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ABSTRACT. Zeckendorfi[ZE] proved that every positive integaran be written uniquely
as the sum of non-adjacent Fibonacci numbers. We use thiseé&deca two-player
game. Given a fixed integerand an initial decomposition of = nF, the two play-
ers alternate by using moves related to the recurrencéoel&t ., = £, + F,,—1, and
whoever moves last wins. The game always terminates in thkenelorf decomposi-
tion, though depending on the choice of moves the lengthefime and the winner
can vary. We find upper and lower bounds on the number of movesilge. The up-
per bound is on the order aflog n, and the lower bound is sharprat- Z(n) moves,
whereZ(n) is the number of terms in the Zeckendorf decomposition.ofNotably,
Player 2 has the winning strategy for all > 2; interestingly, however, the proof is
non-constructive.
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1. INTRODUCTION

1.1. History. The Fibonacci numbers are one the most interesting and farseu
guences. They appear in many varied settings, from Padcdalgyle to mathemat-
ical biology. Among their fascinating properties, the Fiboci numbers lend them-
selves to a beautiful theorem of Zeckendorf|[Ze]: each pasihtegern can be writ-

ten uniquely as the sum of distinct, non-adjacent Fibonaaoabers. This is called
the Zeckendorf decompositiaf n and requires that we define the Fibonacci numbers
by i, = 1,F, = 2,F3 = 3,F, = 5... instead of the usual, 1,2, 3,5... to create
uniqueness. The Zeckendorf theorem has been generalizey imaes (see for ex-
ample [Ho,[Ke MW1[ MW?2]), allowing the game explored in tipiaper potentially
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to be played similarly on other recurrences. For detailsh@sé generalizations, as
well as references to the literature on generalizationseack&ndorf’s theorem, see the

companion papef [BEFM].

1.2. Main Results. We introduce some notation. Byt"} or { /1" } we mean n copies
of 1, the first Fibonacci number. If we have 3 copied®f 2 copies off;, and 7 copies
of F,, we could write eithef F,* A Fy? A F,"} or {13 A 22 A 57}

Definition 1.1 (The Two Player Zeckendorf Gaméit the beginning of the game, there
is an unordered listofi 1's. LetF} = 1, F, = 2, and F; ., = F; + F;_;; therefore the
initial listis { /1" }. On each turn, a player can do one of the following moves.

(1) If the list contains two consecutive Fibonacci numbéts,, F;, then a player
can change these B, ;. We denote this move;_; A F; — Fi1}.
(2) If the list has two of the same Fibonacci numbér,F;, then
(a) if i = 1, a player can changé}, Fj to F,, denoted by{ F; A F; — Fy},
(b) if ¢ = 2, a player can changés, I, to Fi, F3, denoted by{ F5 A Fy, —
Fi A Fg}, and
(c) if i > 3, a player can changé;, F; to F;_», F;,1, denoted by F; A F; —
Fi_o N Fiqr}.
The players alternative moving. The game ends when onerpiayees to create the
Zeckendorf decomposition.

The moves of the game are derived from the recurrence, athmbining terms to
make the next in the sequence or splitting terms with mdtiolpies. We first show the
game is well-defined, and then provide bounds on its length.

Theorem 1.2.Every game terminates within a finite number of moves at thkefelorf
decomposition.

Now that we know that the Zeckendorf game is playable, we tvigimder how long
it will take to play.

Theorem 1.3. The shortest game, achieved by a greedy algorithm, arrivéseaZeck-
endorf decomposition in — Z(n) moves, whereZ(n) is the number of terms in the
Zeckendorf decomposition af The longest game is bounded by n, wherei is the
index of the largest Fibonacci number less than or equal.to

The theoretical upper bound presented here grows on aregrliscale because the
index of the largest Fibonacci number less than or equalisdess thariog¢(\/5Fi +
1/2), where¢ is the golden ratio. This relation comes from Binet’s forenulSince
there is a wide span between the lower bound and the themrbband, we simulated
random games and were led to the following conjectures.

Conjecture 1.4. As n goes to infinity, the number of moves in a random game de-
composing into it's Zeckendorf expansion, when all legal moves areaéiyikely,
converges to a Gaussian.

Conjecture 1.5. The longest game on anyis achieved by applying splitting moves
whenever possible. Specifically, the longest possible ggupkées moves in the follow-

ing order: merging ones, splitting from smallest to largemtd adding consecutives,
from smallest to largest.
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Conjecture 1.6. The average game is of a length linear with
Of course, we are interested not just in how long the gamestdke who wins.

