
ON SUMMAND MINIMALITY OF GENERALIZED ZECKENDORF
DECOMPOSITIONS

KATHERINE CORDWELL, MAX HLAVACEK, CHI HUYNH, STEVEN J. MILLER, CARSTEN PETERSON,
AND YEN NHI TRUONG VU

ABSTRACT. Zeckendorf proved that every positive integer can be uniquely represented as a sum
of non-consecutive Fibonacci numbers. This has been extended in many ways, including to linear
recurrences Hn = c1Hn−1 + · · · + ctHn−t where the ci are non-negative integers and c1, ct ≥ 1.
Every integer has a unique generalized Zeckendorf decomposition (gzd) – a representation com-
posed of blocks that are lexicographically less than (c1, . . . , ct), which we call the signature. We
prove that the gzd of a natural number m uses the fewest number of summands out of all repre-
sentations for m using the same recurrence sequence, for all m, if and only if the signature of the
linear recurrence is weakly decreasing (i.e., c1 ≥ · · · ≥ ct). Following the parallel with well-known
base d representations, we develop a framework for naturally moving between representations of
the same number using a linear recurrence, which we then utilize to construct an algorithm to turn
any representation of an integer into the gzd. To prove sufficiency, we show that if the signature is
weakly decreasing then our algorithm results in fewer summands. To prove necessity we proceed by
divide and conquer, breaking the analysis into several cases. When c1 > 1, we give an example of a
non-gzd representation of an integer and show that it has fewer summands than the gzd by perform-
ing the same above-mentioned algorithm. When c1 = 1, we non-constructively prove the existence
of a counterexample by utilizing the irreducibility of a certain family of polynomials together with
growth rate arguments.

CONTENTS

1. Introduction 2
2. Preliminaries 4
3. Algorithm: From Any Representation to the GZD 8
4. Weakly Decreasing Signature Implies Summand Minimality 11
5. Summand Minimality Implies Weakly Decreasing Signature 13
5.1. Case 1: ∃ ci > c1 ≥ 2 13
5.2. The “cutting” technique 13
5.3. Case 2: ct+1 < c1 and c1 ≥ 2 15
5.4. Case 3: ct+1 = c1 and c1 ≥ 2 17
5.5. Case 4: c1 = 1 19
Appendix A. Proof of Lemma 5.2 25
Appendix B. Subcase 1 of ct+1 < c1 and ` = 1 25
Appendix C. Subcase 2 of ct+1 < c1 and ` = 1 26

Date: September 6, 2017.
2010 Mathematics Subject Classification. 11B37 (primary) 11B39, 65Q30 (secondary).
The fourth named author was partially supported by NSF Grants DMS1561945 and DMS1265673, the other authors

by NSF Grant DMS1347804 and Williams College, and additionally the last named author by Professor Amanda
Folsom and her NSF Grant DMS1449679.

1

Appendix D. Subcase ` = 2 in case ct+1 = c1 27
Appendix E. A subcase of case ct+1 = c1 and ` = 1 28
Appendix F. Proof of Proposition 5.9 29
References 29

1. INTRODUCTION

A celebrated theorem of Zeckendorf [Ze] states that every positive integer can be uniquely
represented as a sum of non-consecutive Fibonacci numbers (with F1 = 1, F2 = 2). This result
has sparked significant interest since its introduction. Brown [Br1, Br2] and Keller [Ke] noticed
that the Fibonacci numbers are distinguished as the only sequence such that every positive integer
has a unique representation as the sum of non-consecutive members in the sequence. Thus, many
authors have furthered Zeckendorf’s theorem by specifying a rule for unique representation and
deducing the structure of the sequence which allows for this representation rule (see for example
[Day, DDKMMV, CFHMN1]).

Several authors have interpreted Zeckendorf’s theorem as a way of using the Fibonacci numbers
as a number system. This analogy is particularly apt because we can think of the conventional
base d representation as arising from a degree one recurrence Hn = dHn−1 (with appropriate ini-
tial conditions). In following this analogy, several authors have extended Zeckendorf’s theorem
for sequences arising from a larger class of linear recurrences. Namely, given a linear recurrence
sequence, one may ask if there is a “natural” set of rules allowing for unique representation of
each integer. Shortly following Zeckendorf’s original result, many authors extended Zeckendorf’s
theorem to broader classes of recurrences of some specific forms (see for instance [Ho, Day, Fr,
HW]). Given a linear recurrence Hn = c1Hn−1 + · · · + ctHn−t, we call σ = (c1, . . . , ct) the
signature of the recurrence. Fraenkel [Fr] generalized Zeckendorf’s result to all recurrences with
weakly decreasing signature. More recently, Miller and Wang [MW1, MW2] and independently
Hamlin and Webb [Ha], have generalized Zeckendorf’s theorem to non-negative signatures with
c1 ≥ 1. Furthermore, various authors ([Ha, CFHMN1, CFHMN2, CFHMNPX]) provided evi-
dence that this is the broadest class of signatures for which one can expect Zeckendorf’s theorem
to extend in a simple way, as negative coefficients or c1 = 0 can lead to relations where infinitely
many integers do not have a unique decomposition. Thus we shall always assume c1 ≥ 1 and all
ci are non-negative integers below.

For a non-negative linear recurrence, the unique representation of a positive integer using the
recurrence sequence is called its generalized Zeckendorf decomposition (gzd). Classically, many
authors have asked questions about the number of summands in Zeckendorf decompositions (see
[Lek] for example). More recently, [BBGILMT, BILMT, LM, Ste] (among others) investigated
the distribution of the number of summands and the gap between consecutive summands in the
gzd.

Of all the decompositions of an integer as a sum of Fibonacci numbers, the Zeckendorf decom-
position is minimal in that no other decomposition has fewer summands. The proof is immediate
and follows by the introduction of an appropriate monovariant, and keeping track of how one
moves from an arbitrary decomposition to the Zeckendorf one. Given a decomposition of m into a
sum of Fibonacci numbers, consider the sum of indices of terms in the decomposition. If we have
two adjacent summands Fi and Fi+1 we do not increase the index sum by replacing them with
Fi+2. If we have F1 twice use F2 instead, if we have F2 twice use F1 and F3, and in general if we

2

have Fk twice use 2Fk = Fk−2 + Fk−1 + Fk = Fk−2 + Fk+1, which decreases the index sum for
k ≥ 3 and yields a larger Fibonacci summand. We can only do this a bounded number of times or
we would have a Fibonacci summand larger than the largest Fibonacci number less than m, thus
when the process terminates there are no repeats or adjacencies. Thus we end in the Zeckendorf
decomposition, and see that it cannot have more summands than the original decomposition. This
minimality property holds for other decompositions. Alpert [Al] obtained a Zeckendorf-like result
for representations of integers using Fibonacci numbers where the representation can have mixed
sign summands (±1). She showed that this far-difference representation uses the fewest number
of summands among all mixed sign representations. This result is generalized for “Skipponacci”
sequences in [DDKMV].

The goal of this paper is to extend these arguments to a larger class of recurrence relations. We
call a representation of n summand minimal if no other representation of n uses fewer summands.
We say that a recurrence sequence is summand minimal if the gzd is summand minimal for all
n. Given that the Zeckendorf decomposition (arising from the Fibonacci numbers) is summand
minimal, one may ask if the gzd is always summand minimal. We completely answer this question
for positive linear recurrence relations.

Theorem 1.1. A recurrence sequence with signature σ = (c1, . . . , ct) where the ci are non-negative
integers with c1, ct ≥ 1 is summand minimal if and only if c1 ≥ c2 ≥ · · · ≥ ct.

In order to establish this result, we formulate two natural rules that allow us to move from one
representation to another (using the same recurrence sequence) while keeping track of the change
in the total number of summands. Using these two rules, we are then able to construct an algorithm
that will turn any representation of any integer into the gzd. In fact, our proof on the termination
of this algorithm provides an alternative proof of the generalized Zeckendorf theorem originally
proven by [MW1] and [Ha]. We then utilize this algorithm to prove that if a recurrence sequence
has a weakly decreasing signature, then the recurrence sequence is summand minimal. We ex-
ploit the fact that for linear recurrences with weakly decreasing signature, anytime we perform a
complete step of the algorithm, the total number of summands always weakly decreases.

The proof of the other direction of Theorem 1.1 requires significantly more work. In particular,
we prove the contrapositive by splitting it into four broad cases, three of which consider signatures
starting with c1 > 1. When c1 > 1, we provide explicit non-gzd representations with fewer sum-
mands than the gzd, which we construct by utilizing the algorithm to move from this representation
to the gzd. Although the proof involves a lot of casework and bookkeeping, the technique used
to prove all three cases is similar: keep track of the changes in the number of summands at each
iteration of the algorithm used to find the gzd.

Lastly, the case where c1 = 1 is much more interesting because we cannot directly apply our
previous technique without an enormous amount of casework. Here, we make use of the key piece
of information on the signature – the specific value of c1 = 1, and show that there exists an integer
of the form 2Hn for which the gzd has at least 3 summands. The proof involves determining the
form of the summand minimal gzd of 2Hn, if it exists, given the growth rate of the sequence and
then establishing multiple properties, such as irreducibility of families of polynomials, in order to
show that such form cannot hold for all n ∈ N.

In §2 we establish the terminology that we use throughout the paper, and also details on the
two aforementioned rules that allow us to move from one representation to another. Section 3
gives the algorithm that turns any initial representation into the gzd, and proves that this algorithm
terminates. The forward direction of Theorem 1.1 is proved in §4, and the reverse direction in §5.

3

In particular, subsections §5.1–§5.4 handle linear recurrences with signature starting with c1 > 1,
while subsection §5.5 deals with linear recurrences with signature starting with c1 = 1.

2. PRELIMINARIES

Following the parallel between the gzd and conventional base d proves to be extremely ad-
vantageous in our case: String-like representations allow us to depict and distinguish different
representations easily, faciliating the algorithm of moving from one representation to the next. In
particular, we define a representation of an integer using a recurrence sequence in the following
way.

Definition 2.1. LetH = {Hn}n∈N0 be a recurrence sequence. A sequence of non-negative integers
R = [rs, rs−1, . . . , r0] such that n =

∑
i riHi is called a representation of n using H .

Hamlin and Webb [Ha] have studied the gzd in a very similar framework; as such, we adopt
some of his terminologies but also define several others that are crucial given our question on
summand minimality. In this section, we detail these new definitions together with some examples
to showcase their importance.

First, in order to reinterpret the generalized Zeckendorf theorem in our framework, we need the
following definitions.

Definition 2.2. Suppose a linear recurrence is defined by Hn = c1Hn−1 + · · · + ctHn−t. Then
σ = (c1, . . . , ct) is called the signature of the recurrence.

Definition 2.3. A linear recurrence with σ = (c1, . . . , ct) is called positive if the ci are non-negative
integers and c1, ct ≥ 1.

Since we shall only be concerned with positive linear recurrences, hereafter we shall simply use
the word recurrence in place of positive linear recurrence.

Definition 2.4. Suppose σ = (c1, . . . , ct). Then [b1, . . . , bk] is called an allowable block (or valid
block) if k ≤ t, bi = ci for i < k, and 0 ≤ bk < ck.

Example 2.5. If σ = (4, 3, 2) then the set of allowable blocks is

{[0], [1], [2], [3], [4, 0], [4, 1], [4, 2], [4, 3, 0], [4, 3, 1]},
while if σ = (2, 0, 0, 3) then the allowable blocks are

{[0], [1], [2, 0, 0, 0], [2, 0, 0, 1], [2, 0, 0, 2]}.

Definition 2.6. Suppose σ = (c1, . . . , ct). Then H−(t−1) = H−(t−2) = · · · = H−1 = 0 and H0 = 1
are called the ideal initial conditions.

Henceforth, when referring to a sequence arising from a recurrence, we shall assume without
explicit mention that the sequence is obtained from the aforementioned recurrence with ideal initial
conditions. The symbol Hσ shall refer to the recurrence sequence obtained from signature σ and
ideal initial conditions.

We are now ready to reinterpret the generalized Zeckendorf theorem in our language.

Theorem 2.7. Let H = {Hn}n∈N0 be a recurrence sequence with signature σ = (c1, . . . , ct). Then
every non-negative integer N has a unique representation composed of allowable blocks. This
representation is called the generalized Zeckendorf decomposition (gzd).

4

Example 2.8. Suppose σ = (1, 1), the signature for the Fibonacci numbers. The allowable blocks
are {[0], [1, 0]}. Therefore Theorem 2.7 implies that every integer has a unique representation
composed of [0] and [1, 0], which is Zeckendorf’s theorem.

