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ABSTRACT. An equivalent definition of the Fibonacci numbers is thatthre the unique sequence
such that every integer can be written uniquely as a sum ofagjscent terms. We can view this
as we have bins of length 1, we can take at most one elementdrbin, and if we choose an

element from a bin we cannot take one from a neighboring bia.géheralize to allowing bins of

varying length and restrictions as to how many elements reayskd in a decomposition. We derive
conditions on when the resulting sequences have uniqueheesomposition, and (similar to the

Fibonacci case) when the number of summands converges tossi@a; the main tool in the proofs
here is the Lyaponuv Central Limit Theorem.
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1. INTRODUCTION

1.1. Preliminaries. The Fibonacci numbers are normally defined by the recurrépce= F,, +
F,_1, with, of course, two initial conditions. If we tak€, = 1 and F; = 2 one of many prop-
erties is Zeckendorf’'s Theorerm [Ze]: Every positive integan be written uniquely as a sum of
non-adjacent Fibonacci numbers. Interestingly, this igguivalent definition of the Fibonaccis;
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explicitly, they are the unique sequence of numbers sudhetigay integer can be written as a sum
of non-adjacent elements of the set. This correspondersc&tdo numerous papers investigat-
ing connections between sequences and decompositiondadproperties of the decompositions
(such as on average how many summands are needed, what isttiteition of gaps between
summands, what is the longest gap between summands). Werefer to these as generalized
Zeckendorf decompositions or legal decompositions fogitien law; for 2019 we have

2019 = 1597+ 377+ 34 +8+3 = Fig + Fis+ Fg+ I5 + F3.

There is now an extensive literature on the subject; seeximple [Al,[BBGILMT, [BILMT]
Brl, BrZ,,CEFHMN1/ CFHMN2, CFHMNPX, Day, DDKMMW, KKMW, Er, GNP,[Ha; Ho| HW,
Ke,[KKMW| MW1| MW?2| [Stel| Ste?]. Of these, the most relevamtdur investigations below is
[CEHMN1]. There the authors generalize the Fibonacci dgmsition law by adopting a binning
perspective. Explicitly, fix positive integessandb. The (s, b)-Generacci sequence is defined as
follows. Consider a series of bins of length We can choose at most one element from a bin,
and if we choose an element we cannot take an element fromfahg e bins immediately to
the left (and thus we also cannot take an element from anyeof tfins immediately to the right).
The Fibonaccis correspond to the case b = 1, and choosing the appropriate initial conditions
always yields unique decomposition. For example,(the)-Generacci sequence begins

1,2,3,4,5 8, 11,16 , 21,32, 43,64 , 85, 128 , 171,256 , ....  (1L.1)
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

In previous works all bins had the same length, and a legalrdposition could have at most
one element from a bin. We extend these results by now lettieg™ bin have lengtty,, > 1,
for eachn. Furthermore, we choose a s&t C {0,1,2,...,b,}, which is the set of the number
of allowable elements we can choose from #febin in our decomposition. Finally, we select an
adjacency number such that we cannot take elements from two different binesmthere are
at leasta bins between them. Thus, i = 5, Ay = {0,1,3}, anda = 2, then we may take
0, 1 or 3 elements from the eighth bin (which has leng)h if we do take an element from the
eighth bin, then we may not take any elements from the sieersth, ninth or tenth bins in our
decomposition. We construct the sequence as follows. We astthe first element of the first
bin (we choosd and not0 to retain the possibility of having unique decompositiontjve have
constructed the firgt elements, the next term in the sequence is the least intdgehwannot be
obtained by our construction rule. We refer to these @4}, { A, }, a)-Sequence; the Fibonacci
sequence is, =1, A, = {0,1} anda = 1.

1.2. Results. In Sectior 2 we study sequences with no adjacency conditen({b,}, {A4,},0)-
Sequences), and exactly determine when these sequeneessgimnique decomposition of the
positive integers (see [CHHMPV] for conditions on when gatized Zeckendorf decompositions
have the minimal number of summands among all decompos)tidn particular, we prove the
following.

Theorem 1.1. A ({b,}, {A.},0)-Sequence has uniqueness of decomposition (i.e., thetmig/ae
legal decomposition for each positive integer) if and ohfpr every positive: we have

A, € 10,1}, 10,1, ... by — 1}, {0,1,...,b,}}. (1.2)

In Section3 we establish the following Lyapunov central limit type theims associated to cer-

tain (b,, A,,, 0)-Sequences. These results are similar to those from eartige on Zeckendorf
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decompositions. Lekkerkerker [Le] proved that the averagaber of summands in a Zeckendorf
decomposition for integers i}, F}, 1] tends to#, wherep = L+V5: others (see for example

2
[KKMW]) extended this result to prove that as— oo, the distribution of the number of sum-

mands in the Zeckendorf decomposition for integergFin F,,, 1] is Gaussian. In Sectidn 3.1 we
prove a similar result for our sequences, using Lyapunoeist@l Limit Theorem (see Theorem

B.1).

