi-circle. For all otherp, the limiting signed rescaled spectral measure has bounded(resp.
unbounded) support if the original ensemble’s limiting rescaled spectral measure has bounded
(resp. unbounded) support, and the convergence is almost surely if additionally the densityp is
even.

Remark 1.3. It is imperative that each independent random variable occurs at mosto(N) times;
if one occurred orderN times degenerate behavior could happen. This precludes some highly
structured matrices ensembles, such as those of the form

(

αON βON

βON γON

)

(with ON theN/2 × N/2

matrix all of whose entries are 1), where the limiting rescaled spectral measure is essentially a delta
spike at the origin. Another interesting ensemble is the “right angle” family, whereaij = bmin(i,j)

1The normalized semi-circular density isfsc(x) = 1

π

√
1−

(
x
2

)2
if |x| ≤ 2 and 0 otherwise, and the even moments

are the Catalan numbers.
2Little-oh notation:f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0; in particular, this meansf(x) grows significantly

more slowly thang(x).
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(so there areN independent random variables):



b1 b1 b1 · · ·
b1 b2 b2 · · ·
b1 b2 b3 · · ·
...

...
...

. . .


 . (1.10)

Notice both of these families have rows with orderN copies of the same random variable, and they
have different behavior in their limiting spectral measures.

Corollary 1.4. Theorem 1.2 holds for real-symmetric Toeplitz and singly palindromic Toeplitz ma-
trices. More is true; see Theorem 3.4 for an explicit, closedform expression for the depression of
the moments of these ensembles asp → 1/2.

The controlling factor in the real-symmetric Toeplitz and singly palindromic Toeplitz cases (and
in a limited manner the highly palindromic Toeplitz cases) lurking in Corollary 1.4 is how many
vertices are involved in a crossing; we make this precise in §3. This reduces our problem to one in
combinatorics. Our problem turns out to be related to issuesin knot theory as well, which provided
additional motivation for and applications of this work; see for example [CM, KT, Kl2, Kont, FN,
Rio, Sto]). In the course of our investigations, we prove several interesting combinatorial results
(many of the coefficients have been previously tabulated on the OEIS; see for example Remark
3.19), which we isolate below.

Theorem 1.5. Consider all(2k − 1)!! pairings of2k vertices on a circle. LetCr2k,2m denote the
number of these pairings where exactly2m vertices are involved in a crossing, and letCk denote
thekth Catalan number, 1

k+1

(
2k
k

)
. For small values ofm, we obtain the exact formulas forCr2k,2m

listed below; for largek (and thus a large range of possiblem) we prove the limiting behavior of
the expected value and variance of the number of vertices involved in at least one crossing.

• For m ≤ 10 we have

Cr2k,0 = Ck

Cr2k,2 = 0

Cr2k,4 =

(
2k

k − 2

)

Cr2k,6 = 4

(
2k

k − 3

)

Cr2k,8 = 31

(
2k

k − 4

)
+

k−4∑

d=1

(
2k

k − 4− d

)
(4 + d)

Cr2k,10 = 288

(
2k

k − 5

)
+ 8

k−5∑

d=1

(
2k

k − 5− d

)
(5 + d) . (1.11)

• The expected number of vertices involved in a crossing is

2k

2k − 1

(
2k − 2−

2F1(1, 3/2, 5/2− k;−1)

2k − 3
− (2k − 1) 2F1(1, 1/2 + k, 3/2;−1)

)
, (1.12)
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which is

2k − 2−
2

k
+O

(
1

k2

)
(1.13)

ask → ∞; here2F1 is the hypergeometric function. Further, the variance of the number of
vertices involved in a crossing converges to4.

We review the basic framework and definitions used in studying the moments in §2. In §3 we
determine formulas for the moments, and prove the first part of Theorem 1.5 in the Toeplitz case,
completing the proof by determining the limiting behavior in §4 and discussing the minor changes
needed for the general case. All that remains to prove Theorem 1.2 is to handle the convergence
issues; this analysis is standard, and is quickly reviewed in §5.

2. MOMENT PRELIMINARIES

Note: For ease of exposition we consider (real symmetric) Toeplitz ensembles below, though
minor modifications yield similar results for other real symmetric structured ensembles where
the limiting rescaled spectral measure exists and each random variable occurso(N) times in
each row of matrices in the ensemble. In particular, we take(c, r) to be (1, 1/2).

We briefly summarize the needed expansions from previous work (see [HM, JMP, KKMSX,
MMS] for complete details). We use a standard method to compute the moments. For a fixed
N ×N matrixA drawn from a Toeplitz ensemble, thekth moment of its rescaled empirical spectral
measure is

Mk,N (A) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

ai1i2ai2i3 · · · aiki1, (2.1)

which when applied to our signed Toeplitz and palindromic Toeplitz matrices (where the entries of
the unsigned ensemble are constant along diagonals) gives that

Mk,N (A) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫiki1b|ik−i1|. (2.2)

By linearity of expectation,

E (Mk,N (A)) =
1

N
k
2
+1

∑

1≤i1,...,ik≤N

E
(
ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫiki1b|ik−i1|

)
, (2.3)

and we set
Mk = lim

N→∞
E (Mk,N (A)) . (2.4)

Of theNk terms in the above sum corresponding to theNk choices of(i1, . . . , ik) in the above sum,
we can immediately see that some contribute zero in the limitasN → ∞ by using the following
lemmas.

Lemma 2.1. Let k be an integer and consider any Toeplitz ensemble. The only terms in (2.3)
that can have a non-zero contribution in the limit asN → ∞ to Mk have eachbα in the product
appearing exactly twice. Further, all such terms have a finite contribution.

Proof. We first prove that any term that doesn’t have everybα appearing at least twice does not con-
tribute. As the expected value of a product of independent variables is the product of the expected
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values, since eachbα is drawn from a distribution with mean zero, there is no contribution in this
case. Thus eachbα occurs at least twice if the term is to contribute.

We now show that any term that has somebα appearing more than twice cannot contribute in the
limit. If each bα appears exactly twice, then there arek/2 values ofbα to choose. Recall (see for
example [HM]) that for Toeplitz matrices,b|ijij+1| is paired withb|ik−ik+1| if and only if

ij − ij+1 = ±(ik − ik+1). (2.5)

Once we have specified theb’s and one indexil, there are at most two values for each remaining

index. Thus there areO
(
N

k
2
+1
)

terms where thebα’s are matched in exactly pairs. By contrast,

any term that has somebα appearing more than twice has fewer thank
2
+1 degrees of freedom, and

thus does not contribute in the limit as we divide byNk/2+1.
Finally, we show that the sum of the contributions from all terms arising from matching in pairs

is Ok (1). Suppose there arer ≤ k different ǫγ ’s and s ≤ k different bα’s in the product, say
ǫγ1 , . . . , ǫγr andbα1

, . . . , bαs
, with eachǫγj occurringnj times and eachbαj

occurringmj times.
Such a term contributes

∏r
j=1E

(
ǫ
nj
γj

)∏s
j=1E

(
b
mj
αj

)
. Since the probability distributions of theǫ’s

andb’s have finite moments, this contribution is thusOk (1), and thus the sum of all such contribu-
tions is finite in the limit. �

Remark 2.2. For singly palindromic Toeplitz and highly palindromic Toeplitz matrices, a similar
result holds once we identify the appropriatebα. After correcting equations (2.7) and (2.8) of
[JMP] to fix an omission and to takeC1 ∈ {(−⌊

|il−il+1|

N/2n
⌋ + k − 1) N

2n
: k ∈ {1, . . . , 2n}} and

C2 ∈ {(⌊ |il−il+1|

N/2n
⌋ + k) N

2n
− 1 : k ∈ {1, . . . , 2n}} into account, we have thatb|ijij+1| is paired with

b|ik−ik+1| if and only if

ij − ij+1 = ±(ik − ik+1) + Crjk . (2.6)

For singly palindromic Toeplitz matrices, it is easy to check that the only possible values areCrjk
equals±(N − 1) or 0. Moreover, it is not hard to see that the number of possible values for each
Crjk depends on the momentm being computed and on the leveln of palindromicity of the ensemble,
but is independent ofN , a fact which will be crucially important in later proofs.