Example 2.9. Suppose σ = (d). Then the allowable blocks are {[0], [1], . . . , [d − 1]}. Theorem
2.7 implies that every integer can be uniquely expressed as a sum of powers of d such that each
coefficient in the sum is between 0 and d− 1, which is the base d representation.

If our recurrence is depth one (as is the case for base d representations), then our recurrence
sequence contains no zeros because we have only one initial condition, H0 = 1. However, if our
recurrence is of depth t ≥ 2, and we use the ideal initial conditions, then we have (t − 1) zeros
whose indices are negative (see Definition 2.6). In Definition 2.1 of the representation, we were
only concerned with the coefficients in the representation that have non-negative indices. While
we could have defined what it means for a representation to include coefficients whose indices go
all the way to −(t − 1), there is no need. For example, suppose σ = (1, 1). Then Hn = Fn (the
Fibonacci numbers). Suppose we change our definition of representation to include the −1 index
coefficient. Then, for example, we could represent 3 as [. . . , 0, 1, 0, 1, 0] (1×2+0×1+1×1+0×0)
or as [. . . , 0, 1, 0, 1, 100] (1×2+0×1+1×1+100×0). These representations are not different in
a meaningful way. The −1st coefficient could be arbitrarily large without fundamentally changing
the representation. Thus, so that we don’t distinguish representations which are “really the same”,
we should think of any representation as using “as many zeros as we want.” Therefore, given a
representation, we implicitly assume that this representation has (t− 1) negative index entries, all
of which are∞ (so, for example, using σ = (1, 1), our two “distinct representations” for 3 from
above would now be the single representation [. . . , 0, 1, 0, 1,∞]). When our recurrence is of depth
t, we shall use the shorthand∞t−1 to denote∞, . . . ,∞︸ ︷︷ ︸

t−1

, or when it’s clear how many infinities there

are, we shall simply use∞, . . . (in some cases we shall omit including the infinities, implying that
the rightmost index is 0). The justification for using infinities becomes even clearer below.

The signature provides a way of moving between representations of the same number. Thus
for example if our signature is (10), one representation for 312 is [3, 1, 2] (indeed, this is the
gzd). However, we may also represent it as [2, 11, 2] (by “borrowing” from the 100’s place).
Analogously, say we have the representation [6, 23, 4], that is 6 × 100 + 23 × 10 + 4 × 1 = 834.
However, since the 10’s place currently has 23 ≥ 10, we can “carry” over to the 100’s place to get
the representation [7, 13, 4], and then carry again to get [8, 3, 4].

The ideas of “borrowing” and “carrying” from base d arithmetic extend to all recurrences. For
example, suppose σ = (2, 1). The terms in our recurrence sequence would be [0, 1, 2, 5, 12, . . .].
If we have the representation [3, 0, 0,∞] (which represents 15 since 15 = 3× 5, we can “borrow”
at index 2 (remember, we start indexing from 0) to get the representation [2, 2, 1,∞] (15 = 2×5 +
2×2+1×1). Now suppose we borrow at index 2. We then get the representation [2, 1, 3,∞+1]. If
we extend our arithmetic to include∞ such that∞±n =∞ for any n <∞, and∞×0 = 0, then
we can still “borrow” even when it results in terms accumulating in the “infinities places.” Suppose
instead that we have the representation [3, 4,∞] (which represents 10 since 10 = 3 × 2 + 4 × 1).
Since 3 ≥ 2 and 4 ≥ 1, we “carry” to index 2 to get the representation [1, 1, 3,∞]. If we think of
∞ as a number which is larger than any finite number, then we can carry again to index 1 to get the
representation [1, 2, 1,∞− 1] = [1, 2, 1,∞]. Thus, using∞ also allows us to “carry” even when
it involves the infinities places.

The above discussion motivates the following formal definitions.
5

Definition 2.10. Given a positive linear recurrence with signature σ = (c1, . . . , ct), we have asso-
ciated borrow and carry rules. Consider a representation R = [. . . , 0, rn, rn−1, . . . , r0,∞t−1]. Let
B(R, i), C(R, i) be defined as

B : N∞0 × N→ N∞0
([. . . , rn, . . . , r0,∞t−1], i) 7→ [. . . , rn, . . . , ri − 1, ri−1 + c1, . . . , ri−t + ct, ri−(t+1), . . . , r0,∞t−1]

C : N∞0 × N→ N∞0
([. . . , rn, . . . , r0,∞t−1], i) 7→ [. . . , rn, . . . , ri + 1, ri−1 − c1, . . . , ri−t − ct, ri−(t+1), . . . , r0,∞t−1].

We call the application of B(R, i) borrowing from i and the application of C(R, i) carrying to i.

Remark 2.11. Borrowing and carrying are best visualized by the following tables:

n . . . i i− 1 . . . i− t i− (t + 1) . . . 0 −1 . . . −(t− 1)
R . . . rn . . . ri ri−1 . . . ri−t ri−(t+1) . . . r0 ∞ . . . ∞

Borrow from i −1 c1 . . . ct
B(R, i) . . . rn . . . ri − 1 ri−1 + c1 . . . ri−t + ct ri−(t+1) . . . r0 ∞ . . . ∞

TABLE 1. Borrow from i.

n . . . i i− 1 . . . i− t i− (t + 1) . . . 0 −1 . . . −(t− 1)
R . . . rn . . . ri ri−1 . . . ri−t ri−(t+1) . . . r0 ∞ . . . ∞

Carry to i 1 −c1 . . . −ct
C(R, i) . . . rn . . . ri + 1 ri−1 − c1 . . . ri−t − ct ri−(t+1) . . . r0 ∞ . . . ∞

TABLE 2. Carry to i.

Remark 2.12. When we borrow from/carry to an index i ≥ t, the change in the number of sum-
mands is±(−1 + c1 + · · ·+ ct). In such a case, we call these actions pure borrow and pure carry.
Note that after one pure borrow and one pure carry (independent of the position of index), the
change in the number of summands is zero. In the case where we borrow from/carry to an index
i < t, the change in the number of summands is ±(−1 + c1 + · · · + ci). We call these impure
borrow and impure carry.

Definition 2.13. Let R = [. . . , 0, rm, rm−1, . . . , r0,∞t−1] be a representation using the sequence
H with signature σ = (c1, . . . , ct). We say the representationR is legal up to s if [. . . , 0, rm, . . . , rs]
can be expressed in the form [. . . , [0], [B1], . . . , [Bj]] where for 1 ≤ i ≤ j, each [Bi] is an allowable
block and [B1] 6= [0].

Definition 2.14. The minimum legal index (m.l.i.) of a representation R is the smallest index s
such that R is legal up to s.

Notice that if σ = (c1, . . . , ct) and R is a representation using Hσ whose m.l.i. is s, then
rs−1 ≥ c1. If rs−1 = c1, then rs−2 ≥ c2. At some point, we must either have that rs−j > cj or for
all 1 ≤ j < t, rs−j = cj and rs−t ≥ ct. This motivates the following definition.

6

Definition 2.15. Suppose a representation R has m.l.i. equal to s. Let j be the smallest index such
that rs−j > cj , or if rs−i = ci for all 1 ≤ i ≤ t, then let j = t. The violation index is s− j and we
call rs−j the violation.

Definition 2.16. Suppose a representation R has m.l.i. equal to s and violation index equal to j.
Then [rs−1, . . . , rs−(j−1)] = [c1, . . . , cj−1] is called the prefix of the violation. The prefix and the
violation together comprise the violation block.

Definition 2.17. Let R be a representation with m.l.i. s and violation index j. We say that R is
semi-legal up to q if q = s− j + 1. We call q the semi-legal index (s.l.i.).

There are two key remarks following the above definitions.

Remark 2.18. We note that the s.l.i. is the index to the left of the violation index, i.e., equal to the
violation index plus one. Furthermore, the difference between the m.l.i. and the s.l.i. is exactly the
length of the violation prefix, which is 0 in the case that the violation prefix is empty.

Remark 2.19. The m.l.i. and s.l.i. essentially give us a way to think about how “close” a repre-
sentation is to its gzd. Indeed, with Definitions 2.13, 2.14 and 2.17, we have that the m.l.i. and the
s.l.i. of any gzd are both equal to 0, implying the gzd is legal up to 0. For any representation, we
can now say that it is legal up to x and semi-legal up to y; as such, the more positive x and y are,
the “further” away a representation is from the gzd.

Definition 2.20. Let R be some representation. We say that we are able to carry to j if for all
1 ≤ i ≤ t we have rj−i ≥ ci.

We now illustrate the above definitions via the following example.

Example 2.21. Let σ = (c1, c2, c3) = (3, 2, 4) and consider the representation R = [3, 2, 1, 1, 3, 0,
3, 3, 5]. We have

R =
[

3, 2, 1 , 1 , 3, 0 , 3, 3 , 5
]
,

where each closed box represents a valid block, while the right-opened box (3, 3) represents the
violation block. The violation index is 1, the s.l.i. is 2 and the m.l.i is 3. We are able to carry to 3
(the m.l.i.) because r2 = 3 = c1, r1 = 3 > 2 = c2 and r0 = 5 > 4 = c3. After carrying, we get the
following representation [

3, 2, 1 , 1 , 3, 1 , 0 , 1 , 1
]
,

which is the gzd. We note that the m.l.i. and s.l.i equal 0.

However, consider the same signature but the representation R′ = [3, 2, 1, 1, 3, 0, 3, 3, 1]. The
violation index, m.l.i., and s.l.i. are still the same but we cannot carry because r0 = 1 < 4 = c3.
This motivates the following definitions.

Definition 2.22. LetR be a representation with m.l.i. equal to s. We call s−` the carry obstruction
index (c.o.i.) if for all 1 ≤ i < `, rs−i ≥ ci and rs−` < c`.

Definition 2.23. Let R be a representation whose m.l.i. is s and c.o.i. is s− `. Then s− e is called
the rightmost excess index (r.e.i.) if for all e < i < `, rs−i = ci and rs−e > ce.

7

Example 2.24. Consider the aforementioned example with σ = (3, 2, 4) and R′ = [3, 2, 1, 1, 3, 0,
3, 3, 1]. Here, m.l.i. = 3, s.l.i. = 2 and the violation index is 1. The c.o.i. is 0 and the r.e.i. is 1
because r1 = 3 > c2 = 2. The idea is that we can borrow from the r.e.i. to make our c.o.i. large
enough so we are able to carry, hence the name. We demonstrate this in Table 3.

8 7 6 5 4 3 2 1 0 −1 −2
R′ 3 2 1 1 3 0 3 3 1 ∞ ∞

Borrow from 1 −1 3 2 4
3 2 1 1 3 0 3 2 4 ∞ ∞

Carry to 3 1 −3 −2 −4
3 2 1 1 3 1 0 0 0 ∞ ∞

TABLE 3. Sequence of borrows and carries to move to the gzd.

3. ALGORITHM: FROM ANY REPRESENTATION TO THE GZD

Recall from Remark 2.19 that a representation can be thought of as being “far” from the gzd
if its m.l.i. and s.l.i. are large. As such, a natural way to turn any representation into the gzd is
to try decreasing the m.l.i. and s.l.i. of the representation to zero. To do so, one can trace the
representation from left to right, find the first violation and attempt to “fix” it. Notice that because
any valid block is lexicographically less than the signature of the linear recurrence (see Definition
2.4), the entry at the violation index is always “too large”, which suggests that we can carry in order
to fix it, as in Example 2.21. In the case where we cannot carry, which means the c.o.i. exists, we
would borrow from the r.e.i. in order to carry, as in Example 2.24. As one goes along and performs
these borrows and carries to fix all possible violations, one would expect to decrease the m.l.i. and
the s.l.i. to zero to reach the gzd. Though there is more subtlety in the actual algorithm and why it
terminates, this is the key idea of the process.

We now present our algorithm formally.

Algorithm 3.1.
Input:a representation, R, of n
Output:the gzd of n
while the m.l.i. is not 0 do

if able to carry to m.l.i. then
carry to m.l.i.
while left neighbor block is [c1, . . . , ct] do

carry to next block
end

else
borrow from the r.e.i.

end
end

Remark 3.2. Recall that given a signature (c1, . . . , ct) we can decompose any representation R as

[. . . , [0], [B1], . . . , [Bj], [V], rm, rm−1, . . . , r0,∞t−1],
8

where each [Bi], 1 ≤ i ≤ j, represents a valid block with [B1] 6= [0] and [V] is the violation
block. In this sense, the left neighbor block of [V] is [Bj], the left neighbor block of any [Bi] with
2 ≤ i ≤ j is [Bi−1], and the left neighbor block of [B1] is [0].

