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ABSTRACT. Random matrix theory has successfully modeled many systems in physics and mathem-
atics, and often analysis in one area guides development in the other. Hughes and Rudnick computed
1-level density statistics for low-lying zeros of the family of primitive Dirichlet L-functions of fixed
prime conductor Q, as Q→∞, and verified the unitary symmetry predicted by random matrix theory.
We compute 1- and 2-level statistics of the analogous family of Dirichlet L-functions over Fq(T ).
Whereas the Hughes-Rudnick results were restricted by the support of the Fourier transform of their
test function, our test function is periodic and our results are only restricted by a decay condition on its
Fourier coefficients. Our statements are more general and also include error terms. In concluding, we
discuss an Fq(T )-analogue of Montgomery’s Hypothesis on the distribution of primes in arithmetic
progressions, which Fiorilli and Miller show would remove the restriction on the Hughes-Rudnick
results.
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1. INTRODUCTION

1.1. Background. In the 1970s, Montgomery and Dyson conjectured that local statistics of critical
zeros of the Riemann zeta function—in the limit of large height—should match those of angles
of eigenvalues of matrices in the Gaussian Unitary Ensemble (GUE), which Wigner, Dyson and
others (see [FirM] for a historical overview) had already used with great success in modeling
the energy levels of heavy nuclei. Their ideas, exemplified by the Pair Correlation Conjecture in
[Mo2], began a long history of investigation into connections between number theory, physics
and random matrix theory. Odlyzko ([Od1, Od2]) checked various statistics of critical zeros of
the Riemann zeta function high up on the critical line numerically, including pair correlation, and
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found extraordinary agreement with GUE predictions. Katz and Sarnak extended this philosophy
to families of L-functions in [KS1, KS2]. They proposed that zeros of L-functions in suitable
“families” would have similar statistics to each other, and that the statistics of a given family, in the
limit of large analytic conductor, would match those of eigenangles of matrices in some classical
compact group under Haar measure, in the limit of large dimension. Thus, families of L-functions
would correspond to one of three basic symmetry types: unitary, symplectic, or orthogonal. For a
recent discussion about a working definition of families of L–functions, as well as how to determine
the underlying symmetry, see [DM, ST, SST].

Originally, the Katz-Sarnak Conjectures were investigated in the so-called local regime near the
central point s = 1/2; that is, in intervals around s = 1/2 shrinking as the conductor grows, so that
the number of zeros it contains is roughly constant (see, among others, [ILS, HR, Mil, Rub, Yo]).
In this regime the conjectures are very difficult, and most results are limited to test functions whose
Fourier transforms have severely restricted support. Moreover, it is necessary to average over a
‘family’, as one L-function cannot have sufficiently many normalized zeros near the central point.
This is in sharp contrast to other statistics such as the n-level correlation; these statistics study
zeros high up on the critical line, and one L-function has sufficiently many zeros far from the
central point to permit an averaging. For example, Rudnick and Sarnak [RS] computed the n-level
correlation for the zeroes of not just the Riemann zeta function but any cuspidal automorphic form
for a restricted class of test functions, proving their expression agrees with the n-level correlation
for the eigenvalues of random unitary matrices.

Our own work extends [HR], in which Hughes and Rudnick compute the mth centered moment
of the 1-level density of the family of primitive Dirichlet L-functions of fixed conductor Q as
Q→∞, for test functions φ such that supp(φ̂) ⊆ (−2/m,+2/m). This family should have unitary
symmetry, which the authors verified for suitably restricted test functions. We consider analogous
questions in the function field case. There has been significant progress in this area of late (see
[FR, Rud] among others); we briefly comment on one particular example which illuminates the
contributions that function field results can have to random matrix theory and mathematical physics.

In his thesis Rubinstein [Rub] showed the n-level density of quadratic Dirichlet L-functions
agrees with the random matrix theory predictions for support in (−1/n, 1/n). In the course of his
investigations he analyzed the combinatorial expansions for the n-level densities of the classical
compact groups, though he only needed the results for restricted test functions due to the limitations
on the number theory calculations. Gao [Gao] doubled the support in his thesis, but do to the
complexity of the combinatorics was only able to show the two computed quantities agreed for
n ≤ 3. Levinson and Miller [LM] devised a new approach which allowed them to show agreement
for n ≤ 7; unlike the ad-hoc method of Gao, they developed a canonical formulation of the quantities
and reduced the general case to a (still open) combinatorial identity involving Fourier transforms.
The work of Entin, Roditty-Gershon and Rudnick [ER-GR] bypasses these calculations by using
known results in the function field case to deduce what the combinatorics must equal.

Katz and Sarnak suggested that a possible motivation for their conjectures is the analogy between
number fields and global function fields. The Riemann zeta function and Dirichlet L-functions
can be considered L-functions “over Q”; they possess analogues “over Fq(T ),” which occur as
factors of numerators of zeta functions of projective curves over Fq. As proven by Deligne [De],
the zeros of the latter have a spectral interpretation, as reciprocals of eigenvalues of the Frobenius
endomorphism acting on `-adic cohomology. Katz-Sarnak [KS1] proved agreement with GUE
n-level correlation unconditionally for the family of isomorphism classes of curves of genus g over
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Fq, in the limit as both g, q →∞. Their main tool was Deligne’s result that the Frobenius conjugacy
classes become equidistributed in the family’s monodromy group as q →∞.

Recently, there has been interest in the “opposite limit,” where q is held fixed and g →∞. In [FR],
the authors considered zeros of zeta functions of hyperelliptic curves of genus g over Fq. Instead of
looking at zeros in the local regime, they look at zeros in (1) global and (2) mesoscopic regimes:
that is, in intervals I around 0 such that either (1) |I| is fixed, or (2) |I| → 0 but g|I| → ∞. In
both regimes, they show that the zeros become equidistributed in I as g →∞, and the normalized
fluctuations in the number of the zeros are Gaussian. Xiong [Xi] extended their work to families of
`-fold covers of P1(Fq), for prime ` such that q ≡ 1 (mod `), again obtaining Gaussian behavior.
For other works in this direction see [BDFL1, BDFL2, BDFLS].

