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Abstract

A bidirectional ballot sequence (BBS) is a finite binary seage with the property that
every prefix and suffix contains strictly more ones than zeBBS'’s were introduced by
Zhao, and independently by Bosquet-Mélou and Pont{l ak)-culminating paths. Both
sets of authors noted the difficulty in counting these oljeantd to date research on bidirec-
tional ballot sequences has been concerned with asymgtdie introduce a continuous
analogue of bidirectional ballot sequences which we caliréctional gerrymanders, and
show that the set of bidirectional gerrymanders form a cempaytope sitting inside the
unit cube, which we refer to as the bidirectional ballot pope. We prove that every
(2n — 1)-dimensional unit cube can be partitioned i@ — 1 isometric copies of the
(2n — 1)-dimensional bidirectional ballot polytope. Furthermawe show that the vertices
of this polytope are all also vertices of the cube, and thattirtices are in bijection with
BBS’s. An immediate corollary is a geometric explanatiortted result of Zhao and of
Bosquet-Mélou and Ponty that the number of BBS'’s of length© (2" /n).
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1. Introduction

Ir@ [11], Zhao introduced a family of combinatorial objectsledlbidirectional ballot se-
quences, defined as follows.

Definition 1. A finite 0-1 sequence is hidirectional ballot sequence(BBYS) if every
prefix and every suffix contains strictly more ones than zekes B,, denote the number
of bidirectional ballot sequences of length

Bidirectional ballot sequences have a natural interpatah terms of lattice paths.
Suppose we start 40,0) and take a finite number of steps either of the fariml) or
(1,—1). We call such a path standard lattice path. We define the length of the path to
be the number of steps it contains. We define the height ofra pothe lattice path to be
its y-coordinate. Bidirectional ballot sequences of lengtare in bijection with standard
lattice paths of lengtlh whose unique minimum height is attained at the first poinhan t
path, and whose unique maximum height is attained at theptzist in the path. The
bijection is given by identifying the digit ‘0’ in a BBS with step of the form(1, —1) and
the digit ‘1’ with a step of the forni1, 1) (for an example of this, see Sectidn 4).

From this perspective, bidirectional ballot sequenceswatependently introduced by
Bosquet-Mélou and Ponty][2] as a special type of what thélyccdminating paths. In
particular, ana, b)-culminating path is a sequence of lattice points startin@z)) such
that each step is of the forifl, a) or (1, —b) and such that the uniqgue minimum height
is achieved at the first point and the unique maximum heighatiseved at the last point.
Thus bidirectional ballot sequences are in bijection withl )-culminating paths. In[2]
it is noted that(1, 1)-culminating paths had been used|in [5] with connectionbé¢oteti-
cal physics, and generét, b)-culminating paths had been usedlin [1], [4], and [10] with
connections to bioinformatics.

In both [11] and[[2], it is noted that unlike other easy to defitasses of lattice paths
(e.g. Dyck paths), the enumeration of BBS's is tricky; thisrao obvious recursive struc-
ture to such paths. Both authors focused on the asymptatids, o In particular, [2]
obtained a generating functioninfor the number ofa, b)-culminating paths of length
with fixed heightk (the generating function for th@, 1) case was found in[5]). Further-
more, they showed thag,, ~ 2"/4n. Independently)[11] showed th&, = ©(2"/n)
and stated without detailed proof th&f, ~ 2" /4n. Additionally in [11], the author con-
jectured an even finer asymptotic expressionBqr This conjecture was later proved by
Hackl, Heuberger, Prodinger and Wagner [6], who refined yengtotic expression even
further using techniques from analytic combinatorics.

The motivation for the study of culminating paths lin [2] whs bbservation that such
paths had been independently introduced and utilized ipadége contexts (theoretical
physics and bioinformatics) as well as a general interesinierstanding subfamilies of

