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ABSTRACT. An equivalent definition of the Fibonacci numbers is that they are the unique sequence
such that every integer can be written uniquely as a sum of non-adjacent terms. We can view this
as we have bins of length 1, we can take at most one element froma bin, and if we choose an
element from a bin we cannot take one from a neighboring bin. We generalize to allowing bins of
varying length and restrictions as to how many elements may be used in a decomposition. We derive
conditions on when the resulting sequences have uniquenessof decomposition, and (similar to the
Fibonacci case) when the number of summands converges to a Gaussian; the main tool in the proofs
here is the Lyaponuv Central Limit Theorem.
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1. INTRODUCTION

1.1. Preliminaries. The Fibonacci numbers are normally defined by the recurrenceFn+1 = Fn +
Fn−1, with, of course, two initial conditions. If we takeF1 = 1 andF2 = 2 one of many prop-
erties is Zeckendorf’s Theorem [Ze]: Every positive integer can be written uniquely as a sum of
non-adjacent Fibonacci numbers. Interestingly, this is anequivalent definition of the Fibonaccis;
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explicitly, they are the unique sequence of numbers such that every integer can be written as a sum
of non-adjacent elements of the set. This correspondence has led to numerous papers investigat-
ing connections between sequences and decomposition laws,and properties of the decompositions
(such as on average how many summands are needed, what is the distribution of gaps between
summands, what is the longest gap between summands). We often refer to these as generalized
Zeckendorf decompositions or legal decompositions for thegiven law; for 2019 we have

2019 = 1597 + 377 + 34 + 8 + 3 = F16 + F13 + F8 + F5 + F3.

There is now an extensive literature on the subject; see for example [Al, BBGILMT, BILMT,
Br1, Br2, CFHMN1, CFHMN2, CFHMNPX, Day, DDKMMV, KKMW, Fr, GTNP, Ha, Ho, HW,
Ke, KKMW, MW1, MW2, Ste1, Ste2]. Of these, the most relevant for our investigations below is
[CFHMN1]. There the authors generalize the Fibonacci decomposition law by adopting a binning
perspective. Explicitly, fix positive integerss andb. The(s, b)-Generacci sequence is defined as
follows. Consider a series of bins of lengthb. We can choose at most one element from a bin,
and if we choose an element we cannot take an element from any of the s bins immediately to
the left (and thus we also cannot take an element from any of the s bins immediately to the right).
The Fibonaccis correspond to the cases = b = 1, and choosing the appropriate initial conditions
always yields unique decomposition. For example, the(1, 2)-Generacci sequence begins

1, 2

Bin 1

, 3, 4

Bin 2

, 5, 8

Bin 3

, 11, 16

Bin 4

, 21, 32

Bin 5

, 43, 64

Bin 6

, 85, 128

Bin 7

, 171, 256

Bin 8

, . . . . (1.1)

In previous works all bins had the same length, and a legal decomposition could have at most
one element from a bin. We extend these results by now lettingthenth bin have lengthbn ≥ 1,
for eachn. Furthermore, we choose a setAn ⊂ {0, 1, 2, . . . , bn}, which is the set of the number
of allowable elements we can choose from thenth bin in our decomposition. Finally, we select an
adjacency numbera such that we cannot take elements from two different bins unless there are
at leasta bins between them. Thus, ifb8 = 5, A8 = {0, 1, 3}, anda = 2, then we may take
0, 1 or 3 elements from the eighth bin (which has length5); if we do take an element from the
eighth bin, then we may not take any elements from the sixth, seventh, ninth or tenth bins in our
decomposition. We construct the sequence as follows. We set1 as the first element of the first
bin (we choose1 and not0 to retain the possibility of having unique decompositions). If we have
constructed the firstk elements, the next term in the sequence is the least integer which cannot be
obtained by our construction rule. We refer to these as a({bn}, {An}, a)-Sequence; the Fibonacci
sequence isbn = 1, An = {0, 1} anda = 1.

1.2. Results. In Section 2 we study sequences with no adjacency condition (i.e.,({bn}, {An}, 0)-
Sequences), and exactly determine when these sequences give us unique decomposition of the
positive integers (see [CHHMPV] for conditions on when generalized Zeckendorf decompositions
have the minimal number of summands among all decompositions). In particular, we prove the
following.

Theorem 1.1. A ({bn}, {An}, 0)-Sequence has uniqueness of decomposition (i.e., there is aunique
legal decomposition for each positive integer) if and only if for every positiven we have

An ∈ {{0, 1} , {0, 1, . . . , bn − 1} , {0, 1, . . . , bn}} . (1.2)

In Section3 we establish the following Lyapunov central limit type theorems associated to cer-
tain (bn, An, 0)-Sequences. These results are similar to those from earlierwork on Zeckendorf

2



decompositions. Lekkerkerker [Le] proved that the averagenumber of summands in a Zeckendorf
decomposition for integers in[Fn, Fn+1] tends to n

ϕ2+1
, whereϕ = 1+

√
5

2
; others (see for example

[KKMW]) extended this result to prove that asn → ∞, the distribution of the number of sum-
mands in the Zeckendorf decomposition for integers in[Fn, Fn+1] is Gaussian. In Section 3.1 we
prove a similar result for our sequences, using Lyapunov’s Central Limit Theorem (see Theorem
3.1).

