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ABSTRACT. The Birch and Swinnerton-Dyer conjecture states that the rank of the
Mordell-Weil group of an elliptic curveE equals the order of vanishing at the central
point of the associated L-functionL(s, E). Previous investigations have focused on
bounding how far we must go above the central point to be assured of finding a zero,
bounding the rank of a fixed curve or on bounding the average rank in a family. Mestre
[Mes] showed the first zero occurs byO(1/ log logNE), whereNE is the conductor
of E, though we expect the correct scale to study the zeros near the central point is
the significantly smaller1/ logNE. We significantly improve on Mestre’s result by
averaging over a one-parameter family of elliptic curvesℰ overℚ(T ). We assume
GRH, Tate’s conjecture ifℰ is not a rational surface, and either the ABC or the Square-
free Sieve Conjecture if the discriminant has an irreducible polynomial factor of degree
at least 4. We find non-trivial upper and lower bounds for the average number of
normalized zeros in intervals on the order of1/ logNE (which is the expected scale).
Our results may be interpreted as providing further evidence in support of the Birch
and Swinnerton-Dyer conjecture, as well as the Katz-Sarnakdensity conjecture from
random matrix theory (as the number of zeros predicted by random matrix theory lies
between our upper and lower bounds). These methods may be applied to additional
families ofL-functions.

1. INTRODUCTION

The goal of this paper is to provide evidence towards the Birch and Swinnerton-
Dyer conjecture in one-parameter families of elliptic curves. We briefly summarize our
results, assuming the reader is familiar with the notation and subject. Afterwards we
review the needed background material from elliptic curvesand previous results in §2;
for the convenience of the reader, we state all the conjectures assumed or discussed at
various points in Appendix A. We then prove our theorems and discuss generalizations
to other families ofL-functions in §3, where we give explicit non-trivial upper and
lower bounds.

The Birch and Swinnerton Dyer conjecture asserts that ifE is an elliptic curve whose
Mordell-Weil groupE(ℚ) has geometric rankr, then the associated completedL-
functionΛ(s, E) has analytic rankr (i.e., it vanishes to orderr at the central point).
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This is an exceptionally hard problem to investigate, theoretically and numerically.
While there is some theoretical evidence when the rank is at most 1, the general case is
intractable both theoretically and experimentally. For example, although we can con-
struct elliptic curves with geometric rank exceeding 20, the largest known lower bound
for the analytic rank of aΛ(s, E) is only 3.1

We consider the following natural question. LetE be an elliptic curve with geo-
metric rankr, and assume the Generalized Riemann Hypothesis (GRH). The Birch and
Swinnerton-Dyer conjecture predicts that there should ber zeros at the central point.
How far must we go along the critical line before we are assured of seeingr zeros?

If NE denotes the conductor of the elliptic curve, we expect the correct scale for
zeros near the central point to be of size1/ logNE . Miller [Mil3] investigated the
first few zeros above the central point for the family of all elliptic curves as well as
one-parameter families of small rank overℚ(T ). His results are consistent with the
low zeros being of height on the order of1/ logNE ; however, the first few zeros are
higher than theNE → ∞ scaling limits predicted by the independent model of random
matrix theory. The data suggests that, for finite conductors, better agreement is obtained
by modeling these zeros with the interaction model (which involves Jacobi ensembles).
Determining the correct corresponding random matrix ensemble involves understanding
the discretization of the central values ofL-functions and the lower order terms in the 1-
level density. In his thesis Duc Khiem Huynh [Huy] successfully modeled the first zero
of the family of quadratic twists of a fixed elliptic curve, and current work by the second
named author and Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith
is investigating the case of a general one-parameter family[DHKMS1, DHKMS2].

The best theoretical result on the first zero above the central point is due to Mestre.
Assuming the Generalized Riemann Hypothesis, Mestre [Mes]bounded the analytic
rank ofE byO(logNE/ log logNE) and showed its first zero above the central point is
at mostB/ log logNE . While this is significantly larger than what we expect the truth
to be, namelyO(1/ logNE), it has the advantage of holding for all elliptic curves.