Theorem 1.2. Consider a{b,},{0,1},0)-Sequence. For an integer letY,,(z) = 1 ifan element

of then™ bin appears inc’s decomposition, ant,, (z) = 0 otherwise; thus, if the largest summand
in z's decomposition is from bitV then the total number of summands in this decomposition is
Yi(z) + -+ Yn(z). If 3207, 1/b, diverges, then the distribution of the number of summands of
integers whose largest summand is in Binconverges to a Gaussian in the sense of Lyapunov as
N — oo.

In Sectior 3.2, we relax our assumptions to allow multipleswands from each bin, and lgf,
vary with n; we examine how the conditions for Gaussianity change gilkEngeneralization in
the following two theorems.

Theorem 1.3. Consider a({b,,},{A},0)-Sequence, where eaeh) = A C {0,1,...,b} withb <
min({b,}). Let{Y,} be the sequence of independent random variables reprageht number of
summands chosen from each bin. Thus if the largest summamel @écomposition of an integer
is from bin N, then the total number of summands in this decompositidi(is) + - - - + Yy (). If

the growth of{b,,} is slower tham =-=", wherem = max(A) andm’ = max(A — {m}), then the
distribution of the number of summands of integers whoggekirsummand is in bilV converges
to a Gaussian distribution in the Lyapunov senséVas> co.

Theorem 1.4. Consider a({b,},{A.},0)-Sequence, where for all € N, b, = n, and A,, €
{{0,...,n —1},{0,...,n}}. Let{Y,} be the sequence of independent random variables rep-
resenting the number of summands chosen from each bin. Fomé&ger choice ob > 0, the
distribution of the number of summands satisfies the Lyap@smtral Limit Theorem, and thus
converges to a Gaussian distribution As— oo.

We conclude in Sectioh with a discussion of related lines for future research.

2. UNIQUENESS OFDECOMPOSITION WITH NOADJACENCY CONDITION

We consider an arbitrarf{b,, }, { A}, 0)-Sequence; as = 0 there is no adjacency restriction.
We categorize what choices of the sequeAgegive uniqueness of decomposition for the resulting
generalized Zeckendorf decompositions. We usually reqtiat0 and 1 are in eachA,, i.e,
{0,1} C A,, to ensure that our original construction creates a seguesere every positive
integer has a decompositifiin Sectior{4.2, we consider a scenario where= {0, 2}, but we
do not require our sequence to generate the positive irgeger

To understand the proof of Theorem 1.1, we use the followmtgjtion. In our construction of
a generalized Zeckendorf sequence, we ensure that eagerimsegenerated by the construction

Lif A,, does not contain 0, then any decomposition must includeemegit of binn, which forces the sum of a
decomposition to be at least that of the minimal elemem,gfdestroying our hopes of having either uniqueness or a
decomposition for every positive integer. Note thatljf does not contain 1, zeroes can be added tmlsa that way
are able to pick any one particular element, though at theafasiqueness. For example, if we want to use just one
element of bim, and4,, = {k,k+ 1,...,b}, then we can plack — 1 zeros inb,,.
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“in order”, that is, if we look at the first terms of our({b,}, {A4,},0)-Sequence, we will see
that a consecutive block of positive integers is uniquelgomeposable using these terms. When
we allow A,, to violate the conditions of Theorem 1.1, the fiksierms of our sequence no longer
generate a consecutive block; the decomposable integenstialltiple disconnected blocks. The
block containingl continues to grow as we add terms to our sequence and eVgmhgats another
block, causing a failure of uniqueness of decompositiorséone integer.

Lemma2.1. Fix a (b,, A,,0)—Sequence, and an integes > 2. Suppose that the set of integers
generated by the firsty — 1 bins is the se{1, ..., k}. Then all future terms of our sequence are
divisible byk + 1.

Proof. Note that the first term in bing must bek + 1. The terms in the first, — 1 bins can form
any sum froml to &, and thus as we have no adjacency conditions, if we can Emrasumbes:
using numbers from biny and on, we can also obtain+ 1, x + 2, ...,z + k. Thus once we add
a multiplea(k + 1) of k + 1, there is no need to addk + 1) + § foranyg € {1,...,k}, and
therefore the next possible term in our sequendeis 1)(k + 1). Continuing we see that all the
numbers added are multiples/of- 1, proving the claim. O

For example, consider the sequence Wijtk=n + 1, A, = {0, 1}:
1,2, 3,6,9, 12, 24, 36, 48 , 60, 120, ..., .... (2.1)

Bin 1 Bin 2 Bin 3 Bin 4

Lettingng = 2 we findk = 11 (i.e., the first two bins allow us to obtain precisely the gees
from 1 to 11), and see that any legal combination of termsidete first two bins is a multiple
of 12.