Theorem 1.2. Consider a({bn}, {0, 1}, 0)-Sequence. For an integerx, letYn(x) = 1 if an element
of thenth bin appears inx’s decomposition, andYn(x) = 0 otherwise; thus, if the largest summand
in x’s decomposition is from binN then the total number of summands in this decomposition is
Y1(x) + · · ·+ YN(x). If

∑∞
n=1 1/bn diverges, then the distribution of the number of summands of

integers whose largest summand is in binN converges to a Gaussian in the sense of Lyapunov as
N → ∞.

In Section 3.2, we relax our assumptions to allow multiple summands from each bin, and letAn

vary with n; we examine how the conditions for Gaussianity change giventhis generalization in
the following two theorems.

Theorem 1.3. Consider a({bn}, {A}, 0)-Sequence, where eachAn = A ⊆ {0, 1, . . . , b} with b ≤
min({bn}). Let{Yn} be the sequence of independent random variables representing the number of
summands chosen from each bin. Thus if the largest summand ofthe decomposition of an integerx
is from binN , then the total number of summands in this decomposition isY1(x) + · · ·+ YN(x). If

the growth of{bn} is slower thann
1

m−m
′ , wherem = max(A) andm

′

= max(A−{m}), then the
distribution of the number of summands of integers whose largest summand is in binN converges
to a Gaussian distribution in the Lyapunov sense asN → ∞.

Theorem 1.4. Consider a({bn}, {An}, 0)-Sequence, where for alln ∈ N, bn = n, andAn ∈
{{0, . . . , n − 1}, {0, . . . , n}}. Let {Yn} be the sequence of independent random variables rep-
resenting the number of summands chosen from each bin. For any integer choice ofδ > 0, the
distribution of the number of summands satisfies the Lyapunov Central Limit Theorem, and thus
converges to a Gaussian distribution asN → ∞.

We conclude in Section4 with a discussion of related lines for future research.

2. UNIQUENESS OFDECOMPOSITION WITH NOADJACENCY CONDITION

We consider an arbitrary({bn}, {An}, 0)-Sequence; asa = 0 there is no adjacency restriction.
We categorize what choices of the sequenceAn give uniqueness of decomposition for the resulting
generalized Zeckendorf decompositions. We usually require that0 and 1 are in eachAn, i.e,
{0, 1} ⊂ An, to ensure that our original construction creates a sequence where every positive
integer has a decomposition.1 In Section 4.2, we consider a scenario whereAn = {0, 2}, but we
do not require our sequence to generate the positive integers.

To understand the proof of Theorem 1.1, we use the following intuition. In our construction of
a generalized Zeckendorf sequence, we ensure that each integer is generated by the construction

1If An does not contain 0, then any decomposition must include an element of binn, which forces the sum of a
decomposition to be at least that of the minimal element ofAn, destroying our hopes of having either uniqueness or a
decomposition for every positive integer. Note that ifAn does not contain 1, zeroes can be added to binn so that way
are able to pick any one particular element, though at the cost of uniqueness. For example, if we want to use just one
element of binn, andAn = {k, k + 1, . . . , b}, then we can placek − 1 zeros inbn.
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“in order”, that is, if we look at the firstk terms of our({bn}, {An}, 0)-Sequence, we will see
that a consecutive block of positive integers is uniquely decomposable using these terms. When
we allowAn to violate the conditions of Theorem 1.1, the firstk terms of our sequence no longer
generate a consecutive block; the decomposable integers form multiple disconnected blocks. The
block containing1 continues to grow as we add terms to our sequence and eventually meets another
block, causing a failure of uniqueness of decomposition forsome integer.

Lemma 2.1. Fix a (bn, An, 0)−Sequence, and an integern0 ≥ 2. Suppose that the set of integers
generated by the firstn0 − 1 bins is the set{1, . . . , k}. Then all future terms of our sequence are
divisible byk + 1.

Proof. Note that the first term in binn0 must bek + 1. The terms in the firstn0 − 1 bins can form
any sum from1 to k, and thus as we have no adjacency conditions, if we can represent a numberx
using numbers from binn0 and on, we can also obtainx+ 1, x+ 2, . . . , x+ k. Thus once we add
a multipleα(k + 1) of k + 1, there is no need to addα(k + 1) + β for anyβ ∈ {1, . . . , k}, and
therefore the next possible term in our sequence is(α + 1)(k + 1). Continuing we see that all the
numbers added are multiples ofk + 1, proving the claim. �

For example, consider the sequence withbn = n+ 1, An = {0, 1}:

1, 2

Bin 1

, 3, 6, 9

Bin 2

, 12, 24, 36, 48

Bin 3

, 60, 120, . . .

Bin 4

, . . . . (2.1)

Lettingn0 = 2 we findk = 11 (i.e., the first two bins allow us to obtain precisely the integers
from 1 to 11), and see that any legal combination of terms outside the first two bins is a multiple
of 12.

