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ABSTRACT. Zeckendorf proved that every positive integecan be written uniquely
as the sum of non-adjacent Fibonacci numbers; a similaityésaugh with a differ-
ent notion of a legal decomposition, holds for many othetuseges. We use these
decompositions to construct a two-player game, which casob®letely analyzed for
linear recurrence relations of the for@, = Zle cG,,_; for a fixed positive inte-
gerc (c = k — 1 = 1 gives the Fibonaccis). Given a fixed integeand an initial
decomposition ol = nG4, the two players alternate by using moves related to the
recurrence relation, and whomever moves last wins. The gdweg/s terminates in
the Zeckendorf decomposition, though depending on thecetafimoves the length of
the game and the winner can vary. We find upper and lower boométse number of
moves possible; for the Fibonacci game the upper bound iseoartler of: log n, and
for other games we obtain a bound growing linearly withFor the Fibonacci game,
Player 2 has the winning strategy for alt> 2. If Player 2 makes a mistake on his first
move, however, Player 1 has the winning strategy insteaerdstingly, the proof of
both of these claims is non-constructive.
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1. INTRODUCTION

1.1. History. Familiar from many varied contexts, from mathematical biyl to Pas-
cal's triangle, the Fibonacci numbers are an incrediblifeting and famous se-
quence. Looking at this sequence, Zeckendorf [Ze] gergratbeautiful theorem:
each positive integer can be written uniquely as the sum of distinct, non-adjacent
Fibonacci numbers. This is called tdeckendorf decompositia n and requires the
Fibonacci numbers to be defined Bs = 1, F, = 2, F3; = 3, F, = 5,... instead of
the usuall, 1,2, 3,5, ... for unigueness. The Zeckendorf theorem has been generalize
many times (see for example |Br, CFHMN1, CFHMNZ, CFHMN

[DEEHMPPR [ FGNPT, Fr, GTNP, Ha, Ho, Ke, LT, Uen, Stel, Ste2; follow the ter-
minology used by Miller and Wang [MW1].

Definition 1.1. We say a sequendd’,, }°° , of positive integers is &ositive Linear
Recurrence Sequence (PLRS) if the following properties hold.

(1) Recurrence relatiorthere are non-negative integekscy, . . ., ¢;, such that
Hn+1 - CIHn +-+ CLHn+1—L7

with L, ¢; andcy, positive.
(2) Initial conditions:H; = 1, and forl < n < L we have

Hn+1 = ClHn + Can_l + -+ CnHl + 1.

We call a decompositiol_;" , a;H,,11—; of a positive integerV (and the sequence
{a;},) legal if a; > 0, the other; > 0, and one of the following two conditions holds.

Condition 1. We haven < L anda; = ¢; for1 <i <m.
Condition 2. There exists € {1, ..., L} such that

a; = C1, Gy = Co, "+, Us_1 = Cs_1 and ay < cg, (1.1
Gsi1,---,051¢ = 0forsomel > 0, and{bi}g’;‘ls‘é (withb; = a,0.;) is legal.

If >, a;H,y1-; is alegal decomposition 6f, we define theaumber of summands
(of this decomposition a¥) to bea; + - - - + a,,.

Informally, a legal decomposition is one where we cannotieeecurrence relation
to replace a linear combination of summands with anothensaina, and the coefficient
of each summand is appropriately bounded; other authors[@P€3 ] use the phrage-
ary decomposition for a legal decomposition, and sum-gitslor summatory function
for the number of summands. For exampleHif,, = 2H, + 3H,_1 + H,_», then
Hs +2H4,+ 3Hs + H, is legal, whileHs + 2H, + 3H3 + H, is not (we can replace
2H, + 3H3 + H, with Hs), nor is7TH5 + 2H, (as the coefficient o5 is too large).
Note the Fibonacci numbers are just the special cage-ef2 andc; = ¢, = 1.

Theorem 1.1(Generalized Zeckendorf's Theorem for PLRS&¥t { H,,}>° , be aPosi-
tive Linear Recurrence Sequendéen there is a unique legal decomposition for each
positive integerV > 0.