Proof of Theorerh 1]1We want to show that &{b,}, {A,},0)-Sequence has uniqueness of de-
composition if and only if all4,, are in the form of0,1}, {0,1,...,b, — 1} or {0,1,...,b,}.

To reduce the cases that we need to discuss, we assume thedtthg— 1 bins haveA,,’s that
satisfy the condition and the set of legal sums from thesg foirm the interval 1, ...k}, where
each element has unique decomposition. Then by Lemnia 2.hawethat all following terms
of the sequence are divisible By+ 1. Therefore, we can take the subsequence of our original
sequence starting from thg™ bin to be our new sequence, and divide every ternk by1. For
notational convenience we denotg,, b, of the original sequence as,, b, of the new sequence
which we now analyze.

We first show that ifA; satisfies one of the conditions for which we claim uniqueresds,
then it yields intervals of integers, so by induction thetfirdins of the sequence always yield an
interval for anyn € N. Since every element of this interval has unique decomipositve can
prove the backwards direction of Theorem 1.1. Next we canglte case where the new sequence
hasA; outside of our stated set. We are then able to show that umégsdails in such sequences,
so only the options stated in Theorem]|1.1 give uniqueneseefitre proving the forwards direction
of the theorem.

We now consider each case for uniqueness.
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Casel: A; ={0,1}. Fix b; and letA; = {0,1}. Then the firsth; terms of our sequence are
1,2,...,b;. The integers generated by this bin form the$et {1, 2, ..., b;}, which is an interval
of integers. Sincel; = {0, 1}, and each element ¢f must be written as a sum of element9in
we clearly have unique decomposition.

Casell: A; ={0,1,...,b;}. Fixb; and letA; = {0,1,...,b;}. Then the firsb; terms of our
sequence arg 2,4, ...,2% 1, The integers generated by this bin form theset {1,2,...,2" —
1}, which is an interval of integers. Because binary decontjposof the integers is unique, we
have unique decomposition.

Caselll: A; ={0,1,...,b; —1}. Fix b, and letA; = {0,1,...,b; — 1}. Then the first),
terms of our sequence ate2, 4, ...,2" . The integers generated by this bin form the Set
{1,2,...,2 -2}, which is an interval of integers. We also note that this ceaif A, gives unique
decomposition, for the same reason as Case Il.

We have now explicitly analyzed the cases we claim give wsmigsgs and have shown that they
yield intervals of integers. We are thus able to reduce t@#ses wherel; is not in the given set.
We split non-uniqueness of these other choiced oihto several cases.

Case l: {0,1,...,k} C Ay, withk+1¢ A;and2 <k <b; —2. 0 Because we have full
freedom with the first: elements oft;, we havel, 2,4, ...,2* as the firstt + 1 elements of
this bin. Arguing as before, we also have that ther 2)"¢ element of our bin must bgf+! — 1.
We must use this term to form larger integers, so we are lgft aily & — 1 terms to work with,
meaning we can form all integers up to but not includdig' — 1 + 2F — 2 + 1 = 2k+1 42k _ 2,
Thus, this is thék + 3)™ element of our sequence (it will not matter whether this ighimfirst or
second bin). We note that we can decomptfsé + 2¢ — 1 as

(2k+1 B 1) Lok — ok+l ok | _ (2k+1 Lok 2) +1, (2.2)

SO uniqueness fails.

Casell: {0,1} € Ay, 2 ¢ A;. Pickk := inf{z € A, : > 1}. This is the case where there is
a gap inA;. Since we are only allowed to choo8el or at least: elements from a bin, the firgt
terms of the sequence are going tolbe. . , k. Sincek > 3, Z’fnzl m = 2D S k4 2 so the

2
(k + 1)t and the(k + 2)™d terms arék + 1 andk + 2, respectively.
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If we haveb, > k + 2 for the first bin, then

(k/2 k42 k+1 k+3)
Zm+ Z m:Zmzi whenk is even
m=k/2+3
(k 1/2 k+2
E—1)(k+2 )
> om+ Z m = Zm+(k+2) _ )2( 2 o whenk is odd
\ m= 1 ]<;+5 m=

(2.3)

and we lose uniqueness of decomposition. Therefore, werady to consider the cases where
by = k ork + 1. As the two follow similarly, we only provide the details ftire first.

