
A COLLECTION OF CENTRAL LIMIT TYPE RESULTS INGENERALIZED ZECKENDORF DECOMPOSITIONSRAY LI AND STEVEN J. MILLERAbstra
t. Ze
kendorf's Theorem states that if the Fibona

i numbers are indexed as F1 = 1,
F2 = 2, F3 = 3, F4 = 5, . . . , then every positive integer 
an be written uniquely as thesum of non-adja
ent Fibona

i numbers. This result 
an be generalized to 
ertain 
lassesof linear re
urren
e relations {Gn} with appropriate notions of de
ompositions. For manyde
ompositions, the distribution of the number of summands in the de
omposition of an
M ∈ [Gn, Gn+1) is known to 
onverge to a Gaussian as n → ∞. This work dis
usses a moregeneral approa
h to proving this kind of asymptoti
 Gaussian behavior that also bypasseste
hni
al obstru
tions in previous approa
hes. The approa
h is motivated by the binomials
an,k =

(

n

k

). The binomials satisfy the re
ursion an,k = an−1,k + an−1,k−1 and are wellknown to have the property that the random variables {Xn}
∞

n=1 given by Pr[Xn = k] =
an,k/

∑

∞

i=0
an,i 
onverge to a Gaussian as n → ∞. This new approa
h proves that appropriatetwo-dimensional re
urren
es exhibit similar asymptoti
 Gaussian behavior. From this, we 
anreprove that the number of summands in de
ompositions given by many linear re
urren
erelations is asymptoti
ally Gaussian and additionally prove that for any non-negative integer

g, the number of gaps of size g in the de
omposition of an M ∈ [Gn, Gn+1) also 
onverges toa Gaussian as n → ∞. 1. Introdu
tion1.1. History. The Fibona

i numbers is a fas
inating sequen
e with many properties andinteresting relationships; see for example [18℄. Ze
kendorf [30℄ proved that if the Fibona

inumbers are de�ned by F1 = 1, F2 = 2, F3 = 3, F4 = 5, and in general Fn+1 = Fn + Fn−1,then every integer 
an be written as a sum of non-adja
ent terms. The standard proof is bythe greedy algorithm: to de
ompose an integer M , repeatedly subtra
t from M the largestFibona

i number less than or equal to M . It is impossible that this pro
ess 
hooses two
onse
utive Fibona

i numbers Fn−1 and Fn, as it would have 
hosen Fn+1 instead, and forthe same reason this pro
ess never 
hooses the same Fibona

i number twi
e.Ze
kendorf's theorem 
an be generalized to sequen
es other than the Fibona

i numbers.Consider for example the powers of 10 given by the re
urren
e Gn = 10Gn−1 and having values
G1 = 1, G2 = 10, G3 = 100, and in general Gn = 10n−1. For this sequen
e, a legal de
ompo-sition of a positive integer M is simply its base-10 representation. Note these de
ompositionsdisallow 10 or more 
opies of every distin
t term in the de
omposition, while Fibona

i de-
ompositions disallow 
onse
utive terms in de
ompositions. A general Ze
kendorf's theorem
an be stated for linear re
urren
es with nonnegative 
oe�
ients and appropriately de�nedinitial 
onditions, and the proof has the same idea as the Fibona

i 
ase (see Theorem 1.2).For even more examples of de
ompositions, see [1, 11℄ for signed de
ompositions, [10℄ for f -de
omposition, and [6, 7, 8℄ for some re
urren
es where the leading term vanishes, whi
h 
anlead to di�erent limiting behavior.The se
ond named author was partially supported by NSF grants DMS1265673 and DMS1561945. Theauthors thank their 
olleagues from Math 21-499 at Carnegie Mellon University and CANT 2016 for manyhelpful 
onversations.MONTH 2016 1