We demonstrate this algorithm in the following example.

Example 3.3. Let σ = (5, 3, 1). We apply the algorithm to turn the representation R = [1, 5, 3, 0,
5, 4, 0, 6] into the gzd.

Index . . . 7 6 5 4 3 2 1 0 −1 . . .
m.l.i.= 4, s.l.i.= 3, c.o.i.= 1, r.e.i.= 2 1 5 3 0 5 4 0 6 ∞ . . .

borrow at 2 −1 5 3 1 . . .
able to carry 1 5 3 0 5 3 5 9 ∞ . . .

carry to 4 1 −5 −3 −1 . . .
left neighbor block in form to carry 1 5 3 1 0 0 4 9 ∞ . . .

carry to 7 1 −5 −3 −1
m.l.i=s.l.i.= 1 2 0 0 0 0 0 4 9 ∞ . . .

carry to 2 1 −5 −3
m.l.i=2, s.l.i= 1 2 0 0 0 0 0 5 4 ∞ . . .

carry to 3 1 −5 −3 ∞
m.l.i.=s.l.i.= 0, gzd 2 0 0 0 0 1 0 1 ∞ . . .

Note from the above example that the m.l.i may increase at some step of the algorithm, but the s.l.i.
can never increase.

In what follows, we give the proof of why Algorithm 3.1 terminates in the gzd. We first show that
the s.l.i. weakly decreases in Lemma 3.4, then we show that the s.l.i. strictly decreases after finitely
many steps in Lemma 3.5. Finally, using those two lemmas, we prove that the m.l.i. decreases to
0 in finitely many steps.

Lemma 3.4. The semi-legal index (s.l.i.) monotonically decreases.

Proof. Notice that if we are not able to carry, then the semi-legal index either stays the same or
decreases. Thus, without loss of generality, suppose that we are able to carry.

Firstly, suppose that the block before the violation block is [c1, . . . , c`−1, d`] with d` < c`. If
d` < c` − 1, then we still have a valid block after carrying. The entries between the old m.l.i. and
the old s.l.i. are zeros after carrying, which are valid blocks. Therefore the s.l.i. will have either
stayed the same or decreased.

Secondly, suppose that d` = c` − 1 and ` < t. After carrying, we have something of the form

[c1, . . . , c`−1, c`, 0, . . . , 0, v − ck+1, . . .],

where v is the original violation and the length of [0, . . . , 0] is the length of the violation prefix
before carrying.

We cannot have a violation before v − ck+1 because a violation requires that an entry is greater
than its corresponding entry in the signature; however, the first ` terms agree with the signature and
the remaining terms are all zero, so they are either equal to or less than the corresponding terms in
the signature. Therefore the earliest possible violation is at v − ck+1, so the s.l.i. either stays the
same or decreases.

9

Finally, suppose ` = t and d` = ct − 1. After we carry, the left neighbor block1 of the vio-
lation block is now [c1, . . . , ct], so we immediately carry again by the algorithm. If the next left
neighbor block is not [c1, . . . , ct − 1], then after the carry, at worst, we have [c1, . . . , cm] followed
by at least t zeros, where m < t. This must be made up of allowable blocks because we have
[c1, . . . , cm, 0, . . . , 0︸ ︷︷ ︸

t−m

] and ct ≥ 1. So in this case the s.l.i. has not increased. If the left neighbor

block is [c1, . . . , ct − 1], then after the carry, we carry again by the algorithm. We know that at
some point the left neighbor block is not [c1, . . . , ct − 1] since there are finitely many non-zero
blocks. As such, at some point this process terminates without increasing the s.l.i. �

Lemma 3.5. Suppose s.l.i. ≥ 1. Then, after finitely many steps of the algorithm, the s.l.i. de-
creases.

Proof. Let us consider the signature (c1, . . . , ct) and the representation

R = [. . . , [0], [B1], . . . , [Bj], c1, . . . , cm, v, . . .],

where 0 ≤ m < t, v is the first violation reading from left to right, and each Bi is a valid block.
Without loss of generality, let Bj = [c1, . . . , c`−1, d`], with d` < c`.

We now show that after finitely many steps, v decreases in size. First, when we perform the
algorithm, every time we borrow, the value in the rightmost excess index (r.e.i.) decreases by 1.
If we keep borrowing and are never able to carry, then at some point, we must have decreased
the value at the original r.e.i. to the point where it is no longer “excess”. At this point, the r.e.i.
increases, and so after finite time the r.e.i. becomes equal to the violation index and thus when we
borrow from there, v decreases.

Otherwise, after some borrows, we are able to carry. If we carry a positive number from v, v
decreases; however, it is possible that we carry 0 from v, in which case v does not decrease. More
specifically, if m 6= 0 and cm+1 = 0, then after carrying, we obtain:

[. . . , [0], [B1], . . . , [Bj−1], c1, . . . , c`−1, d` + 1, 0, . . . , 0︸ ︷︷ ︸
m

, v, . . .].

Notice that v has not decreased; however, there are now m ≥ 1 zeros to the left of v. By Lemma
3.4, after performing any possible carries in the left neighbor blocks, the s.l.i. will at worst stay
the same, in which case v is still the violation and the algorithm repeats. Again, repeating the
above arguments, we have that any time we borrow from v, v will decrease. Otherwise, the only
case where we can carry from v without decreasing it is when the violation block is of the form
[c1, c2, . . . , cq, v] and cq+1 = 0. After the first carry, because the first m entries to the left of v are
all zeros, we must have that cq = · · · = cq−m+1 = 0, hence q must be larger than m. As such, after
we perform this second carry, the number of zeros to the left of v increases by q −m ≥ 1.

Therefore, when we repeat the algorithm, either v decreases or we carry and v does not decrease
but the number of zeros immediately to the left of v increases. If v never decreases, then there must
be a point where there are t zeros in front of v. By Lemma 3.4, at worse the s.l.i. stays the same
and v remains the violation index. Since the difference between the m.l.i. and the s.l.i. is either 0
or equal to the length of the violation prefix (which is bounded above by t− 1), and because there
are now t zeros in front of v, the m.l.i. must equal the s.l.i. Repeating the algorithm, either we
borrow repeatedly until we borrow from v or at some point we carry to the m.l.i. and v decreases
by at least c1 ≥ 1.

1see Remark 3.2 for more information on left neighbor block
10

As a result, in all cases we must have that v decreases. Therefore, after finitely many steps, v
must be small enough that the s.l.i. decreases. �

Theorem 3.6. The algorithm terminates in the gzd.

Proof. By Lemma 3.5, the s.l.i. decreases to zero. Theorem 3.6 holds if and only if the m.l.i.
decreases to zero after finitely many steps. Therefore, we need only show that when the s.l.i. is
zero, the m.l.i. goes to zero.

Consider the signature (c1, . . . , ct). Suppose the s.l.i. is zero. If the m.l.i. is not equal to
0, then our representation is of the form R = [. . . , [B1], . . . , [Bj], c1, c2, . . . , cm,∞t−1], where
each Bi is an allowable block and 0 < m ≤ t. Without loss of generality, suppose that [Bj] =
[c1, . . . , c`−1, d`] with d` < c` and 0 < ` ≤ t. By the algorithm, using the ∞ places, we can
immediately carry to get

[. . . , [B1], . . . , [Bj−1], c1, . . . , c`−1, d` + 1, 0, . . . , 0︸ ︷︷ ︸
m

,∞t−1].

If d` + 1 < c`, then the m.l.i. is 0.
Otherwise, we have d` + 1 = c`. If ` = t, then by the algorithm, we perform a carry to the next

neighbor block. By the proof of Lemma 3.4, this process of carrying to the next neighbor block
terminates without changing the s.l.i. In this case in particular, we have that the first m + t > t
values in our representation (from right to left) must all be 0. As such, we cannot have a violation
prefix placed right to the left of the∞ places because the length of any violation prefix is less than
t. Therefore, the m.l.i. must be equal to 0 in this case.

This implies that the only subcase in which the m.l.i. is not 0 is when c`+1 = · · · = c`+m = 0 ≤
1 = ct. As such, we have (`+m) < t and the violation block [c1, . . . , c`, 0, . . . , 0]. Notice that the
length of the violation prefix has now increased to m+ `− 1. We can repeat the algorithm and all
the previous arguments to have that anytime the m.l.i. does not go to 0, the length of the violation
prefix increases. However, the length of the violation prefix is bounded above by t − 1. As such,
at some point the m.l.i. must become zero. �

Remark 3.7. We note that the proof of Theorem 3.6 on the termination of our algorithm gives an
alternative proof of the generalized Zeckendorf theorem for positive linear recurrences (Theorem
2.7).

4. WEAKLY DECREASING SIGNATURE IMPLIES SUMMAND MINIMALITY

In this section, we prove one direction of Theorem 1.1, namely if a recurrence sequence has a
weakly decreasing signature, then the recurrence sequence is summand minimal. In particular, the
idea is to show that for linear recurrences with weakly decreasing signatures, whenever we perform
one “complete” step of the algorithm (where a “complete” step refers to one iteration of the first
“while” statement in Algorithm 3.1), the number of summands monotonically decreases. As such,
the gzd is summand minimal.

Notice that by Remark 2.12, carrying decreases the number of summands while borrowing in-
creases it. In our algorithm, the only time we need to borrow is when the c.o.i. exists, and by
the proof of Lemma 3.5, we need to keep borrowing until we are able to carry or until we borrow
from the violation enough times that it is no longer a violation. The key observation in the case of
weakly decreasing signatures is that anytime we need to borrow, we are able to carry immediately,
which ensures that the total number of summands is weakly decreasing. This is well illustrated by
the following example.

11

Example 4.1. Consider the signature σ = (c1, c2, c3) with c1 ≥ c2 ≥ c3 ≥ 1 and the representation
[c1 + 1, 0, 0,∞]. Here, both the m.l.i. and s.l.i. are equal to 3, the violation index and the r.e.i. are
equal to 2 and the c.o.i. equals 1. We borrow from the r.e.i. to get

[c1, c1, c2,∞].

Notice that we can carry now since c1 ≥ c2 and c2 ≥ c3 because the signature is weakly decreasing.
Hence we carry right away to get [1, 0, c1−c2, c2−c3,∞], which is a valid gzd with the total number
of summands equal to c1 + 1− c3 < c1 + 1, which is the total number of summands we had at the
start.

We formalize the above discussion in the following proposition and its proof.

Proposition 4.2. If σ is weakly decreasing, then the gzd is summand minimal for all n.

Proof. Let us consider the signature (c1, . . . , ct) with c1 ≥ c2 ≥ · · · ≥ ct ≥ 1 and a representation
of the form

r = [. . . , [0], [B1], . . . , [Bj], c1, . . . , cm, v, rs−m−2, rs−m−3, . . . , r0,∞t−1],

where v is the violation and each [Bi] is a valid block with [B1] 6= [0].
First, recall that every time we need to carry in the algorithm, the number of summands de-

creases. As such, it suffices to consider the cases where we need to borrow. The only time this is
required in the algorithm is when the c.o.i. exists. Without loss of generality, suppose that s − `
is the c.o.i. and s − e is the r.e.i. Then the string of length t to the right of the m.l.i. in our
representation looks like:

[c1, . . . , cm, v, rs−m−2, . . . , rs−e, ce+1, . . . , c`−1, rs−`, . . . , rs−t].

After borrowing from the r.e.i., we obtain

[c1, . . . , cm, v, rs−m−2, . . . , rs−e − 1, ce+1 + c1, . . . , c`−1 + c`−e+1, rs−` + c`−e, . . . , rs−t + cs−t−e].

Notice that every entry with index at least s − ` either stays the same or increases with the
exception of the entry at the r.e.i. However, we have that rs−e−1 ≥ ce and hence for all 1 ≤ i ≤ `,
we have that rs−i ≥ ci. Furthermore, for all e < j ≤ t, we now have that the entry in the index
s − j is equal to rs−i + cs−i−e ≥ cs−i−e ≥ cs−i because our signature is weakly decreasing. As
such, we can carry right away.

Therefore, every time we have a violation, we need to borrow at most once before we can carry.
Furthermore, by the algorithm, we always borrow at the r.e.i., which is at most the violation index,
and carry to the m.l.i., which is strictly larger than the violation index. As such, by Remark 2.12,
any borrow, pure or impure, can be matched with another carry in the same step that results in
a non-positive net change of summands. Therefore, in moving from any representation to the
gzd, after one complete step of the algorithm, the number of summands never increases. This is
equivalent to the statement that gzd is summand minimal. �

Note that this proposition proves the forward direction of Theorem 1.1. We now turn our atten-
tion to the other direction.

