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subje
t (see for example [BDEMMTTW, BILMT, Br, CFHMN1, Day, DDKMMV, FGNPT,Fr, GTNP, Ha, Ho, HW, Ke, MW1, MW2, Ste1, Ste2℄ and the referen
es therein).Lekkerkerker [Lek℄ proved that the average number of summands in the Ze
kendorf de-
ompositions of m ∈ [Fn, Fn+1) is n
ϕ2+1

+ O(1) ≈ .276n as n → ∞. Later authors ex-tended this to other sequen
es and higher moments (see the previous referen
es, in parti
ular[BM, DDKMMV, DFFHMPP, DG, LM, LT, MW2℄), proving that given any rules for de
om-positions there is a unique sequen
e su
h that every number has a unique de
omposition, andthe average number of summands 
onverges to a Gaussian.To date, most of the sequen
es studied have been one-dimensional; many that appear tobe higher dimensional (su
h as [CFHMN2, CFHMNPX℄) 
an be 
onverted to one-dimensionalsequen
es. Our goal is to investigate de
ompositions that are truly higher dimensional. Wedo so by 
reating a sequen
e arising from two-dimensional latti
e paths on ordered pairs ofpositive integers. A legal de
omposition in d dimensions will be a �nite 
olle
tion of latti
epoints for whi
h(1) ea
h point is used at most on
e, and(2) if the point (i1, i2, . . . , id) is in
luded then all subsequent points (i′1, i
′
2, . . . , i

′
d) have

i′j < ij for all j ∈ {1, 2, . . . , d} (i.e., all 
oordinates must de
rease between any twopoints in the de
omposition).We 
all these sequen
es of points on the d-dimensional latti
e simple jump paths. InSe
tion 4 we dis
uss generalizations in whi
h we allow only some of the 
oordinates to de
reasebetween two 
onse
utive points in the path; this adds 
ombinatorial di�
ulties. Note that thenumber we assign to ea
h latti
e point depends on how we order the points (unless we are inone dimension). For example, if d = 2 we 
an order the points by going along diagonal lines,or L-shaped paths. Expli
itly, the �rst approa
h gives the ordering
(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . , (1.1)while the se
ond yields

(1, 1), (2, 1), (2, 2), (1, 2), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), . . . . (1.2)For the purposes of this paper, however, it does not matter whi
h 
onvention we adopt asour results on the distribution in the number of summands of a legal de
omposition dependonly on the 
ombinatori
s of the problem, and not the values assigned to ea
h tuple. We 
allthe labeling atta
hed to any 
hoi
e a Simple Ze
kendorf Sequen
e in d dimensions, and
omment shortly on how this is done. If d = 1 then we denote the sequen
e as {ya}∞a=0 and
onstru
t it as follows.(1) Set y1 := 1.(2) Iterate through the natural numbers. If we have 
onstru
ted the �rst k terms of oursequen
e, the (k + 1)th term is the smallest integer whi
h 
annot be written as a sumof terms in the sequen
e, with ea
h term used at most on
e.Note this sequen
e is just powers of 2,
1 2 4 8 16 32 64 128 256 512 . . . , (1.3)and a legal de
omposition of n is just its binary representation.If d = 2, on the other hand, as remarked above we have 
hoi
es. We des
ribe the SimpleZe
kendorf Diagonal Sequen
e {ya,b}∞a,b=0; its 
onstru
tion is similar in nature to the d = 1
ase and pro
eeds as follows.(1) Set y1,1 := 1.2



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES(2) Iterate through the natural numbers. For ea
h su
h number, 
he
k if any path ofnumbers in our sequen
e with a stri
t leftward and downward movement between ea
htwo points sums to the number. If no su
h path exists, add the number to the sequen
eso that it is added to the shortest un�lled diagonal moving from the bottom right tothe top left.(3) If a new diagonal must begin to a

ommodate a new number, set the value yk,1 to bethat number, where k is minimized so that yk,1 has not yet been assigned.In (1.4) we illustrate several diagonals' worth of entries when d = 2, where the elementsare always added in in
reasing order. Note that unlike the Fibona

i sequen
e, we immedi-ately see that we have lost the uniqueness of de
ompositions (for example, 25 has two legalde
ompositions: 20 + 5 and 24 + 1).
280 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
157 263 · · · · · · · · · · · · · · · · · · · · · · · ·
84 155 259 · · · · · · · · · · · · · · · · · · · · ·
50 82 139 230 · · · · · · · · · · · · · · · · · ·
28 48 74 123 198 · · · · · · · · · · · · · · ·
14 24 40 66 107 184 · · · · · · · · · · · ·
7 12 20 33 59 100 171 · · · · · · · · ·
3 5 9 17 30 56 93 160 · · · · · ·
1 2 4 8 16 29 54 90 154 · · ·