Proof of Theorem 1.1.We want to show that a({bn}, {An}, 0)-Sequence has uniqueness of de-
composition if and only if allAn are in the form of{0, 1} , {0, 1, . . . , bn − 1} or {0, 1, . . . , bn}.

To reduce the cases that we need to discuss, we assume that thefirst n0 − 1 bins haveAn’s that
satisfy the condition and the set of legal sums from these bins form the interval{1, . . . k}, where
each element has unique decomposition. Then by Lemma 2.1, wehave that all following terms
of the sequence are divisible byk + 1. Therefore, we can take the subsequence of our original
sequence starting from then0

th bin to be our new sequence, and divide every term byk + 1. For
notational convenience we denoteAn0

, bn0
of the original sequence asA1, b1 of the new sequence

which we now analyze.

We first show that ifA1 satisfies one of the conditions for which we claim uniquenessholds,
then it yields intervals of integers, so by induction the first n bins of the sequence always yield an
interval for anyn ∈ N. Since every element of this interval has unique decomposition, we can
prove the backwards direction of Theorem 1.1. Next we consider the case where the new sequence
hasA1 outside of our stated set. We are then able to show that uniqueness fails in such sequences,
so only the options stated in Theorem 1.1 give uniqueness, therefore proving the forwards direction
of the theorem.

We now consider each case for uniqueness.

4



Case I: A1 = {0, 1}. Fix b1 and letA1 = {0, 1}. Then the firstb1 terms of our sequence are
1, 2, . . . , b1. The integers generated by this bin form the setS = {1, 2, . . . , b1}, which is an interval
of integers. SinceA1 = {0, 1}, and each element ofS must be written as a sum of elements inb1,
we clearly have unique decomposition.

Case II: A1 = {0, 1, . . . ,b1}. Fix b1 and letA1 = {0, 1, . . . , b1}. Then the firstb1 terms of our
sequence are1, 2, 4, . . . , 2b1−1. The integers generated by this bin form the setS = {1, 2, . . . , 2b1−
1}, which is an interval of integers. Because binary decomposition of the integers is unique, we
have unique decomposition.

Case III: A1 = {0, 1, . . . ,b1 − 1}. Fix b1 and letA1 = {0, 1, . . . , b1 − 1}. Then the firstb1
terms of our sequence are1, 2, 4, . . . , 2b1−1. The integers generated by this bin form the setS =
{1, 2, . . . , 2b1−2}, which is an interval of integers. We also note that this choice ofA1 gives unique
decomposition, for the same reason as Case II.

We have now explicitly analyzed the cases we claim give uniqueness and have shown that they
yield intervals of integers. We are thus able to reduce to thecases whereA1 is not in the given set.
We split non-uniqueness of these other choices ofA1 into several cases.

Case I: {0, 1, . . . ,k} ⊂ A1, with k + 1 /∈ A1 and 2 ≤ k ≤ b1 − 2. 0 Because we have full
freedom with the firstk elements ofb1, we have1, 2, 4, . . . , 2k as the firstk + 1 elements of
this bin. Arguing as before, we also have that the(k + 2)nd element of our bin must be2k+1 − 1.
We must use this term to form larger integers, so we are left with only k − 1 terms to work with,
meaning we can form all integers up to but not including2k+1 − 1 + 2k − 2 + 1 = 2k+1 + 2k − 2.
Thus, this is the(k + 3)rd element of our sequence (it will not matter whether this is inthe first or
second bin). We note that we can decompose2k+1 + 2k − 1 as

(

2k+1 − 1
)

+ 2k = 2k+1 + 2k − 1 =
(

2k+1 + 2k − 2
)

+ 1, (2.2)

so uniqueness fails.

Case II: {0, 1} ( A1, 2 /∈ A1. Pickk := inf{x ∈ A1 : x > 1}. This is the case where there is
a gap inA1. Since we are only allowed to choose0, 1 or at leastk elements from a bin, the firstk
terms of the sequence are going to be1, . . . , k. Sincek ≥ 3,

∑k
m=1m = k(k+1)

2
> k + 2, so the

(k + 1)st and the(k + 2)nd terms arek + 1 andk + 2, respectively.
5



If we haveb1 ≥ k + 2 for the first bin, then


























k/2
∑

m=1

m+

k+2
∑

m=k/2+3

m =

k+1
∑

m=2

m =
k(k + 3)

2
whenk is even

(k−1)/2
∑

m=1

m+

k+2
∑

m=(k+5)/2

m =

k
∑

m=2

m+ (k + 2) =
(k − 1)(k + 2)

2
+ k + 2 whenk is odd,

(2.3)

and we lose uniqueness of decomposition. Therefore, we onlyneed to consider the cases where
b1 = k or k + 1. As the two follow similarly, we only provide the details forthe first.

