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Abstract
A bidirectional ballot sequence (BBS) is a finite binary sequence with the property that
every prefix and suffix contains strictly more ones than zeros. BBS’s were introduced by
Zhao, and independently by Bosquet-Mélou and Ponty as(1, 1)-culminating paths. Both
sets of authors noted the difficulty in counting these objects, and to date research on bidirec-
tional ballot sequences has been concerned with asymptotics. We introduce a continuous
analogue of bidirectional ballot sequences which we call bidirectional gerrymanders, and
show that the set of bidirectional gerrymanders form a convex polytope sitting inside the
unit cube, which we refer to as the bidirectional ballot polytope. We prove that every
(2n − 1)-dimensional unit cube can be partitioned into2n − 1 isometric copies of the
(2n−1)-dimensional bidirectional ballot polytope. Furthermore, we show that the vertices
of this polytope are all also vertices of the cube, and that the vertices are in bijection with
BBS’s. An immediate corollary is a geometric explanation ofthe result of Zhao and of
Bosquet-Mélou and Ponty that the number of BBS’s of lengthn isΘ(2n/n).
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1. Introduction

In1 [11], Zhao introduced a family of combinatorial objects called bidirectional ballot se-
quences, defined as follows.

Definition 1. A finite 0-1 sequence is abidirectional ballot sequence(BBS) if every
prefix and every suffix contains strictly more ones than zeros. Let Bn denote the number
of bidirectional ballot sequences of lengthn.

Bidirectional ballot sequences have a natural interpretation in terms of lattice paths.
Suppose we start at(0, 0) and take a finite number of steps either of the form(1, 1) or
(1,−1). We call such a path astandard lattice path. We define the length of the path to
be the number of steps it contains. We define the height of a point in the lattice path to be
its y-coordinate. Bidirectional ballot sequences of lengthn are in bijection with standard
lattice paths of lengthn whose unique minimum height is attained at the first point in the
path, and whose unique maximum height is attained at the lastpoint in the path. The
bijection is given by identifying the digit ‘0’ in a BBS with astep of the form(1,−1) and
the digit ‘1’ with a step of the form(1, 1) (for an example of this, see Section 4).

From this perspective, bidirectional ballot sequences were independently introduced by
Bosquet-Mélou and Ponty [2] as a special type of what they call culminating paths. In
particular, an(a, b)-culminating path is a sequence of lattice points starting at (0, 0) such
that each step is of the form(1, a) or (1,−b) and such that the unique minimum height
is achieved at the first point and the unique maximum height isachieved at the last point.
Thus bidirectional ballot sequences are in bijection with(1, 1)-culminating paths. In [2]
it is noted that(1, 1)-culminating paths had been used in [5] with connections to theoreti-
cal physics, and general(a, b)-culminating paths had been used in [1], [4], and [10] with
connections to bioinformatics.

In both [11] and [2], it is noted that unlike other easy to define classes of lattice paths
(e.g. Dyck paths), the enumeration of BBS’s is tricky; thereis no obvious recursive struc-
ture to such paths. Both authors focused on the asymptotics of Bn. In particular, [2]
obtained a generating function inn for the number of(a, b)-culminating paths of lengthn
with fixed heightk (the generating function for the(1, 1) case was found in [5]). Further-
more, they showed thatBn ∼ 2n/4n. Independently, [11] showed thatBn = Θ(2n/n)

and stated without detailed proof thatBn ∼ 2n/4n. Additionally in [11], the author con-
jectured an even finer asymptotic expression forBn. This conjecture was later proved by
Hackl, Heuberger, Prodinger and Wagner [6], who refined the asymptotic expression even
further using techniques from analytic combinatorics.

The motivation for the study of culminating paths in [2] was the observation that such
paths had been independently introduced and utilized in disparate contexts (theoretical
physics and bioinformatics) as well as a general interest inunderstanding subfamilies of

1The authors were supported by NSF grants DMS1659037 and DMS1561945, the University of Michigan,
Princeton University and Williams College. We thank the referee for comments on an earlier draft.
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lattice paths. However, the motivation in [11], as well as our original motivation for study-
ing BBS’s, arises from additive combinatorics. LetA ⊂ Z be a finite set of integers. We
define the sumsetA+ A as those elements inZ expressible asa+ b with a, b ∈ A. Simi-
larly, the difference setA−A is those elements expressible asa− b with a, b ∈ A. We say
thatA is amore sums than differences(MSTD) set if |A+A| > |A−A|. Because of the
commutativity of addition, one may intuitively expect thatin general|A − A| ≥ |A + A|.
This intuition turns out to be correct in some contexts (see [7]), in particular if each el-
ement in[n] := {1, 2, . . . , n} is independently chosen to be inA with some probability
p(n) tending to zero). Letρn be the proportion of subsets of[n] which are MSTD. In [8],
it was shown thatρn > 2 × 10−7 for n ≥ 15, and in [12] it was shown thatlimn→∞ ρn
converges to a positive number; experimental data suggeststhis limit to be of order10−4.
Thus, in this sense, a positive proportion of sets are MSTD. However, the techniques in [8]
are probabilistic, and to date no known constant density family of MSTD subsets of[n] as
n → ∞ is known.