1.2. Outline. We study the Fq(T )-analogue of the DirichletL-function family of [HR]. Specifically,
we compute 1- and 2-level statistics of its zeros in the global regime, then show how they imply
statistics in the local regime. In this introduction we only state the results in the global regime; we
save for later sections the full statements of the local results, as these require significantly more
notation to state. Whereas the Hughes-Rudnick results were restricted by the support of φ̂, our
global test function ψ is periodic and our results are only restricted by a decay condition on the
Fourier coefficients ψ̂(n).

In what follows, let Q ∈ Fq[T ]. Let FQ be the family of primitive Dirichlet characters χ :
Fq[T ]→ C of modulus Q, and let F even

Q be the subfamily of even characters in FQ.

1.2.1. 1-Level Statistics. A (1-dimensional) test function of period 1 is a holomorphic Fourier series
ψ(s) =

∑
n∈Z ψ̂(n)e(ns). The average or expectation of a function F : FQ → C is

EF =
1

#FQ

∑
χ∈FQ

F (χ); (1.1)

this sum is well-defined as there are only finitely many χ ∈ FQ. With these definitions, we set

F1,χ(ψ) :=
1

d− 1

∑
−Tq

2
≤γχ<

Tq
2

ψ

(
γχ
Tq

)
, (1.2)

where above, γχ runs through the ordinates of the zeros 1/2 + iγχ of L(s, χ).

Theorem 1.1. Suppose Q is irreducible of degree d > 2. Let ψ be a test function of period 1 such
that

C(ψ) =
∑
n∈Z

|ψ̂(n)|q|n|/2 (1.3)

converges. Then

EF1,χ(ψ) = ψ̂(0)− 1

(d− 1)(q − 1)

∑
n∈Z

ψ̂(n)

q|n|/2
+O

(
C(ψ)

dqd

)
. (1.4)

The variance of a function F : FQ → C is

VarF := E|F − EF |2 = E|F |2 − |EF |2.
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Theorem 1.2. Suppose Q is irreducible of degree d > 2. Let ψ be a test function of period 1 such
that C(ψ) converges, where C(ψ) is defined in Theorem 1.1. Then

VarF1,χ(ψ) =
1

(d− 1)2

∑
n∈Z

|n||ψ̂(n)|2 +O

(
C(ψ)2

d2qd

)
. (1.5)

1.2.2. 2-Level Statistics. A 2-dimensional test function of period 1 is a bivariate Fourier series
ψ(s1, s2) = ψ1(s1)ψ2(s2) =

∑
n1,n2∈Z ψ̂1(n1)ψ̂2(n2)e(n1s1 + n2s2). We set

F2,χ(ψ) =
1

(d− 1)2

∑
−Tq

2
≤γχ,1,γχ,2<

Tq
2

γχ,2 6=γχ,1

ψ

(
γχ,1
Tq

,
γχ,2
Tq

)
. (1.6)

Theorem 1.3. Suppose Q is irreducible of degree d > 2. Let ψ be a 2-dimensional test function of
period 1 such that

C(ψ) = C(ψ1)C(ψ2) (1.7)

converges, where C(ψ) is defined for 1-dimensional test functions φ of period 1 in Theorem 1.1. Let
ψdiag(s) = ψ(s, s). Then

EF2,χ(ψ) = −EF1,χ(ψdiag) + ψ̂(0, 0) +
1

(d− 1)2

∑
n∈Z

|n|ψ̂(n,−n) +
C2,Γ(ψ)

q − 1
(1.8)

+O

(
C(ψ1) + C(ψ2)

dqd

)
+O

(
C(ψ)

d2qd

)
,

where

C2,Γ(ψ) = − 1

d− 1

∑
n∈Z

ψ̂(0, n) + ψ̂(n, 0)

q|n|/2
+

1

(d− 1)2

∑
n1,n2∈Z

ψ̂(n1, n2)

q(|n1|+|n2|)/2
. (1.9)

1.2.3. Complements. In Section 5, we explain how to pass from global to local. Our global
statements above imply local statements analogous to those of [HR], but are more general and also
include error terms. In Section 6, we discuss an Fq(T )-analogue of Montgomery’s Hypothesis,
which Fiorilli and Miller [FioM] show would remove the restriction on the Hughes-Rudnick results.

1.2.4. Connections. We end this introduction by briefly describing the connections this work
emphasizes between number theory and physics. For us, the most important bridge between
these two areas is the one provided by random matrix theory, which since the work of Wigner
[Wig1, Wig2, Wig3], Dyson [Dy1, Dy2] and others has highlighted commonalities between the two
topics (see the recent work of Conrey, Farmer and Zirnbauer [CFZ1, CFZ2] for a related, relevant
example). One of the most important issues in both fields is to obtain results in the greatest possible
generality. In physics this can be seen in the attempts to shoot neutrons of arbitrary energy into a
heavy nucleus. The corresponding problem in number theory (where zeros of L-functions play an
analogous role to those of energy levels, and the support of the Fourier transform corresponds to
the energy level of the neutron) is to understand sums of the Fourier transform of the test function
for arbitrary support. In physics we obtain a greater understanding of the internal structure from
incident neutrons of varying energies; however, in practice we can only work with neutrons whose
energies are in a specified band. Similar insights occur in number theory; in the ideal situation
where we could take test functions whose Fourier transforms have arbitrarily large support, this
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would correspond to a test function that is a Dirac delta spike, and hence yield perfect information
at a point.