Lemma 2.3. For Toeplitz and (highly) palindromic Toeplitz ensembles,the odd moments of the
limiting rescaled spectral measure vanish.

Proof. For the Toeplitz ensemble, this follows directly from Lemma2.1 (since the odd moments
have an odd number ofb’s, they cannot be matched exactly in pairs). For the singly palindromic
and highly palindromic cases, somebl must appear an odd number of times. If it appears exactly
once, it must vanish because the distribution is mean zero, while the number of terms where some
bl appears three or more times is insignificant by a simple degree of freedom argument. (For a more
detailed exposition, see [JMP].) �

Since the odd moments vanish, we concern ourselves in the rest of the paper with the limiting
behavior of the even moments,M2k. Further, in the moment expansion for the even moments, we
only have to consider terms in which thebα’s are matched in exactly pairs. With the next lemma,
we further reduce the number of terms we must consider by showing that only those terms where
every pairing between theb’s is with a minus sign in (2.5) contribute in the limit. The following
proof is adapted from [HM].
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Lemma 2.4. For all the Toeplitz ensembles, the only terms that contribute toM2k, the2kth moment
of the limiting rescaled spectral measure, are terms where theb’s are matched in exactly pairs and
have a minus sign in each of thek equations of the form(2.5).

Proof. We do the proof for the Toeplitz case, as the other cases are similar. For each term, there arek
corresponding equations of the form (2.5). We letx1, . . . , xk be the values of the|ij − ij+1| in these
equations, and letδ1, . . . , δk be the choices of sign in these equations. We further letx̃1 = i1 − i2,
x̃2 = i2 − i3, . . . , x̃2k = i2k − i1. We know the only contribution toM2k arises from terms where
theb’s are matched in pairs. Thus given somex̃m there must be ann = n(m) such that̃xm = ±x̃n.
Then each of the previousk equations can be written as

x̃m = δjx̃n, δj ∈ {−1, 1}. (2.7)

By definition, there is someηj = ±1 such that̃xm = ηjxj. Thenx̃n = δjηjxj , so

x̃1 + x̃2 + · · ·+ x̃2k =

k∑

j=1

ηj (1 + δj)xj . (2.8)

Finally, notice that

x̃1 + x̃2 + · · ·+ x̃2k = i1 − i2 + i2 − i3 + · · ·+ i2k − i1 = 0. (2.9)

Thus
k∑

j=1

ηj (1 + δj) xj = 0. (2.10)

If any δj = 1, then (2.10) gives us a linear dependence between thexj. Recall from the proof of
Lemma 2.1 that we require allxj to be independently chosen for a pairing to contribute; otherwise,
there are fewer thank + 1 degrees of freedom. Thus, the only terms that contribute have each
δj = −1.

From [JMP], the analogous result holds for the singly palindromic and highly-palindromic Toeplitz
ensembles, i.e.,

ij − ij+1 = −(ik − ik+1)± Crjk . (2.11)

�

The above results motivate the following definition.

Definition 2.5 (Pairing). A pairing is a matching of the verticesi1, i2, . . . , i2k such that the vertices
are matched exactly in pairs, and with a negative sign in(2.5). There are(2k − 1)!! pairings of the
2k vertices. As argued above in the proof of Lemma 2.1, these pairings correspond toO

(
Nk+1

)

terms in the sum in(2.3) for the2kth moment.

As suggested above, we find that a good way to investigate the contribution of each potentially
contributing term, i.e., each choice or tuple of(i1, . . . , i2k), is to associate each term with a pairing
of 2k vertices on a circle, where the vertices are|i1 − i2| , |i2 − i3| , . . . , |i2k − i1|. Because what
matters are not the values of the|ij − ij+1|’s, but rather the pattern of how they are matched, any
terms associated with the same pairing of the2k vertices will have the same contribution. Thus,
pairings that are the same up to a rotation of the vertices contribute the same since it is not the values
of ij that matter but rather the distance between each vertex and its matching and the indices of the
other pairs. Therefore, to further simplify the moment analysis, we make the following definition.
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FIGURE 1. The five distinct configurations for the 6th moment where vertices are
matched exactly in pairs. The multiplicity under rotation of the five patterns are 2, 3,
6, 3 and 1 (for example, rotating the first pattern twice returns it to its initial configu-
ration, while the third requires six rotations). The nomenclature is from [KKMSX],
and is not relevant to our purposes here.

FIGURE 2. A pairing of10 vertices with8 crossing vertices (in two symmetric sets
of 4 vertices), and2 dividing vertices (connected by a main diagonal).

Definition 2.6(Configuration). Two pairings
{
(ia1 , ia2) , (ia3 , ia4) , . . . ,

(
ia2k−1

, ia2k
)}

and{(ib1 , ib2) ,
(ib3 , ib4), . . .,

(
ib2k−1

, ib2k
)}

are said to be in the same configuration if they are equivalentup to a
relabeling by rotating the vertices; i.e., there is some constantl such thatbj = aj + l mod 2k.

For example, we display the five distinct configurations needed for the sixth moment in Figure
1. The problem of determining the moments is thus reduced to determining for each configuration
both the contribution of a pairing belonging to that configuration to the sum in (2.3) and the number
of pairings belonging to that configuration.

3. DETERMINING THE MOMENTS

By Lemma 2.1, for the rest of the paper we may assume the vertices are matched in exactly pairs.
We distinguish between three types of vertices in these pairings.

Definition 3.1 (Crossing, non-crossing). We say that a pair of vertices(a, b), a < b, is in acrossing
if there exists a pair of vertices(x, y) such that the order of the four vertices, as we travel clockwise
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around the circle, is eithera, x, b, y or x, a, y, b. A pair (a, b) is non-crossing if for every pair(x, y),
x is betweena andb (as we travel clockwise around the circle froma to b) if and only ify is.

Pictorially, a pair is crossing if the line contained in the circle connecting its two vertices crosses
another line connecting two other vertices. In Figure 1, thefirst two configurations have no crossing
vertices, the third has four, while all vertices are crossing for the fourth and fifth. Note the number
of crossing vertices is always even and never two.

Definition 3.2. We say that a non-crossing pair of vertices(a, b) (with a < b) is dividing if the
following two conditions hold:

(1) There exist two pairs of crossing vertices,(x, y) and (w, z), such that as we travel around
the circle froma to b we havex, y, w andz are betweena andb.