12

5. SUMMAND MINIMALITY IMPLIES WEAKLY DECREASING SIGNATURE

In order to prove the other direction of Theorem 1.1 we will prove the contrapositive. That is,
for every non-weakly decreasing signature, we prove the existence of a non-gzd representation
with fewer summands than the gzd. Some case work is required. Specifically, there are four broad
categories of cases, three of which handle linear recurrences with signatures starting with c1 > 1
and the last of which deals with linear recurrences whose signatures start with c1 = 1.

In particular, the case where c1 > 1 is not the largest term in the signature (i.e., there exists
ci > c1) can be proven very cleanly and is presented in subsection §5.1. However, the technique
used in this case does not generalize well and is only helpful in certain subcases; as such, we
motivate a new, different approach to prove the other two cases where c1 > 1 in subsection 5.2 and
then proceed to prove those two cases in subsections §5.3 and §5.4. Lastly, the case where c1 = 1
requires a completely different method of proof and is detailed in subsection §5.4.

5.1. Case 1: ∃ ci > c1 ≥ 2. We first deal with the case where c1 is not the largest term in the
signature. Here, we find a form of representations that can be easily shown to always use fewer
summands than the gzd. We state this formally.

Proposition 5.1. Suppose σ = (c1, . . . , ct). Suppose there exists an i such that ci > c1 ≥ 2. Then
the representation [c1, . . . , ci−2, ci−1 + 1, 0] has fewer summands than the gzd.

Proof. First notice that this representation is not the gzd because we have a violation at index 1.
We borrow at index 1:

. . . i . . . 2 1 0 −1 . . .

. . . c1 . . . ci−2 ci−1 + 1 0 ∞ . . .
Borrow from 1 −1 c1 c2 . . .

. . . c1 . . . ci−2 ci−1 c1 ∞ . . .

Notice that we have reached the gzd because c1 < ci. The change in the number of summands is
∆S = −1 + c1 ≥ 1. Therefore, the gzd has more summands than the starting representation. �

There are several items to note about this proof. First off, notice that this technique does not
work when c1 = 1. In fact, as we have mentioned before, c1 = 1 will be a case of its own, and
will require a completely different approach (see section 5.5). Furthermore, notice that if ci ≤ c1,
then after the borrow, we are in a position to carry, in which case the number of summands will
decrease (though we may not immediately have the gzd). Thus, we must seek a different technique
to handle ci ≤ c1 for all i. However, as we shall see in subsection §5.4, an adaptation of the above
technique will be useful in handling some of these cases.

5.2. The “cutting” technique. In sections 5.2-5.4, we suppose that c1 ≥ 2 and ci ≤ c1 for all i.
We now develop some new terminology, the cutting technique, which will be relevant to handling
these cases, and detail the motivation of our approach.

First, since we know that the signature is not weakly decreasing, there exists a first point (from
left to right) of increase. Let t be this position, i.e., the smallest index such that ct < ct+1. Notice
that this implies that c1 ≥ c2 ≥ · · · ≥ ct. Let k < t be the largest index such that ck > ct. Let
` = t − k. Notice that this implies that c1 ≥ c2 ≥ · · · ≥ ck > ck+1 = ck+2 = · · · = ck+` and
ck+` = ct < ct+1. With this terminology, we have the following visualization of the first part of
our signature (up to the first increasing index):

13

c1

ck+1 < ck

ck+1 ck+` = ct

ct+1 > ck+1

We now describe the technique we call cutting. Heuristically, cutting at i refers to “placing the
infinity places” at the position i places to the right of some fixed position. This is best demonstrated
by example. Suppose that we have the representation [c1 + 1, 0, . . . , 0︸ ︷︷ ︸

k+`−1

,∞t−1]. Then, if we borrow

from the k + `− 1 index and carry to the k + ` index, we have

k + ` k + `− 1 k + `− 2 k + `− 3 . . . 0 −1 . . .
c1 + 1 ∞ . . .

Borrow from k + `− 1 −1 c1 c2 . . . ck+`−1 ck+`
Carry to k + ` 1 −c1 −c2 −c3 . . . −ck+` −ct+1

1 0 c1 − c2 c2 − c3 . . . ck+`−1 − ck+` = 0 ∞ . . .

Notice that we have now reached the gzd after one borrow and one carry, similar to Example
4.1. On the other hand, if we “shift” our representation out by 1, i.e., consider the representation
[c1 + 1, 0, . . . , 0︸ ︷︷ ︸

k+`

,∞] and apply the shifted borrow and carry, i.e., borrow from k + ` and carry to

k + `+ 1, we then achieve
k + `+ 1 k + ` k + `− 1 k + `− 2 . . . 1 0 −1 . . .

c1 + 1 ∞ . . .
Borrow from k + ` −1 c1 c2 . . . ck+`−1 ck+` ct+1

Carry to k + `+ 1 1 −c1 −c2 −c3 . . . −ck+` −ct+1 −ct+2

1 0 c1 − c2 c2 − c3 . . . ck+`−1 − ck+` = 0 ck+` − ct+1 ∞ . . .

Note that the two representations are the same all the way down to index 1 but differ at index 0.
Furthermore, in this shifted case, we have not found a valid gzd since ck+` − ct+1 < 0 (because
t+ 1 is the point of increase in the signature). We thus make the following observations.

Given a finite string of numbers, we can create “shifted” representations of the same form but
with different length (note that each “shifted” representation also corresponds to a different integer)
by positioning the string relative to the∞ places, possibly with added zeros between the string and
the ∞ places or with the ∞ places absorbing a part of the string. If we align any two “shifted”
representations of the same form on the left and apply the same borrow or carry action (after
shifting appropriately), reading from left to right, the two resulting representations will be the
same up to the first∞ place. In this sense, one “shifted” representation may reach the gzd more
quickly than another.

This is of interest to us as we want to keep track of the number of borrows and carries required
to move from a representation to the gzd in order to compute the net change in the number of
summands. Furthermore, it suggests that the position of our string of numbers in relation to the
∞ places in the representation is important, and thus induces the following approach to complete
the proof of Theorem 1.1: in order to construct an example where the number of summands of the
gzd is not minimal, one can choose a string of numbers and place them appropriately in relation

14

to the∞ places so that, in moving towards the gzd, the number of summands accumulated from
the borrows is strictly larger than the number of summands absorbed by the carries. However,
since any two “shifted” representations are the same up to some point under the same action of
borrowing and carrying, a better way to think about this strategy is to extend the string of numbers
bi-infinitely by adding zeros on both sides. We then perform the necessary borrows and carries to
move towards the gzd and choose an appropriate position to put∞ places. This is the heart of the
“cutting” technique.

The above examples illustrate another important observation: the ∞ places must be placed
in a way such that we can detect the non-weakly decreasing property of the signature. In the
first example, ct+1, which is the first entry (reading from left to right) exhibiting the non-weakly
decreasing property of the signature, is absorbed into the ∞ places, and as such, with only one
borrow, we can carry right away and arrive at the gzd (similar to the case of weakly decreasing
signature). However, in the second case, this index is not absorbed in the ∞ places when we
perform the carry, and hence we see that we have a negative number in the resulting representation,
which we must fix by at least one more borrow. Lastly, this also suggests that c1 + 1 is a good
string to use because it exhibits the need for more than one borrow before a carry can be made in
order for the resulting representation to be non-negative.

As it turns out in the proof that follows, c1 + 1 is the right string to use, and, in most cases,
putting the ∞ places k + ` places away from it (so we “detect” ct+1, as in the second example)
is the right choice. However, there are some edge cases that require further placement, which we
detail in appendices.

Per the above discussion, in certain cases it makes sense to deviate from the algorithm and to
carry right after one borrow, even if this introduces negative entries. We can then consider the
number of borrows needed to “fix” the negative entries because borrowing will only increase the
number of summands. We use this idea repeatedly in the proofs presented in sections 5.3 and 5.4,
hence we state it formally in the following lemma.

Lemma 5.2. Consider a representation that is semi-legal up to q, with some non-zero value at an
index at or beyond q and a negative value at index q−1 with absolute value no more than c1. Then
after a sequence of borrows, the m.l.i is at most q − 1.

Proof. This proof is very similar to the proof of Lemma 3.5. Essentially, we can always borrow
from the positive entry closest to the left of the negative entry (analogous to borrowing from the
r.e.i. to fix the c.o.i.) until the negative entry in question becomes non-negative. For details, see
Appendix A. �

Lastly, to facilitate the flow of the proof, we formally define “cutting” and the change in number
of summands.

Definition 5.3. Define the action of cutting at the ith column to be putting the first term in the
representation at the ith position to the left of the ∞, . . . ,∞. In other words, the changes in the
(i+ 1)st column onward when borrowing and carrying are ignored.

Definition 5.4. Let ∆S be the difference in the number of summands between the starting repre-
sentation and the resulting representation after a series of borrows and carries. Then ∆S is called
the net change of summands.

5.3. Case 2: ct+1 < c1 and c1 ≥ 2.
15

Proposition 5.5. Given a non-weakly decreasing signature with ct+1 < c1 and c1 ≥ 2, there exists
a shifted representation of the string c1 + 1 such that the gzd is not summand minimal.

To prove this, we use the “cutting” technique outlined in the previous subsection. First, we
present Table 4, which illustrates the two borrows and one carry needed to turn any representation
of the form [c1 + 1, 0, . . . , 0] into the gzd. In fact, the two borrows are required by the algorithm;
meanwhile, we perform the carry regardless of whether the algorithm calls for it and try to “fix”
any negative entries that arise by using Lemma 5.2. As discussed in the last subsection on the
cutting technique, we index the columns of the table from left to right, so that the position of c1 +1
is 0, and try to find an appropriate column to the right of the c1 + 1 to place the∞’s (i.e., “cut”).

−1 0 1 . . . k− 1 k k + 1 . . . k + `− 1 k + ` t + 1 t + 2 t + 3 . . .
c1 + 1
−1 c1 . . . ck−1 ck ck+1 . . . ck+`−1 ck+` ct+1 ct+2 ct+3 . . .

−1 c1 . . . c`−1 c` c`+1 c`+2 c`+3 . . .
1 −c1 −c2 . . . −ck −ck+1 −ck+2 . . . −ck+` −ct+1 −ct+2 −ct+3 −ct+4 . . .
1 0 c1 − c2 . . . ck−1 − ck ck − ck+1 − 1 c1 . . . c`−1 ck+` + c` − ct+1 – – – . . .

TABLE 4. Base case table

If we cut at the (k + `)th column, then the net change in the number of summands is

∆S = −ct+1 − 1 + c1 + · · ·+ c`.

Subcase (i): ct+1 < c1 − 1.
Since ct+1 < c1 − 1, we have ∆S ≥ 1. If we have ck+` + c` − ct+1 ≥ 0, then we have reached

the gzd with at least 1 more summand since ck+` + c` − ct+1 ≤ c` (as ck+` < ct+1). Otherwise, the
column is negative and we do the process of borrowings as detailed in Lemma 5.2 and arrive at the
gzd with even more summands (since borrowing only increases the number of summands).

Subcase (ii): ct+1 = c1 − 1.
Now suppose ct+1 = c1 − 1. Cutting at the (k + `)th column gives the net summand change

∆S = c2 + · · ·+ c`.
Suppose ` ≥ 2. If c2 ≥ 1, then ∆S ≥ 1. Arguing as in the case above, whether or not the

(k + `)th column is negative, we can still cut there and get that the gzd is not summand minimal.
If c2 = 0, then k = 2 and so we have c3, . . . , ck+` = 0. Hence the value at the (k + `)th column

is exactly −ct+1 = −c1 + 1 < 0 since c1 ≥ 2. Again, by Lemma 5.2, we can borrow repeatedly to
arrive at the gzd, with the least possible increase in summands from borrowing being−1 + c1 ≥ 1.

We are now left with the case where ct+1 = c1 − 1 and ` = 1. This particular case requires
cutting further right and we now look at the (t+ 1)st column as well. Notice that everything up to
the kth column is valid. As such, for brevity, we concentrate on the (k+ `) = (k+ 1)st column and
(t+ 1)st column from Table 4.

k + 1 t + 1
ck+1 c1 − 1
c1 c2

−(c1 − 1) −ct+2

ck+1 + 1 c1 − 1 + c2 − ct+2

If c1 − 1 ≥ c1 − 1 + c2 − ct+2 > 0, then cutting at the (t + 1)st column gives us a valid gzd with
∆S = c1 − 1 + c2 − ct+2 > 0.