1The authors were supported by NSF grants DMS1659037 and B&IS#5, the University of Michigan,
Princeton University and Williams College. We thank thesreé for comments on an earlier draft.
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lattice paths. However, the motivation in[11], as well as atginal motivation for study-
ing BBS’s, arises from additive combinatorics. L&tC Z be a finite set of integers. We
define the sumset + A as those elements i expressible aa + b with a,b € A. Simi-
larly, the difference setl — A is those elements expressibleras b with a,b € A. We say
that A is amore sums than difference§MSTD) set if[A+ A| > |A — A|. Because of the
commutativity of addition, one may intuitively expect thatgeneral A — A| > |A + A|.
This intuition turns out to be correct in some contexts (88§ [n particular if each el-
ement in[n] := {1,2,...,n} is independently chosen to be ihwith some probability
p(n) tending to zero). Lep,, be the proportion of subsets pf] which are MSTD. In[[8],
it was shown thap,, > 2 x 10~7 for n > 15, and in [12] it was shown thatm,,_,. pn
converges to a positive number; experimental data sugtfestiémit to be of orderl0—.
Thus, in this sense, a positive proportion of sets are MSTa@véver, the techniques in/[8]
are probabilistic, and to date no known constant densitylyemi MSTD subsets ofn| as
n — oo is known.

The best density explicit construction of MSTD sets is dughao in [11] using BBS's.
Let B be a binary sequence of length We can associate t8 the setA C [n] defined
asA := {i : B; = 1}. For example ifB = 01101, thenA = {2,3,5}. Those subsets
A of [n] arising from BBS's have the property thdt+ A = {i : 2 < i < 2n}, which is
to say that the sumset is as large as possible (similarlyristaut that the difference set is
also as large as possible). Using this property, Zhao wastalitanslate those subsets of
[n] arising from BBS’s and append extra elements to the fringedtain an MSTD set for
each set arising from a BBS. From this, one immediately gesnsity© (1/n) family of
MSTD sets.

Motivated by the use of BBS'’s in additive combinatorics, liistpaper we study the
natural analogue of BBS's in a continuous setting, which alelidirectional gerryman-
ders; in the related paper[9], we use similar ideas as in this papstudy the analogue of
MSTD sets in a continuous setting.

We first set some notation and then describe our main resit§,, denote the set of all
subsets oRR consisting of exactly: disjoint open intervals such that the leftmost interval
starts at 0. Supposé € I,,. If we translate4, then the sumset and difference set merely
translate as well. Thus, when studying additive behavier,de not lose any generality
by restricting our attention to collections of interval€buhat the leftmost interval starts
at zero. We can topologiZe, by identifying it with Ri’}fl, the non-negative orthant: let
A=TLULU---UI, €1, with I, to the left of I; for i < j. Supposd; = (a;,b;).
We then identify4 with the vectorw 4 = [by — a1, a2 — b1,ba — az, a3 — b, ..., by, — ay].
Thus the first entry is the length of the first interval, theosetentry is the size of the gap
between the first and second intervals, the third entry idehgth of the second interval,
etc. We shall find it convenient to restrict our attentionhe following set: let],, C I,, be
the set of collections af non-overlapping intervals such that the leftmost intestatts at
zero, the length of each interval is between 0 and 1, and théeveen adjacent intervals
is between 0 and 1 (if we scalé € I, by a # 0, then the sumset and difference set



INTEGERS: 18 (2018) 4

scale bya as well, soaA has the same essential additive behaviodasiote that up to
scaling, every element df, is an element of ;). We can topologizd,, by identifying it
with Cy,,—1 = [0, 1]>*~1, the2n — 1 dimensional unit cutfe For other ways to topologize
I,, and related spaces, see [9].

The bidirectional gerrymanders [}, form a convex, compact polytope contained in
Can—1 Which we call thebidirectional ballot polytope, P,,. This polytope has a number
of extraordinary combinatorial features. In Secfidbn 2 werfally define this polytope and
show thatCs,,_; can be partitioned int@n — 1 disjoint isometric copies oP,,, which
in particular shows that the volume &%, is 1/(2n — 1). In Sectior B we show that the
vertices ofP,, are vertices of7;,,_. Finally in Sectiod 4 we show that the verticesf
are in bijection withB,,,; 5, and that a particular subset of the vertices are in bijaatiith
Bs,—1. From this we are able to immediately rederive geometsi¢hlit| B,,| = ©(2"/n),
i.e., there are positive constantsand 8 such that for alln sufficiently large we have
a2"/n < |By| < B2 /n.

2. The Bidirectional Ballot Cone and Polytope

We first set some notation. Let = 2n — 1 for somen € N.