For more on generalized Zeckendorf decompositions, seeefaeences mentioned
earlier, and for proofs of Theorem 1.1, see [GT]. This paj@sdo introduce a game
on these generalized decompositions and prove a varietypépies of such games.
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1.2. New Work. We first introduce some notation. When we wrte} or { F,"}, we
mean n copies of, the first Fibonacci number. If we have 3 copiestof 5 copies of
F3, and 9 copies of;, we write either{ Fi* A F5° A F5°) or {13 A 3° A 87}, We use
similar notation for games arising from other recurrend#fs. start with the Fibonacci
case, and then generalize.

Definition 1.2 (The Two Player Zeckendorf Gameéit the beginning of the game, there
is an unordered listofi 1's. LetF} = 1, F, = 2, and F; ., = F; + F;_;; therefore the
initial listis { 71" }. On each turn, a player can do one of the following moves.

(1) If the list contains two consecutive Fibonacci numbéts,, F;, then a player
can change these t8, ;. We denote this mog; 1 A F; — Fi 41}
(2) If the list has two of the same Fibonacci numbér,F;, then
(a) if i = 1, a player can changé’, F to I, denoted by F} A F} — Fb},
(b) if i« = 2, a player can changéy, F;, to F, F3, denoted by{ F, A Fy —
Fi A F3}, and
(c) if i > 3, a player can changé;, F; to F;_,, F;,1, denoted by F; A F; —
Fi_ o NFiq}.

The players alternative moving. The game ends when no mewes.

The moves of the game are derived from the recurrence, atmbining terms to
make the next in the sequence or splitting terms with mtgaipies. A proof that this
game is well defined, ends at the Zeckendorf decompositemalrsharp lower bound
on the number of moves of — Z(n), and has an upper bound on the ordendfgn
can be found in[BEFM]. The same paper also proves the fotigwheorem, the proof
of which we reproduce.

Theogﬁm 1.3.For all n > 2, Player 2 has the winning strategy for the Zeckendorf
Gam

Interestingly, our proof is non-constructive; we show tR#&yer 2 has a winning
strategy but we cannot findfitwe can however expand on this result, giving a lemma
proved in a similar manner; again, the strategy is non-coasve.

Lemma 1.4. For all n > 3, Player 1 has the winning strategy if Player 2 makes the
wrong move on his first turt.

The Zeckendorf game as described so far only concerns a gartteed-ibonacci
sequence. However, using Theoreml 1.1, we can create newsgamaher positive
linear recurrence sequences, though at present we can btain oesults similar to
the Fibonacci case for special recurrences. We define a fens tieefore proposing a
Generalized Zeckendorf game.

Lf n = 2, there is only one move, and then the game is over.

2In principle one could enumerate all games for a given stgtj but at present we can only analyze
a fixedn by brute force.

8If n = 2, Player 2 never moves. H = 3, Player 2 cannot make a mistake as there is only one
available move. We thank Russell Hendel for asking the dpresin how early in the game we can have
Player 2 make a bad move.
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Definition 1.5 (k-nacci Numbers)We call any sequence defined by a recurresice =
S;+S;_1+---+S5,_r ak-nacci sequence. The initial conditions are as follows= 1,
and forl <n < k+ 1we haveS;,,; = S; + S;_1 +---+ 51 + 1. The termsS, are
called k-nacci numbers.

The k-nacci sequence generalizes the Fibonacci sequence dexdehe number
of prior consecutive terms added up to get the next in theesempu The Fibonaccis
may be viewed a$-naccis, and the Tribonaccis may be viewe@-amsccis.

Definition 1.6 (Generalized:-nacci Numbers)We call any sequence defined by a re-
currenceS;,; = ¢S; + ¢S;_1 + - -+ + ¢S;_;, a generalized:-nacci sequence with con-
stantc. The initial conditions are as followsS; = 1, and forl < n < k£ + 1 we have
Siv1 =cS;+¢Si_1 + -+ 4+ ¢S1 + 1. The termsS, are called(c, k)-nacci numbers.

Generalized:-nacci numbers apply a constarih front of each term added to create
the next in the sequence. As an example, the Fibonaccid argnacci numbers.