Subcase (i): by = k. Asb; = k, the sum of terms from the first bin #™. As argued before,
all multiples ofk + 1 less than this sum, includidg}l(k + 1), can be expressed as a legal sum of
terms not in the first bin. Therefore, whéns odd,

k(k+1 k—1 k+1
(kD) _ (k+1)+%,

2 2
Where’“’L1 is a term in the first bin. We lose uniqueness of decompositidiment is even, ("”2“)

is not in the sequence and the next terig™ + 1. Then we can decompogk + 1) 4“1

two ways:
(k+1)+ k(k; D) = (@ + 1) + k, (2.5)

wherek + 1 andk are terms of the sequence. We lose uniqueness of deconepositi

(2.4)

Subcase (ii): b; = k+ 1. A similar argument holds on losing uniqueness of decontiposi
O

3. GAUSSIANITY OF NUMBER OF SUMMANDS: a =0

Now that we have exactly determined the decomposition nwlash yield sequences giving
rise to unique decomposition of integers in the- 0 case, we investigate the Gaussianity of the
distribution of the average number of summands in theserdpositions. The following result
(seel[Bi]) is a key ingredient in several proofs in this saati

Theorem 3.1 (Lyapunov Central Limit Theorem)Let{Y7, Ys, ...} be a sequence of independent
random variables, each with finite expected valyand variances?. Lets? := " o7 If there

exists a > 0 such thatlim,,_, M S ENY: — wi*T) =0, then > i1 (Yi — ) converges
in distribution to the standard normal as— oo.

We use the following standard notation below. We wifite) = ©(g(z)) if there exist positive
constantg”;, Cs such that for allz sufficiently large we have

0 < Cig(z) < f(z) < Cag(a). (3.1)
6



3.1. At most one summand per bin. We begin by proving Theorein_1.2, which concerns se-
quences with variable bin sizes,, = {0, 1}, and no adjacency condition.

Proof of Theoreri I12Forn < N, we haveb,, + 1 options for thex" bin: we have no element or
exactly one of the,, terms. Each of these choices is equally likely, and tR(¥, = 0) = -

bn+1
andP(Y, = 1) = 32, 2asYy, =Y?)is

b
. = E[Y,] = —— = E[Y7], 3.2
o = EY,] = 20 = E[V]] (32)
and its variance is
b b\ b
2 .= E[Y?] - E[Y,)? = - — = = — 3.3
on = BB = 5o <bn+1) (b + 1)2 (3.3)
Lets% =S o2 = SN, /(b, + 1)%. We now apply the Lyapunov Central Limit Theorem.
Note
b 1 2+4 1 b 2+4
E[Y, — pa?] = — -
o = il ™) bn+1(bn+1) +bn+1(bn+1>
1 1+9
_ b Rl A (3.4)

(by, +1)2 (b, + 1)1+9 (b, +1)2

Definep?t .= E[|Y,, — u,|*"] andey := 32| p2%. Then

N-—1 N-—1
ey = Y RV, — w7 < Y 0 +1 = sk (3.5)
n=1 n=1

We note that? is asymptotically similar td /b, (i.e.,1/b, < 0, < 1/b,), S0{s%} converges if
and only ifZﬁLV:1 1/b,, converges.
Supposer:1 1/b, diverges. Then? diverges, and for ali > 0

lim | = 2< TR G ) U I (3.6)
Nooo \ 5270 Novoo (830210 Nowso (53,0 '

(the limit tends to zero as we are assuming the sum of theroaafs ofb,, diverges, and thus

n,, must tend to infinity). Thus, the Lyapunov condition is d&$, and by Theorern 3.1 the

distribution of number of summand;%,ZfV:1 Y;, converges to a Gaussian in the sense of Lyapunov.
0

Remark 3.2. If >  1/b; converges, then the denominator of the Lyapunov limit cgescto a
finite limit. Furthermore, the numerator is nonzero, so timeit is nonzero. Thus, the Lyapunov
condition fails ify ", 1/b, converges. While this does not prove that the distributidh@number
of summands does not approach a Gaussian distributionoitiges some evidence against this

behavior.
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3.2. Multiple summands per bin. We now prove Theorein 1.3.

Proof of Theorerh 113Assume|A| > 2. We begin in a similar manner as Theorem 1.2 by noting
that the probability of choosing exacthsummands from the!™ bin is

()

PY,=1i) = <~ 3.7
R N () &0
and the expectated values¥df andY;? are
>ieat(’y) 2 >ieat’ ()
ElY,] = &€A ] Ry} = &4 2t/ 3.8
SR ST () LS SN () 29
Then
or = E[Y;] - E[Y,]
(B (Siea () (Sieat(?)’
(Xiea (7)) (Xiea (7))
_ S P) = S () 59)
(Tiea ()
The terms whereé = j cancel, so we are left with
o = Duean P 6) ~Zunn 1G) _ Tuennli=020) o
(Xiea (7)) 2(Xea (7))
Definep?t? .= E [\Yn — /~Ln|2+5:|- We find that
s _ x|, SeatCO ()
AT LITEN0| S
_ zeA( )‘ ZteA(t) 3zgteA ( )‘ZM
(Ciea ()7
by (240
— zeA ( ) ‘ZteA ) (tn)} ) (311)