In this note we show that we may reduce the window on the critical line to something
of the expected order if we average over a one-parameter family of elliptic curves.
Specifically, consider a one-parameter familyℰ : y2 = x3+A(T )x+B(T ) of geometric
rank r overℚ(T ), with A(T ), B(T ) ∈ ℤ[T ]. For eacht ∈ ℤ we may specialize and
obtain an elliptic curveEt : y

2 = x3 + A(t)x + B(t) with conductorNt := NEt
. By

Silverman’s specialization theorem [Sil2], for allt sufficiently large each elliptic curve
Et has geometric rank at leastr. Assuming standard conjectures, Helfgott [He] proved
that for a generic family the sign of the functional equationis 1 half the time and−1
the other half. It is believed that a generic curve in a generic family has analytic rank
as small as possible consistent with all constraints. In ourcase, as the rank must be at
leastr if the Birch and Swinnerton-Dyer conjecture is true, we expect that in the limit

1The number of terms needed for the computation is on the orderof the square-root of the conductor
of E, which grows rapidly in families. While it is possible to numerically show that the firstr Taylor
coefficients ofΛ(s, E) are close to zero for manyE’s with geometric rankr, in general these compu-
tations can only provide evidence. The exception is when we have formulas for the derivatives as a
known quantity times a rational, in which case we can convertthese calculations to proofs of vanishing.
Seehttp://web.math.hr/∼duje/tors/rk28.html for an example by N. Elkies of an elliptic
curve with geometric rank at least 28.
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half the curves will have analytic rankr and the other halfr+ 1, for an average rank of
r + 1

2
.

We take our family to beℱR := {Λ(s, Et) : R ≤ t ≤ 2R} with R → ∞, though we
often abuse notation and useℱR to denotet in [R, 2R]. There are two ways to normalize
the zeros ofΛ(s, Et) near the central point: (1) globally, usinglogN

2�
:= 1

R

∑
t∈ℱR

logNt

2�
;

(2) locally, usinglogNt

2�
. It is significantly easier to use the global rescaling; however, as

each elliptic curve can be considered independent of the family, it is more correct to use
the local rescaling (in this case, due to the technicalities that arise we must addsome
additional restrictions on whicht ∈ [R, 2R] are in the family).

Before stating our main result, we must first introduce some notation. All conjectures
are stated in full in Appendix A.

Definition 1.1 (Sieved family). Letℰ : y2 = x3 + A(T )x+ B(T ) be a one-parameter
family of elliptic curves overℚ(T ) with discriminantΔ(T ), letD(T ) be the product of
the irreducible polynomial factors of the discriminant, and letB be the largest square
dividingD(t) for all integerst. For a fixedc, t0, our family is the set of allt = ct′ + t0
(with t ∈ [R, 2R]) such thatD(ct′ + t0) is square-free except for primesp∣B where
the power of suchp∣D(t) is independent oft. In [Mil2] it is shown that for any one-
parameter family, there is a choice ofc andt0 such that the number of sucht is cℰR +
o(R) for somecℰ > 0 if every irreducible polynomial factor ofΔ(T ) has degree at most
3 (if not, the claim is true if we assume either the ABC or Square-free Sieve Conjecture).
We letℱ ′

R denote the sieved family.

Definition 1.2 (Average number of zeros in a family). Letℰ : y2 = x3+A(T )x+B(T )
be a one-parameter family of elliptic curves overℚ(T ) with specialized curvesEt with
conductorsNt. Assume GRH and write the non-trivial zeros ofΛ(s, Et) as 1

2
+ i
t,j ,

and set
logN

2�
:=

1

R

2R∑

t=R

logNt

2�
. (1.1)

The average number of zeros with imaginary part at most� (in absolute value) under
the global and local renormalizations are defined to be

Z
(global)
ave,ℰ,R (�) :=

1

R

2R∑

t=R

#

{
j : 
t,j

logN

2�
∈ [−�, � ]

}

Z
(local)
ave,ℰ,R(�) :=

1

∣ℱ ′
R ∣

2R∑

t=R
t∈ℱ′

R

#

{
j : 
t,j

logNt

2�
∈ [−�, � ]

}
, (1.2)

with ℱ ′
R as in Definition 1.1.