While both number theory and physics are quite far from being able to to the above, the hope
is that insights and formulas in one area can help drive progress in the other. In particular, in this
paper we study a function field problem (these are typically easier than number theory problems)
and investigate global statistics that can be computed in larger regimes than other number theory
quantities; we hope the resulting formulas will be of interest and use to researchers in both
disciplines.

2. DIRICHLET L-FUNCTION PRELIMINARIES

We always assume q is a prime power below. We write
∑′,∏′ to denote a sum or product

restricted to monic polynomials in Fq[T ], and
∑

P ,
∏

P to denote a sum or product over irreducibles
in Fq[T ]. If f ∈ Fq[T ], then |f | equals 0 if f = 0 and qdeg f if f 6= 0.

Fix a nonconstant modulus Q ∈ Fq[T ] of degree d, and consider Dirichlet characters χ : Fq[T ]→
C of modulus Q. To each nontrivial character χ, one associates the L-function

L(s, χ) :=
∑′

f

χ(f)

|f |s
=

d−1∑
n=0

∑′

deg f=n

χ(f)q−ns. (2.1)

We briefly review its properties, following Chapter 4 of [Ro]. It possesses the Euler product

L(s, χ) =
∏′

P

1

1− χ(P )|P |−s
. (2.2)

Taking logarithmic derivatives of both sides gives

L′

L
(s, χ) = −(log q)

∞∑
n=0

cχ(n)q−ns, (2.3)

where cχ(n) =
∑′

deg f=nΛ(f)χ(f) and

Λ(f) =

{
degP f = P ν for some irreducible monic P and ν ∈ Z+

0 otherwise (2.4)

is the von Mangoldt function over Fq[T ].
Since we wish to emphasize the analogy between these L-functions and number-field Dirichlet

L-functions, we prefer to consider their zeros in the variable s rather than q−s. The Riemann
Hypothesis, proved for these L-functions by Weil [We2], implies that the critical zeros of L(s, χ)
live on the line Re s = 1/2 and thus are vertically periodic with period 2π/ log q. Moreover, the
Riemann Hypothesis implies that cχ(n)� dqn/2 for all χ 6= χ0 (see [Ro]).

We consider the completed L-function (a good reference is Chapter 7 of [We1]). Suppose χ is
primitive. Then the completed L-function associated to χ is

L(s, χ) =
1

1− λ∞(χ)q−s
L(s, χ) (2.5)

where λ∞(χ) equals 1 if χ is even, meaning F×q ⊆ kerχ, and 0 if χ is odd. The functional equation
of L(s, χ) is

L(s, χ) = ε(χ)(qd(χ))1/2−sL(1− s, χ), (2.6)
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where d(χ) = d − 1 − λ∞(χ) is the degree of L(s, χ) seen as a polynomial in the variable q−s

and ε(χ) ∈ S1 is some root number. Translating (2.5)-(2.6) into statements about the logarithmic
derivatives gives

L′

L
(s, χ) =

L′

L
(s, χ) +

λ∞(χ) log q

λ∞(χ)− qs
(2.7)

and
L′

L
(s, χ) = −d(χ) log q − L

′

L
(1− s, χ). (2.8)

Therefore, using the fact that λ∞(χ) = λ∞(χ), we find

− L′

L
(1− s, χ) (2.9)

= d(χ) log q +
L′

L
(s, χ) + λ∞(χ)

(
1

λ∞(χ)− qs
+

1

λ∞(χ)− q1−s

)
log q

= d(χ) log q +
L′

L
(s, χ) + λ∞(χ)

(
1

1− qs
+

1

1− q1−s

)
log q.

The following formula is essentially Lemma 2.2 of [FR]. We re-derive it in Appendix A in a way
that facilitates comparison with classical Explicit Formulae, such as that of [RS]. To state the result,
abbreviate

Tq =
2π

log q
, (2.10)

which is the correct rescaling for zeros near the central point.

Proposition 2.1. Let Q ∈ Fq[T ] be of degree d > 2, and let χ be a nontrivial Dirichlet character
of modulus Q. Let ψ be a test function of period 1. Then

F1,χ(ψ) :=
1

d− 1

∑
−Tq

2
≤γχ<

Tq
2

ψ

(
γχ
Tq

)
(2.11)

= ψ̂(0)− λ∞(χ)

d− 1

∑
n∈Z

ψ̂(n)

q|n|/2
− 1

d− 1

∞∑
n=0

cχ(n)ψ̂(n) + cχ(n)ψ̂(−n)

qn/2
,

where λ∞(χ) equals 1 if χ is even and 0 otherwise, and cχ(n) =
∑′

deg f=nΛ(f)χ(f).

3. THE 1-LEVEL GLOBAL REGIME

The computations in this section are closely based on those in [HR].

3.1. Expectation.

Proof of 1.1. By the Explicit Formula

EF1,χ(ψ) = ψ̂(0)− 1

d− 1
·

#F even
Q

#FQ

∑
n∈Z

ψ̂(n)

q|n|/2
+ E(F1,χ(ψ)osc), (3.1)

6



where

F1,χ(ψ)osc = − 1

d− 1

∞∑
n=0

cχ(n)ψ̂(n) + cχ(n)ψ̂(−n)

qn/2
. (3.2)

Since Q is monic and irreducible, the only imprimitive character modulo Q is the principal character
χ0. In this case, there are (|Q|−1)/(q−1) even characters including χ0, so we know #F even

Q /#FQ
is roughly 1/(q − 1). It remains to estimate E(F1,χ(ψ)osc).

By Schur orthogonality,

Eχ(f) =

 0 f ≡ 0 (mod Q)
1 f ≡ 1 (mod Q)
−1/#FQ otherwise

(3.3)

for all f ∈ Fq[T ], and similarly with Eχ(f). Therefore

E(F1,χ(ψ)osc) (3.4)

= − 1

d− 1

∞∑
n=0

 ∑′

deg f=n
f≡1 (mod Q)

− 1

#FQ

∑′

deg f=n
f 6≡0,1 (mod Q)

Λ(f)
ψ̂(n) + ψ̂(−n)

qn/2
.