The best density explicit construction of MSTD sets is due toZhao in [11] using BBS’s.
Let B be a binary sequence of lengthn. We can associate toB the setA ⊆ [n] defined
asA := {i : Bi = 1}. For example ifB = 01101, thenA = {2, 3, 5}. Those subsets
A of [n] arising from BBS’s have the property thatA + A = {i : 2 ≤ i ≤ 2n}, which is
to say that the sumset is as large as possible (similarly it turns out that the difference set is
also as large as possible). Using this property, Zhao was able to translate those subsets of
[n] arising from BBS’s and append extra elements to the fringes to obtain an MSTD set for
each set arising from a BBS. From this, one immediately gets adensityΘ(1/n) family of
MSTD sets.

Motivated by the use of BBS’s in additive combinatorics, in this paper we study the
natural analogue of BBS’s in a continuous setting, which we call bidirectional gerryman-
ders; in the related paper [9], we use similar ideas as in this paper to study the analogue of
MSTD sets in a continuous setting.

We first set some notation and then describe our main results.Let In denote the set of all
subsets ofR consisting of exactlyn disjoint open intervals such that the leftmost interval
starts at 0. SupposeA ∈ In. If we translateA, then the sumset and difference set merely
translate as well. Thus, when studying additive behavior, we do not lose any generality
by restricting our attention to collections of intervals such that the leftmost interval starts
at zero. We can topologizeIn by identifying it withR

2n−1
≥0 , the non-negative orthant: let

A = I1 ∪ I2 ∪ · · · ∪ In ∈ In with Ii to the left ofIj for i < j. SupposeIj = (aj , bj).
We then identifyA with the vectorvA = [b1 − a1, a2 − b1, b2 − a2, a3 − b2, . . . , bn − an].
Thus the first entry is the length of the first interval, the second entry is the size of the gap
between the first and second intervals, the third entry is thelength of the second interval,
etc. We shall find it convenient to restrict our attention to the following set: letJn ⊂ In be
the set of collections ofn non-overlapping intervals such that the leftmost intervalstarts at
zero, the length of each interval is between 0 and 1, and the gap between adjacent intervals
is between 0 and 1 (if we scaleA ∈ In by α 6= 0, then the sumset and difference set
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scale byα as well, soαA has the same essential additive behavior asA; note that up to
scaling, every element ofIn is an element ofJn). We can topologizeJn by identifying it
with C2n−1 = [0, 1]2n−1, the2n− 1 dimensional unit cube2. For other ways to topologize
In and related spaces, see [9].

The bidirectional gerrymanders inJn form a convex, compact polytope contained in
C2n−1 which we call thebidirectional ballot polytope, Pn. This polytope has a number
of extraordinary combinatorial features. In Section 2 we formally define this polytope and
show thatC2n−1 can be partitioned into2n − 1 disjoint isometric copies ofPn, which
in particular shows that the volume ofPn is 1/(2n − 1). In Section 3 we show that the
vertices ofPn are vertices ofC2n−1. Finally in Section 4 we show that the vertices ofPn

are in bijection withB2n+3, and that a particular subset of the vertices are in bijection with
B2n−1. From this we are able to immediately rederive geometrically that|Bn| = Θ(2n/n),
i.e., there are positive constantsα andβ such that for alln sufficiently large we have
α2n/n ≤ |Bn| ≤ β2n/n.

2. The Bidirectional Ballot Cone and Polytope

We first set some notation. Letm = 2n− 1 for somen ∈ N.

Definition 2. Let the set ofleft ballot vectors,Ln, and the set ofright ballot vectors,Rn,
be the following sets of vectors inRm:

Ln := {[1,−1, 0, . . . , 0], [1,−1, 1,−1, 0, . . . , 0], . . . , [1,−1, . . . , 1,−1, 0]}, (1)

Rn := {[0, . . . , 0,−1, 1], [0, . . . , 0,−1, 1,−1, 1], . . . , [0,−1, 1, . . . ,−1, 1]}. (2)

We defineVn, the set ofballot vectors, asVn = Ln ∪Rn.

Definition 3. Thebidirectional ballot cone, Bn, is the set ofx ∈ Rm such thatx · w ≥ 0

for all w ∈ Vn. When the value ofn is obvious, we simply refer to it asB.