Subcase (i): b1 = k. As b1 = k, the sum of terms from the first bin isk(k+1)
2

. As argued before,
all multiples ofk + 1 less than this sum, includingk−1

2
(k + 1), can be expressed as a legal sum of

terms not in the first bin. Therefore, whenk is odd,

k(k + 1)

2
=

k − 1

2
(k + 1) +

k + 1

2
, (2.4)

wherek+1
2

is a term in the first bin. We lose uniqueness of decomposition. Whenk is even,k(k+1)
2

is not in the sequence and the next term isk(k+1)
2

+ 1. Then we can decompose(k + 1) + k(k+1)
2

two ways:

(k + 1) +
k(k + 1)

2
=

(

k(k + 1)

2
+ 1

)

+ k, (2.5)

wherek + 1 andk are terms of the sequence. We lose uniqueness of decomposition.

Subcase (ii): b1 = k+ 1. A similar argument holds on losing uniqueness of decomposition.
�

3. GAUSSIANITY OF NUMBER OF SUMMANDS : a = 0

Now that we have exactly determined the decomposition ruleswhich yield sequences giving
rise to unique decomposition of integers in thea = 0 case, we investigate the Gaussianity of the
distribution of the average number of summands in these decompositions. The following result
(see [Bi]) is a key ingredient in several proofs in this section.

Theorem 3.1 (Lyapunov Central Limit Theorem). Let{Y1, Y2, . . . } be a sequence of independent
random variables, each with finite expected valueµi and varianceσ2

i . Lets2n :=
∑n

i=1 σ
2
i . If there

exists aδ > 0 such thatlimn→∞
1

s2+δ
n

∑n
i=1 E[|Yi − µi|

2+δ] = 0, then 1
sn

∑n
i=1(Yi − µi) converges

in distribution to the standard normal asn → ∞.

We use the following standard notation below. We writef(x) = Θ(g(x)) if there exist positive
constantsC1, C2 such that for allx sufficiently large we have

0 < C1g(x) ≤ f(x) ≤ C2g(x). (3.1)
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3.1. At most one summand per bin. We begin by proving Theorem 1.2, which concerns se-
quences with variable bin sizes,An = {0, 1}, and no adjacency condition.

Proof of Theorem 1.2.Forn < N , we havebn + 1 options for thenth bin: we have no element or
exactly one of thebn terms. Each of these choices is equally likely, and thusP (Yn = 0) = 1

bn+1

andP (Yn = 1) = bn
bn+1

. Therefore the expected value forYn (andY 2
n asYn = Y 2

n ) is

µn := E[Yn] =
bn

bn + 1
= E[Y 2

n ], (3.2)

and its variance is

σ2
n := E[Y 2

n ]− E[Yn]
2 =

bn
bn + 1

−

(

bn
bn + 1

)2

=
bn

(bn + 1)2
. (3.3)

Let s2N :=
∑N−1

n=1 σ2
n =

∑N−1
n=1 bn/(bn + 1)2. We now apply the Lyapunov Central Limit Theorem.

Note

E[|Yn − µn|
2+δ] =

bn
bn + 1

(

1

bn + 1

)2+δ

+
1

bn + 1

(

bn
bn + 1

)2+δ

=
bn

(bn + 1)2
1 + b1+δ

n

(bn + 1)1+δ
<

bn
(bn + 1)2

. (3.4)

Defineρ2+δ
n := E[|Yn − µn|

2+δ] andeN :=
∑N

n=1 ρ
2+δ
n . Then

eN =
N−1
∑

n=1

E[|Yn − µn|
2+δ] <

N−1
∑

n=1

bn
(bn + 1)2

= s2N . (3.5)

We note thatσ2
n is asymptotically similar to1/bn (i.e.,1/bn ≪ σn ≪ 1/bn), so{s2N} converges if

and only if
∑N

n=1 1/bn converges.
Suppose

∑N
n=1 1/bn diverges. Thens2N diverges, and for allδ > 0

lim
N→∞

(

eN

s2+δ
N

)2

< lim
N→∞

(s2N)
2

(s2N)
2+δ

= lim
N→∞

1

(s2N )
δ

= 0 (3.6)

(the limit tends to zero as we are assuming the sum of the reciprocals ofbn diverges, and thus
nn must tend to infinity). Thus, the Lyapunov condition is satisfied, and by Theorem 3.1 the
distribution of number of summands,1

N

∑N
i=1 Yi, converges to a Gaussian in the sense of Lyapunov.

�

Remark 3.2. If
∑n

i=1 1/bi converges, then the denominator of the Lyapunov limit converges to a
finite limit. Furthermore, the numerator is nonzero, so the limit is nonzero. Thus, the Lyapunov
condition fails if

∑n
i=1 1/bi converges. While this does not prove that the distribution of the number

of summands does not approach a Gaussian distribution, it provides some evidence against this
behavior.
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3.2. Multiple summands per bin. We now prove Theorem 1.3.