To estimate the contribution of the first term in the big parenthesized expression above we make use
of the function-field analogue of the Brun-Titchmarsh Theorem (see [Hsu]), which states that∑′

deg f=n
f≡1 (mod Q)

Λ(f) ≤ Cqn−d (3.5)

for some C > 0 independent of Q, n. Thus the contribution from this term is

− 1

(d− 1)

∞∑
n=0

∑′

deg f=n
f≡1 (mod Q)

Λ(f)
ψ̂(n) + ψ̂(−n)

qn/2
� 1

dqd

∑
n∈Z

ψ̂(n)q|n|/2. (3.6)

On the other hand, by the Prime Number Theorem in this setting (see [Ro]) we have∑′

deg f=n

Λ(f) = qn +O(qn/2), (3.7)

where the implied constant is independent of q. Thus the second term of the big parenthesized
expression in (3.4) contributes with the same order, completing the proof. �

Corollary 3.1. Suppose Q is irreducible. Let ψ be a test function of period 1 such that

ψ̂(n) � 1

|n|1+εq|n|/2
(3.8)

for some ε > 0. Then

EF1,χ(ψ) = ψ̂(0)− 1

(d− 1)(q − 1)

∑
n∈Z

ψ̂(n)

q|n|/2
+O

(
1

d

)
, (3.9)

where F1,χ is defined in (1.2).
7



3.2. Variance.

Proof of 1.2. Let C1,Γ(ψ) = (d− 1)−1
∑

n∈Z ψ̂(n)q−|n|/2. Then

F1,χ(ψ)− EF1,χ(ψ) = (F1,χ(ψ)osc − E(F1,χ(ψ))osc) + C1,Γ(ψ)

(
λ∞(χ)− 1

q − 1

)
, (3.10)

from which

VarF1,χ(ψ) (3.11)

= Var(F1,χ(ψ)osc) + 2 ReE ((F1,χ(ψ)osc − E(F1,χ(ψ))osc)C1,Γ(ψ)λ∞(χ)) +O

(
1

d2

)
= Var(F1,χ(ψ)osc) +O

(
1

d
E(F1,χ(ψ)osc)

)
.

Next, Var(F1,χ(ψ)osc) = E|F1,χ(ψ)osc|2 − |E(F1,χ(ψ)osc)|2 where

|F1,χ(ψ)osc|2 =
1

(d− 1)2

∞∑
n1,n2=0

∑′

deg f1=n1
deg f2=n2

Λ(f1)Λ(f2)

q(n1+n2)/2
(3.12)

(
χ(f1)χ(f2)ψ̂(n1)ψ̂(n2) + χ(f1)χ(f2)ψ̂(n1)ψ̂(−n2)

+χ(f1)χ(f2)ψ̂(−n1)ψ̂(n2) + χ(f1)χ(f2)ψ̂(−n1)ψ̂(−n2)
)
.

Again by Schur orthogonality,

E (χ(f1)χ(f2)) =

 0 f1 ≡ 0 or f2 ≡ 0 (mod Q)
1 f1 ≡ f2 6≡ 0 (mod Q)
−1/#FQ otherwise

(3.13)

E (χ(f1)χ(f2)) =

 0 f1 ≡ 0 or f2 ≡ 0 (mod Q)
1 f1f2 ≡ 1 (mod Q)
−1/#FQ otherwise.

(3.14)

Therefore

E|F1,χ(ψ)osc|2 (3.15)

=
1

(d− 1)2

∞∑
n1,n2=0

1

q(n1+n2)/2

(
C1(n1, n2;Q)

(
ψ̂(n1)ψ̂(n2) + ψ̂(−n1)ψ̂(−n2)

)
+ C2(n1, n2;Q)

(
ψ̂(n1)ψ̂(−n2) + ψ̂(−n1)ψ̂(n2)

))
+O

 1

#FQ

(
1

d− 1

∞∑
n=0

∑′

deg f=n

Λ(f)
ψ̂(n)

qn/2

)2
 ,
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where

C1(n1, n2;Q) =
∑′

deg f1=n1
deg f2=n2

f1≡f2 6≡0 (mod Q)

Λ(f1)Λ(f2), (3.16)

C2(n1, n2;Q) =
∑′

deg f1=n1
deg f2=n2

f1f2≡1 (mod Q)

Λ(f1)Λ(f2), (3.17)

and the big-O term of (3.15) is O(C(ψ)2/(d2qd)).
As before, we use the Hsu-Brun-Titchmarsh Theorem to bound the contribution of the C2 sum:

1

(d− 1)2

∞∑
n1,n2=0

C2(n1, n2;Q)
ψ̂(n1)ψ̂(−n2) + ψ̂(−n1)ψ̂(n2)

q(n1+n2)/2
(3.18)

� 1

(d− 1)2qd

∞∑
n1,n2=0

(
ψ̂(n1)ψ̂(−n2) + ψ̂(−n1)ψ̂(n2)

)
q(n1+n2)/2

� C(ψ)2

d2qd
.

Using the same theorem, we break the contribution of the C1 sum into a main diagonal term and an
off-diagonal term that depends on Q; the latter contributes with the same order as the C2 sum:

1

(d− 1)2

∞∑
n1,n2=0

C1(n1, n2;Q)
ψ̂(n1)ψ̂(n2) + ψ̂(−n1)ψ̂(−n2)

q(n1+n2)/2
(3.19)

=
1

(d− 1)2

∞∑
n=0

∑′

deg f=n

Λ(f)2 |ψ̂(n)|2 + |ψ̂(−n)|2

qn
+O

(
C(ψ)2

d2qd

)
.