16

If c1−1+c2−ct+2 ≥ c1, then we carry once to the (k+1)st column and ck+1+2 ≤ ct+1+1 = c1
in the (k + 1)st column and c2 − ct+2 − 1 < c2 in the (t + 1)st column. Hence, we have reached a
valid gzd with

∆S = c1 − 1 + c2 − ct+2 + 1− c1 = c2 − ct+2 ≥ 1.

Lastly, the cases when c1 − 1 + c2 − ct+2 < 0 and c1 − 1 + c2 − ct+2 = 0 are dealt with in
Appendix B and C, respectively. The proofs follow similarly, but there are a few more edge cases
which require tedious casework.

5.4. Case 3: ct+1 = c1 and c1 ≥ 2.

Proposition 5.6. Given a non-weakly decreasing signature with ct+1 = c1 and c1 ≥ 2, then there
exists a number for which the gzd is non summand minimal.

Notice this is the last case to cover for signatures starting with c1 ≥ 2. Again, the general ap-
proach is to use the cutting technique that is detailed in §5.2. We first handle the case where ` ≥ 3.
The case where ` = 2 is handled in Appendix D (for this case, no new ideas are required, and
the analysis ultimately comes down to casework). The majority of the ` = 1 case is handled here,
except for one tedious subcase which is relegated to Appendix E. We note that in the case where
` = 1, we employ multiple arguments that are inspired by the technique that was used to handle
the straightforward case of §5.1 (where there exists ci > c1).

Subcase (i): ` ≥ 3
Our table looks like

−1 0 1 . . . k− 1 k k + 1 . . . k + `− 1 k + ` t + 1 t + 2 t + 3 . . .
c1 + 1
−1 c1 . . . ck−1 ck ck+1 . . . ck+`−1 ck+` c1 ct+2 ct+3 . . .

−1 c1 . . . c`−1 c` c`+1 c`+2 c`+3 . . .
1 −c1 −c2 . . . −ck −ck+1 −ck+2 . . . −ck+` −c1 −ct+2 −ct+3 −ct+4 . . .
1 0 c1 − c2 . . . ck−1 − ck ck − ck+1 − 1 c1 . . . c`−1

Suppose we cut at the (k+`)th column. Notice that columns−1 to k are allowable blocks of length
1. In columns k + 1 to k + ` − 1 we get the prefix [c1, . . . , c`−1]. We know that ck+1 < c1, so
ck+`+c`−c1 < c`, implying that the (k+`)th column is less than c`. If this column is non-negative,
then cutting at the (k + `)th column results in the gzd. If this column is negative, then by Lemma
5.2, we know that we can borrow some number of times such that the resulting representation is
the gzd.

Assuming we did not borrow any more (if we did borrow more, ∆S would be even larger), the
net change in the number of summands is

∆S = −1− c1 + c1 + c2 + c3 + · · ·+ c` = c2 + · · ·+ c` − 1.

Therefore, if −1 + c2 + · · ·+ c` ≥ 1, or equivalently, c2 + · · ·+ c` ≥ 2, then the net change in the
number of summands is positive. Suppose instead that c2 + · · ·+c` ≤ 1. Since c2 ≥ c3 ≥ · · · ≥ c`,
if c3 ≥ 1, then c2 + · · · + c` ≥ 2. Therefore, c3 = 0 (implying that c3 = c4 = · · · = ck+` = 0).
Thus, the only way that c2 + · · ·+ c` ≤ 1 is if c2 = 0 or c2 = 1.

Suppose c2 = 1. The k + ` column will then contain ck+1 + c` − c1 = 0 + 0− c1 = −c1, so we
will need to borrow at least once more, in which case we get

∆S ≥ c2 + · · ·+ c` − 1− 1 + c1.
17

Since c1 − 1 ≥ 1 and c2 + · · ·+ c` − 1 = 0, ∆S is positive. Thus the case c2 = 1 is handled.
Now suppose c2 = 0. This implies that k = 1, which in turn implies that columns k+ 2 through

k + ` − 1 (of which there are at least 1) are 0. Therefore, in order to make the (k + `)th column
positive, we need to borrow at least twice. Thus,

∆S ≥ (c2 + · · ·+ c` − 1) + (−1 + c1) + (−1 + c1) = 2c1 − 3 ≥ 1.

Again, in this case, ∆S > 0.

Subcase (ii): ` = 2: The method of proof follows similarly as above for this case but requires
tedious casework, so we refer the interested reader to Appendix D.

Subcase (iii): ` = 1:
Now suppose that ` = 1 and again ct+1 = c1. Suppose that c2 < ct+2. Then we use a trick that

is similar to the one used in section 5.1:
1 2 . . . k k + 1 t + 1 t + 2 . . .
c1 c2 . . . ck ck+1 + 1

−1 c1 c2 . . .
c1 c2 . . . ck ck+1 c1 c2 . . .

Since c2 < ct+2, [c1, c2, . . . , ck+1, c1, c2] is an allowable block, so we can cut at column t + 2 in
which case the number of summands has changed by −1 + c1 + c2 ≥ 1.

Now suppose that c2 > ct+2. This implies that c2 − ct+2 ≥ 1. Our table looks like
−1 0 1 2 . . . k− 1 k k + 1 t + 1 t + 2 t + 3 . . .

c1 + 1
−1 c1 c2 . . . ck−1 ck ck+1 c1 ct+2 ct+3 . . .

−1 c1 c2 c3 c4 . . .
1 −c1 −c2 −c3 . . . −ck −ck+1 −c1 −ct+2 −ct+3 −ct+4 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 c1 + (c2 − ct+2)

Suppose we cut at the (t + 1)st column. Since c2 − ct+2 > 0, we would need to carry. In which
case, we get

−1 0 1 2 . . . k− 1 k k + 1 t + 1 t + 2 t + 3 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 c1 + (c2 − ct+2)

1 −c1 −c2 −c3 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 + 1 c2 − ct+2

The net change in summands is ∆S = c2 − ct+2 ≥ 1. Therefore, if cutting at column t + 1
results in a valid gzd, we are done. We handle the case when we have not yet reached the gzd,
which requires some tedious edge cases, in Appendix E.

We have now handled all cases when ` = 1 and c2 6= ct+2. Let us now consider when c2 = ct+2.
When c3 < ct+3, we do a similar trick as before:

1 2 . . . k k + 1 t + 1 t + 2 t + 3 . . .
c1 c2 . . . ck ck+1 + 1

-1 c1 c2 c3 . . .
c1 c2 . . . ck ck+1 c1 c2 c3 . . .

If we cut at the (t + 3)rd column, we have a valid gzd and the number of summands has increased
by −1 + c1 + c2 + c3 ≥ c1 − 1 ≥ 1.

Now suppose that ct+3 < c3, so that −ct+3 + c3 ≥ 1. We need to carry at the k + 1 column:
18

−1 0 1 2 . . . k− 1 k k + 1 t + 1 t + 2 t + 3 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 c1 + (c2 − ct+2)

1 −c1 −c2 −c3 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 + 1 0 c3 − ct+3

The net change in summands is ∆S = −ct+3 + c3 ≥ 1, so if the resulting representation is a
valid gzd, the net change in summands is positive. Suppose ck+1 + 1 ≤ c1 − 1. If c3 − ct+3 < c1,
then we have a valid gzd. Else, suppose c3 − ct+3 = c1 meaning that c3 = c1 and ct+3 = 0. We
then carry, in which case we get that the last 3 columns are [ck+1 + 1, 1, 0] which must be a valid
gzd. The net change in summands is −ct+3 + c3 + 1− c1 = 1, so we’re done.

Now suppose that ck+1 + 1 = c1. If c3 − ct+3 6= c1, then we have a valid gzd since c2 ≥ ck+1 =
c1− 1 ≥ 1, meaning that columns k+ 1 and t+ 1 form an allowable block. If c3− ct+3 = c1, then
c3 = c1, implying that either ck+1 = c2 = c1 − 1, in which case, after the carry, columns k + 1,
t + 1, and t + 2 must form an allowable block, or else c2 = c1, in which case columns k + 1 and
t + 1 form an allowable block and column t + 2 is 0. Thus in all cases, in moving to the gzd, the
number of summands increases.

Thus, the only unhandled case is c3 = ct+3. If c4 < ct+4, we use the same trick as before. If
c4 > ct+4, then after the carry, the net change in summands is ∆S = −ct+4 + c4 ≥ 1, so we have
more summands. If c4− ct+4 6= c1, then we must have a valid gzd because either ck+1 + 1 < c1, in
which case we are clearly done, or ck+1+1 = c1 implying that ck+1 = c1−1 ≥ 1 so c2 ≥ ck+1 = 1.
There will be a 0 in the (t+ 1)st column, so columns k+ 1 and t+ 1 will form an allowable block.
If we carry (c4 = c1, ct+4 = 0), then we will be left with a valid gzd. The change in the number of
summands is

∆S = −ct+4 + c4 + 1− c1 = 1

and we’re done. Thus the only remaining case is c4 = ct+4.
From the above arguments it is clear that if for any m, cm 6= ct+m, we can find a representation

with fewer summands than the gzd. Since the length of the signature is finite, and the last element
of the signature is non-zero, there must be some point where cm 6= ct+m. Therefore, the case of
` = 1 is complete.

5.5. Case 4: c1 = 1. Lastly, we give the proof of the ⇐= direction of Theorem 1.1 for non-
weakly decreasing signatures (c1, . . . , ct) where c1 = 1 and ct 6= 0. In particular, we note that
this is comprised of all non-negative signatures starting with 1 except for the ones of the form
(1, 1, . . . , 1). The techniques we’ve developed so far do not handle c1 = 1 since we previously
made repeated use of the inequality c1 − 1 ≥ 1.

Formally, we will prove the following proposition.

Proposition 5.7. Given a non-weakly decreasing signature with c1 = 1, then there exists n large
enough such that the gzd of 2Hn has at least 3 summands.

The proof of the above proposition is intricate and uses properties of the characteristic polyno-
mial and the growth rate of a recurrence sequence. We start by giving the outline and key ideas.
Using the fact that c1 = 1, we know that if the gzd of 2Hn is summand minimal, it must have
one of the forms [1, 0, . . . , 0, 1, 0, . . . , 0] or [1, 0, . . . , 0], where we do not yet know the lengths of
the strings of zeros [0, . . . , 0] in either form. By analyzing the growth rate of the sequence, we are
able to establish that for large n, there are only three possible choices for the gzd: we can only
have 2Hn = Hn+r−s + Hn−s, Hn+r−s + Hn−s+1, or 2Hn = Hn+r−s (with fixed r, s), where the

19

first two choices are of the form [1, 0, . . . , 0, 1, 0, . . . , 0] and the last one is of the form [1, 0, . . . , 0].
Notice that each of the three previous possible relations corresponds to a characteristic polynomial:
xr − 2xs + 1, xr−1 − 2xs−1 + 1 and xr−s − 2, respectively. We use another growth rate argument
in conjunction with some results on the factorization of these polynomials to show that for large n,
if the gzd of 2Hn has at most two summands, it must always be of the same form.

The above implies that if the gzd is summand minimal, there must exist a truncated sequence of
our original sequence whose minimal polynomial2 divides one of the three polynomials xr−2xs+1,
xr−1 − 2xs−1 + 1 or xr−s − 2. We then establish that, given the ideal initial conditions, the
minimal polynomial of any truncated sequence arising from our original recurrence sequence must
be the characteristic polynomial of the linear recurrence. Lastly, we show that the characteristic
polynomial associated to a linear recurrence with a non-weakly decreasing signature and c1 = 1
does not divide xr−2xs+1, xr−1−2xs−1+1 or xr−s−2; the proof of this relies on the special form
of these characteristic polynomials, the factorization forms of xr − 2xs + 1 and xr−1 − 2xs−1 + 1,
and the irreducibility of xr−s − 2.

The above arguments show that there must exist an n such that the gzd of 2Hn has at least 3
summands, completing our proof.

Remark 5.8. Notice that this approach cannot be applied easily to the previous cases where c1 > 1
because there are too many possible valid forms for the summand minimal gzd of (c1 + 1)Hn to
take into consideration. Here, it is possible because we have exploited the key information on the
specific value of c1 = 1.

We now proceed to fill in the details of the above proof sketch. First, we establish a few propo-
sitions showing how the growth rate of the sequences determines the form of the gzd.