THE FIBONACCI QUARTERLYMany questions 
an be asked about de
ompositions. To begin, one must understand theaverage number of summands in a de
omposition. Lekkerkerker [21℄ proved for Fibona

inumbers that the average number of summands of an M ∈ [Fn, Fn+1) is n/(ϕ2 + 1), where
ϕ is the golden mean. For many general sequen
es {Gn}, the average number of summandsin the 
orresponding de
omposition of an M ∈ [Gn, Gn+1) is An + B + o(1) for 
onstants Aand B, meaning the quantity grows linearly [4, 9, 14, 15, 16, 17, 20℄ and lower order terms arewell behaved [25℄. Note that when {Gn} is powers of a �xed base b, the number of summands
orresponds to the sum of digits fun
tion.After determining the mean, it remains to determine the varian
e, or in general, the distri-bution of the number of summands. For many de
ompositions, �u
tuations about the meanhave been shown to 
onverge to a Gaussian [3, 8, 13, 15, 16, 17, 20, 23, 24, 25, 26, 27, 28, 29℄.Kolo�glu, Kopp, Miller and Wang [19℄ adopt a more 
ombinatorial approa
h to prove that thenumber of summands in the de
omposition for Fibona

i numbers 
onverges to a Gaussian.They expli
itly 
ount with Stirling's formula the number of M with exa
tly k summands in thede
omposition, whi
h they prove is a binomial 
oe�
ient. Using this approa
h they also exa
tlydetermine the mean and varian
e of the number of summands over M ∈ [Fn, Fn+1). Millerand Wang [25℄ extend these results to general linear re
ursive sequen
es with positive integer
oe�
ients; the method from [19℄ 
annot be 
arried over dire
tly as there is not a tra
table
losed form expression for the number of M with exa
tly k summands. Their approa
h usesappropriately sele
ted generating fun
tions to 
ompute the moments of the number of sum-mands and show that su
h moments, appropriately normalized, 
onverge to the moments ofthe standard normal.Additionally we 
an analyze the gaps of de
ompositions. One 
an ask the same questionsabout the mean, varian
e, and general distribution of the gaps of de
omposition. Be
kwith etal. [2℄ and Bower et al. [5℄ (see also [12℄) proved results on the distribution of gaps in manygeneralized de
ompositions arising from linear re
urren
es. In parti
ular, they proved that theaverage number of size-g gaps in an M ∈ [Gn, Gn+1) de
ays exponentially as g grows anddetermined that the distribution of the longest gap between summands behaves similarly tothe distribution of the longest run of heads in tossing a biased 
oin. Li and Miller [22℄ provethe analogue of Miller and Wang's [25℄ results for gaps, proving linearity of mean and varian
eas well as asymptoti
 normality for size-g gaps.We survey results on generalized Ze
kendorf de
ompositions in �1.2 and �1.3 and outlineproofs of asymptoti
 Gaussianity in �2 and �3. Though these results 
an be established ingeneral [22℄, we fo
us on the 
ase of Fibona

i numbers to highlight the ideas and te
hniques.1.2. De
ompositions. Before our main dis
ussion, we introdu
e some notation and basi
fa
ts about Ze
kendorf De
ompositions.De�nition 1.1. A positive linear re
urren
e sequen
e (PLRS) is a sequen
e {Gn} satisfying

Gn = c1Gn−1 + · · · + cLGn−L (1.1)with non-negative integer 
oe�
ients ci with c1, cL, L ≥ 1 and initial 
onditions G1 = 1 and
Gn = c1Gn−1 + c2Gn−2 + · · ·+ cn−1G1 + 1 for 1 ≤ n ≤ L.We 
an generalize Ze
kendorf's Theorem to PLRS. Essentially, the notion of a legal de
om-position means that when we write an M as a sum of terms of the sequen
e that we 
annotuse the re
urren
e relation to repla
e 
onse
utive terms with another term in the sequen
e.2 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSTheorem 1.2 (Generalized Ze
kendorf Theorem). Let {Gn} be a positive linear re
urren
esequen
e. For ea
h integer M > 0, there exists a unique legal de
omposition
M =