(1.4)
Of 
ourse, analogous pro
edures to the one whi
h 
reates (1.4) exist for higher dimensions,but the intended illustration is most intuitive in two dimensions. For the same reason as in the

d = 2 
ase, there are 
learly multiple pro
edures to generate the higher-dimensional sequen
es,even if one �xes restri
tions on how to 
hoose the summands in as many as d− 2 dimensions.Numeri
al explorations (see Figure 1) suggest that, similarly to other sequen
es mentionedearlier, the distribution of the number of summands 
onverges to a Gaussian.
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Figure 1. Distribution of the number simple jump paths of varying lengthsversus the best �t Gaussian. Left: Starting at (10, 10). Right: Starting at
(40, 40). In both 
ases the horizontal axis is the number of summands andthe verti
al axis is the probability of obtaining a simple jump path with somenumber of summands when sele
ting one from all simple jump paths uniformlyat random.Our main result is that as n → ∞, we 
onverge to Gaussian behavior in any number ofdimensions.Theorem 1.1. (d-dimensional Gaussianity) Let n be a positive integer, and 
onsider the dis-tribution of the number of summands among all simple jump paths of dimension d with starting3



point (i, i, ....., i) where 1 ≤ i ≤ n, and ea
h distribution represents a (not ne
essarily unique)de
omposition of some positive number. This distribution 
onverges to a Gaussian as n → ∞.In Se
tion 2 we motivate our problem further, explore the notion of a simple jump path inmore depth, and prove some needed lemmas. Then, we prove Theorem 1.1 in Se
tion 3. Theresult is just the Central Limit Theorem for a binomial random variable if d = 1. If d = 2it 
an be proved dire
tly through 
ombinatorial identities, but for larger d the 
ombinatoriallemmas do not generalize and we are for
ed to resort to analyti
 te
hniques. We show that thefun
tional dependen
e is that of a Gaussian, and thus as the probabilities must sum to 1 thenormalization 
onstant, whi
h depends on the number of paths, must have a 
ertain asymptoti
formula. Thus, as an immediate 
onsequen
e, we obtain new proofs for the asymptoti
 numberof paths (the approa
h mentioned on the OEIS uses generating fun
tions and expansions). Weend with a dis
ussion of future work and generalizations of the simple jump paths.2. Properties of Simple Jump PathsWe �rst set some notation for our simple jump paths. We have walks in d dimensions startingat some initial point (a1, a2, . . . , ad) with ea
h aj > 0, and ending at the origin (0, 0, . . . , 0).Note that our simple jump paths must always have movement in all dimensions at ea
h step.We are just adding one extra point, at the origin, and saying every path must end there. Notethat as we always 
hange all of the indi
es during a step, we never in
lude a point where onlysome of the 
oordinates are zero, and thus there is no issue in adding one extra point andrequiring all paths to end at the origin.Our walks are sequen
es of points on the latti
e grid with positive indi
es or the origin, andwe refer to movements between two su
h 
onse
utive points as steps. Thus a simple jump pathis a walk where ea
h step has a stri
t movement in all d dimensions. More formally, a simplejump path of length k starting at (a1, a2, . . . , ad) is a sequen
e of points {(xi,1, . . . , xi,d)}ki=0where the following hold:
• (x0,1, . . . , x0,d) = (a1, . . . , ad),
• (xk,1, . . . , xk,d) = (0, . . . , 0), and
• for ea
h i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}, xi,j > xi+1,j .For a �xed d and any 
hoi
e of starting point (n, n, . . . , n) ∈ R

d, we let sd(n) denote thenumber of simple jump paths from (n, n, . . . , n) to the origin, and td(k, n) the subset of thesepaths with exa
tly k steps. As we must rea
h the origin, every path has at least 1 step, themaximum number of steps is n, and
sd(n) =

n
∑

k=1

td(k, n). (2.1)We now determine td(k, n). In one dimension we have td(k, n) =
(n−1
k−1