Proof of Theorem 1.3.Assume|A| ≥ 2. We begin in a similar manner as Theorem 1.2 by noting
that the probability of choosing exactlyi summands from thenth bin is

P (Yn = i) =

(

bn
i

)

∑

t∈A
(

bn
t

) , (3.7)

and the expectated values ofYn andY 2
n are

E[Yn] =

∑

t∈A t
(

bn
t

)

∑

t∈A
(

bn
t

) , E[Y 2
n ] =

∑

t∈A t2
(

bn
t

)

∑

t∈A
(

bn
t

) . (3.8)

Then

σ2
n = E[Y 2

n ]− E[Yn]
2

=

(
∑

t∈A t2
(

bn
t

)) (
∑

t∈A
(

bn
t

))

(
∑

t∈A
(

bn
t

))2 −

(
∑

t∈A t
(

bn
t

))2

(
∑

t∈A
(

bn
t

))2

=

∑

i,j∈A i2
(

bn
i

)(

bn
j

)

−
∑

i,j∈A ij
(

bn
i

)(

bn
j

)

(
∑

t∈A
(

bn
t

))2 . (3.9)

The terms wherei = j cancel, so we are left with

σ2
n =

∑

i,j∈A,i 6=j i
2
(

bn
i

)(

bn
j

)

−
∑

i,j∈A,i 6=j ij
(

bn
i

)(

bn
j

)

(
∑

t∈A
(

bn
t

))2 =

∑

i,j∈A,i 6=j(i− j)2
(

bn
i

)(

bn
j

)

2
(
∑

t∈A
(

bn
t

))2 . (3.10)

Defineρ2+δ
n := E

[

|Yn − µn|
2+δ
]

. We find that

ρ2+δ
n =

∑

i∈A

∣

∣

∣

∣

∣

i−

∑

t∈A t
(

bn
t

)

∑

t∈A
(

bn
t

)

∣

∣

∣

∣

∣

2+δ (

bn
i

)

∑

t∈A
(

bn
t

)

=

∑

i∈A
(

bn
i

)
∣

∣i
∑

t∈A
(

bn
t

)

−
∑

t∈A t
(

bn
t

)
∣

∣

2+δ

(
∑

t∈A
(

bn
t

))3+δ

=

∑

i∈A
(

bn
i

)
∣

∣

∑

t∈A (i− t)
(

bn
t

)
∣

∣

2+δ

(
∑

t∈A
(

bn
t

))3+δ
. (3.11)

We now find asymptotics forσ2
n andρ2+δ

n . We first note that
(

bn
t

)

= Θ(btn); we do not need to have
a t subscript on theΘ relation ast ≤ b andb is fixed. Therefore

(

∑

t∈A

(

bn
t

)

)2

=

(

∑

t∈A
Θ
(

btn
)

)2

= Θ (bmn )
2 = Θ

(

b2mn
)

. (3.12)

We also note that
∑

i,j∈A,i 6=j

(i− j)2
(

bn
i

)(

bn
j

)

=
∑

i,j∈A,i 6=j

Θ
(

binb
j
n

)

= Θ
(

bm+m′

n

)

. (3.13)
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Therefore

σ2
n =

Θ(bm+m
′

n )

Θ(b2mn )
= Θ

(

1

bm−m′

n

)

. (3.14)

Similarly, for ρ2+δ
n we have

ρ2+δ
n =

Θ(b
(2+δ)m
n bm

′

n )

Θ(b
(3+δ)m
n )

= Θ(bm
′−m

n ). (3.15)

Thus

Θ(ρ2+δ
n ) = Θ(σ2

n). (3.16)

Now letr2+δ
N :=

∑N
n=1 ρ

2+δ
n , ands2N :=

∑N
n=1 σ

2
n. We consider the Lyapunov limitlimN→∞ r2+δ

N /s2+δ
N .

We have

lim
N→∞

(

r2+δ
N

s2+δ
N

)2

= lim
N→∞

(r2+δ
N )2

(s2N)
2+δ

= lim
N→∞

Θ(s2N)
2

(s2N)
2+δ

= lim
N→∞

1

Θ(s2N)
δ
. (3.17)

If the bin sizebn grows slower thann
1

m−m
′ , then

∑N
n=1Θ

(

1/(bm−m
′

n )
)

→ ∞, and thussN → ∞.

Thus, the above limit tends to0 and the Lyapunov condition is satisfied for anyδ > 0. So we
conclude that the distribution of the number of summands converges to a Gaussian distribution as
N → ∞. �

We now prove Theorem 1.4.

Proof of Theorem 1.4.We will prove the caseAn = {0, . . . , n}, as the caseAn = {0, . . . , n− 1}
is similar.

Takingbn = n andAn = {0, . . . , n} in (3.10) and (3.11), we have

ρ2+δ
n =

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2

σ2
n =

n

4
. (3.18)

From the Lyapunov CLT limit, we seek to show

lim
N→∞

∑

n≤N ρ2+δ
n

(
∑

n≤N σ2
n

)
2+δ

2

= 0, or equivalently lim
N→∞

(
∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

= ∞. (3.19)

Substituting gives, for fixedN ,
(
∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

=
cN2+δ

∑

n≤N

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2

, (3.20)

for a constantc > 0. It thus suffices to show that
∑

n≤N

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

N1+δ
)

, for

which it is enough to prove that
∑n

i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

nδ
)

. (3.21)
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We assumeδ > 0 is even in this proof for ease of computations. Then
n
∑

i=0

(

n

i

)

|2i− n|2+δ =
n
∑

i=0

(

n

i

)

(n− 2i)2+δ

=
n
∑

i=0

(

n

i

) 2+δ
∑

j=0

(

2 + δ

j

)