N
∑

i=1

aiGN+1−i (1.2)with a1 > 0 and the other ai ≥ 0, and one of the following two 
onditions, whi
h de�ne a legalde
omposition, holds.(1) We have N < L and ai = ci for 1 ≤ i ≤ N .(2) There exists an s ∈ {1, . . . , L} su
h that a1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs,
as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}

N−s−ℓ
i=1 (with bi = as+ℓ+i) is either legal orempty.Given {Gn} a PLRS, and positive integer M , we 
an rewrite the legal de
omposition givenby Theorem 1.2 as

M =

N
∑

i=1

aiGN+1−i = Gi1 +Gi2 + · · ·+Gik . (1.3)for some positive integer k = a1+a2+· · ·+aN and i1 ≥ i2 ≥ · · · ≥ ik. With this representation,we say M has k summands in the de
omposition (or simply, M has k summands). The gapsin the de
omposition of M are the numbers i1 − i2, i2 − i3, . . . , ik−1 − ik (for example, 101 =
F10+F5+F3+F1, and thus has gaps 5, 2, and 2). We often refer to the gaps in the de
ompositionof M as simply the gaps of M . Let kΣ(M) denote the number of summands of M and kg(M)the number of gaps of size g in M 's de
omposition. Note that if M has k summands, then Mhas k − 1 gaps. In this sense, kg(M) is a de
omposition of kΣ(M), as

kΣ(M) = 1 +
∞
∑

g=0

kg(M). (1.4)Throughout this paper we let KΣ,n denote the random variable equal to kΣ(M) for an M
hosen uniformly from [Gn, Gn+1) and let Kg,n denote a random variable equal to kg(M) foran M 
hosen uniformly from [Gn, Gn+1).1.3. Asymptoti
 normality theorems. Versions of the next result are known for manysequen
es; see for example [13, 15, 16, 17, 20, 23, 25, 26, 27, 28, 29℄ (we espe
ially follow belowthe approa
h in [25℄, as the authors there work with PLRS). Note that the �rst part of thetheorem regarding µn generalizes Lekkerkerker's [21℄ work for Fibona

i numbers.Theorem 1.3. Let {Gn} be a PLRS. Let KΣ,n be the random variable de�ned above andsuppose it has mean µn and varian
e σ2
n. There exists positive 
onstants A and C and real
onstants B and D su
h that

µn = An+B + o(1)

σ2
n = Cn+D + o(1). (1.5)Furthermore (KΣ,n − µn)/σn 
onverges weakly to the standard normal N(0, 1) as n → ∞.Li and Miller [22℄ prove the following result on gaps of de
ompositions. The 
omputationof µg,n was known by Bower et al. [2℄, ex
ept for the lower order terms. Bower et al. further
omputed the leading 
oe�
ient A. Li and Miller provide formulas for expli
itly 
omputing Aand C from the re
urren
e relation, though they do not follow through the 
omputation as itis not ne
essary for their main result on asymptoti
 Gaussianity. To the authors' knowledge,MONTH 2016 3



THE FIBONACCI QUARTERLYthe rest of Theorem 1.4 is new. Note that in the 
ase of the Fibona

i numbers ea
h M hasno gaps of size 0 or 1 so the random variable Kg,n is always 0. We therefore must be 
arefulto ex
lude su
h 
ases from the result.Theorem 1.4 (Gaussian Behavior for Gaps of De
ompositions). Let g ≥ 0 be a �xed positiveinteger and let {Gn} be a PLRS with the additional 
onstraint that all cis are positive. Let Kg,nbe the random variable de�ned above and suppose it has mean µg,n and varian
e σ2
g,n. Supposethere exists n0 ∈ N su
h that Kg,n is non-trivial for n ≥ n0. There exists positive 
onstants Aand C and real 
onstants B and D su
h that

µg,n = An+B + o(1)