We now define the continuous analogue of BBS’s, and show in Proposition 1 that it is
the right generalization.

Definition 4. LetA ∈ In. We callA a bidirectional gerrymander if vA ∈ B.

Proposition 1. SupposeA = I1∪· · ·∪In ∈ In with endpoints ordered as before. Suppose
the right endpoint ofIn is b. Then,A is a bidirectional gerrymander if and only ifµ(A ∩

[0, t]) ≥ t/2 andµ(A ∩ [b− t, b]) ≥ t/2 for all t ∈ [0, b].
2Because the endpoints of an open interval cannot be equal, strictly speaking we are takingIn to be the set of

all weakly increasing2n-tuples of points on the real line and identifying these withcollections ofn intervals by
treating them as endpoints (and correspondingly forJn). However, in the edge case whenaj = bj , we still allow
an ‘empty’ interval ataj , which is included in the data of an element ofIn. Including these degenerate cases
allows us to indeed identifyJn with the closed unit cube.
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Proof. Clearly if these measure conditions hold, thenA is a bidirectional gerrymander, as
settingt to be left and right endpoints of theIi yields the nonnegativity conditions of pairing
with the ballot vectors. The conditionµ(A∩[0, t]) ≥ t/2 is equivalent to the non-negativity
of µ(A∩ [0, t])−µ((R\A)∩ [0, t]). Fort ∈ [0, b], µ(A∩ [0, t])−µ((R\A)∩ [0, t]) takes
a local minimum only ift is a left endpoint of an intervalIi. Hence ifvA · w ≥ 0 for all
w ∈ Ln, then the function is nonnegative at its minima and so the first measure condition
holds. Similarly, the second measure condition holds as well by the nonnegativity of pairing
with the right ballot vectors.

A BBS in the sense of [11] is a binary sequence for which any subsequence truncated
on the left or right contains more1’s than0’s, and Proposition 1 shows that a bidirectional
gerrymander is a subset ofR contained in[0, a] for which any subset obtained by truncating
on the left or right contains “more” points (in a measure theoretic sense) in the original set
than points not in this set. It is thus clear that they are a natural analogue, but, as we shall
see, what is surprising is that they can be used to prove results about standard (discrete)
BBS’s.

Definition 5. Thebidirectional ballot polytope Pn, is defined asBn ∩Cm. Equivalently,
it is those vectorsvA such thatA ∈ Jn is a bidirectional gerrymander. When the value of
n is obvious, we shall refer to it simply asP .

Figure 1: The polytopeP2 (red) sitting insideC3. Notice that adding two additional copies
of P2, rotated about the main diagonal of the cube by2π/3 and4π/3 respectively, would
result in a partition ofC3 (neglecting overlap of boundaries).

Definition 6. Let Zm be the cyclic group of orderm with generatorρ. LetZm act onRm

by cyclically permuting the entries (e.g.ρ2([0, 1, 2, 3, 4]) = [3, 4, 0, 1, 2]). For a given set
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of vectorsV andσ ∈ Zm, let σ(V ) := {σ(v) : v ∈ V } with σ ∈ Zm. For eachσ ∈ Zm,
defineBσ by

Bσ := {v ∈ R
m
≥0 : v · w ≥ 0 for all w ∈ σ(Vn)}, (3)

andPσ likewise. Note thatBσ = σ−1(B), and thatB = BId andP = PId.

Theorem 1. The non-negative orthant,Rm
≥0, is contained in

⋃

σ∈Zm
Bσ. Furthermore, for

σ1 6= σ2, the interiors ofBσ1 andBσ2 are disjoint.

Proof. Let τ = ρ2 ∈ Zm be the cyclic shift by two places. Becausem is odd,τ generates
Zm. In particular, we see that the set of left and right ballot vectorsVn as defined in
Definition 2 is equal to

Vn =

{

k
∑

i=0

τ i(w) : 0 ≤ k ≤ 2n− 3

}

, (4)

wherew = [1,−1, 0, . . . , 0]. If ℓ < k ≤ 2n− 3 then

k
∑

i=0

τ i(w) −
ℓ
∑

i=0

τ i(w) =

k
∑

i=ℓ+1

τ i(w) = τ ℓ+1
k−ℓ−1
∑

i=0

τ i(w), (5)

and since
∑2n−2

i=0 τ i(w) = [0, . . . , 0] we have similarly that, for0 ≤ k ≤ ℓ,

k
∑

i=0

τ i(w) −
ℓ
∑

i=0

τ i(w) = τ ℓ+1

(2n−2)+(k−ℓ)
∑

i=0

τ i(w). (6)

Then for eachℓ we have that
{

k
∑

i=0

τ i(w) −
ℓ
∑

i=0

τ i(w) : 0 ≤ k ≤ 2n− 2, k 6= ℓ

}

= τ ℓ+1(Vn). (7)