Definition 2. Let the set ofeft ballot vectors, L,,, and the set ofight ballot vectors, R,,,
be the following sets of vectors IR™:

L, :={[1,-1,0,...,0],[1,—=1,1,—1,0,...,0],...,[1,-1,...,1,—=1,0]}, (1)
R, :={[0,...,0,—1,1,[0,...,0,—1,1,—-1,1],...,[0,-1,1,...,—1,1]}. (2

We defineV,,, the set oballot vectors, asV,, = L,, U R,,.

Definition 3. Thebidirectional ballot cone, B,,, is the set ofc € R™ such thatz - w > 0
for all w € V,,. When the value of: is obvious, we simply refer to it as.

We now define the continuous analogue of BBS's, and show ipd&iton[1 that it is
the right generalization.

Definition 4. Let A € [,,. We call A abidirectional gerrymander if v4 € B.

Proposition 1. Supposed = I U- - -U I, € I, with endpoints ordered as before. Suppose
the right endpoint of, is b. Then,A is a bidirectional gerrymander if and only jf(.4 N
[0,¢]) > t/2andu(AN[b—t,b]) >t/2forall t € [0,b].

2Because the endpoints of an open interval cannot be equetlysspeaking we are taking, to be the set of
all weakly increasin@n-tuples of points on the real line and identifying these weitiiections ofn intervals by
treating them as endpoints (and correspondinglyifgr However, in the edge case when = b;, we still allow
an ‘empty’ interval ata;, which is included in the data of an elementlgf. Including these degenerate cases
allows us to indeed identif§,, with the closed unit cube.
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Proof. Clearly if these measure conditions hold, théris a bidirectional gerrymander, as
settingt to be left and right endpoints of tHgyields the nonnegativity conditions of pairing
with the ballot vectors. The conditiqr{.AN[0, ¢]) > ¢/2is equivalentto the non-negativity
of n(AN[0,t]) — p((R\A)NI0,¢]). Fort € [0,b], n(AN[0,¢]) — u((R\.A)N]0,¢]) takes

a local minimum only ift is a left endpoint of an intervdl;. Hence ifv 4 - w > 0 for all

w € Ly, then the function is nonnegative at its minima and so therfisasure condition
holds. Similarly, the second measure condition holds akbyehe nonnegativity of pairing
with the right ballot vectors. O

A BBS in the sense of[11] is a binary sequence for which angegbence truncated
on the left or right contains mores than0's, and Propositiohl1 shows that a bidirectional
gerrymander is a subset®fcontained if0, a] for which any subset obtained by truncating
on the left or right contains “more” points (in a measure tle¢io sense) in the original set
than points not in this set. It is thus clear that they are amahtinalogue, but, as we shall
see, what is surprising is that they can be used to provetsesbbut standard (discrete)
BBS'’s.

Definition 5. Thebidirectional ballot polytope P, is defined a®,, N C,,. Equivalently,
it is those vectors 4 such thatd € J,, is a bidirectional gerrymander. When the value of
n is obvious, we shall refer to it simply &3.

Figure 1: The polytop@: (red) sitting inside”;. Notice that adding two additional copies
of P,, rotated about the main diagonal of the cube2lay3 and4r/3 respectively, would
result in a partition of”'; (neglecting overlap of boundaries).

Definition 6. Let Z,,, be the cyclic group of orden. with generatop. Let Z,,, act onR™
by cyclically permuting the entries (e.g?([0, 1,2, 3,4]) = [3,4,0, 1, 2]). For a given set
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of vectorsV ando € Z,,, leta(V) := {o(v) : v € V} with o € Z,,,. For eachr € Z,,,
defineB3, by

B, == {vE€RY :v-w>0forallwe o(Vy)}, (3)
and?P, likewise. Note thaBB, = ¢~ '(B), and that3 = By andP = Pyg.