σ2
g,n = Cn+D + o(1). (1.6)Furthermore (Kg,n − µg,n)/σg,n 
onverges weakly to the standard normal N(0, 1) as n → ∞.In the next se
tion, we outline two proofs of Theorem 1.3 when {Gn} is the Fibona

inumbers. The �rst is given by Miller and Wang [25℄ and the se
ond is given by Li and Miller[22℄. We then show in the following se
tion how the later proof extends to proving Theorem1.4. 2. Gaussian Number of Summands2.1. Generating Fun
tion Approa
h. We sket
h the proof by Miller and Wang [25, 26℄of Theorem 1.3 in this subse
tion. Though the theorem holds in general, we restri
t ourdis
ussion here to the Fibona

i numbers to highlight the main ideas, and we fo
us on theproof of asymptoti
 normality, as the linearity of mean and varian
e follow as intermediateresults.Miller and Wang use the Method of Moments to prove 
onvergen
e to a Gaussian. TheMethod of Moments states that if the moments of a sequen
e of random varian
es 
onvergesto the moments of a Gaussian distribution, the sequen
e 
onverges in distribution to thatGaussian. Re
all that the odd moments of the standard normal N(0, 1) are 0 and that theeven moments are (2m− 1)!! = (2m− 1) · (2m− 3) · · · 1.Lemma 2.1 (Method of Moments). Suppose X1,X2, . . . are random variables su
h that forall integers m ≥ 0, we have

lim
n→∞

E[X2m
n ] = (2m− 1)!! and lim

n→∞
E[X2m+1

n ] = 0. (2.1)Then the sequen
e X1,X2, . . . 
onverges weakly in distribution to the standard normal N(0, 1).Thus, setting
µ̃n(m) = E [(KΣ,n − µn)

m] , (2.2)we have
E

[(

KΣ,n − µn

σn

)m]

=
µ̃n(2m)

µ̃n(2)m
(2.3)where µn = E[KΣ,n] and σ2

n = Var[KΣ,n]. It thus su�
es to prove for all m
lim
n→∞

µ̃n(2m)

µ̃n(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µ̃n(2)
m+ 1

2

= 0. (2.4)Our goal therefore is to 
ompute µ̃n(m) for all nonnegative integers m.4 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSFor n, k ≥ 0, let pn,k be the number of M ∈ [Fn, Fn+1) with exa
tly k summands in itsZe
kendorf de
omposition. Then Pr[KΣ,n = k] =
pn,k∑

∞

k=0
pn,k

. Note that if M ∈ [Fn, Fn+1), thenthe de
omposition of M begins with Fn. Furthermore
M − Fn ∈ [0, Fn−1) = {0}

n−2
⋃

i=1

[Fi, Fi+1), (2.5)from whi
h we establish
pn,k = pn−2,k−1 + pn−3,k−1 + · · ·

pn−1,k = pn−3,k−1 + pn−4,k−1 + · · · . (2.6)Subtra
ting the se
ond line from the �rst gives the two-dimensional re
ursive formula
pn,k = pn−1,k + pn−2,k−1. (2.7)Let

G(x, y) :=
∑

n,k≥0

pn,kx
kyn

Pn(x) :=

∞
∑

k=0

pn,kx
k

Ωn := Pn(1) =

∞
∑

k=0

pn,k = Fn+1 − Fn (2.8)so that
G(x, y) =

∑

n≥0

Pn(x)y
n. (2.9)To �nish the problem it su�
es to 
ompute Pn(x). Indeed, we know Pn(1) =

∑

k≥0 pn,k =

Fn+1 − Fn and if we know Pn(x), we 
an determine
µn :=

P ′
n(1)

Pn(1)
. (2.10)Taking appropriate derivatives of Pn(x)/x

µn , we have
µ̃n(1) = E[(KΣ,n − µn)