(e ()7

We now find asymptotics far2 andp2°. We first note thaf”r) = ©(%},); we do not need to have
at subscript on th@® relation ag < b andb is fixed. Therefore

(tEZA (t)> <tEZA@ (bn) ) o) = o mm). (3.12)

We also note that

s a-r(M)(4) - S etm o). e
1,jEAi#£] 1,JEAIF£]
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Therefore

o(bm+m ) 1
2 T ) _ g — ). 3.14
=T (bg—m’) 3149
Similarly, for p2*° we have

CIORAN ,

5 n . m’' —m
S T o™ ™). (3.15)

Thus

O(pi) = O(ay). (3.16)

Now letr2® .= S°N | 029 ands?, := S o2. We consider the Lyapunov limiitm y o, 737 /5%,

n=1"n" N
We have

2
i (0) = g 0P g, OGR? (3.17)
N—oo 3?\}’_6 N—oo (S?V)}HS N—oo (S?V)z"'é N—o0 @(S?V)‘S '

If the bin sizeb,, grows slower thamm—lm’ : thenZﬁ’:1 ) <1/(b;”‘m')> — 00, and thussy — oo.

Thus, the above limit tends t® and the Lyapunov condition is satisfied for ahy> 0. So we

conclude that the distribution of the number of summandseqes to a Gaussian distribution as
N — . 0

We now prove Theorem 1.4.

Proof of Theorerh 114We will prove the casel,, = {0, ...,n}, as the casel,, = {0,...,n — 1}
is similar.
Takingb, = n andA,, = {0,...,n}in (3.10) and[(3.11), we have

n n . 9
245 > ico (2) |20 — n|2+
Pn = on—+6+2
o2 = % (3.18)
From the Lyapunov CLT limit, we seek to show
2446
2+0 0.2 2
lim Lnsy P = 0, orequivalently lim (e ”2)+5 = oo. (3.19)
N—o0 (En<N U%)T N—oo ZnSN Pn

Substituting gives, for fixedV,

249

(Cenat) NP (3.20)
D <N pate >ico (7) |20 — n|2+5 ’ .
ZHSN on++2
n ) (95 — 246

for a constant > 0. It thus suffices to show that, _ 20 (521512 i O (N'+2), for

which it is enough to prove that
i (7) 20 = n™ 5
ont5+2 = 0(n’). (3.21)
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We assumé > 0 is even in this proof for ease of computations. Then

z": (?) 2i =l = i CL) (n— 2i)*+

i=0 i=0
n 245
SEQEC e
i=0 Jj=0
249 246\ . A
= Z(—l)ﬂ( j )2ﬂn2+5-fz<i)z’f. (3.22)
=0 =0

We wish to show that the@?+?2" andn!*°2" terms in [3.22) go to zero, which correspond to
theni2"~ andn/~'2" 7~ terms in}_""  (7)#/. We compute>_" , (7)i’ by noting that the sum
represents the number of ways to choose a subset{1,...,n} along with an ordereg-tuple
(a1,...,a;), where eachy, € A. Alternatively, we could pick our ordered j-tuplé;, ..., b;)

first, so that each, € {1,...,n}, and then choose a subgetcC {1,...,n} that includes the
distinct elements ofby,...,b;}. It is easily checked that these two counting schemes are the
same by showing that the set of possible (a4, .. ., a;)) is in bijection with the set of possible
((b1,...,b;), B). Following our second scheme, we note that if all elementstinj-tuple are
distinct, then there are

nn—1)---(n—j+1)2""7 (3.23)

ways to pick our tuple and subset. Similarly;if- 1 elements in thg-tuple are distinct, then we
have

(‘ " ) (j - 1) j—!Q"_jH =nn—1)--(n—j5+2)(j—1)52"" (3.24)
j—1 1 )2
ways to choose. In generaljif- k elements in our tuple are distinct, then there(al(ezj"fQ"‘j““)
ways to choose our tuple and subset. Therefore, the expnsssi(3.28) and (3.24) make the only
contributions to thex’~'2"~7~! term, while the only contribution to the’2"~/ term comes from
(3.23). The coefficient of the’2"~/ term is simply1, and thus from[(3.22), the coefficient of
n?toon is

245
(2
Z(—l)ﬂ( +.5) =0. (3.25)
=0 J
Now, the coefficient of ther/~! term from [3.28) is— >.7_ 2" 7 = —(j — 1)52"7~L. The

coefficient of then’~! term from [3.2#) ifj — 1)j2" 7. We add these two expressions together to
obtain;? — j as the coefficient of/—*2"~7~1in 3" | ()i/. Again, from [3.2R), the coefficient of
ntto2n is

246
1 . (2406
52 (-1 —9>( ; ) (3.26)
j=0
Note that the above is equal to
2
- =0 (3.27)
r=1

10



for 6 > 0, and thus we are done. O

Conjecture 3.3. The Lyapunov condition holds for any for ady = {0, 1, ..., [n/k]}. Numerics
suggest this is true.