Theoerﬁm 1.7.For all n > 2, Player 2 has the winning strategy for the Zeckendorf
Gam

Since someone must always make the final move, and the gamagsaterminates,
for eachn one of the two players must have a winning strategy. In otleeds; someone
must always be able to force their victory. This theorem shivat for all nontrivial
games, Player 2 has this strategy. The proof is not consteudt merely shows the
existence of Player 2’s winning strategy; we cannot idgrtidw they should move.
Though we can give exact winning strategies for smale leave the general winning
strategy for future research.

2. THE ZECKENDORF GAME

2.1. The Game is Playable.In this section, we provide many proofs related to the
Zeckendorf Game. We begin with the proof of Theorlend 1.2, Wislbows that the
game is well defined and playable, starting with an importemima.

Lemma 2.1(Fibonacci Monovariant)The sum of the square roots of the indices on any
given turn is a monovariarit.

Proof. Our moves cause the following changes in the proposed moaaota\We ob-
serve that we only have to consider the affected terms be¢hasuggested monovari-
ant is a sum, so unaffected terms contribute the same beaidrafter the move. Here,
k is the index off},, a term in the current decomposition.

e Adding consecutive terms: vk — 2 — VE — 1+ Vk

e Splitting: —2vk + vk — 24+ VE + 1
e Adding 1's: —2 + /2
e Splitting 2's: —2v/2 + 1 + /3.

We note that for all positivés > 2, in other words all indices not addressed in a
special case above, all of these moves cause negative chaivgecan see this by the
fact that,/z is a monotonically increasing, concave function. So themsonovariant;
the sum of the square roots of the indices constantly dezngak each move, so it is
strictly decreasing. O

With this lemma, we now prove Theorém11.2.

Proof of Theorerh 1]2At the beginning of the game, we have a sum of the square roots
of the indices of our list of numbers equal{y:, wheren is the number we have chosen
for the game. From the monovariant of Lemmal 2.1, we know thatlisted moves

Lf n = 2, there is only one move, and then the game is over.
2For us, monovariantis a guantity which is either non-insieg.or non-decreasing.
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always decrease this sum. Therefore, no two moves can hav&athe monovariant
value, and there will be no repeat turns. Since the game #sdemoves among a
subset of partitions of, of which there are a finite number, this implies that the game
must always end within a finite number of turns. Moreovergame always ends at the
Zeckendorf decomposition. If it terminated elsewhererdatveould either be duplicate
terms or the recurrence would apply, by definition. So, tinareld still be a valid move
and the game would not have terminated. This concludes tod.pr O

Now that we know for sure that we can play the Zeckendorf Gameyonder how
long the game will take. First, we address the question oftldrethe game must
always take the same amount of turns. If it does, this gamefisitely not fair because
it predetermines a victor! Fortunately, this is not the caséong as we choose an
greater thar3.

Lemma 2.2. Given any positive integer such that, > 3, there are at least two distinct
sequences of mové$ = {m,} where the application of each set of moves to the initial
set, denoted/ ({ F} },,), leads toZ,,, the Zeckendorf decompositionrof

Proof. If we show that there are two distinct sets of moves that e@ithe Zeckendorf
decomposition oft, we have proved the claim because foralb 4: we can follow the
two different identified games up th both of which are valid paths to the Zeckendorf
decomposition.

The following two sequences of moves result in the Zeckefmnposition of4:

M1 = {{Fl A Fl — Fg}, {Fl A\ F1 — Fg}, {2F2 — Fl A Fg}}
M2 = {{Fl A F1 — FQ}, {Fl A\ F2 — Fg}}
Therefore, there are multiple games for any 3. O

Remark 2.3. If n < 3 there is one unique sequence of moves that arrives at the Zeck
endorf decomposition. I = 1, M = {}. If n = 2,M = {F, AN F} — F}. |If
n = 3,M = {{F1 NF) — FQ}, {Fl N Fy — Fg}}

Corollary 2.4. For any positiven > 3, there are at least two games with different
numbers of moves. Further, there is always a game with an adtber of moves and
one with an even number of moves.