Definition 1.7 (The Two-Player Generalized Zeckendorf Ganikyo people play the
Generalized Zeckendorf game for thenacci numbers. At the beginning of the game,
we have an unordered list of1's. If i < k+ 1, S;p1 = ¢S; +¢S;1 + -+ ¢S; + 1.
Ifi >k, Sit1 =c¢S;+¢Sio1+ -+ + ¢S;_x. Therefore our initial list is{ S7'}. On each
turn we can do one of the following moves.
(1) If our list containsk + 1 consecutive k-nacci numbers each with multiplieity
then we can change thesedgp ;. We denote this moveS;  AcS; g1 A-- A
CSZ' — Si—i—l}-
(2) If our list contains consecutivé-nacci numbers with multiplicity up to an
index less than or equal tg, and.S; with multiplicityc+ 1, we can do the move
{(C+ 1)51 A CSQ VANIEEAN CSZ' — Si+1}.
(3) If the list hasc + 1 of the samé:-nacci numbersS;, then
(@) if i« = 1, then we can changé + 1)S; to Sy, denoting this mové(c +
1)51 — Sg},
(b)if 1 < i < k+ 1, then we can chang& + 1)S; to S;,1, denoted by
{SiNS;— Sii}
(c) if i = k + 1, then we can do the moyféc + 1)S; — S;.1 A S1}; and
(d) if i > k + 1, then we can do the mojéc + 1)S; — S; 1 A cSi_k_1}.
Players alternate moving until no moves remain.

Again, we may wonder whether this game is well defined and atitie® Generalized
Zeckendorf decomposition for the given recurrence. Itssya prove through the next
theorem.

Theorem 1.8(The Generalized Zeckendorf Game is Well-Definedyery General-
ized Zeckendorf game terminates within a finite number ofesrat the Generalized
Zeckendorf decomposition.

The proof of this theorem proceeds by defining a monovarlatténables another
useful result about the length of games.

Lemma 1.9 (Upper Bound on the Generalized Zeckendorf Gandd) Generalized
Zeckendorf Games (apart from Fibonacci) end in at mest- GZD(n) — IGZD(n)
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moves, wheré&'Z D(n) is the number of terms in the Generalized Zeckendorf Decom-
position ofn and /G Z D(n) is the sum of the indices in the same decomposition.

It is worth noting that the monovariant for the Generalizestiendorf Game gives
a better upper bound than in the Fibonacci case. This moaonvatoes not apply
only over the Fibonacci sequence. Additionally, if we tryetxpand the scope of the
Generalized Zeckendorf game to PLRS other than generatizegtci numbers, we
either struggle with to findkny monovariant, not just a nice one, or we cannot define a
splitting move with the recurrence. Future work can try tdrads these problems.

2. THE ZECKENDORF GAME

As someone must always make the final move, and as the gamgsadwds at the
Zeckendorf decomposition, there are no ties. Thereforeptager or the other has a
winning strategy for each. This section is devoted to proofs of winning strategies.
Specifically, Player 2 has the winning strategy forralb 2, the statement of Theorem
[L.3. If Player 2 makes an error on his first move, Player 1 cerefa victory. For the
proof of the both claims, we use a visual aid provided in Feglir

|
1‘"—2! A2
19 A3 1= A 22
/
1= A2 A3 l(n—3) A3 1 (n=6) A 23
N —— - ‘
15=5) A 5 10=1) x 22 r 3 17=6) » 32 N“5A;1; [=8) x4
— S— —
10D A2 A S| 1000 A 23{ 1= A 32 19 A2 A 32 l“"ﬁé 1":7’\/\ 2’/@4’)‘/\ 2°

FIGURE 1. Tree depicting the general structure of the first seveoalas
of the Zeckendorf game.

Proof. For the entirety of this proof, we color boxes in Figukés 2 @med if we are
assuming or have deduced that Player 1 has a winning strategythe node and blue
if Player 2 does.

Assume that Player 1 wins the game, in other words, that Playas the winning
strategy from the initial node at the top of the tree. Frora fame state, only one move
can be made, regardless of the sizenofFor Player 1 to have the winning strategy
for the whole game, it thus follows that they must have oneftbe only node on the
second row of the tree. Player 2 moves next, so Player 1 musttha winning strategy
from all nodes in row 3; if not, Player 2 would simply move te@tbne where Player 1
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did not have the winning strategy. The first node on the thavd nas only one child, so
its descendant in row 4 must also have a winning strategyléyeP 1. Player 2 moves
on the nodes in row 4, so Player 1 must have a winning strategy &ll three children
of {15 A2 A 3} in row 5.