The Birch and Swinnerton-Dyer conjecture implies that, forfamilies where half the
curves have even and half have odd sign,

Z
(global)
ave,ℰ,R (0) = Z

(local)
ave,ℰ,R(0) ≥ r +

1

2
.

Our main results are upper and lower bounds for how many normalized zeros there
are on average in the interval[−�, � ], in particular, how small we may take� and be
assured on average that there arer + 1

2
zeros in the interval.
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Theorem 1.3. Let ℰ be a one-parameter family of elliptic curves of geometric rank r
overℚ(T ); if ℰ is not a rational surface (see Remark A.1 for a definition) then assume
Tate’s conjecture. Additionally, if we are using the local renormalization of the zeros
we must assume either the ABC or the Square-free Sieve Conjecture if the discriminant
has an irreducible polynomial factor of degree at least 4.

Let � be chosen such that we can compute the1-level density (defined in §2.3) for
even Schwartz test functions� with supp(�̂) ⊂ (−�, �); see Theorem 2.3 for details on
what� are permissible for a given family.

Then

∙ Lower bounds for the average number of normalized zeros in [−�, � ]: Let
the notation be as in Definition 1.2, and assume GRH. Letℎ be any even, twice
continuously differentiable function supported on[−1, 1] and monotonically de-
creasing on[0, 1]. For fixed� > 0 let f(y) = ℎ(2y/�), g(y) = (f ∗ f)(y)
(the convolution off with itself), and let�(x) equal the Fourier transform of
g(y) + (2��)−2g′′(y). Notesupp(�̂) ⊂ (−�, �) and�(x) is non-negative for
∣x∣ < � and non-positive for∣x∣ > � . Then

Z
(global)
ave,ℰ,R (�), Z

(local)
ave,ℰ,R(�) ≥

(
r +

1

2

)
+
�̂(0)

�(0)
+O

(
log logR

�(0) logR

)
, (1.3)

where�̂(0)/�(0) depends on the fixed� :

�̂(0)

�(0)
=

(
∫ 1

0
ℎ(u)2du) + ( 1

���
)2(
∫ 1

0
ℎ(u)ℎ′′(u)du)

�(
∫ 1

0
ℎ(u)du)2

. (1.4)

If we let�BSD(�) denote the value of� such that we are assured of at leastr+ 1
2

zeros on average (asR → ∞) in [−�, � ] given that we can compute the 1-level
density for test functions whose Fourier transform is supported in (−�, �), then

�BSD(�) ≤ 1

�

(
−

∫ 1

0
ℎ(u)2du

∫ 1

0
ℎ(u)ℎ′′(u)du

)−1/2
1

�
:=

1

�C(ℎ)�
. (1.5)

This should be compared to the predictions from the Birch andSwinnerton-
Dyer and Parity Conjectures for a generic family, which predict �BSD(�) = 0.
In particular, taking

ℎ(x) =

{
(1− x2)(1− 0.233428x2 + 0.0189588x4) if ∣x∣ ≤ 1

0 otherwise
(1.6)

yields

�BSD(�) ≤ 1

�C(ℎ)�
, (1.7)

whereC(ℎ) ≈ 0.63662 (which is approximately2/�); note 1/�C(ℎ)� is ap-
proximately1/2�. In the arguments below we use2/� for brevity without re-
minding the reader that the numerical calculation is only close to the above.
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∙ Upper bounds for the average number of normalized zeros in [−�, � ]: Let be
a twice continuously differentiable even Schwartz test function withsupp( ̂) ⊂
(−�, �),  (x) ≥ 0 for all x, and (x) monotonically decreasing on[0, �). Then

Z
(global)
ave,ℰ,R (�), Z

(local)
ave,ℰ,R(�)

≤
(
r +

1

2

)
+

(r + 1
2
)( (0)−  (�)) +  ̂(0)

 (�)
+O

(
log logR

 (0) logR

)
.(1.8)

If we consider the interval(− 1
2�
, 1
2�
) from the lower bound, taking (x) =(

sinx��
x��

)2
yields the average number of normalized zeros in the limit inthis

interval is at most
(
r + 1

2
+ 1

�

)
/ (1/2�) = �2

4

(
r + 1

2
+ 1

�

)
.