Proof. In Lemmd 2.2, we showed that two different sets of mavgsand )/, arrive at

the Zeckendorf Decomposition f Notice that M, | = 3 but|M,| = 2. As there are no
losing games, for any > 4, we can follow either of these games up to the Zeckendorf
decomposition oft. Regardless of the number or sequence of moves it takesdivees
the rest of the game (call the sequendg with | M| = k), we have already identified
two sets of moves with different order®l; A M, andM, A My, that describe a complete
game.|M; A M| = 3+ k, but|My A M| =2+ k. If kiseven3 + kis odd and + £

is even. Ifk is odd,3 + k is even an@ + k is even. This proves the claim. O

2.2. Bounds on the Lengths of GamesWe have now established that this game has
variation in both game length and parity. It is natural to el much variety there is
between short, long, and average games. To this end, wederavproof of Theorem
[1.3. To do so, we firstinclude a lemma about the structure afaegfollowing a greedy
algorithm.
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Lemma 2.5. Let m(n) be the number of moves in a deterministic game where the
players must always move on the largest valued numberZ} be the number of
terms in the Zeckendorf decompositiomofThenm(n) = n — Z(n).

Proof. Each player acts on the largest valued summand with an biaiaove. The
game om takesm(n) moves. Looking at the game ary- 1, we observe that the list of
summands will eventually readi, a, b, c, ...} where{a,b,c, ...} is the Zeckendorf
decomposition of.. Thusm(n + 1) = m(n) + k(n + 1), wherek is a function that is
always non-negative.

If the smallest summand in the Zeckendorf decompositiomfes greater than or
equal to 3, there are no additional moves that can be madk(and 1) = 0. However,
if the smallest summand is 1 or 2, the smallest summand camiéined with the
additional 1. Because an additional move was compléted+ 1) > 1. It then may be
possible to now make another move with the decompositiarviha just created. For
every additional move that can be ma#le; + 1) increases by 1. We also know that for
each additional move, the number of terms in the Zeckendmrbhposition decreases
by 1, because each move combines two numbers into one. We have

Zn+1) = Zn)+1—k(n+1)
m(n+1) = m(n)+k(n+1). (2.1)
Definet(n) by
t(n) = Z(n)+m(n). (2.2)

By adding the equations given Hy (R.1) we see tha} satisfies a simple recurrence:

Zin+ 1D +mn+1) = Zn)+mn)+1
tin+1) = tn)+1

(
= t(n—1)+2
= tn—2)+3
; t(1) +n. (2.3)

Since 1 is a Fibonacci number, the Zeckendorf decomposatidnis just 1, and we
haveZ(1) = 1andm(1l) = 0. Thus
ttn+1) = t(1)+n
Z(1)+m(l)+n
= 1+0+n
ttn+1) = n+1 (2.4)

From this, we see that for any positive integet(n) = n and so, with the definition
of ¢(n), we have that

t(n) = Z(n)+m(n)
n = Z(n)+m(n)
m(n) = n—Z(n). (2.5)
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We have shown that for any positive integerwhen starting from a list of length
n that contains all 1's, the number of moves it takes to reaehZieckendorf decom-
position forn will be equal ton minus the number of terms in the final Zeckendorf
decomposition for.. Thus, we have shown LemraZP.5. O

Proof. A quick way to arrive at the Zeckendorf decomposition wowddddecrease one
term on every move. This would make a short game happen-nZ(n) moves. No
game would be faster, because each possible move decreasesiiber of terms by at
most one. That this game is achievable follows from Lerhmia Qissce this number of
moves is theoretically shortest and is actually possible,a sharp lower bound on the
number of moves in the Zeckendorf game.

For the longest game, we return to the monovariant estaalishLemmd 2J1. We
observe that the least each move can change the sum is byttagptiove way late
into the game. Splitting moves cost at least! — /¢ — 2 — /¢ + 1, where/ is the
index of the largest Fibonacci number less than or equal téve notice thaR/¢ —
VI—2 —\l+1 > /I —\/l—1 because square root is concave and increasing.
Then, we observe that=n — (n — 1) = (v/n — v/n —1)(y/n + v/n — 1), which
implies thaty/n — v/n — 1 = ﬁ > L S0 2Vl —Vi—2—-VI+1> 1)L
This gives that it will take at most- n moves to reach the Zeckendorf decomposition.
Since/ is a Fibonacci index, we recall Binet’s formula to get a boumterms ofn:

Fy= (6" — (—=¢)~"). We note that‘%| < L, which implies that/5F, < ¢* — 1/2.
Taking a base logarithm of both sides, we ghig¢(\/3Fg +1/2) > . This shows that
(- n <log,(v5n+1/2)n. O

2.3. Conjectures on Game Lengths.Using Mathematica code (see Appendix A), we
support the conjectures on game length introduced in tmedattion with simulation
data. We address Conjectlre]1.4 first. Observing Figureeheht fit Gaussian seems to
align well with the distribution of moves taken over 9,99 slations of the Zeckendorf
Game withn = 60. Figure[2 shows the same experimenton= 200 with 9,999
simulations.