(−1)jn2+δ−j(2i)j

=

2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

2jn2+δ−j
n
∑

i=0

(

n

i

)

ij . (3.22)

We wish to show that then2+δ2n andn1+δ2n terms in (3.22) go to zero, which correspond to
thenj2n−j andnj−12n−j−1 terms in

∑n
i=0

(

n
i

)

ij . We compute
∑n

i=0

(

n
i

)

ij by noting that the sum
represents the number of ways to choose a subsetA ⊂ {1, . . . , n} along with an orderedj-tuple
(a1, . . . , aj), where eachak ∈ A. Alternatively, we could pick our ordered j-tuple(b1, . . . , bj)
first, so that eachbk ∈ {1, . . . , n}, and then choose a subsetB ⊂ {1, . . . , n} that includes the
distinct elements of{b1, . . . , bj}. It is easily checked that these two counting schemes are the
same by showing that the set of possible(A, (a1, . . . , aj)) is in bijection with the set of possible
((b1, . . . , bj), B). Following our second scheme, we note that if all elements inour j-tuple are
distinct, then there are

n(n− 1) · · · (n− j + 1)2n−j (3.23)

ways to pick our tuple and subset. Similarly, ifj − 1 elements in thej-tuple are distinct, then we
have

(

n

j − 1

)(

j − 1

1

)

j!

2
2n−j+1 = n(n− 1) · · · (n− j + 2)(j − 1)j2n−j (3.24)

ways to choose. In general, ifj−k elements in our tuple are distinct, then there areO
(

nj−k2n−j+k
)

ways to choose our tuple and subset. Therefore, the expressions in (3.23) and (3.24) make the only
contributions to thenj−12n−j−1 term, while the only contribution to thenj2n−j term comes from
(3.23). The coefficient of thenj2n−j term is simply1, and thus from (3.22), the coefficient of
n2+δ2n is

2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

= 0. (3.25)

Now, the coefficient of thenj−1 term from (3.23) is−
∑j−1

i=0 i2
n−j = −(j − 1)j2n−j−1. The

coefficient of thenj−1 term from (3.24) is(j − 1)j2n−j. We add these two expressions together to
obtainj2 − j as the coefficient ofnj−12n−j−1 in

∑n
i=0

(

n
i

)

ij . Again, from (3.22), the coefficient of
n1+δ2n is

1

2

2+δ
∑

j=0

(−1)j(j2 − j)

(

2 + δ

j

)

. (3.26)

Note that the above is equal to

d2

dx2
(1− x)2+δ

∣

∣

∣

∣

x=1

= 0 (3.27)

10



for δ > 0, and thus we are done. �

Conjecture 3.3. The Lyapunov condition holds for any for anyAn = {0, 1, . . . , ⌊n/k⌋}. Numerics
suggest this is true.

4. FUTURE DIRECTIONS (HIGHER DIMENSIONAL SEQUENCES)

4.1. Zeckendorf Involution Tree. It would be natural after studying bin decompositions to look
at 2-dimensional sequences that have similar properties; the Fibonacci quilt [CFHMN2, CFHMNPX]
is one such generalization. We could ask many questions, such as: What types of sequence con-
structions yield unique decomposition of positive integers? How do statistics such as average
number of summands change in the two-dimensional case? However, in many cases (including
the Fibonacci quilt), seemingly two-dimensional sequences reduce to one-dimensional relations,
such as conditions imposed on bins; see [CCGJMSY] for an example that is fundamentally not
one-dimensional. As an example, we construct a “two-dimensional” sequence of integers, which
we call the Zeckendorf tree, as follows.

Let a1,1 = 1. For a termai,j , i ≥ 1, 1 ≤ j ≤ i, i corresponds to the level in the tree in which the
term is located, andj is the term’s position within the level. Theith level has preciselyi terms. We
add an integer to the tree if it is not the sum of terms from nonadjacent levels. As 2 is not the sum
of terms of nonadjacent levels, we add it to the tree as the first term of the second level. Similarly,
3 is the second term of the second level. Next, 4 is the first term of the third level, but 5 can be
represented as4 + 1, a sum of terms from nonadjacent levels. So 6 is the next term.We continue
this process indefinitely to construct the Zeckendorf tree.

Interestingly, the left diagonal of the tree1, 2, 4, 10, 26, ... is the sequence of involutions oni
letters, also known as the Telephone Numbers. These diagonal terms are defined by the recurrence
relationa1 = 1, a2 = 2, andan = an−1 + (n− 1)an−2 for n > 2.

The recurrence relation for the terms of the tree is given by

ai,j =

{

ai,j−1 + ai−1,0, j > 1

ai−1,i−1 + ai,0, j = 1.
(4.1)

Using techniques similar to those of the proof of Zeckendorf’s theorem, one can show that
every positive integern can expressed uniquely as a sum of terms from nonadjacent levels of the
Zeckendorf tree. However, while the recurrence relation for the terms of the tree seems to depend
both oni andj, the tree can be described one-dimensionally using a condition on bins: Letbi = i
be the size of theith bin. Then the Zeckendorf tree sequence is the unique sequence constructed by
disallowing summands from adjacent bins.
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Variations of the Zeckendorf tree retain their two-dimensional nature, but do not always retain
uniqueness of decomposition. For example, consider the following tree.