4. FUTURE DIRECTIONS (HIGHER DIMENSIONAL SEQUENCES

4.1. Zeckendorf Involution Tree. It would be natural after studying bin decompositions tdkloo
at 2-dimensional sequences that have similar propertiesiibonacci quilt [CEHMNZ, CFHMNPX]
is one such generalization. We could ask many questionh, asicWhat types of sequence con-
structions yield unique decomposition of positive intagerHow do statistics such as average
number of summands change in the two-dimensional case? \owe many cases (including
the Fibonacci quilt), seemingly two-dimensional sequsmrregluce to one-dimensional relations,
such as conditions imposed on bins; dee [CCGJMSY] for an phkathat is fundamentally not
one-dimensional. As an example, we construct a “two-dinoerad’ sequence of integers, which
we call the Zeckendorf tree, as follows.

Leta,; = 1. Foraternu, ;,« > 1,1 < j <4, corresponds to the level in the tree in which the
term is located, anglis the term’s position within the level. Th# level has preciselyterms. We
add an integer to the tree if it is not the sum of terms from dgaent levels. As 2 is not the sum
of terms of nonadjacent levels, we add it to the tree as thetdin of the second level. Similarly,
3 is the second term of the second level. Next, 4 is the firgt @rthe third level, but 5 can be
represented as+ 1, a sum of terms from nonadjacent levels. So 6 is the next té¥encontinue
this process indefinitely to construct the Zeckendorf tree.

O,

® ©
ONONO
ONONONO

Interestingly, the left diagonal of the trée2, 4, 10, 26, ... is the sequence of involutions an
letters, also known as the Telephone Numbers. These dibigome are defined by the recurrence
relationa; = 1,as = 2, anda,, = a,,_1 + (n — 1)a,_o forn > 2.

The recurrence relation for the terms of the tree is given by

1, — 1—1,0, > 1
Qi = -1 Ta 1o j (4-1)
ai145-1+ a0, Jj=1

Using techniques similar to those of the proof of Zeckenddtieorem, one can show that
every positive integen can expressed uniquely as a sum of terms from nonadjacesis lefithe
Zeckendorf tree. However, while the recurrence relatioritie terms of the tree seems to depend
both oni andj, the tree can be described one-dimensionally using a ¢ondih bins: Let); = i
be the size of thé" bin. Then the Zeckendorf tree sequence is the unique seg@enstructed by

disallowing summands from adjacent bins.
11



Variations of the Zeckendorf tree retain their two-dimensil nature, but do not always retain
uniqueness of decomposition. For example, consider thanfvlg tree.

x
X R
BT

We begin the first row with the numbeérfor uniqueness reasons. We construct the sequence
using the rule that a term is included if it cannot be compadfesimmands that are linked in an
upwards chain. For example, we do not incldddecaus80 = 22+ 6+ 2, all of which are linked

in an upwards chain.

Example: FoB0, we have

©)

However, we do includ88 because we cannot construct it using such a chain (note wmtan
get from 22 to 16). While this sequence cannot be reduced do@itton on bins, it does not have
unigueness of decomposition (for example,= 44 + 4 and48 = 38 + 10). We can still prove
Gaussianity for the distribution of the number of summarsdg;[CCGJIMSY] for details (as well
as extensions t@-dimensions).

4.2. Uniqueness of decomposition in g-nary sequences. We explore another generalization of
Zeckendorf sequences: a class of sequences that we-cally sequencesThese sequences are
quite different from({b,}, {A.}, 0)-Sequences in that they are no longer constrained by the re-
quirement to represent every positive integer. We chatizetg-nary sequences which give a
unigue decomposition for any integer that has a decompasifiheoremg 411, 4.2, ahd 4.3 iden-
tify three distinct classes @fnary sequences that preserve uniqueness in this way.

We construct g-nary sequence by requiring that the summands are monathynilccreasing
(starting at 1), settingl,, = {0, g} for some constan, allowing a number to be in a given bin at
most once, and at each step taking the smallest number #g&grpes uniqueness. The resulting
g-nary sequence is well-defined if and only if after computingumbers of the sequence, we
can find an(n + 1) number which satisfies the constraints of our constructiows{ importantly,
uniqueness). For simplicity we begin with= 2, constant bin size 3 = 3), and no adjacency
condition @ = 0). Let I,, be the set of all legally decomposable numbers usingfittsroughb,,.