(2) There exist two pairs of crossing vertices,(p, q) and(r, s), such that as we travel around the
circle fromb to a we havep, q, r ands are betweenb anda.

All other pairs are callednon-crossing non-dividing pairs.

Pictorially, a pair is dividing if it “divides” the circle into two regions of pairs (no pair can cross
a dividing edge since it must be non-crossing), where each region contains at least one crossing
pair; see Figure 2 for an illustration. From the definition, we see that at least10 vertices are needed
for a “dividing” pair to exist, and thus it is possible that new behaviors or complications arise in
studying the higher moments (a similar situation arises in weightedd-regular graphs, where there
is a marked change in behavior at the eighth moment; see [GKMN] for details).

Note that all pairings belonging to a given configuration have the same number of crossing pairs
and the same number of dividing pairs.

We show in this section that the contribution of each pairingin the unsigned case is weighted by a
factor depending on the number of crossing pairs in that pairing. We then prove some combinatorial
formulas that allow us to obtain closed form expressions forthe number of pairings withm vertices
crossing for smallk. As the combinatorics becomes prohibitively difficult for largek, we determine
the limiting behavior in §4.

3.1. Weighted Contributions. The following theorem is central to our determination of themo-
ments. It reduces the calculations to two parts. First, we need to know the contribution of a pairing
in the non-signed case (equivalently, whenp = 1). While this is known precisely for the singly
palindromic Toeplitz case, where each pairing contributes1, in the Toeplitz case we only have up-
per and lower bounds on the contribution of all pairing. Second, we need to determine the number
of vertices involved in crossing pairs, which we do in part in§3.2.

Remark 3.3. For ease of exposition, we prove the following lemmas in the Toeplitz case, and
comment on the proofs (or barriers to proof) in the singly palindromic and highly palindromic
cases. For the palindromic case, by (2.7) and (2.8) of[JMP], there should be someC1 andC2 terms
added into equation (2.5) as well as parts of the proof for Lemma 2.4; however, some minor changes
to the proofs show that these lemmas still hold in the palindromic Toeplitz case.

Theorem 3.4. For each choice of a pairingc of the vertices(i1, . . . , i2k), let x(c) denote the con-
tribution of this tuple in the unsigned case. Then, for the Toeplitz and singly palindromic Toeplitz
ensembles, the contribution in the signed case isx(c)(2p−1)e(c), wheree(c) represents the number
of vertices in crossing pairs in the configuration corresponding toc.
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Recall that the contribution from any choice of(i1, . . . , i2k) is

E(ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| · · · ǫi2ki1b|i2k−i1|) = E(ǫi1i2ǫi2i3 · · · ǫi2ki1)E(b|i1−i2| · · · b|ik−i1|)

= E(ǫi1i2ǫi2i3 · · · ǫi2ki1)x(c). (3.1)

Thus, we want to show thatE(ǫi1i2ǫi2i3 · · · ǫi2ki1) = (2p− 1)e(c). We do this by showing that for
each pair(ij , ij+1) , (ik, ik+1) whereb|ij−ij+1| = b|ik−ik+1|,

E
(
ǫij ij+1

ǫikik+1

)
=

{
(2p− 1)2 if (ij, ij+1) , (ik, ik+1) are a crossing pair

1 otherwise.
(3.2)

Notice that
E (ǫα) = 1 · p+ (−1) · (1− p) = 2p− 1, E

(
ǫ2α
)
= 1. (3.3)

Therefore, ifm epsilons are chosen independently, the expected value of their product is(2p−1)m.
Before stating and proving some lemmas needed in the proof ofTheorem 3.4, we introduce a

convenient notation.

Definition 3.5 (Vertex ordering). Fix an integer2k and consider the circle with2k vertices spaced
uniformly, labeled 1, 2,. . . , 2k. If a, b andx are three of these vertices, bya < x < y we mean that
we pass through vertexx as we travel clockwise about the circle from vertexa to vertexb.

Lemma 3.6. For the Toeplitz and singly palindromic Toeplitz ensembles, E(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≥
(2p− 1)e(c).

Proof. To proveE(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≥ (2p−1)e(c), we show that pairs not in a crossing contribute
1. Consider a non-crossing pair(ir, ir+1) , (ip, ip+1) (corresponding to verticesr andp on the circle
with 2k labeled vertices), withr < p. For each(iq, iq+1) paired with(iq′ , iq′+1), we haver < q < p
if and only if r < q′ < p. Recall from (2.5) and Lemma 2.4 that in the Toeplitz case,

iq − iq+1 = −(iq′ − iq′+1), (3.4)

while in the singly palindromic Toeplitz case,

iq − iq+1 = −(iq′ − iq′+1) +Q(q, q′), where Q(q, q′) ∈ {−(N − 1), 0, N − 1}. (3.5)

Thus
p∑

k=r

(ik − ik+1) = t(N − 1) (3.6)

for some integert because each difference in the sum is paired with its additive inverse, which is
also in the sum. As

p∑

k=r

(ik − ik+1) = (ir − ir+1) + (ir+1 − ir+1) + · · ·+ (ip − ip+1) = ir − ip+1, (3.7)

we must haveir = ip+1 ± t(N − 1). It is clearly impossible to have|t| > 1, and if t = ±1, this
forces{ir, ip+1} = {1, N}; thust = 0. Since this situation uses up a degree of freedom, this implies
thatir = ip+1. By a similar argument applied to the sum

r∑

k=p

(ik − ik+1) (3.8)

(taking indices cyclically),ir+1 = ip. Thereforeǫirir+1
= ǫipip+1

, and henceE(ǫirir+1
ǫipip+1

) =
1. �
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Lemma 3.7. For the Toeplitz, singly palindromic Toeplitz, and highly palindromic Toeplitz ensem-
bles,E(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≤ (2p− 1)e(c).

Proof. We showE(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≤ (2p− 1)e(c) by showing that ifǫiaia+1
= ǫibib+1

, a < b, then
(ia, ia+1) , (ib, ib+1) are non-crossing. This suffices to prove the result since theonly dependency
between theǫ’s arises from the requirement that the matrix is real symmetric. Thus, we have a
dependency betweenǫisis+1

andǫipip+1
if and only if we know they are equal. In showing that a

dependency betweenǫ’s implies the corresponding vertex pair must be non-crossing, we show that
crossing pairs imply independentǫ’s and thus contribute(2p− 1)2.