0] = 1

µ̃n(1) = E[KΣ,n − µn] = 0

µ̃n(2) = E[(KΣ,n − µn)
2] =

1

Pn(1)
· x

(

x

(

Pn(x)

xµn

)′)′
∣

∣

∣

∣

∣

x=1

µ̃n(3) = E[(KΣ,n − µn)
3] =

1

Pn(1)
· x

(

x

(

x

(

Pn(x)

xµn

)′)′
)′∣
∣

∣

∣

∣

x=1

(2.11)and so on, whi
h allows us to 
ompute the moments µ̃n(m) of KΣ,n − µn.Miller and Wang's te
hnique for 
omputing Pn(x) is the following. Using (2.7) and theinitial 
onditions of the re
ursion, we have
G(x, y) =

xy

1− y − xy2
. (2.12)MONTH 2016 5



THE FIBONACCI QUARTERLYDe
omposing this with partial fra
tions, we write
−

y

y1(x)− y2(x)

(

1

y − y1(x)
−

1

y − y2(x)

) (2.13)where y1(x) and y2(x) are the roots of 1− y − xy2. Rewriting 1
y−y1(x)

as −(1− y
y1(x)

)−1 andusing power series expansion, we 
an 
ompute Pn(x).This 
on
ludes the sket
h of Miller and Wang's proof of Theorem 1.3 when {Gn} is theFibona

i numbers. For general re
ursions {Gn}, the proof is similar, but the more 
ompli
atedgenerating fun
tions lead to signi�
antly more involved 
omputations.2.2. Re
ursive Generating Fun
tion Approa
h. Li and Miller [22℄ present a new approa
hfor obtaining Central Limit type results like Theorem 1.3, and while their main result is provingthe asymptoti
 normality of the number of gaps, we �rst illustrate the approa
h by dis
ussingits appli
ation to the number of summands.While the previous approa
h uses partial fra
tions to 
ompute Pn(x), this new approa
h
omputes Pn(x) re
ursively, using the ni
e re
ursive behavior of the 
oe�
ients in (2.7). Thishas several bene�ts. First, we don't need to worry about initial 
onditions of the re
urren
e.Not only does this save tedious 
al
ulations, but it shows that the re
urren
e relation of pn,kis the only thing on whi
h Gaussian behavior depends. Additionally, this approa
h gives ageneral framework for 
hara
terizing Gaussian behavior arising in two-dimensional re
ursions,from whi
h we 
an also prove that the number of gaps approa
hes a Gaussian.To begin, de�ne
Pn(x) :=

∞
∑

k=0

pn,kx
k

Ωn := Pn(1) =

∞
∑

k=0

pn,k = Fn+1 − Fn (2.14)as before and additionally de�ne
P̃n,0(x) :=

Pn(x)

xµ+1

P̃n,m(x) := (xP̃n,m−1(x))
′ (2.15)so that

E [(KΣ,n − µn)
m] = µ̃n(m) =

P̃n,m(1)

Ωn
. (2.16)Using (2.7) we dedu
e re
ursive relationships for Pn(x), Ωn and µn:

Pn(x) =

∞
∑

k=0

pn,kx
k =

∞
∑

k=0

(pn−1,k + pn−2,k−1) x
k = Pn−1(x) + xPn−2(x)

Ωn = Pn(1) = Pn−1(1) + 1 · Pn−2(1) = Ωn−1 +Ωn−2

µn =
P ′
n(1)

Ωn
=

P ′
n−1(1) + 1 · P ′

n−2(1) + Pn−2(1)

Ωn
=

Ωn−1

Ωn
µn−1 +

Ωn−2

Ωn
(µn−2 + 1).(2.17)Indu
tion also gives re
ursive formulas for P̃n,m and µ̃n(m)6 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONS
P̃n,m =

m
∑

ℓ=0

(

m

ℓ

)

(

(µn−1 − µn)
ℓP̃n−1,m−ℓ(x) · x

µn−1−µn

+ (1 + µn−2 − µn)
ℓP̃n−2,m−ℓ(x) · x

1+µn−2−µn

)

µ̃n(m) =

m
∑

ℓ=0

(

m

ℓ

)(

Ωn−1

Ωn
(µn−1 − µn)

ℓµ̃n−1(m− ℓ) +
Ωn−2

Ωn
(1 + µn−2 − µn)

ℓµ̃n−2(m− ℓ)

)