Let G, ; be the gap between ttig — 1) summand ang™ summand in the" bin, and(2,, be the
largest number legally representable using only elemeats the firstn bins. Then we have the
following.

Theorem 4.1. For b, = 3, A, = {0,2} anda = 0, the resultingg-nary sequence is well-defined

and we havér, ; > Q,_;.
12



Note that while the gap between adjacent summands in thedpirdiéfer, to keep uniqueness
we need the gap between any two adjacent summands in torbe larger than the maximum
decomposition using all the bims— 1.

Proof. We begin with the base case. The first two intervals are
1,2,3, 3, z,y, ... (4.2)

Bin 1 Bin 2

with = < y; this is due to our requirement that the sequence is moradtyincreasing and a
number is in a bin at most once. A straightforward calcutaibows that the first combination of
x andy for which we retain uniqueness:is= 9 andy = 15. For more details on computing the
sequence see Appendix A.

Now suppose that we retain uniqueness with binthroughb, and for alln such thatl < n <
k+1,G,; > Q,-1. Now we seek to show that we retain uniqueness with bjrteroughby.4
andGy41 ; > Q5. We have

1,2,3, 3,9, 15, 15,45, 75, 75,225,375 , ... a, b, c. (4.3)
Bin 1 Bin 2 Bin 3 Bin 4 Bin k+1
Thus ifG]H_lJ < Qk, ElDl, Dy e 1, Dy > Dy such that
b+c+ Dy = a+c+ Dy, (4.4)

because by constructid, — D; € {1,2, ..., Q,}. Thus we lose uniqueness. Howevefijf,, ; >
., there does not exist a combination bf, D, such thate + b + D; = a + ¢ + D,, nor
b+ c+ D1 = a+ ¢+ D,. Therefore, we keep uniqueness and

Gk+1,j > Qk (45)
By induction we keep uniqueness and we hayg; ;, > , for all n, so thisg-nary sequence is
well-defined. O

Theorem 4.2. For b, = k, A, = {0, g} for a pair of constantg € {1,k — 1}, anda = 0, the
resultingg-nary sequence is well-defined and we hayg > Q,,_;.

Proof. We begin with the base case. The first two intervals are

1,2, ..., a , ag, CLk—FQl—Fl, ak+291+1, ...,ak—l—le—l—l, e (46)
Bin 1 Bin 2

this is due to the fact that itrs ; < 4, 3D, Dy € I, Dy > Dy andp € {2,3,....,k — g+ 1}
such that

p+g—3 ptg—1
Z a; + aprg_1 + Dy = Z a; + Do, (4.7)
i=p—1 i=p

because by constructidn, — D; € {1,2,...,Q}.
Now suppose that we retain uniqueness with binghroughbt,, and for alll < n < k + 1,
Gn; > Q,-1. Now we seek to show that we retain uniqueness with bjnroughb,,, and
Grt1,; > Q. We have
1,2, ... a,, ag, ap+ 0+ 1, ap +20 +1, ..., ap + kX + 1, ... 21, 29, T3, ..., Tp.

Bin 1 Bin 2 Bin k+1
(4.8)
13



ThusifGyi1; < Q,3D3, Dy € 1,,, Dy > Dz andp € {2,3, ...,k — g+ 1} such that

p+g—3 p+g—1
Z T + Tppg—1 + D3 = Z x; + Dy, (4.9)
i=p—1 i=p

because by constructidn, — D5 € {1, 2, ..., Q;}. Thus we lose uniqueness. HowevefGif,, ; >
Qy, it is clear that there does not exist a linear combinatio®wafD, andx;’s such that we lose
uniqueness.

By induction we keep uniqueness and we hayg, ; > (, for all n, so this class ofi-nary
sequences is well-defined. O

Theorem 4.3. For b, = b, A,, = {0, g} for some constant < ¥, for all £ anda = 0, the resulting
g-nary sequence is well-defined and we hayg > ,,_;.

Proof. We begin with the base case. The first two intervals are
1,2, ..., ap, , ap,, ap, + O+ 1, ap, +20,+1, ..., ap, + b +1, ... (410)

Bin 1 Bin 2

this is due to the fact that iff, ; < 4, 3Dy, Dy € I, Dy > Dy andp € {2,3,...,b; —g + 1}
such that

p+g—3 p+g—1
Z a; + Qptg—1 + D1 = Z a; + DQ, (411)
i=p—1 i=p
because by constructidn, — D; € {1,2, ..., }.
Now suppose that we retain uniqueness with binghroughbt,, and for alll < n < k + 1,
Gn; > Q,-1. Now we seek to show that we retain uniqueness with bjnroughb,., and
Gr+1; > Q. We have

1,2,...,ab1,abl,ab1+Q1+1,ab1+2§21+1,...,ab1+bg§21+1,...,
: Bin 1 o Bin 2 !
oy T1, T, T3y o, Tpql - (4.12)
: Bin k+1 !