), as we must 
hooseexa
tly k − 1 of the �rst n − 1 terms (we must 
hoose the nth term as well as the origin, andthus 
hoosing k − 1 additional pla
es ensures their are exa
tly k steps). The generalization tohigher dimensions is immediate as we are looking at simple paths, and thus there is movementin ea
h dimension in ea
h step; this is why we restri
t ourselves to simple paths, as in thegeneral 
ase we do not have tra
table formulas like the one below.Lemma 2.1. For a1, . . . , ad positive integers let td(k; a1, . . . , ad) denote the number of sim-ple paths of length k starting at (a1, . . . , ad) and ending at (0, . . . , 0). Then for 1 ≤ k ≤4



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES
min(a1, . . . , ad),

td(k; a1, . . . , ad) =

(

a1 − 1

k − 1

)(

a2 − 1

k − 1

)

· · ·
(

ad − 1

k − 1

)

; (2.2)if a1 = · · · = ad = n we write td(k, n) for td(k; a1, . . . , ad). We have
sd(n) =

n
∑

k=1

td(k, n), (2.3)and s1(n) = 2n−1, s2(n) = (2n−2
n−1

) (for higher d there are no longer simple 
losed form expres-sions1).The proof is an immediate, repeated appli
ation of the one-dimensional result, with the twoformulas (for s1(n) and s2(n)) being well-known binomial identities (see for example [Mil℄).3. Gaussianity in d-Dimensional Latti
es3.1. Mean and Varian
e. To prove Theorem 1.1, we start by determining the density,
pd(k, n), for the number of simple jump paths of length k starting at (n, . . . , n):

pd(k, n) :=
td(k, n)

sd(n)
. (3.1)Mu
h, though not all, of the proof when d = 1 
arries over to general d. We therefore 
on
en-trate on d = 1 initially and then remark on what issues arise when we generalize, and dis
ussthe resolution of these problems.We begin by determining the mean and standard deviation. The analysis for the mean holdsfor all d, but the 
ombinatorial argument for the varian
e requires d ≤ 2. Due to the presen
eof n− 1 in the formula for td(k, n), we work with n+ 1 below to simplify some of the algebra.Lemma 3.1. Consider all simple jump paths from (n + 1, . . . , n + 1) to the origin in d-dimensions. If K is the random variable denoting the number of steps in ea
h path, thenits mean µd(n+ 1) and standard deviation σd(n+ 1) are

µd(n+ 1) =
1

2
n+ 1 (3.2)and

σ1(n+ 1) =

√
n

2
, σ2(n+ 1) =

n

2
√
2n − 1

≈
√
n

2
√
2
. (3.3)Further, we have

σd(n+ 1) ≤ σ1(n+ 1) ≤
√
n/2. (3.4)Proof. The results for d = 1 are well known, as we have a binomial random variable. For d = 2one 
an 
ompute the mean and the varian
e by 
ombinatorial arguments (see Appendix A);unfortunately while these 
an be generalized to give the mean for any d they do not generalizefor the varian
e.Be
ause we must end at the origin, note ea
h path must have length at least 1. Thus insteadof studying the number of paths of length k ∈ {1, . . . , n + 1} we instead study the number ofpaths of length κ ∈ {0, . . . , n} and then add 1 to obtain the mean (there is no need to add 1for the varian
e, as the varian
e of K and K − 1 are the same).1We will �nd ex
ellent approximations for large n and �xed d later. 5



As
td(k;n+ 1) =

(n
k

)d

sd(n+ 1)
, (3.5)the symmetry of the binomial 
oe�
ients about n/2 implies the mean of K − 1 is n/2. Allthat remains is to prove the varian
e bound for d ≥ 2. Note that the varian
e of K − 1 is

σd(n+ 1) =
n
∑

κ=0

(κ− n/2)2
(n
κ

)d

sd(n+ 1)
. (3.6)By symmetry it su�
es to investigate κ ≥ n/2. Sin
e the binomial 
oe�
ients are stri
tlyde
reasing as we move further from the mean, for su
h κ we �nd that

pd(κ)

pd(κ+ 1)
=

(n
κ

)d

( n
κ+1

)d
≥ 1, (3.7)and thus for every g > 0 we see that the probability of K − 1 being within g of the meanin
reases as d in
reases. Thus the varian
e is smallest at d = 1, 
ompleting the proof. �Next, we show with high probability that K is 
lose to the mean.Lemma 3.2. Consider all simple jump paths from (n + 1, . . . , n + 1) to the origin in d-dimensions. If K is the random variable denoting the number of steps in ea
h path, thenthe probability that K is at least nǫn1/2/2 from the mean is at most n−2ǫ.Proof. By Chebyshev's Inequality,