If ǫiaia+1
= ǫibib+1

then it must be true that the unordered sets{ia, ia+1} and{ib, ib+1} are equal.
This implies that|ia− ia+1| = |ib− ib+1|, so(ia, ia+1) , (ib, ib+1) must be paired on the circle. Since
the only contributing terms are when they are paired in opposite orientation, we then know that
ia = ib+1, so

b∑

k=a

(ik − ik+1) = ia − ib+1 =
∑

k

±Crk . (3.9)

We can rewrite this sum as
d∑

k=b

δk|ik − ik+1| =
∑

k

±Crk , (3.10)

whereδk is ±1 if the vertexk is paired with is less thana or greater thanb, and0 if and only if
the vertexk is paired with is betweena andb. However, since the number of possible values for∑

k ±Crk is independent ofN , a linear dependence among the differences is impossible, as we need
to haveNk+1 degrees of freedom for each configuration (see the proof of Lemma 2.1). So each
δk = 0, and each vertex between verticesa andb is paired with something else betweena andb.
Thus, no edges cross the edge between verticesa andb. �

Proof of Theorem 3.4.For Toeplitz and singly palindromic Toeplitz matrices, we have shown that
an epsilon is unmatched if and only if its edge is in a crossing. Thus, an epsilon is not paired if and
only if its edge is not in a crossing. Therefore the contribution is weighted byE(ǫi1i2ǫi2i3 · · · ǫi2ki1),
which by Lemmas 3.6 and 3.7 is(2p− 1)e(c), completing the proof. �

Remark 3.8. In the doubly palindromic Toeplitz case, Lemma 3.6 does not hold for the sixth mo-
ment, as we shall see in Lemma 3.11. In particular, this meansthe determination of the limiting
rescaled spectral measures for general signed ensembles and generalp is harder.

Lemma 3.9. For the Toeplitz, singly palindromic Toeplitz, and highly palindromic Toeplitz ensem-
bles, if the contribution from a non-crossing configurationwasx before the weighting, it is at most
(2p− 1)4(x− 1) + 1 after applying the weighting.

Proof. In the Toeplitz and singly palindromic Toeplitz cases,x = 1 and the claim is trivial. In
the highly palindromic case, we note that there is a contribution of 1 from the terms which also
contribute in the real symmetric case. The remaining terms contain at least 2 pairs of vertices
which are not matched in the real symmetric case, since one mismatched pair (relative to the real
symmetric ensemble) implies a second mismatched pair, since

∑2m
k=1(ik − ik+1) = 0. Hence, for

these terms,E(ǫi1i2ǫi2i3 · · · ǫi2ki1) ≤ (2p− 1)4, which completes the proof. �

Remark 3.10. A slightly modified version of this proof shows that for otherreal symmetric ensem-
bles, if the contribution from a non-crossing configurationwasx before the weighting, it is at most
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(2p − 1)2(x − 1) + 1 after applying the weighting. Similarly, for crossing configurations, if the
contribution wasx before the weighting, it is at most(2p− 1)2x after applying the weighting.

Lemma 3.11.For the sixth moment of signed doubly palindromic Toeplitz ensembles, the contribu-
tion from a configuration is not determined uniquely by the number of crossings.

Proof. We prove that the adjacent configuration and the non-adjacent non-crossing configuration
(the upper-left and upper-middle configurations in Figure 1, respectively) have different contribu-
tions to the sixth moment.

The main idea is that in the ‘adjacent configuration’, every contributing term has either all three
pairings of the formaijaji, or exactly one pairing of this form. Since we know that the contribution
when all three pairings are of this form is1, the contribution when there is exactly one pairing of
this form is(x − 1). In this situation, the contribution to the moment is weighted by(2p − 1)4,
giving a total of(2p− 1)4(x− 1) + 1.

Specifically, we have that

it − it+1 = −(it+1 − it+2)± Crt,t+1
, (3.11)

whereCrt,t+1
= N/2 orN/2− 1 or 0. (N andN − 1 are ruled out because we would lose a degree

of freedom by forcing one value to be1 and the other to beN .) Moreover,Crt,t+1
= 0 if and only

if ǫitit+1
= ǫit+1it+2

. Now, if we choose three values from{0,±N/2,±N/2 − 1} that add up to0,
we must choose either one or three of the values to be0. The cases where all three are0 contribute
fully while the case where two are non-zero is depressed by(2p − 1)4, so that contribution to the
moment in the signed ensemble is exactly(2p− 1)4(x− 1) + 1.

In the other non-crossing configuration, the moment is at most (2p− 1)4(x− 1)+ 1 by the proof
of Lemma 3.9. Hence, to show the moment is smaller than this, it will suffice to find a contributing
group of terms whose moment is reduced by more than(2p − 1)4. As one example, we can take
the vertices to beai,j, aj,i+N/2, ai+N/2,k+N/2, ak+N/2,l, al,k, ak,i, wherei, k < N/2. While there is an
additional inequality betweeni andj and betweenk andl, this does not remove a degree of freedom
since there are still orderN possible values. Hence, some portion of the(x − 1) contribution is
reduced by a factor of(2p − 1)6 < (2p − 1)4. Since the remaining portion of the contribution
is reduced to at most(2p − 1)4 times its original value, the contribution to the 6th moment of the
non-adjacent non-crossing configuration in the signed doubly palindromic case is strictly less than
(2p− 1)4(x− 1) + 1, and is therefore not equal to the contribution from the adjacent non-crossing
configuration. �

3.2. Counting Crossing Configurations. Theorem 3.4 reduces the determination of the moments
to counting the number of pairings with a given contributionx(c), and then weighting those by
(2p − 1)e(c), wheree(c) is the number of vertices involved in crossings in the configuration. As
remarked above, in the singly palindromic Toeplitz case eachx(c) = 1, while in the general Toeplitz
case we only have bounds on thex(c)’s, and thus must leave these as parameters in the final answer
(though any specificx(c) may be computed by brute force, we do not have a closed form expression
in general).

In this section we turn to computing thee(c)’s for various configurations. As previously men-
tioned, these and similar numbers have also been studied in knot theory where these chord diagrams
are used in the study of Vassiliev invariants (see [KT, Kont,FN, Rio, Sto]). While we cannot deter-
mine exact formulas in general, we are able to solve many special cases, which we now describe.
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Definition 3.12 (Cr2k,2m). LetCr2k,2m denote the number of pairings involving2k vertices where
exactly2m vertices are involved in a crossing.

Let Ck = 1
k+1

(
2k
k

)
denote thekth Catalan number (see [AGZ] for statements and proofs of their

needed properties). One of its many definitions is as the number of ways to match2k objects on
a circle in pairs without any crossings; this interpretation is the reason why Wigner’s Semi-Circle
Law holds. Thus, we immediately deduce the following.

Lemma 3.13.We haveCr2k,0 = Ck.

We use this result to prove the following theorem, which is instrumental in the counting we need
to do.

Theorem 3.14.Consider2k vertices on the circle, with a partial pairing on a subset of2v vertices.
The number of ways to place the remaining2k − 2v vertices in non-crossing, non-dividing pairs is(

2k
k−v

)
.

Proof. LetW denote the desired quantity. Notice that each of the remaining2k − 2v vertices must
be placed between two of the2v already paired vertices on the circle. These2v vertices have created
2v regions. A necessary and sufficient condition for these2k − 2v vertices to be in non-crossing,
non-dividing pairs is that the vertices in each of these2v regions pair only with other vertices in
that region in a non-crossing configuration.

Thus, if there are2s vertices in one of these regions, by Lemma 3.13 the number of valid ways
they can pair isC2s. As the number of valid matchings in each region depends onlyon the number
of vertices in that region and not on the matchings in the other regions, we obtain a factor of
C2s1C2s2 · · ·C2s2v , where2s1 + 2s2 + · · ·+ 2s2v = 2k − 2v.