By writing ∑′

deg f=n

Λ(f)2 = n
∑′

deg f=n

Λ(f) = n(qn +O(qn/2)) (3.20)

we conclude the proof. �

Corollary 3.2. Suppose Q is irreducible. Let ψ be a test function of period 1 such that (3.8) holds.
Then

VarF1,χ(ψ) =
1

(d− 1)2

∑
n∈Z

|n||ψ̂(n)|2 +O

(
1

d2

)
, (3.21)

where F1,χ is defined in (1.2).

4. THE 2-LEVEL GLOBAL REGIME

Since the computations rapidly become laborious, we do not derive an unaveraged 2-level explicit
formula, but instead compute the expectation of F2,χ(ψ) directly. We do not compute the 2-level
higher moments for the same reason.
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Proof of 1.3. Let

ψ∗(s1, s2) =
1

(d− 1)2
ψ

(
s1

Tq
,
s2

Tq

)
. (4.1)

Let `c be defined as in the proof of Proposition 2.1. For j = 1, 2, let cj = 1/2 + εj , where
0 < ε1 < ε2 < 1/2. Writing

∫
Cj =

∫
`cj
−
∫
`1−cj

, Cauchy’s Theorem implies

F2,χ(ψ) = −F1,χ(ψdiag) + F2,χ(ψ; ε1, ε2)− F2,χ(ψ; ε1,−ε2)− F2,χ(ψ;−ε1, ε2) (4.2)

+ F2,χ(ψ;−ε1,−ε2) +O(max(ε1, ε2)),

where

F2,χ(ψ; ε1, ε2) (4.3)

=
1

(2π)2

∫∫
Aq

L′

L
(1/2 + ε1 + it1, χ)

L′

L
(1/2 + ε2 + it2, χ)ψ∗((tj − iεj)j=1,2) dt1 dt2

and Aq = [−Tq/2,+Tq/2]2.
Again, we employ the functional equation to replace those terms of (4.2) that have −ε1 or −ε2 as

a parameter. First, define

F 2,2
2,χ(+1) (4.4)

=
1

(2π)2

∫∫
Aq

(
L′

L
(1/2 + ε1 + it1, χ)

L′

L
(1/2 + ε2 − it2, χ)ψ∗(t1 − iε1, t2 + iε2)

+
L′

L
(1/2 + ε2 + it2, χ)

L′

L
(1/2 + ε1 − it1, χ)ψ∗(t1 + iε1, t2 − iε2)

)
dt1 dt2,

F 2,2
2,χ(−1) (4.5)

=
1

(2π)2

∫∫
Aq

(∏
j=1,2

L′

L
(1/2 + εj − itj, χ)

)
ψ∗(t1 + iε1, t2 + iε2) dt1 dt2,

F 3,3
2,χ (4.6)

=
1

(2π)2

∫∫
Aq

Gχ(1/2 + it1)Gχ(1/2 + it2)ψ∗(t1, t2) dt1 dt2,

where

Gχ(s) = λ∞(χ)

(
−1 +

1

1− qs
+

1

1− q1−s

)
log q. (4.7)

10



Also define

F 1,2
2,χ(δ) (4.8)

=
1

(2π)2

∫∫
Aq

((d− 1) log q)

(
L′

L
(1/2 + ε1 + iδt1, χ)ψ∗(t1 − iδε1, t1 − iε2)

+
L′

L
(1/2 + ε2 + iδt2, χ)ψ∗(t1 − iε1, t1 − iδε2)

)
dt1 dt2,

F 1,3
2,χ (4.9)

=
1

(2π)2

∫∫
Aq

((d− 1) log q) (Gχ(1/2 + it1) +Gχ(1/2 + it2))ψ∗(t1, t2) dt1 dt2.

F 2,3
2,χ(δ) (4.10)

=
1

(2π)2

∫∫
Aq

(
L′

L
(1/2 + ε1 + iδt1, χ)Gχ(1/2 + ε2 + it2)ψ∗(t1 − iδε1, t2 − iε2)

+
L′

L
(1/2 + ε2 + iδt2, χ)Gχ(1/2 + ε1 + it1)ψ∗(t1 − iε1, t2 − iδε2)

)
dt1, dt2.

It is straightforward to check that

−(F2,χ(ψ; ε1,−ε2) + F2,χ(ψ;−ε1, ε2)) = F 1,2
2,χ(+1) + F 2,2

2,χ(+1) + F 2,3
2,χ(+1) (4.11)

and

F2,χ(ψ;−ε1,−ε2) =
1

(2π)2

∫∫
Aq

((d− 1) log q)2ψ∗(t1, t2) dt1 dt2 (4.12)

+ F 2,2
2,χ(−1) + F 3,3

2,χ + F 1,2
2,χ(−1) + F 1,3

2,χ + F 2,3
2,χ(−1)

= ψ̂(0, 0) + F 2,2
2,χ(−1) + F 3,3

2,χ + F 1,2
2,χ(−1) + F 1,3

2,χ + F 2,3
2,χ(−1).

In what follows, we estimate each of the individual contributions. We will implicitly substitute the
appropriate Dirichlet series and send ε1, ε2 → 0 in all of the L′/L terms.

Diagonal Contributions. By an argument similar to that in the proof of Proposition 2.1,

F 3,3
2,χ =

λ∞(χ)

(d− 1)2

∑
n1,n2∈Z

ψ̂(n1, n2)

q(|n1|+|n2|)/2
. (4.13)

The analysis of the expectation of the two F 2,2
2,χ terms is reminiscent of that of E|F1,χ(ψ)osc|2 in

the proof of Theorem 1.2. With C1(n1, n2, Q) and C2(n1, n2, Q) defined as in (3.16) and (3.17),
11



respectively,

E(F 2,2
2,χ(+1) + F 2,2

2,χ(−1)) (4.14)

=
1

(d− 1)2

∞∑
n1,n2=0

1

q(n1+n2)/2(
C1(n1, n2;Q)

(
ψ̂(n1,−n2) + ψ̂(−n1, n2)

)
+ C2(n1, n2;Q)ψ̂(−n1,−n2)

)
=

1

(d− 1)2

∞∑
n=0

∑′

deg f=n

Λ(f)2 ψ̂(n,−n) + ψ̂(−n, n)

qn
+O

(
C(ψ)

d2qd

)
=

1

(d− 1)2

∑
n∈Z

|n|ψ̂(n,−n) +O

(
C(ψ)

d2qd

)
.