Frequency

0.12}
0.10
0.08
0.06
0.04

0.02f

] Moves
60 65 70 75 80 85

FIGURE 1. Frequency graph of the number of moves in 9,999 simula-
tions of the Zeckendorf Game with random moves whes 60 with
the best fit Gaussian over the data points.
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Frequency
006;
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0045
0035
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0.01f

Moves

220 230 240 250 260

FIGURE 2. Frequency graph of the number of moves in 9,999 simula-
tions of the Zeckendorf Game with random moves whea 200 with
the best fit Gaussian over the data points.

To see how Conjectufe 1.5 may be true, we provide two piecegidénce. The first
is the move count from simulation of the deterministic aition stated in the conjec-
ture. Recall that the order of moves is adding ones, sgliftiom smallest to largest,
then adding consecutives from smallest to largest. Figlgleo8vs an array with the
component being and they component being the number of moves in the hypothe-
sized deterministic longest game algorithm. The seconckpé evidence comes from
a Java program, a link to and readme for which is included ipeXulixX(A. The Java
program explores all possible moves in the Zeckendorf gama fjivenn. The data
produced here is the longest possible move length fomthisted. Observe that the
two arrays provide identical data. This suggests that thpothesized longest game
algorithm may actually be the theoretically longest gameachn.

({1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 5}, {6, 6}, {7, 8}, {8, 10},

{9, 11}, {10, 13}, {11, 15}, {12, 17}, {13, 20}, {14, 21}, {15, 23},
{16, 25}, {17, 26}, {18, 29}, {19, 31}, {20, 34}, {21, 37},

{22, 38}, {23, 40}, {24, 42}, {25, 44}, {26, 47}, {27, 48}, {28, 50},
{29, 53}, {30, 54}, {31, 57}, {32, 60}, {33, 63}, {34, 67}, {35, 68},
{36, 70}, {37, 72}, {38, 73}, {39, 76}, {40, 78}, {41, 81}, {42, 84},
{43, 85}, {44, 87}, {45, 89}, {46, 91}, {47, 95}, {48, 96}, {49, 98}}

FIGURE 3. Data taken from the simulation of the deterministic lastge
game proposed by the algorithm in Conjecfure 1.5.

In support of Conjecturie1.6, we offer the graph in Fidure Sing data from sim-
ulating the Zeckendorf game on varyingwe plot the average number of moves in a
game against. We observe that a best fit line with slope of arounglfits the data
points well. Due to computer restraints, we are unable teigeodata beyond = 200
(not pictured in the graph, but included in the data). Theaye taken om = 200 is
239, very close tal.2 - 200.

2.4. Winning Strategies. Since someone must always make the final move, and the
game always ends at the Zeckendorf decomposition, thenecaties. Therefore one
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N Moves 26 47
27 48
28 50
29 53
30 54
31 57
32 60
33 63

o g wN =S o

©® N A wWwN 2
@

©

1" 35 68
13 36 70
15 37 72
17 38 73
20 39 76
21 40 78
23 41 81
25 42 84
26 43 85
29 44 87
31 45 89
34 46 91
37 47 95
38 48 96
40 49 98
42

44

NN RNNRNRNS 2 A 2 a o s o s
GO R WN =0 © N wWN =20

FIGURE 4. Computer proven data of the number of moves in the longest
route to victory courtesy of the Java code written by Pautd@&mith.

player or the other has a winning strategy on eachhis section is devoted to the proof
that Player 2 has the winning strategy for:alt 2, the statement of Theordm1L.7. For
this proof, we use a visual aid provided in Figlte 6.

Proof. Assume that Player 1 wins the game. Therefore, Player 1 naustthe winning
strategy from the node in the first row with the captidi®)}. We color this node red
in Figure[7. Since this node only has one child, Player 1 mast the winning strategy
from {1"=2 A 2} in row two. Player 2 makes the next move, so Player 1 must lnave t
winning strategy from both the nodes in row 3; if not, Playev@uld move to the one
from which Player 1 did not have the winning strategy. We #acn the children of the
node{1("=3 A3} inrow 3. This node has one descendant only; therefofe > A2A3}

in row 4 must have a winning strategy for Player 1. Player 2e@sdke move next, so
all three children of 1"~ A 2 A 3} in row 5 must be a winning strategy for Player 1.
Observe that one such child{is™ > A5} in row 5. If Player 1 has the winning strategy
from that node in row 5, if that node is on the next layer, in @viollowing the same
winning strategy, Player 2 can win from the row 6 nddé€"— A 5}. So we color that
node blue on row 6 of Figuid 7 to indicate Player 2 having a wigistrategy. Since
that node has only one child1~" A 2 A 5} in row 7, Player 2 must have a winning
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Average Number of Movesina Game

Number of Moves

FIGURE 5. Graph of the average number of moves in the Zeckendorf
game with simulations ranging from 999 to 9,999 for varyingith the
best fit line over the data points.