.(2.18)The re
ursive formula for µn lets us prove µn is linear. Finally, (2.18) allows us to 
omputethe moments. By our earlier dis
ussion, the following lemma implies Theorem 1.3.Lemma 2.2. For ea
h integer m ≥ 0, there exist polynomials Q2m of degree exa
tly m and
Q2m+1 of degree at most m su
h that

µ̃n(2m) = Q2m(n) + o(1)

µ̃n(2m+ 1) = Q2m+1(n) + o(1). (2.19)Furthermore, there exists a 
onstant α su
h that the leading 
oe�
ient of Q2m is (2m−1)!!·αm.The idea for the proof is as follows. First, the lemma is true for m = 0 as µ̃n(0) = 1 and
µ̃n(1) = 0 for all n. For higher moments, note in the 
al
ulation of µn(m) in (2.18) thatthe 
oe�
ients µn−i(m) of the mth moments sum to 1, the 
oe�
ients of µ̃n−i(m − 1), the
(m−1)th moments, sum to 0, and the 
oe�
ients of µ̃n−i(m−2), the (m−2)th moments, sumto (m2 ) · (
onstant). This allows us to pin down the polynomial behavior of µn(m). The idea isthat if A is a degree d polynomial, then A(1) +A(2) + · · ·+A(n) is a degree d+1 polynomialin n. For example, by (2.18), ea
h se
ond moment is the weighted average of previous se
ondmoments plus a 
onstant, so the se
ond moments should be linear in n. Similarly, assuming thelemma is true for m = 0 and m = 1, ea
h fourth moment is the weighted average of previousfourth moments plus a linear in n, so the fourth moments grow quadrati
ally in n. Be
ausethe 
oe�
ients of the (m − 1)th moments in (2.18) sum to 0, the degrees of the polynomialsin
rease by one with every two values of m as opposed to every one.The a
tual proof of this lemma is more involved as the 
oe�
ients for our re
ursion (2.18) arenot �xed. For example, the 
oe�
ients for µ̃n−1(m) and µ̃n−2(m) are Ωn−1/Ωn and Ωn−2/Ωn,respe
tively, whi
h vary with n. However these 
oe�
ients 
onverge qui
kly to 1/ϕ and 1/ϕ2,respe
tively, where ϕ is the golden mean, so the moments µ̃n(m) still behave as we expe
t. Fora full proof, see Se
tion 2.3 of [22℄, parti
ularly Lemma 2.12.3. Gaussian Number of Gaps3.1. General Two Dimensional Re
ursions. The te
hnique in �2.2 generalizes to two-dimensional re
ursions.Theorem 3.1 (Central Limit Theorem in 2D Re
ursions). Let i0 and j0 be positive integers.Let ti,j be real numbers for 1 ≤ i ≤ i0, 0 ≤ j ≤ j0 su
h that for all i, t̂i :=

∑j0
j=0 ti,j ≥ 0.Suppose that the polynomial T (x) = xi0 −

∑i0
i=1 t̂ix

i0−i has a unique, multipli
ity 1, maximummagnitude root λ1 > 0. Suppose pn,k is a two-dimensional re
urren
e sequen
e satisfying, forMONTH 2016 7



THE FIBONACCI QUARTERLY
n ≥ n0,

pn,k =

i0
∑

i=1

j0
∑

j=0

ti,jpn−i,k−j. (3.1)Suppose further that pn,k ≥ 0 for all n and k, pn,k = 0 when n < 0 or k < 0, �nitely many pn,kare nonzero for n < n0, and ∑∞
i=0 pn,i = Θ(λn

1 ). Let Xn be the random variable with mean µnand varian
e σ2
n whose mass fun
tion is proportional to pn,k over varying k so that

Pr[Xn = k] =
pn,k

∑∞
i=0 pn,i

. (3.2)There exist 
onstants A,B,C and D su
h that µn = An+B + o(1), σ2
n = Cn+D+ o(1), and