Prob (|K − (n/2 + 1)| ≥ nǫσd(n+ 1)) ≤ 1

n2ǫ
. (3.8)As σd(n+1) ≤ n1/2/2 by Lemma 3.1, we only de
rease the probability on the left if we repla
e

σd(n+ 1) with n1/2/2, and thus the 
laim follows. �One important 
onsequen
e of the above lemma is that if we write k as µd(n+1)+ ℓn1/2/2,then with probability tending to 1 we may assume |ℓ|≤ nǫ.3.2. Gaussianity. The proof of Theorem 1.1 in general pro
eeds similarly to the d = 1 
ase.For d ≤ 2 we have expli
it formulas for both the varian
e and sd(n + 1), whi
h simplify theproof. For general d we show that the resulting distribution has the same fun
tional form as aGaussian, and from this we obtain asymptoti
s for both the varian
e and the number of paths.Proof of Theorem 1.1. From Lemma 3.2, if we write
k = µd(n+ 1) + ℓn1/2/2 (3.9)then the probability of |ℓ| being at least n1/9 is at most n2/9, so in the arguments below weassume |ℓ|≤ n1/9. In parti
ular, this means that both k and n − k are 
lose to n/2 withprobability tending to 1 as n → ∞. We are using n1/2/2 and not σd(n + 1) as this way aquantity below will perfe
tly mat
h the d = 1 
ase.For m large, Stirling's Formula states that

m! = mme−m
√
2πm

(

1 +O

(

1

m

))

. (3.10)6



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESThus
pd(k, n + 1) =

(

n
k

)d

sd(n + 1)
=

1

sd(n+ 1)

(

n!

k! (n− k)!

)d

=
1

sd(n + 1)





√
2πnnn

√

4π2k(n− k)kk(n − k)n−k
·

(

1 +O
(

1
n

))

(

1 +O
(

1
n−k

))

(

1 +O
(

1
k

))





d

,(3.11)and the ratio of the big-Oh terms is 1+O(1/n) sin
e k and n− k are approximately n/2 (notethe big-Oh 
onstant here is allowed to depend on d, whi
h is �xed).We now turn to the other part of the above expression. If we divide the rest of the quantityin parentheses by 2n then we have the probability in 1-dimension, whose analysis is well-known;thus
pd(k, n + 1) =

2ndnd/2

sd(n+ 1)

(

nn

2nkk(n− k)n−k
√

2πk(n − k)

)d

· (1 +O(1/n)) . (3.12)The quantity to the d-th power 
onverges (up to the normalization fa
tor) to a Gaussian bythe Central Limit Theorem for a binomial random variable; for 
ompleteness we sket
h theproof.Using n, n− k are 
lose to n/2, we �nd
pmain,1(k) :=

nn

2nkk(n− k)n−k
√

2πk(n − k)

=
1

√

1
2πn

2
· 1
(

1−
ℓ
√

n
2

n/2

)n/2− ℓ
√

n
2

+ 1
2
(

1 +
ℓ
√

n
2

n/2

)n/2+ ℓ
√

n
2

+ 1
2

. (3.13)Let qn be the denominator of the se
ond fra
tion above. We approximate log(qn) and thenexponentiate to estimate qn. As |ℓ|≤ n1/9, when we take the logarithms of the terms in qn onlythe �rst two terms in the Taylor expansion of log(1 + u) 
ontribute as n → ∞. Thus
log qn =

(

n

2
− ℓ

√
n

2
+

1

2

)(

− ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

+

(

n

2
+

ℓ
√
n

2
+

1

2

)(

ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

=
ℓ2

2
+O

(

n · n
1/3

n3/2
− ℓ2

2n

)

=
ℓ2

2
+O

(

n−1/6
)

, (3.14)whi
h implies (sin
e k = µd(n+ 1) + ℓ
√
n/2)

qm = e
(k−µd(n+1))2

n/2 eO(n−1/6). (3.15)Thus 
olle
ting our expansions yields, for |ℓ|≤ n1/9,
pd(k, n+ 1) =