Now letwk =
∑k

i=0 τ
i(w), take anyv ∈ [0, 1]m, and choose0 ≤ ℓ ≤ 2n− 2 minimizing

v · wℓ (this ℓ may not be unique). Then

v ·

(

k
∑

i=0

τ i(w) −
ℓ
∑

i=0

τ i(w)

)

≥ 0 (8)

for all 0 ≤ k ≤ 2n − 2. Thereforev · r ≥ 0 for all r ∈ τ ℓ+1(Vn), sov ∈ Bτℓ+1. This
shows thatRm

≥0 =
⋃

σ∈Zm
Bσ. Intersecting withC gives the corresponding result forP .

Conversely, ifv ∈ Int(Bτℓ+1) ∩ Int(Bτk+1) andτ ℓ+1 6= τk+1, then (because taking the
interior simply changes the inequalities definingBτℓ+1 to strict ones) we have both

v ·

(

k
∑

i=0

τ i(w) −
ℓ
∑

i=0

τ i(w)

)

> 0

v ·

(

ℓ
∑

i=0

τ i(w) −
k
∑

i=0

τ i(w)

)

> 0.
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This is a contradiction, so the interiors distinct regionsBτℓ+1 are disjoint, and it follows
immediately that the interiors of distinct regionsPτℓ+1 are disjoint.

Corollary 1. The unit cubeCm equals
⋃

σ∈Zm
Pσ. Furthermore, forσ1 6= σ2, the interiors

ofPσ1 andPσ2 are disjoint. Consequently, the volume ofP is exactly1/m.

Proof. Intersecting the nonnegative orthant and the translatesBσ with Cm, Theorem 1
yields thatCm is partitioned intom regions produced by permuting the coordinates of
P . Because the matrix representingτ = ρ2 has determinant1 it leaves volume invariant.
Therefore, Vol(Pσ) = Vol(P) for all σ ∈ Zm, so Vol(P) = 1/m.

Corollary 2. For any vectorv ∈ Rm
≥0, there existsσ ∈ Zm such that the vector

v′ = (v′1, v
′
2, . . . , v

′
m) = σ(v) has the following property: For all1 ≤ k ≤ n,

k
∑

i=1

(v′2i−1 − v′2i) ≥ 0 (9)

and

k
∑

i=1

(v′2n−(2i−1) − v′2n−2i) ≥ 0. (10)

If furthermore these are all positive, thenσ is unique.

One interpretation of the above corollary is as follows. Suppose you have a necklace
with an odd number of beads. On each bead you write a non-negative number. Then
there exists some place where you can cut the necklace such that when you lay out the
necklace and think of the sequence of values on the beads as a vector inRm, this vector
is a bidirectional gerrymander. Furthermore, if the numbers you write on the beads are
“generic”, in the sense that the inequalities corresponding to (9) and (10) are strict, then
there is exactly one such place you can cut the necklace.

1.78

1.55

0.76 2.06

3.21
3.21 1.78 1.55 0.76 2.06

Figure 2: An example “cut” of a necklace as in Corollary 2.
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3. Vertices of the Bidirectional Ballot Polytope are Vertices of the Cube

In this section we show that the vertices ofPn are also vertices ofCm, the unit cube. We
had previously definedPn as the intersection of the unit cube with the ballot cone, which
is equivalent to the set of vectors[ℓ1, g1, . . . , gn−1, ℓn] satisfying the below inequality:

cube vectors



























left ballot vectors











right ballot vectors





















































1 0 0 0 0 . . . 0 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0
0 −1 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

1 −1 0 0 0 . . . 0 0 0 0 0
1 −1 1 −1 0 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 −1 1
0 0 0 0 0 . . . 0 −1 1 −1 1
...

...
...

...
...

. . .
...

...
...

...
...

































































ℓ1
g1
ℓ2
g2
...

gn−1

ℓn























≥











































0
−1
0
−1
...
0
0
...
0
0
...











































.

(11)

The first collection of rows in the above matrix is necessary to ensure that we only deal
with points inside of the unit cube. Thus we call any vector ofthe form[0, . . . , 0,±1, 0, . . . , 0]

acube vector.
Before proving the main result of this section, we must review a few concepts related to

convex polytopes. We follow the terminology of [3].

Definition 7. Let P be a polytope inRn defined by the inequalitiesaTi x ≥ bi for i ∈
{1, 2, . . . , k}. Let x∗ be such that for somei, aTi x

∗ = bi. Then, we say that theith

constraint isactiveatx∗.

Definition 8. A vectorx∗ ∈ Rn is called abasic solution if out of all of the constraints
that are active atx∗, there is some collection ofn of them which is linearly independent.
If x∗ is a basic solution that satisfies all of the constraints, then it is called abasic feasible
solution.