Off-Diagonal Contributions. Similarly to the argument in the proof of Proposition 2.1,

F 1,3
2,χ = −λ∞(χ)

d− 1

∑
n∈Z

ψ̂(0, n) + ψ̂(n, 0)

q|n|/2
. (4.15)

Also, similarly to the proof of Theorem 1.1,

E(F 1,2
2,χ(+1) + F 1,2

2,χ(−1)) = − 1

d− 1

∞∑
n=0

 ∑′

deg f=n
f≡1 (mod Q)

− 1

#FQ

∑′

deg f=n
f 6≡0,1 (mod Q)

 Λ(f)

qn/2
(4.16)

(ψ̂(n, 0) + ψ̂(−n, 0) + ψ̂(0, n) + ψ̂(0,−n))

� C(ψ1) + C(ψ2)

dqd

and

E(F 2,3
2,χ(+1) + F 2,3

2,χ(−1)) � C(ψ)

d2qd
. (4.17)

�

5. THE LOCAL REGIME

5.1. n-Level Density. An n-dimensional test function of rapid decay is a smooth function φ(s1,
. . . , sn) = φ1(s1) . . . φn(sn), defined in a region U ⊆ Cn containing Rn, such that φ(s) �
(1 + |s|)−(1+δ) for some δ > 0. The (homogeneous) periodization of φ, scaled by a parameter N , is

φN(s) =
∑
ν∈Zn

φ (N(s+ ν1), . . . , N(s+ νn)) . (5.1)

Let U be an N ×N unitary matrix with eigenangles θ1, . . . , θN . Then the n-level density of the θj
with respect to φ is

Wn,U(φ) :=
∑

1≤j1,...,jn≤N
jk distinct

φN

(
θj1
2π
, . . . ,

θjn
2π

)
. (5.2)

12



Let L(s, χ) be a Dirichlet L-function over Fq(T ). Recall that L(s, χ) has d + O(1) zeros of the
form 1/2 + γχ,j in an interval of periodicity [1/2− iTq/2, 1/2 + iTq/2). Therefore, by analogy, we
define the n-level density of L(s, χ) with respect to φ to be

Wn,χ(φ) =
∑

−Tq
2
≤γj1 ,...,γχ,jn<

Tq
2

jk distinct

φd−1

(
γχ,1
Tq

, . . . ,
γχ,n
Tq

)
. (5.3)

Remark 5.1. To facilitate comparison with [HR], we compare the above to the situation over
number fields in the 1-level case. Let L(s) be a Selberg-class L-function with analytic conductor
c > 0. Write 1/2 + iγj to denote its jth critical zero above the real line, ordered by height. Then
the 1-level density of L(s) with respect to φ is

W1(φ) := lim
T→∞

∑
0≤γj<T

φ

(
γj

log c

2π

)
. (5.4)

Above, (log c)/2π normalizes the average consecutive spacing between ordinates of zeros near the
central point to be 1 in the limit T →∞.

5.2. Unitary Predictions. Let U(N) be the group of N ×N unitary matrices under Haar measure.
If F is a function on U(N), then the expectation of F is

EF (U) =

∫
U(N)

F (U) dU. (5.5)

In [HR], the authors prove that if φ is an even 1-dimensional test function of rapid decay, then

EWU(φ) → φ̂(0), (5.6)

E(W1,U(φ)− EW1,U(φ))2 → σ(φ)2 (5.7)

as N →∞, where

σ(φ)2 =

∫ +∞

−∞
min(1, |t|)φ̂(t)2 dt. (5.8)

If φ̂ is supported in the interval [−2/m,+2/m], then they also obtain

E(W1,U(φ)− EW1,U(φ))m →

 0 m odd
m!

2m/2(m/2)!
σ(φ)m m even (5.9)

By [KS1], if φ = φ1 · φ2 is an even 2-dimensional test function of rapid decay, then

EW2,U(φ) → −φ̂diag(0) + φ̂(0, 0) +

∫ +∞

−∞
|t|φ̂1(t)φ̂2(t) dt, (5.10)

where φdiag(s) = φ(s, s).
13



5.3. From Global to Local. Set ψ = φd−1 in the results from Sections 3 and 4. Recall that
ψ(s1, . . . , sn) is a Fourier series, whereas the Fourier transform of φ is

φ̂(s1, . . . , sn) =

∫ +∞

−∞
φ(t1, . . . , tn)e(−(s1t1 + . . .+ sntn)) dt1 · · · dtn. (5.11)

We have

ψ̂(ν1, . . . , νn) =
1

(d− 1)n
φ̂

(
ν1

d− 1
, . . . ,

νn
d− 1

)
(5.12)

and

Fn,χ(ψ) =
1

(d− 1)n
Wn,χ(φ) (5.13)

for all n. Thus we obtain the following local-regime results.