2ndnd/2

sd(n+ 1)(πn2/2)d/2
e
−

d(k−µd(n+1))2

n/2 · eO(n−1/6). (3.16)Note the se
ond exponential is negligible as n → ∞, and the �rst exponential is that of aGaussian with mean µd(n + 1) and varian
e σd(n + 1)2 = n/4d. As this is a probability7



distribution it must sum to 1 (the terms with |ℓ| large 
ontribute negligibly in the limit), andthus 2nd/(sd(n + 1)(πn/2)d/2) must 
onverge to the normalization 
onstant of this Gaussian,whi
h is 1/√2πsd(n + 1)2. In parti
ular, we obtain2
sd(n+ 1) ∼ 2ndnd/2

(πn2/2)d/2
·
√

2πn/4d = 2nd
(πn

2

)− d
2
+ 1

2
d−1/2. (3.17)

�4. Future Work and Con
luding RemarksWe 
ould also 
onsider the Compound Ze
kendorf Diagonal Sequen
e in d dimen-sions, whi
h is 
onstru
ted in a similar way to (1.3) and (1.4), but allows more paths to belegal (expli
itly, ea
h step is no longer required to move in all of the dimensions). While the
d = 1 Compound Ze
kendorf Diagonal Sequen
e is the same as the simple one, the twonotions of paths give rise to di�erent sequen
es when d = 2. In that 
ase, the CompoundZe
kendorf Diagonal Sequen
e is denoted {za,b}∞a = 0,b = 0, and is 
onstru
ted as follows.(1) Set z1,1 := 1.(2) Iterate through the natural numbers. For ea
h su
h number, 
he
k if any path ofdistin
t numbers without upward or rightward movements sums to the number. If nosu
h path exists, add the number to the sequen
e so that it is added to the shortestun�lled diagonal moving from the bottom right to the top left.(3) If a new diagonal must begin to a

ommodate a new number, set the value zk,1 to bethat number, where k is minimized so that zk,1 has not yet been assigned.The di�eren
e between this and the Simple Ze
kendorf Diagonal Sequen
e is that we nowallow movement in just one dire
tion. This greatly 
ompli
ates the 
ombinatorial analysisbe
ause now the simultaneous movements in di�erent dimensions depend on ea
h other. Inparti
ular, if a step 
ontains a movement in one dire
tion, it no longer needs to 
ontain amovement in other dire
tions to be regarded as a legal step. In (4.1) we illustrate severaldiagonals' worth of entries, where the elements are always added in in
reasing order.

6992 · · · · · · · · · · · · · · · · · · · · · · · ·
2200 6054 · · · · · · · · · · · · · · · · · · · · · · · ·
954 2182 5328 · · · · · · · · · · · · · · · · · · · · ·
364 908 2008 5100 · · · · · · · · · · · · · · · · · ·
138 342 862 1522 4966 · · · · · · · · · · · · · · ·
44 112 296 520 1146 2952 · · · · · · · · · · · ·
16 38 94 184 476 1102 2630 · · · · · · · · ·
4 10 22 56 168 370 1052 2592 · · · · · ·
1 2 6 18 46 140 366 1042 2270 · · ·

(4.1)
Just as in (1.4), uniqueness of de
ompositions does not hold in the 
ompound 
ase. Forinstan
e, 112+38+10 and 140+18+2 are both legal de
ompositions of 160 in (4.1). Moreover,just like the Simple Ze
kendorf Diagonal Sequen
es (1.3) and (1.4), Compound Ze
kendorfDiagonal Sequen
es 
an be built in higher dimensions with multiple ways of formulating howto add terms to the sequen
e.Many of the arti
les in the literature use 
ombinatorial methods and manipulations of bino-mial 
oe�
ients to obtain similar results (see, for instan
e, [Eg, Len, MW2℄). Thus a question2One 
an 
he
k this asymptoti
 by 
omputing sd(n+1) for various d and looking up the resulting sequen
eson the OEIS, whi
h agree; for example, see the entry A182421 for the sequen
e when d = 7.8



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESworth future study is to extend the 
ombinatorial varian
e 
al
ulation to d dimensions (seeLemma A.2).Finally, similar to [BILMT, KKMY℄ and related work, we 
an investigate the distribution ofgaps between summands in legal paths. One 
an readily obtain expli
it 
ombinatorial formulasfor the probability of a given gap; the question is whether or not ni
e limits exist in this 
aseas they do for the one-dimensional re
urren
es previously studied.Appendix A. Derivation of Mean and Standard Deviation for Simple JumpPathsLemma A.1 (Mean for Simple Jump Path Distribution). If µd(i) denotes the mean numberof steps in a d-dimensional simple jump path from (i, i, . . . , i) to the origin, then
µd(n+ 1) =