Part of what makes the study of convex polytopes interestingis that there are several
equivalent but strikingly different ways of defining what the vertices of a polytope are. In
particular, one definition is that a pointv is a vertex if and only if it is a basic feasible
solution.

The following shorthand will be helpful in the proof of the main theorem of this section.

Definition 9. A matrix/vector is calledflat if all of its entries are 0, 1, or -1.

Let Qn denote the set of vertices in the polytopePn. Let Sn denote the set of vertices
of the unit cubeCm. The main result of this section is the following.
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Theorem 2. All of the vertices of the bidirectional ballot polytopePn are also vertices of
the unit cubeCm; i.e.,Qn ⊂ Sn.

Proof. By the above discussion, we know that we must show that all basic feasible solu-
tions are vertices of the cube. Throughout this proof, we letn be fixed, and letm = 2n−1.
Thus we unambiguously letP = Pn, C = C2n−1, Q = Qn, andS = Sn. Notice that
Zm∩P ⊂ S. From this observation, we now describe the strategy for proving the theorem.
Supposex∗ is a basic solution whose corresponding constraints areai1 , . . . , aim . Thenx∗

satisfies






—ai1—
...

—aim—






x∗ =







bi1
...

bim






. (12)

Let A be the matrix in (12). Letb∗ be the vector on the right hand side in (12). Thus
x∗ = A−1b∗. Note thatb∗ ∈ Zm since it is some subset of the entries in the vector on
the right hand side of (11). If we can show thatdet(A) = ±1, it will imply that A−1

has integer entries, and thus thatA−1b∗ ∈ Zm. From the earlier observation, ifx∗ is a
basic feasible solution, then we must have thatA−1b∗ = x∗ ∈ S, which would prove the
theorem.

Now we must show that ifA is invertible, then it has determinant±1. In order to
show this, we keep track of what happens to the determinant inthe process of carrying out
Gaussian elimination, which convertsA into the identity matrix. In particular, we show
that at every step, the determinant changes by a factor of±1. Since the identity matrix has
determinant 1, we could then conclude thatA has determinant±1. The only elementary
row operation which potentially changes the absolute valueof the determinant of a matrix
is multiplying a row by a scalar. Thus it suffices to show that when Gaussian elimination
is performed onA, no row is ever multiplied by a scalar other than±1. In Gaussian
elimination, a row is multiplied by a scalar to convert some non-zero entry in that row to
a one. If every non-zero entry in that row is±1, then we would simply need to multiply
by±1. Thus, we shall instead prove the stronger hypothesis that at every step of Gaussian
elimination, the intermediate matrix is flat, and hence all of its non-zero entries are±1.
This is the content of Lemma 1.

Before proving Lemma 1, we include an example to illustrate the method. Here we omit
row swapping for clarity, and we obtain a permutation matrix, which has determinant±1.
At each step, the leading nonzero term in the bolded row is used to clear the corresponding
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column.

A0 :













0 1 0 0 0
0 0 0 0 1
1 −1 0 0 0

0 −1 1 −1 1
0 0 0 −1 1













→ A1 :













0 1 0 0 0

0 0 0 0 1
1 −1 0 0 0
0 −1 1 −1 1
0 0 0 −1 1













→ A2 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 −1 1

0 0 0 −1 1













(13)

→ A3 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 −1 1
0 0 0 −1 1













→ A4 :













0 1 0 0 0
0 0 0 0 1

1 0 0 0 0
0 0 1 0 0
0 0 0 1 −1













→ A5 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0













.

(14)

Lemma 1. In carrying out Gaussian elimination on the matrixA as in Theorem 2, all
intermediate matrices are flat.

Proof. We proceed by induction. LetAk denote the matrix resulting from thekth step
of Gaussian elimination (i.e. the matrix obtained after “clearing” the firstk columns).
We shall show that for eachk, every row of the matrixAk is of exactly one of six types
depending on the form of the firstk entries of that row and the lastm − k entries of that
row (in the sequel, we will refer to this as saying that every row is one of the six types with
respect tok).

We now describe these six types. Letαn denote any sequence of lengthn consisting of
alternating plus ones and minus ones (e.g.α3 = [−1, 1,−1] or α1 = [1]). Let βn denote
the sequence of lengthn consisting of all zeros. Letγn denote any binary sequence of
lengthn containing exactly one one (e.g.γ4 = [0, 0, 1, 0]). Let⊕ refer to the operation of
vector concatenation (e.g.[1, 2, 3]⊕ [4, 5] = [1, 2, 3, 4, 5]). The six types (with respect to
k) are listed in Table 1f.