∙ Random matrix theory prediction. Let ℰ be a generic one-parameter family
of elliptic curves of rankr over ℚ(T ) with half of the specialized functional
equations even and half odd. Assuming the Katz-Sarnak Density Conjecture, as
R → ∞ the average number of normalized zeros in[−�, � ] is (r + 1

2
) + 2� ;

more precisely, random matrix theory predicts

lim
R→∞

Z
(global)
ave,ℰ,R (�), lim

R→∞
Z

(local)
ave,ℰ,R(�) = r +

1

2
+ 2�. (1.9)

In particular, setting� = 1
2�

yields a prediction ofr + 1
2
+ 2 ⋅ 1

2�
normalized

zeros in the limit on average.

In summary, the number of normalized zeros on average asR → ∞ in the interval(
− 1

2�
, 1
2�

)
satisfy

r +
1

2
≤ lim

R→∞
Z

(global)
ave,ℰ,R

(
1

2�

)
, lim

R→∞
Z

(local)
ave,ℰ,R

(
1

2�

)
≤ �2

4

(
r +

1

2
+

1

�

)
, (1.10)

and this interval contains the prediction from Random Matrix Theory,r + 1
2
+ 1

�
.

Remark 1.4. We obtained our upper bound for�BSD(�) by setting�̂(0)/�(0) = 0. The
important item to note is that�BSD(�) (or any� ) is inversely proportional to the support
�. In other words, the larger we may take�, the more we may concentrate� near the
central point and thus the smaller the window. Random matrixtheory predicts we may
take� arbitrarily large, which would imply we may take� arbitrarily small and thus
prove the Birch and Swinnerton-Dyer conjecture on average.

2. BACKGROUND MATERIAL AND PREVIOUS RESULTS

2.1. Elliptic curves. We quickly review the needed background material on elliptic
curves; the reader familiar with the notation and theory maysafely skip this subsection.
See [Kn, Kob, Sil1, ST] for proofs, as well as the survey [Yo1].

LetE be an elliptic curve overℚ, sayy2 = x3 + ax+ b with a, b ∈ ℤ, and set

E(ℚ) := {(x, y) ∈ ℚ2 : y2 = x3 + ax+ b}. (2.1)

We can define addition of two elements ofE(ℚ) as follows (see Figure 1). IfP =
(x1, y1) andQ = (x2, y2) are inE(ℚ), then the liney = mx + b connecting them
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 sP sQ sRs

P ⊕QE

Addition of distinct pointsP andQ

�
�
�
�
�
�
�
�
�
�
�sP sR

s2P
E

Adding a pointP to itself
FIGURE 1. The addition law on an elliptic curve. In the second example
the line is tangent toE atP .

has rational coordinates.2 Substituting this expression fory into the elliptic curve, we
find (mx + b)2 = x3 + ax + b. This is a cubic inx with rational coefficients. By
construction two of its roots arex1 andx2, both rational numbers. Thus the third root,
sayx3, must also be rational. SetR(P,Q) = (x3,

√
x33 + ax3 + b) and R̃(P,Q) =

(x3,−
√
x33 + ax3 + b). If we define addition byP ⊕ Q = R̃(P,Q), then this (plus

adding a ‘point at infinity’) turnsE(ℚ) into a finitely generated abelian group. We
writeE(ℚ) asℤr ⊕T, whereT is a torsion group3 andr is called the geometric rank of
the curve.