Corollary 5.2. Suppose Q is irreducible. Let φ be a 1-dimensional test function of rapid decay. Let

C(φ; d) :=
∑
ν∈Z

∣∣∣∣φ̂( ν

d− 1

)∣∣∣∣ q|ν|/2. (5.14)

(1) If C(φ; d)� dqd as d→∞, then

EW1,χ(φ) = φ̂(0)− 1

(d− 1)(q − 1)

∑
ν∈Z

1

q|ν|/2
φ̂

(
ν

d− 1

)
+O

(
C(φ)

dqd

)
. (5.15)

(2) If C(φ; d)� dqd/2 as d→∞, then

VarW1,χ(φ) =
1

(d− 1)2

∑
ν∈Z

|ν|
∣∣∣∣φ̂( ν

d− 1

)∣∣∣∣2 +O

(
C(φ)2

d2qd

)
. (5.16)

Corollary 5.3. Suppose Q is irreducible. Let φ be a 2-dimensional test function of rapid decay
such that C(φ1; d), C(φ2; d)� dqd/2, where C(φ; d) is defined for 1-dimensional test functions φ
of rapid decay in Corollary 5.2. Let C(φ) = C(φ1)C(φ2) and φdiag(s) = φ(s, s). Then

EW2,χ(φ) = −EW1,χ(φdiag) + φ̂(0, 0) +
1

(d− 1)2

∑
ν∈Z

|ν|φ̂
(

n

d− 1
,− n

d− 1

)
(5.17)

+
C2,Γ(φ; d)

q − 1
+O

(
C(φ1; d) + C(φ2; d)

dqd

)
+O

(
C(φ; d)

d2qd

)
,

where

C2,Γ(φ; d) = − 1

d− 1

∑
ν∈Z

1

q|ν|/2

(
φ̂

(
0,

ν

d− 1

)
+ φ̂

(
ν

d− 1
, 0

))
(5.18)

+
1

(d− 1)2

∑
ν1,ν2∈Z

1

q(|ν1|+|ν2|)/2
φ̂

(
ν1

d− 1
,
ν2

d− 1

)
.

In Corollary 5.2, if supp φ̂ ⊆ [−2,+2], then the hypothesis of (1) is satisfied, and if supp φ̂ ⊆
[−1,+1], then the hypothesis of (2) is satisfied. In both cases, our results match the unitary
predictions of [HR] in the limit. More precisely our results: (1) implies the Fq(T )-analogue of their
Theorem 3.1, and (2) implies the Fq(T )-analogue of their Theorem 3.4. Similarly, in Corollary 5.3,
if supp φ̂1, supp φ̂2 ⊆ [−1,+1], then our result matches the prediction of [KS1].
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6. MONTGOMERY’S HYPOTHESIS

Returning to the classical setting, Fiorilli and Miller [FioM] showed how to relate certain
conjectures about prime distribution to improvements in the available support for φ̂ in the local-
regime density results of Hughes-Rudnick. One that generalizes to our setting is a weakened version
of Montgomery’s Hypothesis, itself originally stated in [Mo1].

Let Q ∈ Z+. Let Λ be the classicial von Mangoldt function, and let Ψ(X) =
∑

n≤X Λ(n), the
Chebyshev function. For all a ∈ Z+ coprime to Q, let

Ψ(X) =
∑
n≤X

n≡a (mod Q)

Λ(n). (6.1)

Conjecture 6.1 (θ-Montgomery). Let Φ be the classical Euler totient function. Then for all Q > 3,
there exists θ ∈ (0, 1/2] such that

Ψ(X;Q, 1)− Ψ(X)

Φ(Q)
�ε

X1/2+ε

Qθ
(6.2)

for all X > Q.

Although we do not expect the conjecture to hold for θ = 1/2, it is likely to hold for any arbitrarily
smaller value. Theorem 1.16 of [FioM] implies the following.

Theorem 6.2 (Fiorilli-Miller). Let Q > 3 be prime, and let FQ be the family of primitive Dirichlet
L-functions of conductor Q. Let φ be a 1-dimensional test function of rapid decay such that φ̂ is
compactly support. If Conjecture 6.1 holds for θ, then

1

#FQ

∑
χ∈FQ

∑
γχ

φ

(
γχ

logQ

2π

)
= φ̂(0) + gamma-factor term +O(Q−θ+ε). (6.3)

That is, θ-Montgomery implies that the 1-level density of FQ tends to that of the unitary group
for all φ such that φ̂ has compact support, and the error term improves exponentially with θ.

We return to the function-field setting. Let Λq be the von Mangoldt function for Fq(T ), and let

Ψq(n) =
∑′

deg f=n
Λq(f). (Note how this differs from the most naïve analogue of the Chebyshev

function.) For all nonconstant Q ∈ Fq[T ] and f ∈ Fq[T ] coprime to Q, let

Ψq(n;Q, f) =
∑′

deg g=n
g≡f (mod Q)

Λq(g). (6.4)

Let FQ resume its definition from Section 4. Recall from the proof of Theorem 1.1 that if ψ is
a 1-dimensional test function of period 1 and Q is irreducible of degree > 2, then EF1,χ(ψ) =

ψ̂(0) + gamma-factor term + E(F1,χ(ψ)osc), where

E(F1,χ(ψ)osc) = − 1

d− 1

∞∑
n=0

(
Ψq(n;Q, 1)− Ψq(n)

#FQ

)
ψ̂(n) + ψ̂(−n)

qn/2
. (6.5)

Thinking of qn as the correct analogue of the X variable in Conjecture 6.1, we are led to the
following conjecture.
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Conjecture 6.3 (θ-Montgomery for Fq(T )). Let Φq(f) = #(Fq[T ]/f)× be the Euler totient func-
tion for Fq[T ]. Then for all Q ∈ Fq[T ] of degree d > 2, there exists θ ∈ (0, 1/2] such that

Ψq(n;Q, 1)− Ψq(n)

Φq(Q)
�ε q

n(1/2+ε)−dθ (6.6)

for all n > d.

We remark that if Montgomery’s Hypothesis is translated from the language of primes to the
language of zeros, guided by the duality that exists between primes and zeros of L-functions, then
we obtain a conjecture that relates to F1,χ more naturally. For all χ ∈ FQ, let {γχ, j}d(χ)

j=1 be the
ordinates of the zeros of L(s, χ). We propose the following.