1

2
n+ 1. (A.1)Proof. By the de�nition of the �rst moment,

µd(n+ 1) =

∑n+1
k=1 k · td(k, n + 1)

sd(n+ 1)

=

∑n
k=0(k + 1)td(k + 1, n + 1)

sd(n+ 1)
=

∑n
k=0 k

(n
k

)d
+ sd(n+ 1)

sd(n+ 1)
. (A.2)We 
omplete the proof based on the parity of n. We �rst assume n is odd. Then

n
∑

k=0

k

(

n

k

)d

=

⌊n
2
⌋

∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

= n

⌊n
2
⌋

∑

k=0

(

n

k

)d

. (A.3)Noti
e that by the symmetry of binomial 
oe�
ients,
⌊n
2
⌋

∑

k=0

(

n

k

)d

=

n
∑

k=⌈n
2
⌉

(

n

k

)d

, (A.4)so
n

⌊n
2
⌋

∑

k=0

(

n

k

)d

=
1

2
n

n
∑

k=0

(

n

k

)d

=
1

2
nsd(n+ 1), (A.5)and substituting into (A.2) 
ompletes the proof in this 
ase.Now we 
onsider n even. A similar analysis as in the previous 
ase works, ex
ept we needto deal with the term where k = n/2, whi
h is mat
hed with itself:

n
∑

k=0

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

k

(

n

k

)d

+
n
∑

k=n
2
+1

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

=
n

2

(

n

n/2

)d

+ n

n
2
−1
∑

k=0

(

n

k

)d (A.6)9



Again utilizing the symmetry of binomial 
oe�
ients,
n
2
−1
∑

k=0

(

n

k

)d

=

n
∑

k=n
2
+1

(

n

k

)d

, (A.7)so (A.6) is equivalent to
n

2

(

n

n/2

)d

+
n

2

∑

k∈{0,1,...,n}\{n/2}

(

n

k

)d

=
n

2

n
∑

k=0

(

n

k

)d

=
n

2
sd(n+ 1), (A.8)
ompleting the proof. �Lemma A.2 (Standard Deviation for 2-Dimensional Simple Jump Paths). If σ2(i) representsthe standard deviation for the number of steps in a simple jump path in d-dimensions from

(i, i) to the origin, then
σ2(n + 1) =

n

2
√
2n− 1

. (A.9)As the varian
e in the one-dimensional 
ase is well known (it is the varian
e of a binomialrandom variable), we provide details only for d = 2. As remarked earlier, the 
ombinatorialapproa
h taken below does not generalize to higher d.Proof. We use the simple 
losed form expression for s2(n+ 1), namely that it equals (2nn ). Bythe de�nition of the se
ond standardized moment and use of (A.1) where d = 2, we have
σ2(n+ 1)2 =

∑n+1
k=1 k

2
( n
k−1

)2

(2n
n

) −
(

1

2
n+ 1

)2

. (A.10)Shifting the index of summation to start at k = 0 and expanding yields
σ2(n+ 1)2 =

∑n
k=0(k + 1)2

(

n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(2n
n

) +

∑n
k=0 2k

(n
k

)2

(2n
n

) +

∑n
k=0

(n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(

2n
n

) + 2µ2(n+ 1)−
∑n

k=0

(n
k

)2

(

2n
n

) −
(

1

2
n+ 1

)2

. (A.11)Using (3.2) for the mean and re
alling that ∑n
k=0

(n
k

)2
=
(2n
n

), we have
σ2(n+ 1)2 =

∑n
k=0 k

2
(n
k

)2

(

2n
n

) + 2

(

1

2
n+ 1

)

− 1−
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(2n
n

) − n2

4
. (A.12)We now use the identity

n
∑

k=0

k2
(

n

k

)2

= n2

(

2n− 2

n− 1

)

, (A.13)10
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h we qui
kly prove for 
ompleteness. To see this, expand the binomial 
oe�
ient and
an
el k's:
n
∑

k=0

k2
(

n

k

)2

=
n
∑

k=0

k2
(

n!

k! (n − k)!

)2

=
n
∑

k=1

n2

(

(n− 1)!

(k − 1)! (n − k)!