Given an elliptic curveE as above, we may associate anL-function as follows. As-
sumey2 = x3 + ax + b is a globally minimal Weierstrass equation forE/ℚ with
discriminantΔ = −16(4a3 + 27b2) and conductorNE . Set

aE(p) := p−#{(x, y) ∈ (ℤ/pℤ)2 : y2 ≡ x3 + ax+ b mod p}. (2.2)

Note that theaE(p)’s encode local data, specifically the number of solutions modulop.
Hasse proved∣aE(p)∣ ≤ 2

√
p, and we define theL-function by

L(s, E) :=
∏

p∣Δ

(
1− aE(p)√

p
p−s

)−1∏

p∤Δ

(
1− aE(p)√

p
p−s + p−2s

)−1

; (2.3)

we have included the factors of
√
p so that the completedL-function has a functional

equation froms to 1− s and not2− s:

Λ(s, E) :=

(√
N

2�

)s

Γ

(
s+

1

2

)
L(s, E) = �EΛ(1− s, E), (2.4)

where�E ∈ {1,−1} is the sign of the functional equation. Following the work of
Wiles [Wi], Taylor-Wiles [TW] and Breuil-Conrad-Diamond-Taylor [BCDT], we may
associate a weight 2 modular formf to any elliptic curveE, where the level off equals
the conductorNE of E. We haveΛ(s, f) = Λ(s, E); in particular, the completedL-
function converges for alls. We call the order of vanishing ofΛ(s, E) at s = 1/2 the
analytic rank ofE.

2We assume the two points are distinct; if they are the same, the argument below must be slightly
modified.

3Mazur [Ma] proved that torsion group is one of the following:ℤ/Nℤ for N ∈ {1, 2, . . . , 10, 12} or
ℤ/2× ℤ/2Nℤ for N ∈ {1, 2, 3, 4}.
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The Birch and Swinnerton-Dyer conjecture [BS-D1, BS-D2] states4 that the order
of vanishing ofΛ(s, E) at the central points = 1/2 equals the rank of the Mordell-
Weil groupE(ℚ), or that the analytic rank equals the geometric rank. Sadly,we are
far from being able to prove this, though the evidence for theconjecture is compelling,
especially in the case of complex multiplication and rank atmost 1 [Bro, CW, GKZ,
GZ, Kol1, Kol2, Ru]. In addition there is much suggestive numerical evidence for the
conjecture; for example, for elliptic curves with modest geometric rankr, numerical
approximations of the firstr−1 Taylor coefficients are consistent with these coefficients
vanishing.

2.2. Explicit Formula. One powerful tool for investigating the Birch and Swinnerton-
Dyer conjecture is the Explicit Formula (see [RS] for a prooffor a generalL-function, or
[Mil1] for the calculation for elliptic curves), which connects the zeros of anL-function
to the Fourier coefficients.

Theorem 2.1. Let � be an even, twice continuously differentiable test-function whose
Fourier transform

�̂(y) :=

∫ ∞

−∞

�(x)e−2�ixydx (2.5)

has compact support, and denote the non-trivial zeros ofΛ(s, E) by 1
2
+ i
E;j (under

the Generalized Riemann Hypothesis, each
E;j ∈ ℝ). Then

∑


E;j

�

(

E;j

logNE

2�

)
= �̂(0) + �(0)− 2

∑

p

aE(p) log p

p logNE

�̂

(
log p

logNE

)

−2
∑

p

a2E(p) log p

p2 logNE

�̂

(
2 log p

logNE

)
+O

(
log logNE

logNE

)
. (2.6)

Using the explicit formula, Mestre proved5

Theorem 2.2(Mestre [Mes]). Assuming the Generalized Riemann Hypothesis:

(1) The order of vanishing at the central point isO(logNE/ log logNE).
(2) There is an absolute constantB such that the first zero above the central point

occurs beforeB/ log logNE .

From the functional equation, however, we expect the first zero above the central
point to be on the order of1/ logNE, and not1/ log logNE . Thus Mestre’s result is
significantly larger than what we expect the truth to be; however, it holds foranyelliptic
curve. The situation is very different if instead we consider families of elliptic curves.
By averaging the explicit formula over the family and exploiting cancelation in the sums
of the Fourier coefficientsaE(p), it is possible to prove (on average) significantly better
results.