Type Firstk Lastm− k Example (k = 3, m = 7)
1 βk βℓ≥1 ⊕ αj≥1 ⊕ βm−k−ℓ−j≥1 [0, 0, 0

∣

∣ 0, 1,−1, 0]
2 βk αℓ≥1 ⊕ βn−k−ℓ≥0 [0, 0, 0

∣

∣ 1,−1, 1, 0]
3 βk βℓ≥1 ⊕ αm−k−ℓ≥0 [0, 0, 0

∣

∣ 0, 0, 1,−1]
4 γk βℓ≥1 ⊕ αj≥0 ⊕ βm−k−ℓ−j≥1 [0, 1, 0

∣

∣ 0, 0, 0, 0]
5 γk αℓ≥1 ⊕ βn−k−ℓ≥0 [0, 1, 0

∣

∣ 1,−1, 1, 0]
6 γk βℓ≥1 ⊕ αm−k−ℓ≥0 [0, 1, 0

∣

∣ 0, 0, 1,−1]

Table 1: The six types with respect tok

We now go through the inductive argument. For the base case, notice that whenk = 0,
the cube vectors are type 1, the left ballot vectors are type 2, and the right ballot vectors are
type 3. Thus the claim is proven in the base case.



INTEGERS: 18 (2018) 11

Now for the inductive step, we shall show that if all rows ofAk are of one of the above
types with respect tok, then all rows ofAk+1 are of one of the above types with respect
to k + 1. As described in the proof of Theorem 2, at stepk we must first find some row
whose firstk entries are zero, and whosek+1 entry is±1. We see then that we must select
some row of type 2, call itT . We then subtractT from all other rows whosek + 1 entry
is non-zero. Thus the only types we must worry about are types2 and 5. Notice that when
we subtractT from a row of type 2, we get a row either or type 1, type 2, or type3 with
respect tok+1. When we subtractT from a row of type 5, we get a row either of type 4, 5,
or 6 with respect tok + 1. All other rows remain the same. Thus when we catalog the new
rows with respect tok + 1, we get that those of type 1 become either type 1 or type 2. As
mentioned before, those of type 2 become those of type 1, 2, or3, except for rowT which
becomes of type 4 or 5. Type 3 becomes type 2 or 3. Type 4 remainstype 4 or becomes
type 5. As mentioned before, type 5 becomes type 4, 5, or 6. Lastly, type 6 becomes type 5
or type 6. Thus, by induction, we have proven the desired statement, implying in particular
that the matrix is flat at every step.

4. Vertices of the cube in the ballot region

In this section, we demonstrate that bidirectional ballot sequences of length2n− 1 corre-
spond in a natural way toQn, and we rederive the growth rate given in [11] and [2].

Definition 10. A slope vectoris a vectorλ = [λ1, . . . , λm] ∈ Rm with m ∈ N. To a slope
vectorλ, we associate the unique continuous piecewise linear function fλ : [0,m] → R

such thatf(0) = 0 andf ′
λ(x) = λi for x ∈ (i − 1, i) for each1 ≤ i ≤ m.

Given any binary sequenceb = b1 · · · bm, we associate to this sequence the graph of the
functionfλ whereλ = (λ1, . . . , λm) with λi := (−1)bi−1.

Example 1. The bidirectional ballot sequence11011001111 corresponds to the path
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This is a bijection from binary sequences of lengthm to graphs of functionsfλ with
λ ∈ {±1}m. Recall from Section 1 that the graphs which correspond to bidirectional ballot
sequences are those of functionsfλ wherefλ(0) < fλ(t) < fλ(m) for all 0 < t < m.

Now we will draw a correspondence betweenQn andB2n+3 through these graphs, as
well as a correspondence between a certain subset ofQn andB2n−1, by describing a way
to interpret vectorsv ∈ C2n−1 = [0, 1]2n−1 as paths as in the discrete case in such a way
that the vertices of the ballot polytope are realized as exactly the graphs above. Given a
vectorv = [v1, . . . , v2n−1] ∈ C2n−1, define the slope vectorλv = [λ1, . . . , λ2n−1] by
λi := (−1)i−1(2vi − 1), and associate tov the graph of the functionfλv

.

Example 2. The gap-parametrization vectorv =
[

3
4 ,

1
3 ,

1
2 ,

2
3 , 1
]

∈ [0, 1]5 gives the slope
vectorλv =

[

1
2 ,−

1
3 , 0,

1
3 , 1
]

, which gives the following graph of the functionfλv
, where

the values next to the points indicate the distance above thex-axis:

0 1 2 3 4 5

1
2

1
6

1
6

1
2

3
2

Although the functionfλv
in Example 2 has the property that it achieves global mini-

mum and maximum values at it left and right endpoints (respectively), we will see that this
is not always the case (see Example 3). We determine this behavior more precisely now.