Proposition 5.9. Consider a linear recurrence with signature (c1, . . . , ct) where c1 = 1 and ct 6= 0.
Let β be the largest real root of the corresponding characteristic polynomial. Then there exists
N ∈ N such that for all n ≥ N , if the gzd of 2Hn uses 2 or fewer summands, it must always be of
one of the following forms: Hn+`1 , Hn+`1 +Hn−`2 or Hn+`1 +Hn−`2−1, where `1 =

⌊
logβ 2

⌋
and

`2 =
⌊
logβ(2− β`1)−1

⌋
.

Proof. If the gzd of a linear recurrence with signature starting with c1 = 1 is summand minimal,
then the gzd of 2Hn must be of the form Hn+`1(n) + Hn+`2(n) or Hn+`3(n), where `1, `2 and `3 are
functions of n. We show in Lemma F.1 that as n approaches infinity,Hn is on the order of βn, where
β is the largest root of the characteristic polynomial corresponding to our sequence. From this, we
are able to deduce that for large n, `3(n) = `1(n) =

⌊
logβ 2

⌋
and `2(n) =

⌊
logβ(2− β`1)−1

⌋
or

dlogβ(2− β`1)−1e. For details, see Appendix F. �

For our purpose, Proposition 5.9 essentially says that for large n, the only three possible forms
of the gzd of 2Hn with two or fewer summands areHn+r−s+Hn−s,Hn+r−s+Hn−s+1, andHn+r−s,
for some fixed r, s.

Next, we develop the following proposition, which establishes a condition to rule out possible
valid representations of 2Hn for large n.

Proposition 5.10. Suppose the characteristic polynomial corresponding to a signature (c1, . . . , ct)
does not share a root with a polynomial of the form xr − 2xs + 1 (resp. xr − 2). Then, for all
n ≥ N where N is sufficiently large, 2Hn cannot be written as Hn+r−s +Hn−s (resp. Hn+r).

2We have a more in-depth, formal discussion on the distinction between characteristic polynomials and minimal
polynomials of linear recurrences later in this section, after Remark 5.12.

20

Proof. Suppose that β is not a root of a polynomial of the forms xr − 2xs + 1 or xr − 2. Since the
argument for both is the same, we will only deal with xr − 2xs + 1.

We now show that for sufficiently large k, 2Hk+s 6= Hk+r + Hk. By Lemma F.1, we have that
limn→∞Hn = Cβn for some constant C. As such, for each n, we can write Hn = Cβn(1 + ε(n))
where ε is a function from N to R such that as N →∞, ε(N)→ 0. We then have

Hk+r − 2Hk+s +Hk = Cβk [βr(1 + ε(k + r))− 2βs(1 + ε(k + s)) + 1 + ε(k)] . (5.1)

Since ε(k + r)βr − 2ε(k + s)βs + ε(k) goes to 0 as k → ∞, there exists K such that for
all k ≥ K, |ε(k + r)βr − ε(k + s)βs + ε(k)| < |βr − 2βs + 1|. Therefore, for all k ≥ K,
2Hk+s 6= Hk+r +Hk. �

Given the above proposition, if we can prove that the three polynomials xr − 2xs + 1, xr−1 −
2xs−1 + 1 and xr−s − 2 do not share any positive real root, then our characteristic polynomial can
only share a root with at most one of those three polynomials. As such, Proposition 5.10 implies
that if the gzd is summand minimal, then for large n, the form of the gzd of 2Hn must always
be the same. Note that xr−s − 2 is clearly irreducible for all r, and its only positive real root is
r−s
√

2. The factorization of each of the other aforementioned polynomials is more complicated. We
utilize a result from [Schin] (which can also be found in English in [FS]) on the factorization of
such polynomials.

Theorem 5.11. Let g(r, s) = xr − 2xs + 1 with r, s ∈ N and r > s. The polynomial

h(r, s) =
g(r, s)

xgcd(r,s) − 1
(5.2)

is irreducible for all r, s except for (r, s) = (7k, 2k) or (7k, 5k), in which case h(r, s) factors into
irreducible pieces

h(r, s) = (x3k + x2k − 1)(x3k + xk + 1) and (x3k + x2k + 1)(x3k − xk − 1), (5.3)

respectively.

Note that in the case where (r, s) 6= (7k, 2k), (7k, 5k), for gcd(r, s) = d, we have

h(r, s) =
g(r, s)

xd − 1
= xr−d + xr−2d + · · ·+ xs − xs−d − · · · − 1. (5.4)

Theorem 5.11 then tells us that g(r, s) factors into a cyclotomic piece C(r, s) = xgcd(r,s) − 1
and either one or two irreducible pieces. By the same theorem, one can easily see that the non-
cyclotomic irreducible pieces of g(r, s), g(r − 1, s − 1) and xr−s − 2 are distinct, so they cannot
share any root. As such, g(r, s), g(r − 1, s − 1) and xr−s − 2 cannot share any positive real root.
Therefore, the characteristic polynomial of our linear recurrence can share a positive real root with
at most one of the three polynomials.

Remark 5.12. Given the special form of factorization of g(r, s), one may suspect that our char-
acteristic polynomial cannot share its largest positive real root with a polynomial of this form.
However, this is not true as the following example demonstrates:

h(6, 5)(x2 + 1) =
g(6, 5)

x− 1
(x2 + 1) = x7 − x6 − 2x4 − 2x3 − 2x2 − x− 1,

which shows that g(6, 5)/(x− 1) divides the characteristic polynomial of a linear recurrence with
signature (1, 0, 2, 2, 2, 1, 1).

21

This, together with the discussion above on Proposition 5.10, implies that if the gzd of our
sequence is summand minimal, then there exists a truncated sequence {Hn}n≥q of the original
sequence Hσ that always satisfies exactly one of the following relations: 2Hn = Hn+r−s + Hn−s,
2Hn = Hn+r−s +Hn−s+1 or 2Hn = Hn+r−s. This motivates the following discussion on minimal
polynomials of sequences.

Let H = {Hn}n∈N0 be some sequence with terms Hi which satisfies some linear recurrence
over Z. Let J(H) be the set of all polynomials which arise as characteristic polynomials of linear
recurrences H satisfies. It is easy to see that J(H) is closed under addition and mulitiplication by
elements in Q[x], and therefore forms an ideal in Q[x]. Since Q[x] is a principal ideal domain,
there must be a unique monic minimal polynomial s(x) generating J(H) which corresponds to a
minimal depth linear recurrence generating H . We call this polynomial the minimal polynomial
of H . Now, let H` = {Hn}n≥` be the sequence consisting of all terms in H with index at least `.
Together with the above discussion, this means that if our linear recurrence is summand minimal,
then there exists an ` such that the minimal polynomial of H` divides one of the polynomials
xr − 2xs + 1, xr−1 − 2xs−1 + 1 and xr−s − 2.

Suppose we fix a polynomial p(x). Note that it is possible for the associated recurrence relation
from p to satisfy two different sequences H , H ′ but for p(x) to be the minimal polynomial for H
but not for H ′. We necessarily ask the following question: suppose we have a sequence H and
suppose s(x) is the minimal polynomial for H . Is s(x) necessarily the minimal polynomial for H`

(where H` is defined previously as a truncated sequence of S)?

Theorem 5.13. Suppose s(x) is the minimal polynomial for the sequence H . Then s(x) is the
minimal polynomial for all truncations of H .

Before proving this theorem, we need the following definition and lemma.

Definition 5.14. Let H be a sequence satisfying some linear recurrence. Let Hn,k be

Hn,k =

Hn Hn+1 . . . Hn+k

Hn+1 Hn+2 . . . Hn+k+1
...

...
Hn+k Hn+k+1 . . . Hn+2k

 . (5.5)

We need the following result (Lemma 3 of [Sal]).

Lemma 5.15. A sequence satisfying a linear recurrence satisfies some degree k linear recurrence
if and only if det(Hn,k) = 0 for all n.

Proof of Theorem 5.13. Let H be some recurrence and let s(x) be the minimal polynomial for H .
Let s(x) = xt + c1x

t−1 + · · ·+ ct. Note that ct 6= 0. We shall show that det(Hn,t−1) 6= 0 for all n.
Let D = det(H1,t−1). In particular we will show that | det(Hn,t−1)| = |cntD|.

We proceed by induction. Suppose we have

Hn,t−1 =

Hn Hn+1 . . . Hn+t−1
Hn+1 Hn+2 . . . Hn+t

...
...

Hn+t−1 Hn+t . . . Hn+2t−2

 . (5.6)

We index our columns starting from zero. Notice that the first through (t − 1)th columns will
appear as columns in Hn+1,t−1. Furthermore, notice that if we multiply the zeroth column by ct

22

and add to it ct−1 times the first column plus ct−2 times the second column plus . . . plus c1 times
the t − 1 column, then the columns of the resulting matrix agree with the columns of Hn+1,t−1.
The determinant has gone up by a factor of ct. In order to move the resulting matrix to the form of
Hn+1,t−1, we need to permute some columns, which may change the sign of the determinant, but
not the magnitude.

We know that Hn is satisfied by s(x), so s(x) is in J(Hn). However, if s(x) did not generate
J(Hn), then there must be some polynomial of lower degree in J(Hn). In particular, there must
be some polynomial of degree t − 1 in J(Hn). If this were so, then det(Hm,t−1) would be zero
for all m ≥ n, which is a contradiction. Therefore, we must have that s(x) is the lowest degree
polynomial in J(Hn) for all n, and thus is the minimal polynomial for all Hn. �

Corollary 5.16. Let Hσ be a sequence arising from a non-negative linear recurrence with char-
acteristic polynomial f(x) of degree t and ideal initial conditions H−1 = · · · = H−(t−1) = 0 and
H0 = 1. Then f(x) is the minimal polynomial for all Hn.

Proof. By Theorem 5.13, it suffices to show that detH−(t−1),t−1 6= 0. It is immediate from writing
out the matrixH−(t−1),t−1 that by switching columns, we can make it lower triangular with diagonal
entries all equal to 1, hence detH−(t−1),t−1 = 1. �

Corollary 5.16 implies that if H is a sequence whose minimal polynomial is f(x), and p(x) is
some other polynomial, then, if f - p, there does not exist a point n such that the recurrence relation
arising from p is valid for all elements in Hn.

With all that precedes, in order for us to prove that the gzd for positive linear recurrences with
c1 = 1 is not summand minimal it suffices to show that its characteristic polynomial f does not
divide any polynomial of the form xr − 2xs + 1 or xr − 2 for any r, s. Clearly, since xr − 2 is
irreducible and f is of the form xm − xm−1 − · · · (because c1 = 1), we must have f - (xr − 2). It
suffices then to show the following.

Proposition 5.17. Let f be the characteristic polynomial for some non-negative linear recurrence.
Then, f - g(r, s) for any r, s except for r = s+ 1, in which case f = xr−1 − xr−2 − · · · − 1.

Proof. Recall from Theorem 5.11 for g(r, s) = xr − 2xs + 1 that g(r, s) = C(r, s)h(r, s) where
C(r, s) = xgcd(r,s)−1 is cyclotomic and for gcd(r, s) = d and (r, s) 6= (7k, 2k) or (7k, 5k), we have

h(r, s) =
g(r, s)

xd − 1
= xr−d + xr−2d + · · ·+ xs − xs−d − · · · − 1. (5.7)

We thus know that any divisor of g(r, s) must be made up either entirely of cyclotomic pieces, of
the irreducible piece, or of some combination of the two. We shall show that all divisors of g(r, s)
either contain some positive coefficient other than the leading coefficient, or else have a zero as the
coefficient of the second highest degree monomial. That is to say, no divisor of g(r, s) is a valid
characteristic polynomial for a non-negative linear recurrence with leading coefficient equal 1.

We know that 1 is not a root of f(x), so when considering divisors of g(r, s), we need only
consider those not having x − 1 as a divisor. All cyclotomic polynomials, c(x), other than x − 1,
are self-reciprocal polynomials, which means c(x) = xnc(1/x). Furthermore, the product of any
collection of such polynomials is of this form. Because of this, f(x) cannot be a cyclotomic
polynomial because that would imply that ct = 1, which is a contradiction.

We now consider two mutually exclusive cases. In the first case, gcd(r, s) = 1. In this case, the
only cyclotomic part is C(r, s) = (x − 1). Thus, the only divisor of g(r, s) we’re interested in is

23

I(r, s). If r 6= s + 1, then this polynomial has a 1 as the xr−2 coefficient, so it is not equal to any
valid f . Since it’s irreducible, f cannot divide it.