We begin the first row with the number1 for uniqueness reasons. We construct the sequence
using the rule that a term is included if it cannot be composedof summands that are linked in an
upwards chain. For example, we do not include30 because30 = 22+6+2, all of which are linked
in an upwards chain.

Example: For30, we have

However, we do include38 because we cannot construct it using such a chain (note we cannot
get from 22 to 16). While this sequence cannot be reduced to a condition on bins, it does not have
uniqueness of decomposition (for example,48 = 44 + 4 and48 = 38 + 10). We can still prove
Gaussianity for the distribution of the number of summands;see [CCGJMSY] for details (as well
as extensions tod-dimensions).

4.2. Uniqueness of decomposition in g-nary sequences. We explore another generalization of
Zeckendorf sequences: a class of sequences that we callg-nary sequences. These sequences are
quite different from({bn}, {An}, 0)-Sequences in that they are no longer constrained by the re-
quirement to represent every positive integer. We characterize g-nary sequences which give a
unique decomposition for any integer that has a decomposition. Theorems 4.1, 4.2, and 4.3 iden-
tify three distinct classes ofg-nary sequences that preserve uniqueness in this way.

We construct ag-nary sequence by requiring that the summands are monotonically increasing
(starting at 1), settingAn = {0, g} for some constantg, allowing a number to be in a given bin at
most once, and at each step taking the smallest number that preserves uniqueness. The resulting
g-nary sequence is well-defined if and only if after computingn numbers of the sequence, we
can find an(n+ 1)st number which satisfies the constraints of our construction (most importantly,
uniqueness). For simplicity we begin withg = 2, constant bin size 3 (bn = 3), and no adjacency
condition (a = 0). Let In be the set of all legally decomposable numbers using binsb1 throughbn.
Let Gn,j be the gap between the(j − 1)st summand andj th summand in thenth bin, andΩn be the
largest number legally representable using only elements from the firstn bins. Then we have the
following.

Theorem 4.1. For bn = 3, An = {0, 2} anda = 0, the resultingg-nary sequence is well-defined
and we haveGn,j > Ωn−1.

12



Note that while the gap between adjacent summands in the bin can differ, to keep uniqueness
we need the gap between any two adjacent summands in binn to be larger than the maximum
decomposition using all the binsn− 1.

Proof. We begin with the base case. The first two intervals are

1, 2, 3

Bin 1

, 3, x, y

Bin 2

, . . . (4.2)

with x < y; this is due to our requirement that the sequence is monotonically increasing and a
number is in a bin at most once. A straightforward calculation shows that the first combination of
x andy for which we retain uniqueness isx = 9 andy = 15. For more details on computing the
sequence see Appendix A.

Now suppose that we retain uniqueness with binsb1 throughbk and for alln such that1 ≤ n <
k + 1, Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with binsb1 throughbk+1

andGk+1,j > Ωk. We have

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (4.3)

Thus ifGk+1,j ≤ Ωk, ∃D1, D2 ∈ In, D2 > D1 such that

b+ c+D1 = a+ c +D2, (4.4)

because by constructionD2−D1 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, ifGk+1,j >
Ωk, there does not exist a combination ofD1, D2 such thata + b + D1 = a + c + D2, nor
b+ c+D1 = a + c+D2. Therefore, we keep uniqueness and

Gk+1,j > Ωk. (4.5)

By induction we keep uniqueness and we haveGn+1,j > Ωn for all n, so thisg-nary sequence is
well-defined. �

Theorem 4.2. For bn = k, An = {0, g} for a pair of constantsg ∈ {1, k − 1}, anda = 0, the
resultingg-nary sequence is well-defined and we haveGn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ak
Bin 1

, ak, ak + Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . ; (4.6)

this is due to the fact that ifG2,j ≤ Ω1, ∃D1, D2 ∈ I1, D2 > D1 andp ∈ {2, 3, . . . , k − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.7)

because by constructionD2 −D1 ∈ {1, 2, ...,Ω1}.
Now suppose that we retain uniqueness with binsb1 throughbn and for all1 < n < k + 1,

Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with binsb1 throughbk+1 and
Gk+1,j > Ωk. We have

1, 2, . . . , ak
Bin 1

, ak, ak + Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . x1, x2, x3, . . . , xk

Bin k+1

.

(4.8)
13



Thus ifGk+1,j ≤ Ωk, ∃D3, D4 ∈ In, D4 > D3 andp ∈ {2, 3, . . . , k − g + 1} such that
p+g−3
∑

i=p−1

xi + xp+g−1 +D3 =

p+g−1
∑

i=p

xi +D4, (4.9)

because by constructionD4−D3 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, ifGk+1,j >
Ωk, it is clear that there does not exist a linear combination ofD3, D4 andxi’s such that we lose
uniqueness.