)2

. (A.14)Shifting indi
es, we 
an rewrite the above as
n
∑

k=0

k2
(

n

k

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)(

n− 1

n− 1− ℓ

)

, (A.15)and as we have seen numerous times the sum equals (2n−2
n−1

) (it is the number of ways to 
hoose
n − 1 obje
ts from 2n − 2, where we 
onsider n − 1 of the items to be in one set and theremaining n− 1 in another). Substituting (A.13) into (A.12) gives

σ2(n+ 1)2 =
n2
(2n−2
n−1

)

(2n
n

) − n2

4

=
n3

4n − 2
− n2

4
=

n2

8n − 4
. (A.16)Taking the square root of both sides of (A.16) gives the desired result. �We remark on the di�
ulty in generalizing the above argument to arbitrary d. The problemis in (A.13). There it was 
ru
ial that d = 2, as we then 
an
eled the k2 with the two fa
torsof k in the denominator. In higher dimensions we do not have su
h perfe
t alignment.Referen
es[BM℄ I. Ben-Ari, S. Miller, A Probabilisti
 Approa
h to Generalized Ze
kendorf De
ompositions,SIAM Journal on Dis
rete Mathemati
s, 30 (2016), no. 2, 1302�1332.[BDEMMTTW℄ A. Best, P. Dynes, X. Edelsbrunner, B. M
Donald, S. Miller, K. Tor, C. Turnage-Butterbaugh, M. Weinstein, Gaussian Behavior of the Number of Summands in Ze
kendorfDe
ompositions in Small Intervals, Fibona

i Quarterly, 52 (2014), no. 5, 47�53.[BILMT℄ A. Bower, R. Insoft, S. Li, S. Miller, P. Tosteson, The Distribution of Gaps Between Sum-mands in Generalized Ze
kendorf De
ompositions, Journal of Combinatorial Theory, 135(2015), 130�160.[Br℄ J. L. Brown, Jr., Ze
kendorf's Theorem and Some Appli
ations, The Fibona

i Quarterly,Vol. 2, No. 3 (O
t. 1964), pages 163�168.[CFHMN1℄ M. Catral, P. Ford, P. Harris, S. Miller, D. Nelson, Generalizing Ze
kendorf's Theorem: TheKentu
ky Sequen
e, Fibona

i Quarterly, 52 (2014), no. 5, 68�90.[CFHMN2℄ M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Legal De
ompositions Arisingfrom Non-positive Linear Re
urren
es, Fibona

i Quarterly 54 (2016), no. 4, 3448�365.[CFHMNPX℄ M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Z. Pan and H. Xu, New Behaviorin Legal De
ompositions Arising from Non-positive Linear Re
urren
es, Fibona

i Quarterly55 (2017), no. 3, 252�275 (expanded arXiv version: http://arxiv.org/pdf/1606.09309).[Day℄ D. E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibona

i Numbers,J. London Mathemati
al So
iety 35 (1960), 143�160.[DDKMMV℄ P. Demontigny, T. Do, A. Kulkarni, S. Miller, D. Moon, U. Varma, Generalizing Ze
kendorf'sTheorem to f-De
ompositions, Journal of Number Theory, 141 (2014), 136�158.[DFFHMPP℄ R. Dorward, P. Ford, E. Fourakis, P. Harris, S. Miller, E. Palsson, H. Paugh, New Behavior inLegal De
ompositions Arising From Non-Positive Linear Re
urren
es, Fibona

i Quarterly,55 (2017), no. 3, 252�275.[DG℄ M. Drmota and J. Gajdosik, The distribution of the sum-of-digits fun
tion, J. Théor. NombrésBordeaux 10 (1998), no. 1, 17�32. 11

http://arxiv.org/pdf/1606.09309


[Eg℄ S. Eger, Stirling's Approximation for Central Extended Binomial Coef-�
ients, Ameri
an Mathemati
al Monthly, 121 (2014), no. 4, 344�349,https://arxiv.org/pdf/1203.2122.pdf .[FGNPT℄ P. Filipponi, P. J. Grabner, I. Nemes, A. Pethö, and R. F. Ti
hy, Corrigendum to: �Gener-alized Ze
kendorf expansions�, Appl. Math. Lett., 7 (1994), no. 6, 25�26.[Fr℄ A. S. Fraenkel, Systems of Numeration, Amer. Math. Monthly 92 (1985), no. 2, 105�114.[GTNP℄ P. J. Grabner, R. F. Ti
hy, I. Nemes, and A. Pethö, Generalized Ze
kendorf expansions, Appl.Math. Lett. 7 (1994), no. 2, 25�28.[Ha℄ N. Hamlin, Representing Positive Integers as a Sum of Linear Re
urren
e Sequen
es, Fi-bona