Now suppose gcd(r, s) > 1. Then the xr−d−1 term of I(r, s) is 0, the coefficient of the x term in
I(r, s) is 0 and the constant coefficient is−1. Let c(x) be some cyclotomic part of g(r, s). Suppose
c(x) = x` + c1x

`−1 + · · · + c1x + 1. Therefore, since the coefficients of c(x) are symmetric, in
c(x)I(r, s), the coefficient of xr−d+`−1 is c1. The coefficient of x is−c1. If c1 = 0, then c(x)I(r, s)
is not of a valid form to be the characteristic polynomial of a non-negative linear recurrence since
then the first term of the signature would be zero. Otherwise, c1 6= 0, in which case either the
coefficient of xr−d+`−1 or x is positive, so this divisor cannot equal f .

Lastly we need to handle the case when (r, s) = (7k, 2k) or (r, s) = (7k, 5k). Suppose (r, s) =
(7k, 2k). Let I1 = x3k + x2k − 1 and I2 = x3k + xk + 1. By the same arguments above, any
divisor of g containing both I1 and I2 cannot equal f . Suppose instead we only have I1 and a
cyclotomic piece. This case follows from the same arguments as before. Suppose we only have
I2 and a cyclotomic piece. Then, since the constant term in the cyclotomic piece must be 1, this
divisor cannot equal f .

Now suppose that (r, s) = (7k, 5k). Let I1 = x3k +x2k + 1 and I2 = x3k−xk− 1. By the same
arguments as above, we can’t have both I1 and I2. If we have just I1 and a cyclotomic piece, then
the constant term in the product would be 1, so this divisor cannot be f . If we just have I2 and a
cyclotomic piece, then by the same arguments as above, we would either have that the coefficient
of x3k+`−1 is 0, or one of the coefficients on x3k+`−1 and x is positive, which in both cases implies
this divisor is not equal to f . �

Remark 5.18. Recall from Remark 5.12 that the irreducible factor of a polynomial g(r, s) can
divide the characteristic polynomial of some positive linear recurrence with c1 = 1. However,
since our characteristic polynomial remains the minimal polynomial of any truncated sequence,
this becomes unimportant. Hence, it only matters whether the characteristic polynomial can divide
some polynomial of the form g(r, s), which we have proven to be impossible above.

Finally, we note that all of the above arguments combined give us the proof of Proposition 5.7.
Furthermore, Propositions 5.1, 5.5, 5.6 and 5.7 complete the proof of Theorem 1.1.

24

APPENDIX A. PROOF OF LEMMA 5.2

Proof. Denote the entry at any index j by vj . We have vq−1 < 0 and |vq−1| ≤ c1. Since there is a
positive entry at some index at least q, there exists i = min{j ≥ q | vj > 0}. Call this the rightmost
positive index in relation to q− 1 and denote it by r.p.i. As such, vj = 0 for all i < j ≤ q. We now
borrow from i. If vq−1 becomes non-negative, then the m.l.i. is at most q − 1 since all blocks are
valid up to i and from i− 1 to q− 1 we have a valid block of the form [c1, . . . , cq−i, cq−i+1− vq−1].

Otherwise, cq−i+1 < vq−1 and we still have a negative value at index q − 1. This also means
that i 6= q (otherwise, we have c1 < vq1 , contradiction). In this case, the value at index i − 1 is
now c1 > 0. Thus, the r.p.i. has now decreased to be at most i − 1. Repeating the process of
borrowing from the r.p.i., we must have that at some step, the value at q− 1 becomes non-negative
and the m.l.i. decreases to be at most q − 1 since we know the process definitely terminates when
r.p.i.= q. �

APPENDIX B. SUBCASE 1 OF ct+1 < c1 AND ` = 1

Appendices B, C, D and E deal with the remaining bad cases mentioned in Subsections 5.3
and 5.4. In each of these cases, although the general technique is the same, many edge cases
arise and are treated separately. Since we have illustrated the technique in §5.1–§5.4, for brevity,
here we only summarize where the cutting is placed and what the net change in the number of
summands ∆S is for each edge case. A detailed proof can be found on the arXiv preprint at
https://arxiv.org/abs/1606.08110.

First, recall that we were at the step where our representation is

−1 0 1 . . . k− 1 k k + 1 t + 1
1 0 c1 − c2 . . . ck−1 − ck ck − ck+1 − 1 ck+1 + 1 c1 − 1 + c2 − ct+2

The only cases we did not resolve occur when c1− 1 + c2− ct+2 ≤ 0. This appendix deals with
the strict inequality, i.e., when c1 − 1 + c2 − ct+2 < 0.

A. If any one of the conditions c1 = 2, c2 = 0, and c1 = ct+2 does not hold, then cutting at the
(t+ 1)st column, we reach the valid gzd with ∆S = −ct+2 − 1 + c1 + c2 − 1 + c1 > 0.

B. If c1 = 2, c2 = 0, and c1 = ct+2, then our signature starts with (2, 0, 1, 2). If ct+3 = 2, then we
cut at the (t+ 2)nd column and get the gzd [1, 0, 1, 0, 1, 1] with 4 summands.

C. If ct+3 = 0, then our signature starts with (2, 0, 1, 2, 0). After cutting at (t + 2)nd column, we
carry twice to get the gzd [1, 0, 1, 1, 0, 1] with 4 summands.

D. Otherwise, we must have ct+3 = 1 and our signature starts with (2, 0, 1, 2, 1). After cutting
at (t + 3)rd column, we carry twice to get the gzd [1, 0, 1, 1, 0, 0, 3 − ct+4]. If ct+4 = 2, we have
reached the gzd with 4 summands.

E. Otherwise, we must have ct+4 = 0 or 1. We carry once more to get [1, 0, 1, 1, 0, 1, 1 − ct+4]
which is gzd with at least 4 summands.

25

https://arxiv.org/abs/1606.08110

APPENDIX C. SUBCASE 2 OF ct+1 < c1 AND ` = 1

Here, we deal with the final subcase of the ct+1 < c1 case and ` = 1, i.e., when c1−1+c2−ct+2 =
0. This can happen only when ct+2 = c1 − 1 and c2 = 0 or when ct+2 = c1 and c2 = 1.

Subcase (i): ct+2 = c1 − 1 and c2 = 0. In this case, it must be that k = 1 and our signature starts
with (c1, 0, c1 − 1, c1 − 1). Our table is

−1 0 k = 1 k + 1 = 2 t + 1 t + 2 t + 3
0 c1 c1 0 c1 − 1 c1 − 1 ct+3

−1 c1 0 c1 − 1 c1 − 1
1 −c1 −0 −(c1 − 1) −(c1 − 1) −ct+3 −ct+4

1 0 c1 − 1 1 0 2c1 − 2− ct+3 ct+3 + c1 − 1− ct+4

A. If 2c1 − 2− ct+3 ≥ c1, then after cutting at the (t+ 2)nd column, we can carry once and obtain
the gzd [1, 0, c1 − 1, 1, 1, c1 − 2− ct+3] with ∆S = c1 − 1− ct+3 ≥ 1.

B. If 2c1 − 2 − ct+3 < c1, then cutting at the (t + 2)nd column also results in a valid gzd with
∆S = 2c1 − 2 − ct+3 ≥ 0. Hence, we get a non summand minimal gzd except for the case when
ct+3 = c1 and c1 = 2.

C. In that case, our signature starts with (2, 0, 1, 1, 2). For this, if ct+3 = 2, we cut at the (t+ 3)rd

column and get the gzd [1, 0, 1, 1, 0, 0, 1], which has 4 summands.

D. Otherwise, ct+3 = 0 or 1; we cut at the same place but carry once more to obtain the gzd
[1, 0, 1, 1, 0, 1, 1− ct+3], which has at least 4 summands.

Subcase (ii): ct+2 = c1 and c2 = 1. In this case, our table is:
−1 0 1 . . . k− 1 k k + 1 t + 1 t + 2 t + 3

c1 + 1
−1 c1 . . . ck−1 ck ck+1 ct+1 = c1 − 1 ct+2 = c1 ct+3

−1 c1 c2 = 1 c3 c4
1 −c1 −c2 = −1 . . . −ck −ck+1 −ct+1 = −(c1 − 1) −ct+2 = −c1 −ct+3 −ct+4

1 0 c1 − 1 . . . ck−1 − ck ck − ck+1 − 1 ck+1 + 1 0 c1 + c3 − ct+3 ct+3 + c4 − ct+4

E. If c1 + c3 − ct+3 ≥ c1 we cut at the (t + 2)nd column and then carry to get a gzd with ∆S =
−ct+3 − 1 + c1 + c2 + c3 + 1− c1 = c2 + c3 − ct+3 ≥ c2 = 1.

F. Otherwise, since ct+3 ≤ c1, we have 0 ≤ c1 +c3−ct+3 ≤ c1−1. If c1 +c3−ct+3 > 0, we cut at
the (t+2)nd column and reach the gzd with ∆S = −ct+3−1+c1 +c2 +c3 = c1 +c3−ct+3 > 0.

G. If c1 + c3 − ct+3 = 0, we must have that c3 = 0 and ct+3 = c1. This implies our signature
starts with (c1, 1, 0, c1 − 1, c1, c1) and hence k = 2. If 2c1 − 1− ct+4 < c1, cutting at the (t+ 3)rd

column, we will reach the gzd with ∆S = 2c1 − 1− ct+4 ≥ c1 − 1 ≥ 1.

H. Otherwise, 2c1 − 1 − ct+4 ≥ c1. We cut at the (t + 3)rd column and carry to get [1, 0, c1 −
1, 0, 1, 0, 1, c1 − 1− ct+ 4], which is gzd with ∆S = 2c1 − 1− ct+4 − c1 + 1 ≥ c1 − c1 + 1 = 1.
This completes the proof of the whole subcase.

26

APPENDIX D. SUBCASE ` = 2 IN CASE ct+1 = c1

This is the subcase of ct+1 = c1 where ` = 2. Here, our table looks like:

−1 0 1 . . . k− 1 k k + 1 k + 2 t + 1 t + 2 t + 3 . . .
c1 + 1
−1 c1 . . . ck−1 ck ck+1 ck+2 c1 ct+2 ct+3 . . .

−1 c1 c2 c3 c4 c5 . . .
1 −c1 −c2 . . . −ck −ck+1 −ck+2 −c1 −ct+2 −ct+3 −ct+4 . . .
1 0 c1 − c2 . . . ck−1 − ck ck − ck+1 − 1 c1

A. If c2 ≥ 2, we cut at the (k + 2)nd column and get ∆S = −c1 − 1 + c1 + c2 = c2 − 1 ≥ 1.
Thus the only unhandled cases are when c2 = 0 or 1.

B. Suppose c2 = 0. Then k = 1, and c2 = c3 = 0. Then, cutting at the (k + 2)nd column and
borrowing will give us a gzd with ∆S = (c2 − 1) + (−1 + c1) = c1 − 2. Therefore, unless
c1 = 2, we have ∆S ≥ 1.

C. Suppose c1 = 2. Then our signature looks like (2, 0, 0, 2, ct+2, . . .). We know that ct+2 ≤ 2.
Suppose ct+2 = 0, then σ = (2, 0, 0, 2, 0, ct+3, . . .). In this case, we cut at the 4th column and will
obtain the gzd [1, 0, 1, 1, 1, 0] with 4 summands.

D. Lastly, suppose ct+2 = 1 or 2. We can employ the following trick reminiscent of Proposition
5.1. Consider the representation [2, 0, 1, 0, 0] and borrow once, we get [2, 0, 0, 2, 0] which is the
gzd with 4 summands. This completes the analysis on c2 = 0.

E. Now suppose c2 = 1. We know that ck+2 ≤ c2 = 1. Therefore ck+2 = 0 or 1.
Suppose ck+2 = 0. Then we cut at the (k + 2)nd column, borrow once and get the gzd with

∆S ≥ (c2 − 1) + (−1 + c1) = c1 − 1 ≥ 1.

F. The only bad case for c2 = 1 is when ck+2 = 1. This implies that k = 1. If c1 > 2, then cutting
at the (k+ 2)nd column and borrowing once will give us the gzd with ∆S ≥ (c2− 1) + (c1− 1) =
c1 − 1 ≥ 1.

G. Therefore, the next bad edge case is c1 = 2. Here we have σ = (2, 1, 1, 2, ct+2, . . .). If
ct+2 = 2, then cutting at column 4, we get [1, 0, 0, 2, 0, 1] which is a valid gzd with 4 summands.