One of the children in row 5 i1~ A 5}. Observe that in row 6 of the tree this
same game state may be found. If Player 1 has the winninggyr&tom that state in
row 5, by following the same strategy, Player 2 can arriveiebwy from the node in
row 6 by reasons of parity. Player 2 also therefore must [gsstbe winning strategy
from the only child of that node in row 7. Now, this implies tlaay parent of that game
state in row 6 must also bear a winning strategy for Playercalbse, as it is their turn
in row 6, they could move t§1"~" A2 A5} in row 7 from each of those. Accordingly,
Player 2 must be able to win frofil"=® A 2 A 3} in row 6. Yet, we have now
found that both children in row 6 dft"=% A 3} in row 5 have winning strategies for
Player 2, contradicting our early claim that the node heldrauag strategy for Player
1. The theorem is thus proven for allwhose game tree possesses 7 layers or more
(n > 9). For the small cases @f < n < 9, computer code such as the one referenced
in AppendiXxB can show that Player 2 has the winning stratggiyrbte force. O

1(n—4)A 22
[109A5T 10a22A3 109432 1= 9a243 10-9 A 24|
| - — T — ~\_— |
|1t"—7’/\ 2A5 | 19 A 23 A3 | 1(=6) A 32 |1<H’A2A 32| 1m=9 A5 Il("_7)A22A3| 1100 A 25|

1=DA2AS

FIGURE 2. Tree depicting the proof of TheorédmI1.3. Red boxes have a
winning strategy for Player 1, and blue boxes indicate a imigstrategy
for Player 2.

We follow a similar proof strategy for Lemnia1.4.

Proof. Suppose that Player 2 has a winning strategy from the seamxéhizthe third
row of the game tree on. Then, since Player 1 makes the move from that node, all
of the descendants must have a winning strategy for Play&h&n, the middle node,
having only one child, must have that child also be a winnimgtegy for Player 2.
Notice though thaf1("=>) A 2 A 3} can be found on both rows 4 and 3. Since Player 2
has the winning strategy from that node in row 4, it followattRlayer 1 must have a
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strategy from row 3. This is a contradiction, and it shows$ Flayer 2 can compromise
their potential victory as early as their first move (the sebmove of the game). Again,
this proof works forn sufficiently large { > 5). For the special case af = 4, Player
1 wins immediately after Player 2 executes the wrong move. O

1= A2

1=9A2A3

[109A5 | 10DA22A3 |19 232 @R aAG ] 19 2 24 |
| LS N\ |
I 1D A2AS I 10-9 A 23 A 3| 1(1=6) A 32 |1<"-81 A2A 32| 1=59A5 I 10-D A 22 A 3| 10100 A 25|

ﬁ

FIGURE 3. Tree depicting the proof of Lemnial.4. Red boxes have a
winning strategy for Player 1, and blue boxes indicate a imigstrategy
for Player 2.

These results from Theordm 1.3 and Lenima 1.4 are both ititeyemd surprising.
Game trees for large have many nodes, with no obvious path to victory for either
player (see Figurel4 for = 9 and Figuré b fom = 14 for an example of how quickly
the number of nodes grows). These are also both only exsigmofs, without indi-
cation of how Player 2 or Player 1 should move in general (gixiteat Player 2 should
move in a specific way on their first turn). The uncertaintyhie achievement of these
winning strategies makes the game seem less unfair in pidgct, random simulations
show that Players 1 and 2 win about as often as each other.

3. THE GENERALIZED ZECKENDORF GAME

3.1. The Generalized Game is PlayableThis section examines the generalization of
the Zeckendorf Game to a particular class of positive limeanrrence relations called
the generalized-naccis (see Definition 1.6). The generalized game’s ruleseat out

in Definition[1.7. Some of the rules, particularly the onedtomsplitting moves, seem
un-intuitive. We assure the reader that these moves canrlvedérom the recurrence
without too much difficulty. We start with a lemma that helgsye that this game is
well defined, the statement of Theorem]1.8.