i Quarterly 50 (2012), no. 2, 99�105.[Ho℄ V. E. Hoggatt, Generalized Ze
kendorf theorem, Fibona

i Quarterly 10 (1972), no. 1 (spe
ialissue on representations), pages 89�93.[HW℄ N. Hamlin and W. A. Webb, Representing positive integers as a sum of linear re
urren
esequen
es, Fibona

i Quarterly 50 (2012), no. 2, 99�105.[Ke℄ T. J. Keller, Generalizations of Ze
kendorf's theorem, Fibona

i Quarterly 10 (1972), no. 1(spe
ial issue on representations), pages 95�102.[KKMY℄ M. Kologlu, G. Kopp, S. Miller, Y. Wang, On the Number of Summands in Ze
kendorfDe
ompositons, Journal of Number Theory, 49 (2011), no. 2, 116�130.[LT℄ M. Lamberger and J. M. Thuswaldner, Distribution properties of digital expansions arisingfrom linear re
urren
es, Math. Slova
a 53 (2003), no. 1, 1�20.[Lek℄ C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van Fi-bona

i|, Simon Stevin 29 (1951-1952), 190�195.[Len℄ T. Lengyel, A Counting Based Proof of the Generalized Ze
kendorf's Theorem, Fibona

iQuarterly 44 (2006), no. 4, 324�325.[LM℄ R. Li and S. J. Miller, A Colle
tion of Central Limit Type Results in Generalized Ze
kendorfDe
ompositions, Pro
eedings of the Seventeenth International Conferen
e on Fibona

i Num-bers and Their Appli
ations, Fibona

i Quarterly 55 (2017), no. 5, 105 � 114.[Mil℄ S. J. Miller, The Probability Lifesaver, Prin
eton University Press, 2017, 752 pages.[MW1℄ S. Miller, Y. Wang, From Fibona

i Numbers to Central Limit Type Theorems, Journal ofCombinatorial Theory, Series A 119 (2012), no. 7, 1398�1413.[MW2℄ S. Miller, Y. Wang, Gaussian Behavior in Generalized Ze
kendorf De
ompositions, Combina-torial and Additive Number Theory, CANT 2011 and 2012 (Melvyn B. Nathanson, editor),Springer Pro
eedings in Mathemati
s & Statisti
s (2014), 159�173.[Ste1℄ W. Steiner, Parry expansions of polynomial sequen
es, Integers, 2 (2002), Paper A14.[Ste2℄ W. Steiner, The Joint Distribution of Greedy and Lazy Fibona

i Expansions, Fibona

iQuarterly, 43 (2005), 60�69.[Ze℄ E. Ze
kendorf, Représentation des nombres naturels par une somme des nombres de Fibona

iou de nombres de Lu
as, Bulletin de la So
iété Royale des S
ien
es de Liége 41 (1972), pages179�182.High S
hool Affiliated to Renmin University, Zhongguan
un Road 37, Haitian Distri
t,Beijing, ChinaE-mail address: 2821524834�qq.
omThe Eureka ProgramE-mail address: 
henziyang20010420�126.
omThe Eureka ProgramE-mail address: 530824689�qq.
omCheltenham Ladies' College, Glou
estershire, The United Kingdom GL50 3EPE-mail address: xy
indyjiang�gmail.
omDepartment of Mathemati
s and Statisti
s, Williams College, Williamstown, MA 01267E-mail address: sjm1�williams.edu12

https://arxiv.org/pdf/1203.2122.pdf


GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESDepartment of Mathemati
al S
ien
es, Carnegie Mellon University, Pittsburgh, PA 15213E-mail address: jsiktar�andrew.
mu.eduThe Taft S
hool, Watertown, CT 06795E-mail address: peter0201yu�gmail.
om

13


	1. Introduction
	2. Properties of Simple Jump Paths
	3. Gaussianity in d-Dimensional Lattices
	3.1. Mean and Variance
	3.2. Gaussianity

	4. Future Work and Concluding Remarks
	Appendix A. Derivation of Mean and Standard Deviation for Simple Jump Paths
	References