Theorem 1. The non-negative ortharRY, is contained ir J
o1 # o2, the interiors of3,, andB,,, are disjoint.

sez,, Bo. Furthermore, for

Proof. Let T = p? € Z,, be the cyclic shift by two places. Becauseis odd,r generates
Zm. In particular, we see that the set of left and right ballottees V,, as defined in
Definition[d is equal to

k
Vi, = {ZTi(w);ogkgzn—?)}, 4)
=0

wherew = [1,-1,0,...,0]. If £ < k < 2n — 3 then

k ¢ k k—0—1
Do) =Y Tw) = Y ) = T Y (w), (5)
1=0 =0 i=0+1 =0
and since) ", 7 (w) = [0, . . ., 0] we have similarly that, fob < k < ¢,
ko 0 (2n-2)+(k—0)
) =Y rw) =Y (). (6)
=0 =0 =0

Then for eacld we have that

k 14
{Zﬂw)—zfi(w):OSks2n—2,k¢€} = 77 (Va), (7)

=0 1=0
Now letwy = Zf:o 7' (w), take anyv € [0, 1]™, and choosé < ¢ < 2n — 2 minimizing
v - wy (this£ may not be unique). Then

k ¢

v- (Z#(w) _ZTi(w)> >0 (8)
=0 =0

forall 0 < k < 2n — 2. Thereforev - r > 0 for all r € 7+1(V,,), sov € B,«y1. This

shows thalR?, = (J,c, B, Intersecting withC' gives the corresponding result fx

Conversely, ifv € Int(B,e+1) N Int(B,x+1) andri*! # 77+1 then (because taking the
interior simply changes the inequalities definifig+: to strict ones) we have both

k 4
v- <Zﬂ'(w) - Zri(w)> > 0

i=0 =0

¢ k
v - <Z7'l(w) - ZT%U})) > 0.
=0

i=0
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This is a contradiction, so the interiors distinct regidhs+. are disjoint, and it follows
immediately that the interiors of distinct regioRs.+. are disjoint. O

Corollary 1. The unit cub&”,, equalijaezm P,. Furthermore, folr; # o9, the interiors
of P,, andP,, are disjoint. Consequently, the volumeffs exactlyl /m.

Proof. Intersecting the nonnegative orthant and the transl&tesvith C,,,, Theoren 1L
yields thatC,, is partitioned intom regions produced by permuting the coordinates of
P. Because the matrix representing= p? has determinart it leaves volume invariant.

Therefore, Vo[P,,) = Vol(P) forall ¢ € Z,,, so Vo(P) = 1/m. O
Corollary 2. For any vector € R, there exists € Z,, such that the vector
v = (vi,vh,...,vl,) = o(v) has the following property: For all < k < n,
k
Z(Uéi—l — ;) >0 9)
i=1
and
k
Z(Uén—(zi—n — Vg,_9;) = 0. (10)
=1

If furthermore these are all positive, thenis unique.

One interpretation of the above corollary is as follows. gge you have a necklace
with an odd number of beads. On each bead you write a nonimegatmber. Then
there exists some place where you can cut the necklace sathiien you lay out the
necklace and think of the sequence of values on the beadsesa inR™, this vector
is a bidirectional gerrymander. Furthermore, if the numsbeyu write on the beads are
“generic”, in the sense that the inequalities correspamttin(@) and[(ID) are strict, then
there is exactly one such place you can cut the necklace.

o
A ACaCICC
s

Figure 2: An example “cut” of a necklace as in Corollaly 2.
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3. Vertices of the Bidirectional Ballot Polytope are Verties of the Cube

In this section we show that the vertices@f are also vertices af’,,, the unit cube. We
had previously define®,, as the intersection of the unit cube with the ballot cone cwhi

is equivalent to the set of vectoi§, g1, . . ., gn—1, £»] Satisfying the below inequality:
M1 0 0 0 O 0 0 0 0 07 [0

-1 0 0 0 O 0o 0 0 0 O -1

cube vectors 0 1.0 00 0 0 0 00 rooy 0

0 -1 0 0 0 00 0 0 0 ! -1

. o e 9

1 -1 0 0 O ... 0 0 O O O g2 > 0

left ballot vectors 1 -11-10..00 0 00 : 0

E T Gn—1 :

0 0 0 0 0 ... 0 0 0 -1 1| [¢& | 0

right ballot vectors o 0 0 0 0..0-11-11 0

(11)

The first collection of rows in the above matrix is necessarngrtsure that we only deal
with points inside of the unit cube. Thus we call any vectahefform[0, ..., 0,+1,0,...,0]
acube vector.

Before proving the main result of this section, we must nexagew concepts related to
convex polytopes. We follow the terminology of [3].

Definition 7. Let P be a polytope irR™ defined by the inequalities! = > b; for i €
{1,2,...,k}. Letx* be such that for somg alz* = b;. Then, we say that thé"
constraint isactive atz*.