4There is a more precise form of the conjecture which relates the leading term in the Taylor expansion
to the period integral, regulator, Tamagawa numbers and theTate-Shafarevich group, but this version is
not needed for our purposes.

5Mestre actually proved more, as his results hold for any weight k cuspidal newform, and not just
elliptic curves (which correspond to weight 2 cuspidal newforms).
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Numerous studies have been concerned with bounding the average rank in families.
We list some of the frequently studied families below (note that, for technical reasons,
often one has to do some sieving and remove some curves in order to make certain
sums tractable). These results are obtained by averaging the explicit formula over some
family ℱR, whereR is a parameter localizing the conductors, and sendingR→ ∞.

∙ The family of all elliptic curves:y2 = x3+Ax+B, andℱR = {(A,B) : ∣A∣ ≤
R2, ∣B∣ ≤ R3} (or something along these lines).

∙ One parameter families overℚ(T ): y2 = x3+A(T )x+B(T ), withA(T ),B(T )
∈ ℤ[T ] and eitherℱR = {t : R ≤ t ≤ 2R} or a sub-family of this where the
conductors are given by a polynomial.

∙ Quadratic (or higher) twists of a fixed elliptic curve:dy2 = x3 + ax + b, with
ℱR = {d : d ≤ R a fundamental discriminant}.

The current record belongs to M. Young [Yo2], who showed the average rank in the
family of all elliptic curves is bounded by25/14 ≈ 1.79; results for one-parameter fam-
ilies and quadratic twist families are significantly worse.For a sample of the literature,
see [BMSW, Bru, BM, CPRW, DFK, Gao, Go, GM, H-B, Kow1, Kow2, Mi, Mil2, RSi,
RuSi, Sil3, Yo2, ZK] (especially the surveys [BMSW, Kow1, RuSi]).

2.3. The one-level density.For a familyℱR ofL-functions ordered by conductor (with
R → ∞), the averaged explicit formula is called the one-level density. Specifically, let
� be an even Schwartz test-function whose Fourier transform is supported in(−�, �),
and denote the zeros ofL(s, f) by 1/2 + i
f,j (under GRH each
f,j ∈ ℝ). Let Nf

denote the analytic conductor ofL(s, f). We define the one-level density by

DℱR
(�) :=

1

∣ℱR∣
∑

f∈ℱR

∑

j

�

(

f ;j

logNf

2�

)
. (2.7)

This statistic has been fruitfully used by many researchersto study the zeros of elliptic
curvesL-functions (as well as other families ofL-functions) near the central point.

Unlike then-level correlations, which are the same for any cuspidal newform arising
from an automorphic representation (see [Hej, Mon, RS]), the one-level density for a
family of L-functions depends on the symmetry of the family. Katz and Sarnak [KS1,
KS2] conjecture that families ofL-functions correspond to classical compact groups;
specifically, the behavior as the conductors tend to infinityof zeros (respectively values)
of L-functions is well-modeled by the limit as the matrix size tends to infinity of roots
(respectively values) of characteristic values of random matrices.6 They conjecture that

lim
R→∞

DℱR
(�) =

∫
�(x)WG(ℱ)(x)dx, (2.8)

whereG(ℱ) indicates unitary, symplectic or orthogonal (possiblySO(even) orSO(odd))
symmetry; this has been observed in numerous families. Noteby Parseval’s theorem

6These conjectures are a natural outgrowth of observed similarities between behavior ofL-functions
and matrix ensembles. While random matrix theory first arosein statistics problems in the early 1900s
(see for example [Wis]), it blossomed in the 1950s when it wassuccessfully applied to describe the
energy levels of heavy nuclei. Its connections to number theory were first noticed by Montgomery [Mon]
and Dyson in the 1970s in studies of the pair correlation of zeros of�(s). See [FM] for a survey on the
development of the subject and some of the connections between the two fields.
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that ∫
�(x)WG(ℱ)(x)dx =