Lemma 3.1(Generalized Zeckendorf Monovarianfjhe sum of the number of terms
plus the sum of the indices of those terms is a monovariarthe®Generalized Zeck-
endorf Game, in all cases but the game on the Fibonacci maati
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12358 235 1235
10001 01 0201

12358 1235
10001 1011

12358
10001

FIGURE 4. Game tree fon = 9, showing a winning path in green.
Image courtesy of the code referenced in Appefdix B.

FIGURE 5. Game tree fon = 14, showing a winning path in green.
Image courtesy of the code in Appendik B.

Proof. We define a monovariamton this game, wheré is the sum of the number of
terms and the indices of the set in any given turn. We provedbamoves always
decrease this monovariant except in the Fibonacci easel( £ = 1). We note thab is
an additive function, so we can just examine whebes to the subset of terms affected
by the moves. We note that we follow the move numbering eistadd in Definition
[L.2.

Before we do move (1), we have a value in the summands we arg oBi({cS;_; A
cSickri N ANeSiH) = (k+De+ce(i — k) + -+ ci > ¢+ 2ci. After, we have a
value of6({S;+1}) = 1 +¢+ 1 = i + 2. We note that this move only happens when
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i >k >1,s0c+ 2ci > 1+ 2i > i+ 2 for all positivec and all valid:. Therefore the
monovariant decreases when move (1) is executed.

Before we do move (2), we have a valueddf(c + 1)S; A ¢Sy A --- A eS;}) =
ci+1+(c+1)+2c+---+ic > ci+ c+ 2. After the move, we have a value of
0({Sit1}) = 1 +i+ 1 =i+ 2. For all positivec and for alli, ci + ¢ + 2 > i + 2.
Therefore the monovariant decreases when move (2) is eckcut

Before we do move (3a), we have avaludof(c+1)S;}) = c+1+c+1=2c+2.
After, we haved({S,}) = 1+ 2 = 3. For all positiver, 2c + 2 > 3, so the monovariant
decreases.

Before we do moves (3b), (3c), and (3d), we have a valué(ffc + 1)5;}) =
c+1+4+(c+1)i = c+1+ci+i. After doing (3b), we get({S;11}) = 1+i+1 =1i+2.
We seethat + 1+ ci +1i > 2i+2 > i + 2 for all positivec, so the monovariant holds.
After doing (3c), we get ({S1 + Sis1}) =2+ 1+i+1=i+4. Ifc=1,i =2
(the Fibonacci case), then+ 1 + ¢i + ¢ = 6 = i + 4. However, if we assume that
i =k+1>2thenc+1+ci+7¢>2i+2 >i+4. Soifk > 1, then the
monovariant holds for any positive On the other hand, if we require that> 1,
thenc+1+4+ci+1i > 34 3i > i+ 4 for all i (and hencék), so the monovariant
holds for all (3b) except when the recurrence relation ioRk#zci. After (3d) we have
S({Six1 NcSi—p_1}) =c+1+i+1l4+ci—ck—c=ci+24+i—ck<ci+2+1i. We
know thatc + 1 4 ¢i + i > 2 + ¢i + ¢ for all ¢, so the monovariant holds in this case as
well.

Since the value of delta on the summands employed in the nadweys decreases,
this is truly a monovariant (in all cases but Fibonacci). O

We can now prove Theorein 1.8.

Proof. Given the monovariant established in Lemnfa_ 3.1 and the monovariant devel-
oped for the special case of the Fibonacci recurrence shoWBEFM], we know that
there are no repeat turns in the Generalized Zeckendorf GMuoesover, since there
are only a finite number of partitions afamong any positive linear recurrence sequence
bounded byn, this means that the game must end somewhere. The game miust en
the Generalized Zeckendorf decomposition laid out in TlebE.1 because if the recur-
rence relation can be applied again, the game has not taedirend if there are more
thanc duplicates of any term, the game has not terminated. If tberrence relation
cannot be applied, and there are at most any term, this is exactly the Generalized
Zeckendorf decomposition by its uniqueness. Thereforganee is well-defined. [

Remark 3.2. Having different constants in Generalized Zeckendorf games for gen-
eralizedk-naccis is beyond the scope of this paper because of the egitypbdf the
structure of the Generalized Zeckendorf decompositioriffese recurrence relations.
Also, other relations do not necessarily define splittingrzesy so the game would be
deterministic (and therefore boring).