If v = [v1, . . . , v2n−1] ∈ C2n−1, then for0 ≤ k ≤ 2n− 1 we have

fλv
(k) =

k
∑

j=1

(−1)j−1(2vj − 1) =

{

2
∑k

j=1(−1)j−1vj k is even

−1 + 2
∑k

j=1(−1)j−1vj k is odd,
(15)

and similarly

fλv
(2n− 1− k) =

{

fλv
(2n− 1)− 2

∑k

j=1(−1)j−1v2n−j k is even

fλv
(2n− 1) + 1− 2

∑k

j=1(−1)j−1v2n−j k is odd.
(16)
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One can see now that, even ifv ∈ Pn, it is possible for the graph to fail the property stated
above, i.e., to achieve a global maximum or minimum at a pointin the interior of its interval
of definition (again, see Example 3 for an explicit example).However, one can also see that
if v ∈ Pn, it cannot fail this property to a great extent; namely, the values at the left and
right endpoints will be within a distance of 1 from the maximum and minimum values,
since the large sums in the RHS of (15) and (16) will be non-negative. Nonetheless, we
would like the graphs of the functionsfλv

with v ∈ Qn to match the graphs of bidirectional
ballot sequences inB2n+3, and for that reason we give a way to modify a vectorv ∈ Qn

before associating it to a graph. Namely, we will add a sort ofbuffer to each side of the
vector, so that the left and right endpoints get a leg up.

Definition 11. If v = [v1, . . . , v2n−1] ∈ C2n−1, we define

α(v) := [1, 0, v1, v2, . . . , v2n−2, v2n−1, 0, 1].

We now present two correspondences, the first stated more naturally, and the second
proven more naturally, which are nonetheless very closely related. The first correspondence
is as follows.

Theorem 3. The setQn is in bijection withB2n+3, induced by the map

v 7→ fλα(v)
. (17)

Before we prove Theorem 3, we give an example of the process that induces the bijec-
tion.

Example 3. Consider the gap-parametrization vectorv = [0, 0, 1, 0, 0] ∈ [0, 1]5, an ele-
ment ofQ3. We shall obtain a bidirectional ballot sequence fromv. We see thatv gives
the slope vectorλv = [−1, 1, 1, 1,−1]. The graph offλv

is the following, where the values
next to the points indicate the distance above thex-axis:



INTEGERS: 18 (2018) 14

1 2 3 4 5

0

−1

0

1

2

1

This isnotthe graph of a bidirectional ballot sequence. Namely, the graph passes below the
x-axis and above the liney = fλv

(5). Let’s now considerα(v) = [1, 0, 0, 0, 1, 0, 0, 0, 1] ∈

[0, 1]9, which gives slope vectorλα(v) = [1, 1,−1, 1, 1, 1,−1, 1, 1]and leads to the follow-
ing graph offλα(v)

.

0 1 2 3 4 5 6 7 8 9

1

2

1

2

3

4

3

4

5

The portion of the graph between the vertical dotted lines issimply the graph offλv

translated in the plane by the vector[2, 2]. This graphdoescorrespond to a bidirectional
ballot sequence, namely110111011. We now prove that this process gives a bijection as in
the statement of the theorem.
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Proof of Theorem 3.By the correspondence between bidirectional ballot sequences and
graphs of certain functions given in Example 1, it suffices toshow that the map of (17) puts
Qn in bijection with

F = {fµ : µ ∈ {±1}2n+3, fµ(0) < fµ(t) < fµ(2n+ 3) for all t ∈ (0, 2n+ 3)}.
(18)

If v ∈ C2n−1 is any gap-parametrization vector, then, in light of (15), (16), and the fact
thatfλv

achieves maxima and minima only at integer values, we have that fλv
(0) − 1 ≤

fλv
(t) ≤ fλv

(2n−1)+1 for t ∈ [0, 2n−1] if and only if v is a bidirectional gerrymander.
Furthermore, ifv is a vertex of the cubeC2n−1, thenα(v) is a vertex ofC2n+3 = [0, 1]2n+3

so thatfλα(v)
takes integers to integers. Since for anyv ∈ C2n−1 we havefλα(v)

(k+2) =

fλv
(k) + 2 for 0 ≤ k ≤ 2n − 1, fλα(v)

(i) = i for i = 0, 1, 2, andfλα(v)
(2n + 1 + i) =

fλα(v)
(2n+1)+ i for i = 1, 2. Thus ifv is a vertex ofC2n−1 thenfλα(v)

(0) < fλα(v)
(t) <

fλα(v)
(2n + 3) for all t ∈ (0, 2n + 3) if and only if v ∈ Qn. It follows then that, since

λα(v) ∈ {±1}2n+3 whenv ∈ Qn, we indeed have thatfλα(v)
∈ F , and so the map in (17)

does indeed takeQn to graphs of bidirectional ballot sequences inB2n+3.
Injectivity of the map is clear. To show that the map is surjective, we provide an inverse.