H. Now, suppose ct+2 = 0 or 1. We carry to get [1, 0, 0, 2, 1, 1− ct+2]. Again, we cut at column 4.
If ct+2 = 1, then the resulting representation is the gzd with 4 summands.

I. Thus, the only remaining case is ct+2 = 0. Then σ = (2, 1, 1, 2, 0, ct+3). If we cut at column 5,
the final representation is either gzd, or the 5th column is negative, so we can arrive at the gzd by
some sequence of borrows by Lemma 5.2. Here, ∆S ≥ −ct+3 + 1 + 2 = 3 − ct+3 ≥ 1 so we
are done. This concludes the analysis of c2 = 1, which in turn concludes the analysis of ` = 2.

27

APPENDIX E. A SUBCASE OF CASE ct+1 = c1 AND ` = 1

In this appendix, we deal with the subcase of ct+1 = c1 and ` = 1 where cutting at the (t + 1)th

column does not result in the valid gzd. Recall that our table is:

−1 0 1 2 . . . k− 1 k k + 1 t + 1 t + 2 t + 3 . . .
c1 + 1
−1 c1 c2 . . . ck−1 ck ck+1 c1 ct+2 ct+3 . . .

−1 c1 c2 c3 c4 . . .
1 −c1 −c2 −c3 . . . −ck −ck+1 −c1 −ct+2 −ct+3 −ct+4 . . .

1 −c1 −c2 −c3 . . .
1 0 c1 − c2 c2 − c3 . . . ck−1 − ck ck − ck+1 − 1 ck+1 + 1 c2 − ct+2

A. Suppose ck+1 + 1 ≤ c1 − 1. If c2 − ct+2 < c1, then we have a valid gzd when cutting at the
(t+ 1)th column.

B. The only way c2 − ct+2 6< c1 is if c2 = c1 and ct+2 = 0. We are in a position to carry again.
Once we do so, the resulting representation is necessarily the gzd with ∆S = c2−ct+2+1−c1 =
c1 − 0 + 1− c1 = 1.

Therefore, as long as ck+1 + 1 ≤ c1 − 1, we are done.

C. Suppose ck+1 + 1 = c1. Then if ct+2 > 0, columns k + 1 and t + 1 will form an allowable
block, so we will get a gzd with ∆S > 0. Therefore, the bad case is when ct+2 = 0.

D. We distinguish a few possible cases. First note that since ck+1 = c1 − 1, we must have that
c1 = c2 = · · · = ck. Suppose that k = 1. Then σ = (c1, c1 − 1, c1, 0, ct+3, . . .). If ct+3 = 0
or 1, then by cutting at the 4th column, we get [1, 0, 0, c1, c1 − 1, 1 − ct+3], which is the gzd with
∆S = c1 − ct+3 ≥ c1 − 1 ≥ 1.

E. Suppose instead that ct+3 ≥ 2. Then we borrow to get the gzd with ∆S ≥ c1−ct+3−1+c1 ≥
c1 − 1 ≥ 1. Thus, in all cases, the number of summands increases.

F. Now suppose k = 2; that is σ = (c1, c1, c1− 1, c1, 0, ct+3, . . .). If ct+3 ≤ c1− 1, then cutting at
the 5th column, we will get the gzd with ∆S = (−ct+3) + (c1 − 1) + (−1 + c1) ≥ c1 − 1 ≥ 1.

G. Suppose instead that ct+3 = c1. Then, we borrow again to get the gzd with ∆S = −ct+3 +
(c1 − 1) + (−1 + c1) + (−1 + c1) = 2c1 − 3 ≥ 1.

H. Now suppose that k ≥ 3, that is, our signature looks like σ = (c1, c1, c1, . . .). Then cutting at
the (t+ 2)nd column, we have a valid gzd with ∆S = −ct+3 + c3 = c1 > 1.

I. Suppose instead that ct+3 > 0. Then cutting at the (t + 2)nd column and borrowing, we get the
gzd with ∆S ≥ −ct+3 + c3 + c1 − 1 ≥ c1 − 1 ≥ 1. Therefore, in this case we are also done.

28

APPENDIX F. PROOF OF PROPOSITION 5.9

In order to prove this proposition, we first need the following lemma.

Lemma F.1. Given a non-negative signature c1, . . . , ct, let α1, . . . , αt be the roots of the corre-
sponding characteristic polynomial. Then limn→∞Hn = Cβn where β = max{|α1||, . . . , |αt|}.

Proof. This is a straightforward implication of Generalized Binet’s Formula (see for example The-
orem A.1 in [BBGILMT]). �

Proof of Proposition 5.9. Consider a non-weakly-decreasing signature of the type c1, . . . , ct where
c1 = 1 and ct 6= 0. Suppose that for 2Hn, a summand minimal gzd exists, which means that in the
gzd, we can only have one or two summands.

If the gzd has two summands, it must be of the form [1, 0, . . . , 0, 1, 0, . . .], which corresponds to
2Hn = H`′1(n)

+H`′2(n)
, where `′1(n) > `′2(n). Now, since the signature is nonnegative, there exists

N1 such that for all n ≥ N1, Hn > Hn−1. Hence, for all n ≥ N1, we cannot have `′1(n) ≤ n or
`′2(n) ≥ n. As such, in the case where the gzd has two summands, for n ≥ N1 we can only have
2Hn = Hn+`1(n) + Hn−`2(n) where `1(n), `2(n) > 0. If the gzd has one summand, it must be that
2Hn = Hn+`3(n) where `3(n) > 0 for all n > N1 because the sequence is strictly increasing after
HN1 .

Now we will determine the possible choices for `1(n), `2(n) and `3(n).
Since the greedy algorithm to construct a gzd established by [MW1] and [Ha] always includes

the largest term in the sequence that is smaller than 2Hn, we know that Hn+`1(n) and Hn+`3(n)

are such that Hn+`i(n) ≤ 2Hn < Hn+`i(n)+1, where i = 1, 3. By Lemma F.1, we can write
Hn = Cβn(1 + ε(n)) where ε is a function from N to R such that as N →∞, ε(N)→ 0. We then
have that

Cβn+`i(n)(1 + ε(n+ `i(n))) ≤ 2Cβn(1 + ε(n)) < Cβn+`i(n)+1(1 + ε(n+ `i(n) + 1)). (F.1)

Canceling Cβn from all 3 sides and taking the log base β, we then obtain

`i(n) =

⌊
logβ

2(1 + ε(n))

1 + ε(n+ `i(n))

⌋
, (F.2)

which goes to
⌊
logβ 2

⌋
as N → ∞. Hence, there exists N2 such that for all n ≥ N2, `1(n) =

`3(n) =
⌊
logβ 2

⌋
. Note that these are now constant.

Lastly, we determine `2(n) in the case that the gzd has two summands, i.e., 2Hn = Hn+`1(n) +
Hn−`2(n). Rewriting using Lemma F.1, we have that

Cβn−`2(n)(1 + ε(n+ `2(n))) = 2Cβn(1 + ε(n))− Cβn+`1(n)(1 + ε(n+ `1(n))), (F.3)

Again, cancelling Cβn on both sides and taking the log base β, we get

`2(n) = logβ

[[(
2(1 + ε(n))− β`1(n)(1 + ε(n+ `1(n)))

)]−1
(1 + ε(n+ `2(n)))

]
. (F.4)

Since ε(n + `2(n)) → 0 as n → ∞, there exists N3 such that for all n > N3, either `2(n) =⌊
logβ(2− β`1)−1

⌋
or dlogβ(2− β`1)−1e. This concludes the proof. �

REFERENCES

[Al] H. Alpert, Differences of multiple Fibonacci numbers, Integers: Electronic Journal of Combinatorial
Number Theory 9 (2009), 745–749.

29

[BBGILMT] O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Average Gap
Distribution for Generalized Zeckendorf Decompositions, Fibonacci Quarterly 51 (2013), 13–27.

[BILMT] A. Bower, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Distribution of Gaps between Summands in
Generalized Zeckendorf Decompositions (and an appendix on Extensions to Initial Segments with Iddo
Ben-Ari), Journal of Combinatorial Theory, Series A 135 (2015), 130–160.

[Br1] J. L. Brown, Jr., Zeckendorf’s Theorem and Some Applications, The Fibonacci Quarterly, Vol. 2, No. 3
(Oct. 1964), pages 163–168.

[Br2] J. L. Brown, Jr., A New Characteristic of the Fibonacci Numbers, The Fibonacci Quarterly, Vol. 3, No.
1 (Feb. 1965), pages 1–8.

[CFHMN1] M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Generalizing Zeckendorf’s Theorem: The
Kentucky Sequence, Fibonacci Quarterly. (52 (2014), no. 5, 68–90).

[CFHMN2] M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Legal Decompositions Arising from Non-
positive Linear Recurrences, preprint. http://arxiv.org/pdf/1606.09312.

[CFHMNPX] M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Z. Pan and H. Xu, New Behavior in Le-
gal Decompositions Arising from Non-positive Linear Recurrences, 2016 (expanded arXiv version).
http://arxiv.org/pdf/1606.09309.

[Day] D. E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, J. Lon-
don Mathematical Society 35 (1960), 143–160.

[DDKMMV] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, D. Moon and U. Varma, Generalizing Zeckendorf’s
Theorem to f -decompositions, Journal of Number Theory 141 (2014), 136–158.

[DDKMV] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller and U. Varma, A Generalization of Fibonacci Far-
Difference Representations and Gaussian Behavior, Fibonacci Quarterly 52 (2014), no. 3, 247–273.

[Fr] A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), no. 2, 105–114.
[Ho] V. E. Hoggatt, Generalized Zeckendorf theorem, Fibonacci Quarterly 10 (1972), no. 1 (special issue on

representations), pages 89–93.
[HW] N. Hamlin and W. A. Webb, Representing positive integers as a sum of linear recurrence sequences,

Fibonacci Quarterly 50 (2012), no. 2, 99–105.
[Ke] T. J. Keller, Generalizations of Zeckendorf’s theorem, Fibonacci Quarterly 10 (1972), no. 1 (special

issue on representations), pages 95–102.
[Len] T. Lengyel, A Counting Based Proof of the Generalized Zeckendorf’s Theorem, Fibonacci Quarterly 44

(2006), no. 4, 324–325.
[Lek] C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci,

Simon Stevin 29 (1951-1952), 190–195.
[LM] R. Li and S. J. Miller, Central Limit Theorems for Gaps of Generalized Zeckendorf Decompositions,

preprint. https://arxiv.org/pdf/1606.08110.
[MW1] S. J. Miller and Y. Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of Combi-

natorial Theory, Series A 119 (2012), no. 7, 1398–1413.
[MW2] S. J. Miller and Y. Wang, Gaussian Behavior in Generalized Zeckendorf Decompositions, Combina-

torial and Additive Number Theory, CANT 2011 and 2012 (Melvyn B. Nathanson, editor), Springer
Proceedings in Mathematics & Statistics (2014), 159–173.

[Ste] W. Steiner, The Joint Distribution of Greedy and Lazy Fibonacci Expansions, Fibonacci Quarterly 43
(2005), 60–69.

[Ze] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de
nombres de Lucas, Bulletin de la Société Royale des Sciences de Liége 41 (1972), pages 179–182.

E-mail address: ktcordwell@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742

E-mail address: mhlavacek@g.hmc.edu
30

http://arxiv.org/pdf/1606.09312
http://arxiv.org/pdf/1606.09309
https://arxiv.org/pdf/1606.08110
mailto:ktcordwell@gmail.com
mailto:mhlavacek@g.hmc.edu

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CA 91711

E-mail address: nhuynh30@gatech.edu,huynhngocyenchi@gmail.com

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332

E-mail address: sjm1@williams.edu,Steven.Miller.MC.96@aya.yale.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: carstenp@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109

E-mail address: ytruongvu17@amherst.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, AMHERST COLLEGE, AMHERST, MA 01002

31

mailto:nhuynh30@gatech.edu,huynhngocyenchi@gmail.com
mailto:sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu
mailto:carstenp@umich.edu
mailto:ytruongvu17@amherst.edu

	1. Introduction
	2. Preliminaries
	3. Algorithm: From Any Representation to the GZD
	4. Weakly Decreasing Signature Implies Summand Minimality
	5. Summand Minimality Implies Weakly Decreasing Signature
	Appendix A. Proof of Lemma 5.2
	Appendix B. Subcase 1 of ct+1<c1 and =1
	Appendix C. Subcase 2 of ct+1<c1 and =1
	Appendix D. Subcase =2 in case ct+1=c1
	Appendix E. A subcase of case ct+1=c1 and =1
	Appendix F. Proof of Proposition 5.9
	References