Definition 8. A vectorz* € R" is called abasic solutionif out of all of the constraints
that are active at*, there is some collection of of them which is linearly independent.
If * is a basic solution that satisfies all of the constraintg) thiss called abasic feasible
solution.

Part of what makes the study of convex polytopes interessiniat there are several
equivalent but strikingly different ways of defining whaethertices of a polytope are. In
particular, one definition is that a pointis a vertex if and only if it is a basic feasible
solution.

The following shorthand will be helpful in the proof of the méheorem of this section.

Definition 9. A matrix/vector is calledlat if all of its entries are 0, 1, or -1.

Let ,, denote the set of vertices in the polytdpg. Let S,, denote the set of vertices
of the unit cube’,,,. The main result of this section is the following.
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Theorem 2. All of the vertices of the bidirectional ballot polytof®, are also vertices of
the unit cube’,,,; i.e.,Q, C S,.

Proof. By the above discussion, we know that we must show that ait feasible solu-
tions are vertices of the cube. Throughout this proof, we le¢ fixed, and letn. = 2n — 1.
Thus we unambiguously I§® = P, C = Cs,_1, Q@ = Q,, andS = S,,. Notice that
Z™NP C S. From this observation, we now describe the strategy foripgathe theorem.
Supposec* is a basic solution whose corresponding constraintaare. ., a;, . Thenz*
satisfies

zt o= | . (12)

Let A be the matrix in[(IR). Leb* be the vector on the right hand side in](12). Thus
z* = A~'b*. Note thath* € Z™ since it is some subset of the entries in the vector on
the right hand side of (11). If we can show thiatt(A) = +1, it will imply that A—*
has integer entries, and thus théit'6* € Z™. From the earlier observation, if is a
basic feasible solution, then we must have thatb* = z* € S, which would prove the
theorem.

Now we must show that ifd is invertible, then it has determinastl. In order to
show this, we keep track of what happens to the determinaheiprocess of carrying out
Gaussian elimination, which convetsinto the identity matrix. In particular, we show
that at every step, the determinant changes by a factti oSince the identity matrix has
determinant 1, we could then conclude tiahas determinant1. The only elementary
row operation which potentially changes the absolute vafibe determinant of a matrix
is multiplying a row by a scalar. Thus it suffices to show thaew Gaussian elimination
is performed on4, no row is ever multiplied by a scalar other thari. In Gaussian
elimination, a row is multiplied by a scalar to convert sono@izero entry in that row to
a one. If every non-zero entry in that rowdsl, then we would simply need to multiply
by +1. Thus, we shall instead prove the stronger hypothesis thesteay step of Gaussian
elimination, the intermediate matrix is flat, and hence &lit®non-zero entries are1.
This is the content of Lemnid 1. O

Before proving Lemmal1, we include an example to illustragerhethod. Here we omit
row swapping for clarity, and we obtain a permutation matniRich has determinant1.
At each step, the leading nonzero term in the bolded row id teselear the corresponding
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column.
0O 1 0 0 O 0O 1 0 0 o 01 0 0 O
0O 0 0 0 1 0O 0 0 0 1 0 0 0 0 1
Ap: |1 -1 0 0 O] — A;:|1 -1 0 0 0| —= Ay:(1 0 0 O O
0o -1 1 -1 1 0o -1 1 -1 1 0 01 -1 1
0O 0 0 -1 1 0O 0 0 -1 1 0 0 0 -1 1
(13)
01 0 0 O 0O 1 0 0 O 01 0 0 O
0 0 0 0 1 0 0 0 0 1 00 0 0 1
— A3: |1 0 0 O O] — A4:]1 0 0 O O|— As:(1 0 O 0 O
0 0 1 -1 1 0O 0 1 0 O 0 01 00
00 0 -1 1 0 0 0 1 -1 00 0 10
(14)

Lemma 1. In carrying out Gaussian elimination on the matrik as in Theorenil2, all
intermediate matrices are flat.

Proof. We proceed by induction. Le#;, denote the matrix resulting from the" step
of Gaussian elimination (i.e. the matrix obtained aftee&ing” the firstk columns).
We shall show that for each, every row of the matrix4;, is of exactly one of six types
depending on the form of the firgtentries of that row and the last — k entries of that
row (in the sequel, we will refer to this as saying that evemy is one of the six types with
respect tak).