We need only determine how many pairings this factor corresponds to. First we notice that by
specifying one index and(s1, s2, . . . , s2v), we have completely specified a pairing of the2k vertices.
However, as we are pairing on a circle, this specification does not uniquely determine a pairing since
the labelling of(s1, s2, . . . , s2v) is arbitrary. Each pairing can in fact be written as any of the2v
circular permutations of some choice of(s1, s2, . . . , s2v) and one index. Thus the quantity we are
interested in is

W =
2k

2v

∑

2s1+2s2+···+2s2v=2k−2v

Cs1Cs2 · · ·Cs2v . (3.12)

To evaluate this expression, we use thek-fold self-convolution identity of Catalan numbers [Fo,
Reg], which states

∑

i1+···+ir=n

Cir−1 · · ·Cir−1 =
r

2n− r

(
2n− r

n

)
. (3.13)

Settingij = sj + 1, r = 2v andn = k + v, we obtain
∑

s1+s2+···+s2v+2v=k+v

Cs1Cs2 · · ·Cs2v =
2v

2k

(
2k

k + v

)
. (3.14)

We may rewrite this as

2k

2v

∑

2s1+2s2+···+2s2v=2k−2v

Cs1Cs2 · · ·Cs2v =

(
2k

k − v

)
, (3.15)

which completes the proof as the left hand side is just (3.12). �
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Given Theorem 3.14, our ability to find formulas forCr2k,2m rests on our ability to find the
number of ways to pair2v vertices where2m vertices are crossing and2v−2m vertices are dividing.
We are able to do this for small values ofm, but for largem, the combinatorics becomes very
involved.

Definition 3.15 (P2k,2m,i, partitions). Let P2k,2m,i represent the number of pairings of2k vertices
with 2m crossing vertices ini partitions. We define a partition to be a set of crossing vertices
separated from all other sets of crossing vertices by at least one dividing edge.

It takes a minimum of4 vertices to form a partition, so the maximum number of partitions
possible is⌊2m/4⌋. Our method of counting involves writing

Cr2k,2m =

⌊2m/4⌋∑

i=1

P2k,2m,i. (3.16)

Our first combinatorial result is the following.

Lemma 3.16.We have

P2k,2m,1 = Cr2m,2m

(
2k

k −m

)
. (3.17)

Proof. The proof follows immediately from Theorem 3.14. If there isonly one partition, then there
can be no dividing edges. Therefore, we simply multiply the number of ways we can choose2k−2m
non-crossing non-dividing pairs by the number of ways to then choose how the2m crossing vertices
are paired. �

Our next result is

Lemma 3.17.We have

P2k,2m,2 =
k−m∑

d=1

(
2k

k −m− d

)
(m+ d)

(
∑

0<a<m

Cr2a,2aCr2m−2a,2m−2a

)
. (3.18)

Proof. We letd be the number of dividing edges. In order to have two partitions, at least one of the
k −m non-crossing edges must be a dividing edge. We thus sum overd from 1 to k −m. Given
d, we know that we can pair and place the non-crossing non-dividing edges in

(
2k

k−m−d

)
ways from

Theorem 3.14. We then choose a way to pair the2m crossing vertices into2 partitions, one with2a
vertices, the other with2b vertices. Ifa = b, there arem+ d distinct spots where we may place the
dividing edge. Ifa 6= b, there are2m + 2d spots. Since each choice ofa 6= b appears twice in the
above sum, the result follows. �

DeterminingP2k,2m,3 requires the analysis of several more cases, and we were unable to find a
nice way to generalize the results of Lemmas 3.16 and 3.17. However, these two results do allow
us to write down the following formulas.
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Lemma 3.18.We have

Cr2k,4 =

(
2k

k − 2

)

Cr2k,6 = 4

(
2k

k − 3

)

Cr2k,8 = 31

(
2k

k − 4

)
+

k−4∑

d=1

(
2k

k − 4− d

)
(4 + d)

Cr2k,10 = 288

(
2k

k − 5

)
+ 8

k−5∑

d=1

(
2k

k − 5− d

)
(5 + d) . (3.19)

Proof. We recall that

Cr2k,0 = Ck

Cr2k,2 = 0, (3.20)

where the second equation follows from the fact that at least4 vertices are needed for a crossing.
From (3.16) and (3.16) we find

Cr2k,4 = P2k,4,1 = Cr4,4

(
2k

k − 2

)
. (3.21)

We can calculateCr4,4 by using (3.20) and the fact that

k∑

m=0

Cr2k,2m = (2k − 1)!!. (3.22)

This follows because the number of ways to match2k objects in pairs of 2 with order not mattering
is (2k − 1)!!, and thus the sum of all our matchings in pairs must equal this. Note that this number
is also the2kth moment of the standard normal; this is the reason the singly palindromic Toeplitz
have a limiting rescaled spectral measure that is normal, aseach contribution contributes fully. We
thus find

Cr4,4 = (2 · 2− 1)!!− Cr4,2 − Cr4,0 = 3− 2 = 1. (3.23)

This completes the proof of the first formula:Cr2k,4 =
(

2k
k−2

)
.

The other coefficients are calculated in a similar recursivefashion – essentially, once we have
values forCr2k,2l for l = 0, 1, 2, . . . , m− 1, we can findCr2m,2m by using (3.22), which allows us
to write the general formulas above forCr2k,2m. We show the calculations below. We have

Cr6,6 = (6− 1)!!− Cr6,4 − Cr6,2 − Cr6,0

= 5!!−

(
6

1

)
− 0− C3 = 15− 6− 0− 5 = 4, (3.24)

soCr2k,6 = 4
(

2k
k−3

)
, and thus

Cr8,8 = (8− 1)!!− Cr8,6 − Cr8,4 − Cr8,2 − Cr8,0

= 7!!− 4

(
8

1

)
−

(
8

2

)
− 0− C4 = 105− 32− 28− 14 = 31. (3.25)
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To finish the calculation forCr2k,8 we compute
∑

0<a<4

Cr2a,2aCr8−2a,8−2a = Cr2,2Cr6,6 + Cr4,4Cr4,4 + Cr6,6Cr2,2 = 0 + 1 + 0 = 1. (3.26)

so that we getCr2k,8 = 31
(

2k
k−4

)
+
∑k−4

d=1

(
2k

k−4−d

)
(4 + d).

For the formula forCr2k,10,

Cr10,10 = (10− 1)!!− Cr10,8 − Cr10,6 − Cr10,4 − Cr10,2 − Cr10,0

= 9!!−

(
31

(
10

1

)
+

1∑

d=1

(
10

1− d

)
(4 + d)

)
− 4

(
10

2

)
−

(
10

3

)
− 0− C5

= 945− (310 + 5)− 4 (45)− 120− 0− 42 = 288, (3.27)

and finally
∑

0<a<5

Cr2a,2aCr10−2a,10−2a = Cr2,2Cr8,8 + Cr4,4Cr6,6 + Cr6,6Cr4,4 + Cr8,8Cr2,2

= 0 + 4 + 4 + 0 = 8, (3.28)

soCr2k,10 = 288
(

2k
k−5

)
+ 8

∑k−5
d=1

(
2k

k−5−d

)
(5 + d). �

Notice that by using the formulas in Lemma 3.18 to calculate the number of terms with each of
the possible contributions given in Theorem 3.4, we are ableto calculate up to the12th moment
exactly (where for the12th moment we use the same recursive procedure as in the proof of Lemma
3.18 to calculateCr12,12).