Conjecture 6.4. Let Q ∈ Fq[T ] be of degree d > 2. Then there exist θ1, θ2 ∈ (0, 1) such that for
all n ∈ Z+, ∑

χ∈FQ

∑
j

qinγχ,j �θ1,θ2 d(χ)(1−θ1)qd(1−θ2) (6.7)

as d→∞.

Proposition 6.5. Let Q ∈ Fq[T ] be irreducible of degree d > 2. Let ψ be a 1-dimensional test
function of period 1.

(1) Suppose Conjecture 6.3 holds for some θ. If Cε(ψ) =
∑

n∈Z ψ̂(n)q|n|ε converges for all
ε > 0 small enough, then

E(F1,χ(ψ)osc) �ε
Cε(ψ)

dqdθ
. (6.8)

(2) Suppose Conjecture 6.4 holds for some θ1, θ2. Then

E(F1,χ(ψ)osc) �θ1,θ2

θ2

dθ1−1(#FQ)θ2
. (6.9)

Proof. (1) is immediate. (2) follows from the Erdős-Turán Inequality, which, together with Conjec-
ture 6.4, implies that for all [a, b] ⊆ [−Tq/2,+Tq/2] and N ∈ Z+,∣∣∣∣#{(χ, j) : γχ,j ∈ [a, b]}

(d− 1)#FQ
− b− a

Tq

∣∣∣∣ � 1

N
+

N∑
n=1

1

n

∣∣∣∣∣ 1

(d− 1)#FQ

∑
χ

∑
j

qinγχ,j

∣∣∣∣∣ (6.10)

=
1

N
+

1

dθ1(#FQ)θ2

N∑
n=1

1

n
.

The supremum of the expression on the left over all a, b is an upper bound for E(F1,χ(ψ)osc), as
we can approximate ψ arbitrarily well by linear combinations of indicator functions. Choosing
N = bdθ1(#FQ)θ2c completes the proof. �

Either of the two possibilities suggested by Proposition 6.5 is considerably stronger than Theorem
1.1. They imply the following results in the local regime.

Corollary 6.6. Let Q ∈ Fq[T ] be irreducible of degree d > 2. Let φ be a 1-dimensional test
function of rapid decay such that φ̂ has compact support.
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(1) Suppose Conjecture 6.3 holds for some θ. Then the hypotheses in Corollary 5.2 can be lifted
and the error term can be sharpened to Oε(q

−d(θ−ε)).
(2) Suppose Conjecture 6.4 holds for some θ1, θ2. Then the hypotheses in Corollary 5.2 can be

lifted and the error term can be sharpened to Oθ1,θ2(d
θ
2d

1−θ1(#FQ)−θ2).

APPENDIX A. PROOF OF THE EXPLICIT FORMULA

Proof of 2.1. Let

ψ∗(s) =
1

d− 1
ψ

(
s

Tq

)
. (A.1)

For all real c, let `c be the segment from c−iTq/2 to c+iTq/2 in the complex plane. Let 0 < ε < 1/4
and c = 1/2 + ε. Using Cauchy’s Theorem,∑

−Tq
2
≤γχ<

Tq
2

ψ∗(γχ) =
1

2πi

(∫
`c

−
∫
`1−c

)
L′

L
(s, χ)ψ∗(−i(s− 1/2)) ds+O(ε) (A.2)

= F1,χ(ψ; ε)− F1,χ(ψ;−ε) +O(ε),

where

F1,χ(ψ; ε) =
1

2π

∫ +Tq/2

−Tq/2

L′

L
(1/2 + ε+ it, χ)ψ∗(t− iε) dt. (A.3)

To deal with F1,χ(ψ;−ε) we substitute the formula (2.9). Distributing the integral among the
resulting three terms, and sending ε→ 0 in the first and last, we find

−F1,χ(ψ;−ε) (A.4)

=
d− 1

Tq

∫ +Tq/2

−Tq/2
ψ∗(t) dt+

1

2π

∫ +Tq/2

−Tq/2

L′

L
(1/2 + ε− it, χ)ψ∗(t+ iε) dt

+
λ∞(χ)

Tq

∫ +Tq/2

−Tq/2

(
−1 +

1

1− q1/2−it +
1

1− q1/2+it

)
ψ∗(t) dt.

The first term of the right side is ψ̂(0) =
∫ +1/2

−1/2
ψ(t) dt, while the last term equals

λ∞(χ)

(d− 1)Tq

∫ +Tq/2

−Tq/2

(
−1 +

1

1− q1/2−it +
1

1− q1/2+it

)
ψ

(
t

Tq

)
dt (A.5)

=
λ∞(χ)

(d− 1)Tq

(
−1− q−1/2+it

1− q1/2−it −
q−1/2−it

1− q1/2+it

)
ψ

(
t

Tq

)
dt

= −λ∞(χ)

d− 1

∑
n∈Z

ψ̂(n)

q|n|/2
.

Finally,

F1,χ(ψ; ε) =
1

(d− 1)Tq

∞∑
n=0

∫ +Tq/2

−Tq/2

cχ(n)

qn(1/2+ε+it)
ψ

(
t− iε
Tq

)
dt, (A.6)
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and similarly with the middle term of (A.4), where our use of the Dirichlet series in the region
Re s > 1/2 is justified by the bound cχ(n)� dqn/2 from the Riemann Hypothesis. Interchanging
the sum with the integral, and sending ε→ 0, we arrive at the desired result. �

Interestingly, the middle term on the right side of (2.11) corresponds to the gamma-factor term in
the classical Explicit Formula, but is visually much simpler. This is because the Fq(T )-analogue of
the Riemann zeta function and of the gamma function are itself simpler objects.
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