We now describe these six types. logt denote any sequence of lengtltonsisting of
alternating plus ones and minus ones (exg.= [-1,1,—1] or «; = [1]). Let 3,, denote
the sequence of length consisting of all zeros. Let,, denote any binary sequence of
lengthn containing exactly one one (e.gs = [0, 0, 1, 0]). Let  refer to the operation of
vector concatenation (e.fL, 2,3] @ [4,5] = [1,2, 3,4, 5]). The six types (with respect to
k) are listed in Tablgl1f.

Type Firstk Lastm —k Example gt =3,m=7)
1 Br Bis1 ® aj>1 ® Br—k—r—j>1  [0,0,0 0,1, 1,0]

2 Br or>1 D Bn_k—e>0 [0,0,0 -1,1,0]

3 Br Bes1 @ Qm—k—r>0 [0,0,0 0,0,1, 1]

4 Vi Be>1 @ >0 B Bm—k—t—j>1 [0,1,010,0,0,0]

5 Vi ar>1 D ﬂn—k—lZO [0,1,0 1,— 1,1,0]

6 Yk 5221 D Qm—k—0>0 [0,1,0 0,0,1, 1]

Table 1: The six types with respectito

We now go through the inductive argument. For the base casieerthat wherk = 0,
the cube vectors are type 1, the left ballot vectors are typa@the right ballot vectors are
type 3. Thus the claim is proven in the base case.
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Now for the inductive step, we shall show that if all rowsAf are of one of the above
types with respect t&, then all rows ofA;, 1 are of one of the above types with respect
to k + 1. As described in the proof of Theorémh 2, at stepre must first find some row
whose firstt entries are zero, and whoke- 1 entry is+1. We see then that we must select
some row of type 2, call if". We then subtract’ from all other rows whosé + 1 entry
is non-zero. Thus the only types we must worry about are t@@eed 5. Notice that when
we subtracfl” from a row of type 2, we get a row either or type 1, type 2, or tgpeith
respect td + 1. When we subtract’ from a row of type 5, we get a row either of type 4, 5,
or 6 with respect té + 1. All other rows remain the same. Thus when we catalog the new
rows with respect t& + 1, we get that those of type 1 become either type 1 or type 2. As
mentioned before, those of type 2 become those of type 1,2,except for rowl” which
becomes of type 4 or 5. Type 3 becomes type 2 or 3. Type 4 rergiasd or becomes
type 5. As mentioned before, type 5 becomes type 4, 5, or Glyl_bge 6 becomes type 5
or type 6. Thus, by induction, we have proven the desiredistant, implying in particular
that the matrix is flat at every step. O

4. Vfertices of the cube in the ballot region

In this section, we demonstrate that bidirectional bakafieences of lengtbn — 1 corre-
spond in a natural way t@,,, and we rederive the growth rate given[in{[11] and [2].

Definition 10. A slope vectoris a vector\ = [Aq, ..., A\,,] € R™ with m € N. To a slope
vector A, we associate the unique continuous piecewise linearibmg} : [0,m] — R
such thatf (0) = 0 and f{(z) = \; forz € (i — 1,4) for eachl <i < m.

Given any binary sequenée= b - - - b,,,, We associate to this sequence the graph of the
function £, where\ = (A1, ..., A\p) with \; == (—1)% 1,

Example 1. The bidirectional ballot sequent@011001111 corresponds to the path
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This is a bijection from binary sequences of lengthto graphs of functiong’, with
A € {£1}™. Recall from Sectiohl1 that the graphs which corresponddivdstional ballot
sequences are those of functighswheref,(0) < fa(t) < fa(m) forall 0 < ¢ < m.

Now we will draw a correspondence betwe@p and B,,, 3 through these graphs, as
well as a correspondence between a certain subsg}, @nd B, 1, by describing a way
to interpret vectors € Cy,_1 = [0,1]?"~! as paths as in the discrete case in such a way
that the vertices of the ballot polytope are realized as thk#te graphs above. Given a
vectorv = [vy,...,va,-1] € Cay,_1, define the slope vector, = [A1,..., Aap—1] by
i = (—=1)""1(2v; — 1), and associate tothe graph of the functiof, .