By induction we keep uniqueness and we haveGn+1,j > Ωn for all n, so this class ofg-nary
sequences is well-defined. �

Theorem 4.3. For bn = bl, An = {0, g} for some constantg < bl for all ℓ anda = 0, the resulting
g-nary sequence is well-defined and we haveGn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 + Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ; (4.10)

this is due to the fact that ifG2,j ≤ Ω1, ∃D1, D2 ∈ I1, D2 > D1 andp ∈ {2, 3, . . . , b1 − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.11)

because by constructionD2 −D1 ∈ {1, 2, ...,Ω1}.
Now suppose that we retain uniqueness with binsb1 throughbn and for all1 < n < k + 1,

Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with binsb1 throughbk+1 and
Gk+1,j > Ωk. We have

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 + Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ,

. . . , x1, x2, x3, . . . , xbk+1

Bin k+1

. (4.12)

Thus ifGk+1,j ≤ Ωk, then there existD3, D4 ∈ In, D4 > D3 andq ∈ {2, 3, . . . , bk+1 − g + 1}
such that

q+g−3
∑

i=q−1

xi + xq+g−1 +D3 =

q+g−1
∑

i=q

xi +D4, (4.13)

because by constructionD4−D3 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, ifGk+1,j >
Ωk, it is clear that there does not exist a linear combination ofD3, D4 andxi’s such that we lose
uniqueness. By induction we keep uniqueness and we haveGn+1,j > Ωn for all n, so this class of
g-nary sequences is well-defined. �

Remark 4.4. Note thatΩn+1 = Gn+1,j for theg-nary sequences discussed above.

Lemma 4.5. For bn = 3, An = {0, 2} anda = 0, there are4n elements inIn for all n.

Proof. We begin with the base case
1, 2, 3.

Bin 1

(4.14)
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There are41 possible decompositions using only binb1, yielding the numbers 0, 3, 4 and 5.
Suppose there are4n elements inIn. We will show that there are4n+1 elements inIn+1.

In+1 = 1 +
n+1
∑

i=1

(

n+ 1

i

)(

3

2

)i

= 4n+1. (4.15)

By induction, there are4n elements inIn for all n. More generally for differentbi andg, we have

In = 1 +
n
∑

i=1

(

n

i

)(

bi
g

)i

. (4.16)

Thus, if eachbi equals a constantb, then

In =

((

b

g

)

+ 1

)n

. (4.17)

�

In the spirit of Theorem 1.1, a natural question to ask is if one could determine necessary and
sufficient conditions onbn for when a generalg-nary sequence is well-defined.

4.3. Tesselations of the Unit Disk. We end with another candidate to study for a 2-dimensional
representation. Consider the tesselation of the unit disk (or upper half plane) by copies of the
standard fundamental domain of the modular groupSL2(Z); see Figure 1. We start by assigning
a1 = 1 to the standard fundamental domain, and then introduce an ordering (from the generators
S andT of the modular group), with our rule being one cannot use summands from cells that are
adjacent under generators ofSL2(Z) (or their inverses).

FIGURE 1. Tesselation of the upper half plane (or unit disk) by copies of the stan-
dard fundamental domain ofSL2(Z), which is generator byT sendingz to z + 1
andS sendingz to−1/z.

APPENDIX A. COMPUTING TERMS IN A g-NARY SEQUENCE

Here we compute terms in theg-nary sequence defined by settingbn = 3, a = 0, andAn =
{0, 2}. As with all g-nary sequences, we start with a1 in Bin 1:

1, _, _
Bin 1

. (A.1)
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The next term must be greater than 1, as the sequence must be monotonic, and a single bin cannot
contain two equal numbers. Since no positive number is legally decomposable by this sequence
yet (we have to use exactly two terms from any bin), the next term must be 2:

1, 2, _
Bin 1

. (A.2)

We can now must examine numbers greater than 2, one by one, to see if they preserve uniqueness
when added as the third term of the sequence. We see that if we include 3 as the third term, the
legal decompositions are1 + 2 = 3, 1 + 3 = 4, and2 + 3 = 5, which are all unique, so the third
term is 3:

1, 2, 3

Bin 1

. (A.3)

We now must start on Bin 2. Note that while the first term of Bin 2must be at least as large
as 3, it can be equal to 3 because these terms are in separate bins. Note that we cannot use any
terms from Bin 2 after adding a single term, since we must use exactly two terms from any bin,
so the legal decompositions will remain the same as in the prevoius case. Importantly, this means
that we will add 3, the minimal possible number we can put intothe bin (since uniqueness is not
in question, we simply pick the smallest number maintainingmonotonicity):

1, 2, 3

Bin 1

, 3, _, _
Bin 2

. (A.4)

Now, suppose we fill in the remaining slots of Bin 2 withx andy:

1, 2, 3

Bin 1

, 3, x, y

Bin 2

. (A.5)

We can choose to use3 andy orx andy from our bin. This changes the sum of a decomposition
by x − 3. Thus,x − 3 must be larger than a change that can be produced by using or not using
terms from Bin 1. Since Bin 1 can decompose numbers up to 5,x− 3 must be larger than 5. Thus,
x− 3 = 6, sox = 9. By similar logic, we find thaty− 9 = 6, soy = 15. We now have a complete
Bin 2:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

. (A.6)

We now repeat the logic applied to Bin 2 to Bins 3 and onward. The results of the computation
can be seen below for reference:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (A.7)
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