1n
1<"—2! A2
1(=3) A 3 1 (=4 A 22
1(n—5)A2A3/ 1(11—3) A3 1 (n=6) A 23
~— =
15=5) A 5 10=1) x 22 r 3 17=6) » 32 1= A2 A3 [=8) x4
~ — —
1=D A 2-/\ 5019 A 23{ 17=6) A 32 |10-9 A 2 2 32 l("_S)é l""\”\/\ ﬁ])‘/\ 25

FIGURE 6. Tree depicting the general structure of the first seveoaas
of the Zeckendorf game.

strategy from that node. This means that any parent of thide moust be a winning
strategy location for Player 2 because Player 2 could justentio{1~7 A 2 A 5} in
row 7 from those parents. This means that'—® A 2 A 3} in row 6 must have a
winning strategy for Player 2; however, since both childrerow 6 of {16 A 3(2)}
in row 5 have winning strategies for Player 2, this means tive 5 node must be a
winning strategy for Player 2, not Player 1 as we had earkeluded. This leads to a
contradiction that proves the claim farsufficiently large ¢ > 9). For the small cases
of 2 < n < 9, computer code such as the one referenced in Appéndix A cam thlat
Player 2 has the winning strategy by brute force. U
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lll

—

NS

B

10975 10D A2 A3 [10-9 4 32 1= A2 A3 1(=8) A 24
| 1D A2AS | 19 A3 A3 1076 A 32 1010 A 25

FIGURE 7. Tree depicting the proof of TheorédmI1.7. Red boxes have a
winning strategy for Player 1, and blue boxes indicate a imigstrategy
for Player 2.

This result is non-trivial and surprising. Game trees fogéan have many, many
nodes, with no obvious path to victory for either player (Fegure[8 forn = 9 and
Figure[® forn = 14 for an example of how quickly the number of nodes grows).
Additionally, this is merely an existence proof, which mgare cannot tell how Player 2
should move to achieve his victory. This makes the game iggsda for human players;
indeed, random simulations of the games show Players 1 andriing roughly even
amounts of the time.

12358 235 123 1235 e
10001 2101 003 4001 112

12358 1235 12
10001 011 0201

12358 23
10001 101

12358
10001

FIGURE 8. Game tree fon = 9, showing a winning path in green.
Image courtesy of the code referenced in Appefqdix A.
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FIGURE 9. Game tree fon = 14, showing a winning path in green.
Image courtesy of the code in Appendik A.

3. FUTURE WORK

There are many more ways that studies of this game can bedextehis paper
covered the Zeckendorf Game quite extensively, but immgrayger bounds may still
be found on the number of moves in any game. This work also stithe existence of
a winning strategy for player two for all > 2, but it does not show what that strategy
is.

The Zeckendorf Game is on the Fibonacci recurrence; howtwerfact that Zeck-
endorf’'s theorem generalizes means that the game couldpedobn other recurrences.
Finding which classes of recurrences have meaningful gaboesmding the moves on
those games, and considering winning strategies are #fulfravenues for further ex-
ploration.

Expanding in another direction, the Zeckendorf Game aseived of by this thesis
is a two-player game. What if more players want to join? Whosain that case, for
either the Generalized or regular Zeckendorf Game? Thgsisalone here only shows
there is a winning strategy that takes an even number of moved| n > 2 for the
Zeckendorf Game. It says nothing about the number of movetutad, wherek is
odd and greater than 2!

APPENDIXA. CODE

Programs for simulating a random version of the Zeckendanhe running a de-
terministic worst game algorithm of the Zeckendorf gamej aimulating a random
Tribonacci Zeckendorf game is available at

gi t hub. cont paul bsm t h1996/ Zeckendor f Gane/ bl ob/ mast er/
ZeckGaneMat hemat i ca. nb.

TreeDrawer is used to give a visual representation of theedteicture of the Zeck-
endorf game. It plays through a specified game, determidingoaes that can be made,


github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
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and draw all possible paths to the end of this game. The Reditfiean be found at
https://github. conml paul bsm t h1996/ Zeckendor f Gane. TreeDrawer can
be executed, after compilation, by running the command

appletviewer TreeDrawer.java
Do not delete the comment in the preamble, as this is usednétme by the ap-

pletviewer. Email paul.bairdsmith@gmail.com for moreoimhation.
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