Example 2. The gap-parametrization vector= [2, 1,1 2 1] € [0,1]° gives the slope
vector\, = [3,—3,0, ,1], which gives the following graph of the functiofy,, where
the values next to the points indicate the distance above-thés:

0 1 2 3 4 5

Although the functionf,, in Exampld2 has the property that it achieves global mini-
mum and maximum values at it left and right endpoints (retipelg), we will see that this
is not always the case (see Exanigle 3). We determine thisrkeelmaore precisely now.

If v=[v1,...,02n-1] € Can_1, thenfor0 < k < 2n — 1 we have
k k i .
. 2577 (=1)7 1y, k is even
k) = 1Y 2u; — 1) = i=1 I 15
I () ;( Y@ =) {—1+2z§_1(_1)a—1vj k is odd, 15)
and similarly

Fa,@n—1) =230 (=1)7 g, k is even

: 16
f)\v (2n — 1) +1-— 22?21(—1)'7_1’0271_]' k is odd. ( )
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One can see now that, evenie P,, it is possible for the graph to fail the property stated
above, i.e., to achieve a global maximum or minimum at a poitite interior of its interval

of definition (again, see Examglk 3 for an explicit examphgwever, one can also see that
if v € P,, it cannot fail this property to a great extent; namely, thies at the left and
right endpoints will be within a distance of 1 from the maximand minimum values,
since the large sums in the RHS bf{15) ahd| (16) will be noratieg. Nonetheless, we
would like the graphs of the functiorfs, with v € @,, to match the graphs of bidirectional
ballot sequences iBs,, 3, and for that reason we give a way to modify a veatar Q,
before associating it to a graph. Namely, we will add a sotiudfer to each side of the
vector, so that the left and right endpoints get a leg up.

Definition 11. If v = [v1, ..., v2,-1] € Cay,—1, we define
O[(U) = [17 Ovvla V2,...,02n—2,0V2n—-1, 07 1]

We now present two correspondences, the first stated moueaiigt and the second
proven more naturally, which are nonetheless very closdfited. The first correspondence
is as follows.

Theorem 3. The sely,, is in bijection withB,,, 3, induced by the map

V= f>\ (17)

a(v)’

Before we prove Theoref 3, we give an example of the processnitiuces the bijec-
tion.

Example 3. Consider the gap-parametrization vectos [0,0,1,0,0] € [0, 1]?, an ele-
ment of Q3. We shall obtain a bidirectional ballot sequence from We see that gives
the slope vectok, = [—1,1, 1,1, —1]. The graph off,,, is the following, where the values
next to the points indicate the distance abovedtkeis:
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This isnotthe graph of a bidirectional ballot sequence. Namely, tteptrpasses below the
x-axis and above the ling = f\, (5). Let's now considex(v) = [1,0,0,0,1,0,0,0,1] €
[0,1]°, which gives slope vector,,y = [1,1,-1,1,1,1, -1, 1, 1] and leads to the follow-
ing graph offx_ -

0 1 2 3 4 ) 6 7 8 9

The portion of the graph between the vertical dotted linesisply the graph off),
translated in the plane by the vectf@, 2]. This graphdoescorrespond to a bidirectional
ballot sequence, namely0111011. We now prove that this process gives a bijection as in
the statement of the theorem.
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Proof of Theorerhl3By the correspondence between bidirectional ballot secpeand
graphs of certain functions given in Example 1, it sufficestiow that the map of(17) puts
Q.. in bijection with

F o= {fu:pe {1} £.00) < f.(t) < fu(2n+3) forall t € (0,2n + 3)}.
(18)

If v € Co,_1 is any gap-parametrization vector, then, in light[ofl (1B8)( and the fact
that f\, achieves maxima and minima only at integer values, we hateffh(0) — 1 <
(@) < fa,(2n—1)+1fort € [0,2n — 1] if and only if v is a bidirectional gerrymander.
Furthermore, it is a vertex of the cub€y,,_1, thena(v) is a vertex o0y, 3 = [0, 1]?7+3
SO thatha(v) takes integers to integers. Since for ang C5,,_; we havean(v) (k+2)=
(k) +2for0 <k <2n-1,fy,, @) =ifori =0,1,2,andfy,,, (2n +1+1) =
an(v)(2n+1)+z'forz' =1,2. Thusifvis avertex 0lCs,,_1 theana(U)(O) < an(U)(t) <
fray(2n+3) forallt € (0,2n + 3) if and only if v € Q,. It follows then that, since
Aa(w) € {£1}*"7% whenv € Q,,, we indeed have thaf,, , € F, and so the map il (17)
does indeed tak@,, to graphs of bidirectional ballot sequencediy), ; 5.