For a bidirectional ballot sequenceb = b1 · · · b2n+3 of length2n+ 3, we define the vector
w = [w1, . . . , w2n−1], where

wj :=

{

1 if j ≡ bj+2 (mod 2)

0 if j 6≡ bj+2 (mod 2).
(19)

It is easily verified that the graph offλα(w)
is the one associated tob. Moreover, the two

statements directly following (18) imply that, sincew ∈ {±1}2n−1 and the graph offλα(w)

is that of a bidirectional ballot sequence, we must have thatw ∈ Qn. It is clear that this
map is both a right- and left-inverse of the map given by (17).

We now give the second correspondence. LetIn denote the interior ofBn in R2n−1.
Let Tn = In ∩Qn, i.e. those vertices ofPn in the interior ofBn.

Corollary 3. We haveTn is in bijection withB2n−1, induced by the map

v 7→ fλv
. (20)

Proof. The proof here is essentially the same as that of Theorem 3. The point here is
that, whenv ∈ Tn, we already havefλv

(0) < fλv
(t) < fλv

(2n − 1), following similar
reasoning as in the statements directly following (18).

Lastly, we use these correspondences along with our previous analysis ofPn and its
translates to obtain the growth rate in [11].

Corollary 4. For ℓ odd,

Bℓ ≥
2ℓ

16(ℓ− 4)
. (21)
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Proof. The inequality is trivial ifℓ ∈ {1, 3}, so assumeℓ ≥ 5. Let m = ℓ − 4; this is
2n − 1 for somen ∈ N. By Theorem 3, we know that the vertices ofPn are in bijection
with Bm+4. From Corollary 1, we know that every vertex ofC2n−1 is contained inPσ for
someσ ∈ Zm. Since there arem such copies ofP , we have

mBm+4 ≥ 2m. (22)

By rearrangement we get

Bℓ ≥
2ℓ

16(ℓ− 4)
. (23)

Corollary 5. For ℓ odd,

Bℓ ≤
2ℓ

ℓ
. (24)

Proof. Supposeℓ = 2n− 1. From Corollary 3, we know that the vertices ofPn which are
in the interior ofBn, namelyTn, are in bijection withBm. Since the interiors ofBσ1 and
Bσ2 are disjoint ifσ1 6= σ2, we have thatσ1(Tn) ∩ σ2(Tn) = ∅ for σ1 6= σ2. Therefore,
summing over all the vertices inσ(T ) for eachσ ∈ Zℓ, we at most get every vertex of the
cube once. That is,

ℓBℓ ≤ 2ℓ. (25)

Rearranging yields

Bℓ ≤
2ℓ

ℓ
. (26)

Corollary 6. For all ℓ, the growth rate ofBℓ is Θ(2ℓ/ℓ).

Proof. By Corollaries 4 and 5, we know that forℓ odd, the growth rate isΘ(2ℓ/ℓ). The
only additional insight needed is that for allℓ, Bℓ+1 ≥ Bℓ. To see this, note that given a
BBS of lengthℓ, by appending a 1 to the end of it, we obtain a BBS of lengthℓ + 1. Thus
up to fixed constants, the inequalities in Corollaries 4 and 5are correct for evenℓ as well.
Thus, for allℓ, Bℓ grows likeΘ(2ℓ/ℓ).

5. Conclusion

Our methods reveal a rich combinatorial structure underlying bidirectional ballot sequences.
In previous papers on BBS’s ([11], [2], [6]), analytic techniques were used to obtain asymp-
totics, but our techniques reveal a geometric interpretation for theΘ(2n/n) growth rate.
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Interestingly, in the final section of [11], Zhao states without detailed proof thatnBn/2
n

goes to1/4, but claims his proof is “calculation-heavy”. He then posits that “[t]here should
be some natural, combinatorial explanation, perhaps alongthe lines of grouping all pos-
sible walks into orbits of size mostlyn under some symmetry, so that almost every orbit
contains exactly one walk with the desired property.” Zhao’s statement is strikingly similar
to the ideas presented in our paper. Though we have made some effort, we have not been
able to derive thatnBn/2

n → 1/4 using the techniques of our paper, but we feel that there
is hope for such a proof.

The second, more general takeaway from this paper is the potential for the ideas orig-
inally presented in [9]. The ideas in this paper in fact evolved from the ideas in [9]. In
passing to the continuous setting, several additive numbertheory and combinatorial prob-
lems reveal a rich structure which was not otherwise visible. We believe that there is even
greater potential still in such ideas and techniques.
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