Remark 3.19. The coefficients in front of the binomial coefficient of the leading term ofCr2k,2m are
sequence A081054 from the OEIS[Kl1] .

4. LIMITING BEHAVIOR OF THE MOMENTS

As we are unable to find exact expressions for the number of pairings with exactly2m crossing
vertices for allm, we determine the expected value and variance of the number of vertices in a
crossing. Such expressions, and the limiting behavior of these expressions, are useful for obtaining
bounds for the moments. To find these, we make frequent use of arguments about the probabilities
of certain pairings, recognizing that since all configurations are equally likely, the probability that
a vertexi pairs with a vertexj is just 1

2k−1
.

Theorem 4.1. The expected number of vertices involved in a crossing of2k vertices paired on the
circle is

2k

2k − 1

(
2k − 2−

2F1(1, 3/2, 5/2− k;−1)

2k − 3
− (2k − 1) 2F1(1, 1/2 + k, 3/2;−1)

)
, (4.1)

which is

2k − 2−
2

k
+O

(
1

k2

)
(4.2)

ask → ∞.
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Proof. In our main applications (such as computing the asymptotic behavior of the mean and the
variance), we only need the asymptotic expression (4.2), which we prove elementarily below. We
give the proof of (4.1) in Appendix A, which involves converting the expansions below to differ-
ences of hypergeometric series.

For a given pairing of2k vertices, letXi = 1 if vertex i is involved in a crossing and0 otherwise.
ThenY2k =

∑2k
i=1Xi is the number of vertices involved in a crossing in this pairing. By linearity

of expectation,

E (Y2k) = E

(
2k∑

i=1

Xi

)
= 2kE (Xi) = 2kpcross, (4.3)

wherepcross is the probability that a given vertex is in a crossing as, by symmetry, this is the same
for all vertices. Thus, without loss of generality, we may think of pcross as the probability that vertex
1 is in a crossing. We notice that

(1) If vertex 1 is matched with another odd indexed vertex, which happens with probability
k−1
2k−1

, then it must be involved in a crossing, since there are an oddnumber of vertices
in the two regions created by the matching, meaning that the regions cannot only pair by
themselves.

(2) If vertex 1 is matched with an even indexed vertex, then itis involved in a crossing if and
only if it does not partition the remaining vertices into twoparts that pair exclusively with
themselves. Suppose it is matched with vertex2m (which happens with probability 1

2k−1
).

Then its edge divides the vertices into a region of2m− 2 and a region of2k− 2m vertices.
As the number of ways to match2ℓ objects in pairs with order immaterial is(2ℓ − 1)!! =
(2ℓ− 1) (2ℓ− 3) · · · 3 · 1, the probability that each region pairs only with itself is

(2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!
. (4.4)

Thus, the probability that vertex 1 is involved in a crossingis

pcross =
k − 1

2k − 1
+

k−1∑

m=2

1

2k − 1

(
1−

(2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!

)

=
2k − 3

2k − 1
−

1

2k − 1

k−1∑

m=2

(2m− 3)!! (2k − 2m− 1)!!

(2k − 3)!!

=
2k − 3

2k − 1
−

1

2k − 1

k−1∑

m=2

(2m− 3)! (2k − 2m)! (2k − 4)!!

(2m− 4)!! (2k − 2m)!! (2k − 3)!

=
2k − 3

2k − 1
−

1

2k − 1

k−1∑

m=2

(2m− 3)! (2k − 2m)!2k−2 (k − 2)!

2m−2 (m− 2)!2k−m (k −m)! (2k − 3)!

=
2k − 3

2k − 1
−

1

2k − 1

k−1∑

m=2

(
k−2
m−2

)
(
2k−3
2m−3

) . (4.5)

Therefore

E (Y2k) = 2kpcross = (2k)
2k − 3

2k − 1
− (2k)

1

2k − 1

k−1∑

m=2

(
k−2
m−2

)
(
2k−3
2m−3

) . (4.6)
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In the above sum, the first and last terms are both1
2k−3

, as form = 2 we have
(
k−2
0

)
(
2k−3
1

) =
1

2k − 3
, (4.7)

and form = k − 1 we have
(
k−2
k−3

)
(
2k−3
2k−5

) =

(
k−2
1

)
(
2k−3
2

) =
2 (k − 2)

(2k − 3) (2k − 4)
=

1

2k − 3
. (4.8)

Looking at the ratio of subsequent terms, straightforward algebra shows
(
k−2
m−1

)
/
(
2k−3
2m−1

)
(
k−2
m−2

)
/
(
2k−3
2m−3

) =
2m− 1

2k − 2m− 1
. (4.9)

Thus form up to the halfway point, each term in the sum is less than the previous. In particular,
them = 3 term is5/(2k − 7) times them = 2 term, and hence all of these terms areO(1/k2).
Similarly, working fromm = k − 2 to the middle we find all of these terms are alsoO(1/k2), and
thus the sum in (4.6) can be rewritten, giving

E (Y2k) = (2k)
2k − 3

2k − 1
− (2k)

1

2k − 1

(
2

2k − 3
+O

(
1

k2

))

= 2k − 2−
2

k
+O

(
1

k2

)
. (4.10)

�

Theorem 4.2. The variance of the number of vertices involved in a crossingapproaches4 ask →
∞.

Proof. We need to calculateVar (Y2k) = E (Y 2
2k) − E (Y2k)

2. As we know the second term by
Theorem 4.1, we concentrate on the first term:

E
(
Y 2
2k

)
=

∑

i,j∈{1,...,2k}

E (XiXj) . (4.11)

The above sum has4k2 terms.
For 2k of those terms,i = j soE (XiXj) = E (X2

i ) = E (Xi) = pcross as theXℓ’s are binary
indicator variables with probability of successpcross. For another2k terms, we havei andj are
paired on the same edge, soE (XiXj) = E (Xi) = pcross as before.

For the remaining4k2−4k terms,i andj are on different edges, and we must find the probability
that both those edges are in crossings. We separate this probability into two disjoint probabilities,
the probabilitypa that they cross each other, and the probability that they don’t cross each other but
are each crossed by at least one other pairing. We denote thissecond probability by(1− pa) pb,
wherepb is the conditional probability they are each crossing giventhat they don’t cross each
other. We will find these probabilities by taking sums over the placements ofk,m, p, q above as
appropriate and calculating for each the probability of observing one of our desired configurations.
We have shown

E
(
Y 2
2k

)
= 4kpcross +

(
4k2 − 4k

)
(pa + (1− pa) pb) , (4.12)

thus reducing the problem to the determination ofpa andpb.
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Without loss of generality, we label our edges as{1, m} and{p, q}. They cross each other if
and only if one of{p, q} is one of them − 2 vertices between1 andm, and the other is one of the
2k −m vertices betweenm and2k. Thus

pa =

2k∑

m=2

1

2k − 1
· 2 ·

m− 2

2k − 2
·
2k −m

2k − 3

=
2

(2k − 1) (2k − 2) (2k − 3)

[
2k∑

m=2

−4k −
2k∑

m=2

m2 + (2k + 2)
2k∑

m=2

m

]
. (4.13)

By using the formulas for the sum of the firstn integers and the firstn squares, we simplify the
second factor to

(2k − 1) (−4k)−

(
2k (2k + 1) (4k + 1)

6
− 1

)
+ (2k + 2)