Injectivity of the map is clear. To show that the map is suiye; we provide an inverse.
For a bidirectional ballot sequenae= b; - - - ba,, 13 Of length2n + 3, we define the vector
w = [wi,...,ws,_1], where

! 0 ifj#bjre (mod ?2).

It is easily verified that the graph ¢f, ,, is the one associated to Moreover, the two
statements directly followin@(18) imply that, sineec {+1}?"~! and the graph o) SO
is that of a bidirectional ballot sequence, we must havedhat Q,,. It is clear that this
map is both a right- and left-inverse of the map given[by (17). O

We now give the second correspondence. Lgtlenote the interior of3,, in R?"~1,
LetT, =7, N Q,, i.e. those vertices dP,, in the interior of3,,.

Corollary 3. We havéel, is in bijection withBs,,_1, induced by the map
v = fa,. (20)

Proof. The proof here is essentially the same as that of Thebtem & pbmt here is
that, whernv € T,,, we already haveg,, (0) < f,(t) < fa,(2n — 1), following similar
reasoning as in the statements directly following (18). O

Lastly, we use these correspondences along with our predoalysis ofP,, and its
translates to obtain the growth ratelin[11].

Corollary 4. For ¢ odd,
2@

By > ——.
= 16(0—14)

(21)
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Proof. The inequality is trivial if¢ € {1,3}, so assumé > 5. Letm = ¢ — 4; this is
2n — 1 for somen € N. By Theoreni B, we know that the vertices®f are in bijection
with B,,,14. From Corollary1, we know that every vertex®©$,,_; is contained irP,, for
someo € Z,,. Since there are: such copies oP, we have

MmByaq > 2™, (22)
By rearrangement we get
2@
B 23
£ = 16— 4 (23)
O
Corollary 5. For ¢ odd,
25
B, < 7 (24)

Proof. Supposée = 2n — 1. From Corollary 8, we know that the vertices®f which are
in the interior ofB,,, namelyT,,, are in bijection withB,,. Since the interiors oB,, and
B, are disjoint ifo; # o2, we have that (T},) N o2(T},) = 0 for o1 # 5. Therefore,
summing over all the vertices m(7") for eacho € Z,, we at most get every vertex of the
cube once. That s,

(B, < 2°. (25)
Rearranging yields
25
O

Corollary 6. For all ¢, the growth rate of3, is ©(2¢ /).

Proof. By Corollaried# and15, we know that férodd, the growth rate i®(2¢/¢). The
only additional insight needed is that for &lB,.; > B,. To see this, note that given a
BBS of length?, by appending a 1 to the end of it, we obtain a BBS of lerfgthl. Thus
up to fixed constants, the inequalities in Corollakiks 4[dagescorrect for eved as well.
Thus, for all¢, B, grows like©(2¢/¢). O

5. Conclusion

Our methods reveal a rich combinatorial structure undeglpidirectional ballot sequences.
In previous papers on BBS’s ([11],][2].1[6]), analytic tedtpumes were used to obtain asymp-
totics, but our techniques reveal a geometric interpiataior the© (2" /n) growth rate.
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Interestingly, in the final section df [11], Zhao states withdetailed proof that B,, /2™
goes tol /4, but claims his proof is “calculation-heavy”. He then ps4itat “[t]here should
be some natural, combinatorial explanation, perhaps aloadines of grouping all pos-
sible walks into orbits of size mostly under some symmetry, so that almost every orbit
contains exactly one walk with the desired property.” Zkatatement is strikingly similar
to the ideas presented in our paper. Though we have made $furtevee have not been
able to derive that B,, /2™ — 1/4 using the techniques of our paper, but we feel that there
is hope for such a proof.

The second, more general takeaway from this paper is thettéor the ideas orig-
inally presented in_[9]. The ideas in this paper in fact eedlfrom the ideas i [9]. In
passing to the continuous setting, several additive nunhisery and combinatorial prob-
lems reveal a rich structure which was not otherwise visille believe that there is even
greater potential still in such ideas and techniques.
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