A and C are expli
itly 
omputable from the ti,js. Furthermore, if C is positive, (Xn − µn)/σn
onverges weakly to the standard normal N(0, 1) as n → ∞.Outside of the te
hni
al requirement that ∑∞
i=0 pn,i = Θ(λn

1 ), there is no 
onstraint on theinitial 
onditions of pn,k. Note that in general the asymptoti
 behavior of re
ursive sequen
esis not independent of the initial 
onditions. For example, the re
ursion bn = 5bn−1 − 6bn−2has the general solution bn = α · 3n + β · 2n, but if we 
hoose initial 
onditions b1 = 2, b2 = 4,then we have bn = 2n and the 3n term of the general solution vanishes. For this reason thete
hni
al 
onstraint is required to ensure the largest term of ∑∞
i=0 pn,i does not vanish.For intuition on the theorem, 
onsider the spe
i�
 
ase of the two-dimensional re
urren
e

an,k = an−1,k+an−1,k−1 with initial 
ondition a0,0 = 1. This re
urren
e produ
es the binomials
an,k =

(

n
k

), and the random variables {Xn}
∞
n=1 given by Pr[Xn = k] = an,k/

∑∞
i=0 an,i are wellknown to 
onverge to a Gaussian as n → ∞. Additionally, for any dis
rete random variable

Yn taking on �nitely many integer values q1, . . . , qb ≥ 0 with probabilities r1, . . . , rb summingto 1, the Theorem applied to the sequen
e an,k =
∑b

i=1 rian−1,k−qi gives the 
lassi
al CentralLimit Theorem for Yn.We now show that Theorem 3.1 applies to gaps in Fibona

i numbers. For dis
ussion ongeneral re
ursions, see [22℄.Fix an integer g ≥ 2. Let pg,n,k denote the number of M ∈ [Fn, Fn+1) with exa
tly k gaps ofsize g in its de
omposition. The de
omposition of anM ∈ [Fn, Fn+1) begins with Fn andM−Fnis in [0, Fn−1). The term Fn is part of a gap of size g if and only if M − Fn ∈ [Fn−g, Fn−g+1).Thus we may write
pg,n,k =

(

n−g−1
∑

i=1

pg,i,k

)

+ pg,n−g,k−1 +





n−2
∑

i=n−g+1

pg,i,k





=

(

n−2
∑

i=1

pg,i,k

)

+ pg,n−g,k−1 − pg,n−g,k. (3.3)Shifting indi
es gives
pg,n−1,k =

(

n−3
∑

i=1

pg,i,k

)

+ pg,n−g−1,k−1 − pg,n−g−1,k. (3.4)Subtra
ting (3.4) from (3.3) and simplifying gives
pg,n,k = pg,n−1,k + pg,n−2,k + (pg,n−g,k−1 − pg,n−g,k − pg,n−g−1,k−1 + pg,n−g−1,k). (3.5)We 
an 
he
k (3.5) satis�es the requirements for Theorem 3.1, implying Theorem 1.4. As ate
hni
al detail, we must 
he
k that the C given by Theorem 1.4 is positive. For sake of brevity,8 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSwe do not in
lude the formula for C in this arti
le, but the interested reader may see [22℄ fordis
ussion. 4. Further Work and Open QuestionsWe end with a few natural questions for future work. The �rst is to see how far Theorem 3.1
an be generalized. Can we loosen any te
hni
al 
onditions? What about three-dimensionalrelations? What about in�nite sized re
ursions? For example, if we proved a similar theoremwith ti,j for bounded i and unbounded j, we might generalize the standard Central LimitTheorem for any integer valued random variable. This 
ontrasts with the 
urrent formulation,whi
h generalizes CLT only on integer random variables with �nite support.In Theorem 1.4, 
an one remove the additional 
onstraint on the PLRS that every 
oe�
ient
ci must be positive and obtain the same results (that is, if some of ci are allowed to be zero)? Insome previous problems this 
onstraint on the ci's was to simplify the algebra, but for othersit was essential as otherwise very di�erent behavior emerges. What about arbitrary linearre
ursions where some 
oe�
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