Thus if G4 ; < Qy, then there exisDs, Dy € 1,,, Dy > Dy andg € {2,3,...,b+1 — g+ 1}
such that

q+g9—3 g+g-1
Z Ti+ Tgpg—1 + D3 = Z T + Dy, (4.13)
i=q—1 i=q

because by constructidn, — D3 € {1,2, ..., Q, }. Thus we lose uniqueness. Howevefijf,, ; >
Qy, it is clear that there does not exist a linear combinatio®wafD, andx;’s such that we lose
uniqueness. By induction we keep uniqueness and we@aye; > 2, for all n, so this class of
g-nary sequences is well-defined. O

Remark 4.4. Note thatQ?,, ., = G,,+,; for the g-nary sequences discussed above.
Lemma4.5. Forb, = 3, A, = {0,2} anda = 0, there are4” elements in,, for all n.

Proof. We begin with the base case
1,2, 3. (4.14)
| I |

Bin 1
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There aret! possible decompositions using only Ibin yielding the numbers 0, 3, 4 and 5.
Suppose there ar® elements in/,,. We will show that there ar¢”*! elements in/,, ;.

n+1 %
1
Lip =1+ ("j )(;’) = 4+, (4.15)

=1
By induction, there ard@™ elements in/,, for all n. More generally for different; andg, we have

I, =1+ i (7;) (Z) (4.16)

Thus, if eachh; equals a constamt then

I, = <<2) + 1)n. (4.17)

U

In the spirit of Theorem 111, a natural question to ask is & oould determine necessary and
sufficient conditions omn,, for when a generaj-nary sequence is well-defined.

4.3. Tesselations of the Unit Disk. We end with another candidate to study for a 2-dimensional
representation. Consider the tesselation of the unit diskupper half plane) by copies of the
standard fundamental domain of the modular greup(Z); see Figuréll. We start by assigning
a; = 1 to the standard fundamental domain, and then introducedsariog (from the generators

S andT of the modular group), with our rule being one cannot use sands from cells that are
adjacent under generatorssif,(Z) (or their inverses).

7 STS ST£ ;ST‘lTST

FIGURE 1. Tesselation of the upper half plane (or unit disk) by cepithe stan-
dard fundamental domain 6fl.,(Z), which is generator by’ sendingz to z + 1
andsS sendingz to —1/z.

APPENDIXA. COMPUTING TERMS IN A g-NARY SEQUENCE

Here we compute terms in thenary sequence defined by settihg= 3, « = 0, andA,, =
{0,2}. As with all g-nary sequences, we start with @ Bin 1:

(A.1)



The next term must be greater than 1, as the sequence mushloéamic, and a single bin cannot
contain two equal numbers. Since no positive number is liegalcomposable by this sequence
yet (we have to use exactly two terms from any bin), the next taust be 2:

1,2, . (A.2)
| I |
Bin 1
We can now must examine numbers greater than 2, one by ore® iitlsey preserve unigueness
when added as the third term of the sequence. We see that ifakele 3 as the third term, the
legal decompositions arfe+ 2 = 3,1 + 3 = 4, and2 + 3 = 5, which are all unique, so the third
term is 3:

1,2, 3. (A.3)
We now must start on Bin 2. Note that while the first term of BimAst be at least as large
as 3, it can be equal to 3 because these terms are in separsiteNaite that we cannot use any
terms from Bin 2 after adding a single term, since we must usetly two terms from any bin,
so the legal decompositions will remain the same as in theopre case. Importantly, this means
that we will add 3, the minimal possible number we can put thebin (since uniqueness is not

in question, we simply pick the smallest number maintaimanotonicity):

1,2,3, 3, , _ (A.4)
Bin 1 Bin 2
Now, suppose we fill in the remaining slots of Bin 2 wittandy:
1,2,3, 3, z,uy . (A.5)

Bin 1 Bin 2
We can choose to useandy or x andy from our bin. This changes the sum of a decomposition
by  — 3. Thus,x — 3 must be larger than a change that can be produced by using asing
terms from Bin 1. Since Bin 1 can decompose numbers up:o6-53 must be larger than 5. Thus,
x —3 =6, sox = 9. By similar logic, we find thay — 9 = 6, soy = 15. We now have a complete
Bin 2:

1,2, 3, 3,9, 15 . (A.6)
: Bin 1 ot Bin 2 !
We now repeat the logic applied to Bin 2 to Bins 3 and onwarce fdsults of the computation
can be seen below for reference:

1,2, 3, 3,9,15, 15,45, 75, 75,225, 375 , ... a, b, ¢ . (A.7)
L (] L (] L (] L (] L (]
Bin 1 Bin 2 Bin 3 Bin 4 Bin k+1
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