(
2k (2k + 1)

2
− 1

)
, (4.14)

which gives

pa =
2

(2k − 1) (2k − 2) (2k − 3)

(2k − 1) (2k − 2) (2k − 3)

6
=

1

3
. (4.15)

We now calculatepb, the probability that{1, m} and{p, q} are both involved in crossings given
they don’t cross each other. We must place{1, m} , {p, q}. Relabeling if necessary, we may assume
1 < m < p < q; such a labeling is possible if and only if{1, m} and{p, q} do not cross each other.
We compute the complement of our desired probability by finding the number of configurations
where one or less of{1, m} and{p, q} is in a crossing. We denote the number of such configurations
by Nk,m,p,q and can thus write

pb = 1−
2k−2∑

m=2

2k−1∑

p=m+1

2k∑

q=p+1

Nk,m,p,q

(2k − 5)!!
. (4.16)

Since there are
(
2k−1
3

)
terms in the above sum (corresponding to the

(
2k−1
3

)
possible choices of

m, p, q since we have specified the location of vertex1 and the order ofm, p, q), we can rewrite
(4.16) as

pb = 1−

∑2k−2
m=2

∑2k−1
p=m+1

∑2k
q=p+1Nk,m,p,q(

2k−1
3

)
(2k − 5)!!

. (4.17)

All that remains to be done is to evaluate the sum in the above expression. To do so, we first
define the following functionP (k), which counts the number of waysk vertices can be paired with
each other:

P (x) =





0 if k is odd

1 if k = 0

(k − 1)!! otherwise.

(4.18)

Next we think of these two edges as dividing the remaining vertices into three regions: those
between{1, m} and {p, q}, of which there areM = p − m − 1 + 2k − q, those on the side
of {1, m}, of which there areL = m − 2, and those on the side of{p, q}, of which there are
R = q − p − 1. We know that{1, m} will not be crossed if theL vertices between1 andm pair
exclusively with each other. Likewise,{p, q} will not be crossed if the vertices betweenp andq pair
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exclusively with each other. Our desired quantity is thus the union of these two events less their
intersection:

P (L+M)P (R) + P (R +M)P (L)− P (L)P (M)P (R) . (4.19)

Notice that ifL orR is 0, one of{1, m} , {p, q} is an adjacent edge, and therefore is not crossing.
Thus

Nk,m,p,q =

{
(2k − 5)!! if L orR is 0

P (L+M)P (R) + P (R +M)P (L)− P (L)P (M)P (R) otherwise.
(4.20)

We now investigate the limiting behavior ofpb (given in (4.16)) by using the cases in (4.20).

• For the first case, we haveL orR is zero, and thusNk,m,p,q = (2k− 5)!!. We are reduced to
counting the number of terms withL or R zero. Note thatL = 0 whenm = 2, andR = 0
whenq = p + 1. Each of these events happens in

(
2k−2
2

)
pairings (we have fixed either

m or q, and the other2 vertices are chosen from the remaining2k − 2 vertices), and their
intersection is

(
2k−3
1

)
(p is the only free index) pairings. In the limit, this case contributes

(
2
(
2k−2
2

)
−
(
2k−3
1

))
(2k − 5)!!

(
2k−1
3

)
(2k − 5)!!

=
3

k
+O

(
1

k3

)
. (4.21)

• For the second case,L andR are non-zero. We first evaluate the contribution of the first
two terms (notice that they will contribute the same in the sum since you can simply relabel
{1, m} and{p, q}) and then the third term, recalling that we only have to look for terms that
are at leastO

(
1
k2

)
since we can see in (4.12) that any other terms will not contribute in the

limit ask → ∞.
– For P (L+M)P (R), the largest terms are from when eitherL + M = 2, or when
R = 2. In these cases,Nk,m,p,q = (2k − 7)!!. If R = 2 thenq = p + 3 andm, p are
free so there are

(
2k−4
2

)
such terms corresponding to the

(
2k−4
2

)
choices ofm andp. If

L + M = 2 andL 6= 0 then there are only two possible terms: eitherL = 1,M =
1, R = 2k − 6 or L = 2,M = 0, R = 2k − 6. Including the symmetric terms for
P (R +M)P (L), these terms thus have a combined contribution of

2
((

2k−4
2

)
+ 2
)
(2k − 7)!!

(
2k−1
3

)
(2k − 5)!!

=
3

2k2
+O

(
1

k3

)
. (4.22)

– For the third term,−P (L)P (M)P (R), the largest contributions are when two re-
gions combine for exactly2 vertices, which gives a contribution of(2k − 7)!!. If we
disregard the requirement thatL andR are nonzero in order to obtain an upper bound
on the magnitude of this contribution, there are3 possible terms. The next largest
contribution will be when two regions combine for exactly4 vertices which gives a
contribution of(2k − 9)!!. Proceeding with these diagonal terms, we know that the
third term contributes at most in magnitude

3
(2k − 7)!!(

2k−1
3

)
(2k − 5)!!

+ 6
(2k − 9)!!(

2k−1
3

)
(2k − 5)!!

+ 9
(2k − 11)!!(

2k−1
3

)
(2k − 5)!!

+ · · · = O

(
1

k3

)
,

(4.23)
so they do not contribute to the main term in the limit.
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FIGURE 3. Numerical confirmation of formulas for the expected valueand variance
of vertices involved in crossing. The first plot is the expected value for2k vertices
(solid line is theory) versusk, the second plot is a plot of the deviations from theory,
and the third plot is the observed variance; all plots are from 100,000 randomly
chosen matchings of2k vertices in pairs.

Thus we have that, ask → ∞,

pb = 1−
3

k
−

3

2k2
+O

(
1

k3

)
. (4.24)

Therefore if we substitute forpa andpb in (4.12) we find

E
(
Y 2
2k

)
= 4k − 4 +

(
4k2 − 4k

)(1

3
+

2

3

(
1−

3

k
−

3

2k2

))
(4.25)

= 4k2 − 8k +O

(
1

k

)
. (4.26)

Using (4.10), we also have that

E (Y2k)
2 =

(
2k − 2−

2

k
+O

(
1

k2

))2

= 4k2 − 8k − 4 +O

(
1

k

)
. (4.27)

The variance isE (Y 2
2k)− E (Y2k)

2, which is4 +O(1/k) ask → ∞. �

Figure 3 provides a numerical verification of the above formulas for the expected values and
variances.

5. LIMITING SPECTRAL MEASURE

We now complete the proof of Theorem 1.2 by showing convergence and determining the sup-
port.

Proof of Theorem 1.2.The proof of the claimed convergence is standard, and follows immediately
from similar arguments in [HM, MMS, JMP, KKMSX]. Those arguments rely only on degree of
freedom counting arguments, and are thus applicable here aswell. We are left with determining the
limiting rescaled spectral measures.

• p = 1/2: If p = 1/2, we know from (3.4) that only those configurations with no cross-
ings contribute. In particular, we may apply this to the±1 real symmetric weight matrix.
Moreover, in the crossing configurations, it is simple to check that in(N − n · o(N))n ≈
Nn − o(Nn) of theNn terms for thenth moment computation each random variable from
the coefficients of the matrix ensemble occurs exactly twice. Since the moments of the
original distribution are finite, the remainingo(Nn) terms do not contribute. Thus, we may
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assume that each random variable occurs exactly twice in each term (and the variables are
otherwise independent.) The claim follows directly from recalling that the number of non-
crossing configurations are simply the Catalan numbers (seefor example [Fo]), which are
also the moments of the semi-circle distribution.