3.2. Bounds on the Length of Generalized Zeckendorf GamesLike in the Fibonacci
Zeckendorf Game, we consider upper and lower bounds for émef@lized Zeckendorf
Game. We begin with the proof of Lemrall.9.

Proof. This follows immediately by the existence of the monovaremd the fact that
the monovariant decreases by at least 1 each time. O
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Definition 3.3 (Tribonacci SequenceYVe define the Tribonacci Sequence as the recur-
rence relationR,,,; = R, + R,_1+ R,,_o withthe base case’s, =1, Ry =2, R3 = 7.

Lemma 3.4 (A Deterministic Tribonacci GameWe play a Tribonacci Generalized
Zeckendorf Game where we always act on the greatest valumohand with an avail-
able move. This game is deterministic and will not involve gylitting moves.

Proof. Suppose our largest integers,. If n = 1, then if there’s an available move
using R,,, it must be{R; A Ry — Ry}. If n = 2, if there’s a valid move orRR,,, it
must be{ R, A Ry — R3}. For both the case whem = 1,n = 2, we cannot have
consecutive moves or else we would have to h&yea contradiction taR,, being the
largest integer. I, = 3, at first glance it appears that there are two options for 1s1ove
{Ri N Re N Ry — R,} and{R3 A R3 — R; A R,}. However, to gef i3, R3}, the
turn before we must have had eithgk; A Ry A Ry} or {R3 A Rg A Rg}. If we had
the latter set, then now we must hake as a summand, contradicting the claim that
n = 3. If the turn before we halR; A Ry A Ry} and we had af R, }, then we never
would have joined the tw&,s because a consecutive move was available. If we did not
have an{ R, } then in order to creatéR; A Ry A Ry}, the turn prior must have either
been{R3 A Rs A Rs}, a contradiction, of R3 A Ry A Ry A R1}. So we would not
have gotten R; A Ry A R»} if we had acted on the largest integer because we would
have added consecutives the turn before. So really our oal)eraption on the largest
integerRs is {R; A\ Ry A R3 — R,}. If n > 3, then we might think we could do either
{R, 2o ANR, 1 ANR, - R,1}or{R, AN R, — R,;1 N R,_3}. However, to arrive at
{R,A\R,}, aturn before we must have hd&, AR, 1 AR,_1} and no{ R, _»} (or else
we could have done a consecutive move & } lastturn) { R, AR, 1 AR, oAR,_3},
which means we should already have added consecutiveB, @R, s AR, .3}, which

is automatically a contradiction. But to get4®, A R,_1 A R,_1}, we must have had
either{R, A R,_1 AN R,.» N\ R,.2} aturn before, a contradiction, iR, A R,,_1 A
R, s NR, s} or{R, NR,_1 AR, o NR, 35N\ R,_4}. Ineither of the latter cases,
we would have done a consecutive move and there was no wag forget{ R, A R,,}
whereR,, is the largest integer and we always did a move on the largesger with an
available move.

Therefore we have shown that the game is deterministic Isecagardless of what
the largest integer is, we only have one valid move. Moreaxehave shown that all
of the moves we will do in the deterministic game describedegijoin 2 base case
elements into another base element or add consecutives.ilWever have a splitting
move (or duplicates ok, for n > 3). O

Conjecture 3.5(Deterministic Game is Best for Tribonaccijhe exact minimum amount
of moves in the Tribonacci game is achieved by the greedyitigodescribed in the
deterministic game in Lemnha B.4.

Lemma 3.6 (Lower Bounds for the Tribonacci Gameé)ll games end in at leagt —
GZD(n))/2 moves.

Proof. The most we can decrease terms by in any given move is 2 (if webicee
consecutives). If at every step we used this move, we wouideaat the Generalized
Zeckendorf decomposition efin (n — GZD(n))/2 moves. O
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Remark 3.7 (Difficulties in Lower Bounds) In the Fibonacci Case, a lower bound on
the number of moves was easy to figure out because all of thesmather changed the
number of terms by or by 0. We were also able to show that games exist that always
decrease the number of terms by nonzero amounts. Thougfaitliscertain that we
could always find a game that decreases the number of tern@tzgro amounts in the
Generalized Zeckendorf Game by using a greedy algorithrh asds proved for the
special case of the Tribonacci Game in Lenima 3.4, the otheeswary froml to ck

in the number of terms they remove. This makes it difficultéb & sharp lower bound
without knowing the minimal number of times the game reqgach type of move.
This is not an easy problem, even in the case of the Tribomaguobers, and is left to
future work.