• p > 1/2: We consider the case wheñµ (the limiting rescaled spectral measure) has un-
bounded support; the case of bounded support is similar. To show that the limiting signed
rescaled spectral measure has unbounded support it sufficesto show that the moments of
our distribution grow faster than any exponential bound, i.e., that for allB there exists some
k such thatM2k > B2k. Assume the moments of the unsigned ensemble grow faster than
exponentially. We prove that our distribution similarly has unbounded support using this
fact and by considering the “worst-case” scenario allowed for under Theorem 3.4. Namely,
we suppose that each term contributesx(c) (2p− 1)2k, which gives us the smallest moment
possible. In this case,M2k is decreased from the unsigned case by a factor of(2p − 1)2k,
and thus the growth is still faster than any exponential bound.

�

6. CONCLUDING REMARKS AND FUTURE WORK

In our analysis of the limiting rescaled spectral measure ofsigned structured ensembles, it was
crucial each random variable occurso(N) times in each row of matrices in the ensemble and that
the original structured ensemble have its empirical rescaled spectral measures converge to a limiting
measure; we plan to revisit cases where these assumptions fail (such as the examples in Remark 1.3)
in a sequel paper. The key to our analysis is Remark 3.10. The moments of the signed ensemble are
depressed by a factor which depends on the structure of the matrices. If p = 1/2 then there is no
contribution from the configurations with crossings (as their contribution is at most(2p− 1)2 times
its unweighted value). This leaves the contribution from the non-crossing configurations. These are
governed by the Catalan numbers; as everything is matched inpairs without crossing, each of these
configurations gives 1 and we regain the semi-circle. The computations become more involved and
more dependent on the structure forp ∈ (1/2, 1], as the structure of the matrix can force repeated
indices in the product of the weights, which of course affects its expected value and contribution.

In addition to obtaining limiting measures for signed structured ensembles, we isolate some com-
binatorial results which are related to issues in knot theory (such as Theorem 1.5). We also obtain
asymptotics for the number of pairings of2k vertices with exactly2m crossing vertices. While we
can derive a closed form expression for the expected number (Theorem 4.1), the formula for the
variance is more involved and we content ourselves here withdetermining its asymptotic, and a
natural future project is to see if explicit formulas for thehigher moments of the number of pairings
with a given number of crossing vertices exist (or, even better, to see if a nice distribution governs
the behavior ask andm tend to infinity).

APPENDIX A. EXACT FORMULA FOR MEAN NUMBER OF CROSSINGS

To prove (4.1), it suffices to simplify the sum in the expansion of pcross in (4.5). We first extend
them sum to includem = k; this adds 1 to the sum which must then be subtracted from the term
outside. For notational convenience, setn = k − 2. We re-index and letm run from0 to n, and are



26 OLIVIA BECKWITH, VICTOR LUO, STEVEN J. MILLER, KAREN SHEN, AND NICHOLAS TRIANTAFILLOU

thus reduced to analyzing

S(n) =
n∑

m=0

(
n
m

)
(
2n+1
2m+1

) . (A.1)

The following notation and properties are standard (see forexample [GR]). The Pochhammer
symbol(x)m is defined form ≥ 0 by

(x)m =
Γ(x+m)

Γ(x)
= x(x+ 1) · · · (x+m− 1), (A.2)

and the hypergeometric function2F1 by

2F1(a, b, c; z) =

∞∑

m=0

(a)m(b)m
(c)m

zm

m!
, (A.3)

which converges for all|z| < 1 so long asc is not a negative integer.
For ease of exposition, we work backwards from the answer.3 Using Γ(1 + z) = zΓ(z) and

Γ(1 + ℓ) = ℓ! (for integralℓ), we find

2F1(1, 3/2, 1/2− n,−1) =
∞∑

m=0

(1)m(3/2)m
(1/2− n)m

(−1)m

m!

=
∞∑

m=0

Γ(1 +m)

Γ(1)

Γ(3/2 +m)

Γ(3/2)

Γ(1/2− n)

Γ(1/2− n +m)

(−1)m

m!

=: T1(n) + T2(n), (A.4)

whereT1(n) is the sum overm ≤ n andT2(n) is the sum overm > n. From the functional equation
of the Gamma function and usingℓ!! = ℓ(ℓ− 2)(ℓ− 4) · · · down to 2 or 1, we find

Γ(3/2 +m) = 2m(2m+ 1)!!Γ(3/2)

Γ(1/2− n+m) = (−1)m2m(2n− 1)(2n− 3) · · · (2n− 2m+ 1)Γ(1/2− n). (A.5)

Substituting, we find

T1(n) =

n∑

m=0

(2m+ 1)!!(2n− 2m− 1)!!

(2n− 1)!!

=

n∑

m=0

(2m+ 1)!(2n− 2m− 1)!

(2n− 1)!2n

2n(2n− 2)!!

(2m)!!
(2n− 2m− 2)!!

=

n∑

m=0

(2m+ 1)!(2n− 2m)!

(2n+ 1)!
· (2n+ 1) ·

2nn!

(2n− 2m)2n−1m!(n−m− 1)!

= (2n+ 1)

n∑

m=0

(
n
m

)
(
2n+1
2m+1

) ; (A.6)

3Mathematica is able to evaluate such sums and suggest the correct hypergeometric combinations. One has to be a
little careful, though, as Mathematica incorrectly evaluatedS(n), erroneously stating that there was zero contribution
if we extend the sum to allm. In other words, it thoughtS(n) = T1(n) = T1(n) + T2(n) in the notation introduced
below.
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note this is our desired sum. Thus
n∑

m=0

(
n
m

)
(
2n+1
2m+1

) =
2F1(1, 3/2, 1/2− n,−1)− T2(n)

2n+ 1
, (A.7)

and the proof is completed by analyzingT2(n). To determine this term’s contribution, we re-index.
Writing m = n+ 1 + u, we find

T2(n) =
∞∑

u=0

Γ(1 + n+ 1 + u)

Γ(1)

Γ(3/2 + n+ 1 + u)

Γ(3/2)

Γ(1/2− n)

Γ(1/2− n+ n+ 1 + u)

(−1)n+1+u

(n+ 1 + u)!

u!

u!

=
∞∑

u=0

Γ(1 + u)

Γ(1)

Γ(5/2 + n+ u)

Γ(3/2)

Γ(1/2− n)

Γ(3/2 + u)

(−1)n+1(−1)u

u!

=
(−1)n+1Γ(1/2− n)Γ(5/2 + n)

Γ(3/2)2

∞∑

u=0

Γ(1 + u)

Γ(1)

Γ(5/2 + n+ u)

Γ(5/2 + n)

Γ(3/2)

Γ(3/2 + u)

(−1)u

u!

= −(2n+ 3)(2n+ 1) 2F1(1, 1/2 + k, 3/2,−1), (A.8)

where we usedΓ(1−z)Γ(z) = π/ sin(πz) with z = n+ 1
2

to simplify the Gamma factors depending
only onn. Combining the above proves (4.1).
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