3.3. Conjectures on Generalized Zeckendorf Games.

Conjecture 3.8. Player 2 has the winning strategy in the Tribonacci Gamerfauffi-
ciently large.

This is supported by simulation data taken by code in AppeBtiiNote there are
extra difficulties in trying to prove this than occurred iretRibonacci case. Recall in
the proof of Theorern 113, we used the fact that certain gaaiesstvould be found on
different layers with opposite parity. Trying to find similswitched parity nodes may
be impossible; it seems like all congruent nodes on diffeliagrers still occur on turns
with the same parity.

4. FUTURE WORK

There are many more ways that studies of this game can bedextemhis paper cov-
ered the Generalized Zeckendorf game quite extensivetyimqroved upper bounds
may still be found on the number of moves in any game. This vatsk showed the
existence of a winning strategy for Player two for:all> 2 in the Fibonacci case (and
Player 1 if Player 2 is careless), but it does not show whheeif these strategies are.

e The most natural question is to find a constructive proof Blayer 2 has a
winning strategy for the Fibonacci game (in other words, twhahe winning
strategy).

e Finding lower bounds on the number of moves and examininglvelsdhe win-
ning strategy and how to achieve it for Generalized Zeckdmg#omes is another
natural question. Related to this, we can look at the digtion of the number of
moves if the two players randomly move. Numerical investayes in [BEEM]
suggest that this quantity converges to a Gaussian digtotbuNote Gaussian
behavior has been seen in related problems in the diswitbofithe number of

summands (see for example [BDEMMTTW, DG, KKMY, MW1, MW2]).

e Expanding in another direction, what if more players warjoin? Who wins in
that case, for either the generalized or regular Zeckergtorfe? The analysis
done here only shows there is a winning strategy that takevem number of
moves for alln > 2 for the Fibonacci Zeckendorf game. It says nothing about
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the number of moves modulg wherek is odd and greater than 2.

e What if the game had variable starting points: instead obiadis at the start, a
random set of terms in the sequence. How long would the gakee&n, and
does anyone have winning strategies more often?

e Finally, can the analysis be performed for more generakrenaes than the one
in this paper?

APPENDIXA. MATHEMATICA CODE

Throughout this paper, we use results from code written ithiglaatica, available at

gi t hub. cont paul bsm t h1996/ Zeckendor f Gane/ bl ob/ nast er/
ZeckGaneMat hemat i ca. nb.

The program contains code for simulating a random versigh®Zeckendorf game,
running a deterministic worst game algorithm of the Zeckehdame, and simulating
a random Tribonacci Zeckendorf game. There is also codeded to tally up the
number of moves in each of these simulations, which can beting into a graphing
function.

APPENDIX B. JavA CODE

The following is the ReadMe for the Java applet “TreeDrawsr’Paul Baird-Smith
found atht t ps: // gi t hub. cont paul bsm t h1996/ Zeckendor f Ganre.

TreeDrawer is used to give a visual representation of theedteicture of the Zeck-
endorf game. It plays through a specified game, determiningn@ves that can be
made, and draw all possible paths to the end of this game.

Each horizontal layer is composed of GameStates that cardahed in the same
number of moves, namely the depth of the layer (e.g. any statiee 3rd layer is
reached in exactly 3 moves). States with red trim are statedigh player 2 has a
winning strategy over player 1, and states with blue trimthose at which player 1
has a winning strategy. Lines between states signify tlealcilver state can be reached
after a single move from the upper state (parent/childiszahip in the tree structure).

States highlighted in yellow are terminal. There can be atrhof these in any layer
by design. Experiments to this point have shown that playainays has a winning
strategy (true up to 50), therefore we highlight states gegrif they belong to "the"
winning path for player 2 (in reality, there are several vitighpaths but we highlight
just a single one).

The TreeDrawer can be executed, after compilation, by ngitiie command

appletviewer TreeDrawer.java

Do not delete the comment in the preamble, as this is usednéinme by the ap-
pletviewer. Email paul.bairdsmith@gmail.com for moreoimhation.
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