∫
�̂(y)ŴG(ℱ)(y)dy. (2.9)

Let I(u) be the characteristic function of[−1, 1]. Katz and Sarnak prove the Fourier
transforms of the one-level densities of the classical compact groups are

ŴSO(even)(u) = �(u) +
1

2
I(u)

ŴSO(u) = �(u) +
1

2

ŴSO(odd)(u) = �(u)− 1

2
I(u) + 1

ŴUSp(u) = �(u)− 1

2
I(u)

ŴU(u) = �(u). (2.10)

For functions whose Fourier Transforms are supported in[−1, 1], the three orthogonal
densities are indistinguishable, though they are distinguishable fromU andSp. To
detect differences between the orthogonal groups using the1-level density, one needs
to work with functions whose Fourier Transforms are supported beyond[−1, 1].7

For families of elliptic curves with rank, it is useful to consider additional subgroups
of the classical compact groups above. We consider theN → ∞ scaling limits of
matrices of the form (

Ir,r
g

)
,

whereIr,r is ther × r identity matrix andg is anN × N orthogonal matrix (drawn
from either the full orthogonal family or one of the split families, namely even or odd).
These matrices haver forced eigenvalues at 1 (orr eigenangles at 0) for eachg; thus as
we varyg in one of the three families we obtain the same one-level densities as before
exceptfor an additional factor ofr. Explicitly,

Ŵr;SO(even)(u) = �(u) +
1

2
I(u) + r

Ŵr;SO(u) = �(u) +
1

2
+ r

Ŵr;SO(odd)(u) = �(u)− 1

2
I(u) + 1 + r. (2.11)

For our elliptic curve families, we must evaluate the average overℱR or ℱ ′
R of (2.6).

Note that almost all of the conductors will be a bounded powerof R for t ∈ [R, 2R]. If

7One can also distinguish between the various orthogonal groups by looking at the 2-level density,
as these three ensembles have distinct behavior for arbitrarily small support; see for instance [Mil2]. If
n ≥ 3, the determinant expansions for then-level density are hard to work with; in fact, in Gao’s thesis
[Gao] he is able to compute the number theory and random matrix theory results for greater support than
he can show agreement. In place of the determinant formulas,one can also use expansions from [HM];
though these hold for smaller support, they are sometimes easier for comparisons.
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we rescale each elliptic curveE’s zeros by the correct local factor, namely(logNE)/2�,
we have

Dlocal
ℱR

(�) =
1

∣ℱR∣
∑

E∈ℱR

∑


E;j

�

(

E;j

logNE

2�

)

= �̂(0) + �(0)− 2
1

∣ℱR∣
∑

E∈ℱR

∑

p

aE(p) log p

p logNE
�̂

(
log p

logNE

)

−2
1

∣ℱR∣
∑

E∈ℱR

∑

p

a2E(p) log p

p2 logNE
�̂

(
2 log p

logNE

)
+O

(
log logR

logR

)
. (2.12)

The difficulty with this expression is that, as the conductors are varying, we cannot
easily pass the sum over the family through the test-function to the Fourier coefficients
aE(p) andaE(p)2. By sieving it is possible to surmount these technical details; this is
the main result in [Mil2].

If instead we rescale the zeros of each elliptic curveE’s L-function by the global
factor, namely

logN

2�
=

1

∣ℱR∣
∑

t∈ℱR

logNE

2�
, (2.13)

then we find

Dglobal
ℱR

(�) =
1

∣ℱR∣
∑

E∈ℱR

∑


E;j

�

(

E;j

logN

2�

)

= �̂(0) + �(0)− 2
1

∣ℱR∣
∑

E∈ℱR

∑

p

aE(p) log p

p logN
�̂

(
log p

logN

)

−2
1

∣ℱR∣
∑

E∈ℱR

∑

p

a2E(p) log p

p2 logN
�̂

(
2 log p

logN

)
+O

(
log logN

logN

)
. (2.14)

The analysis is significantly easier here, as now we can pass the summation over the
family past the test-function and exploit cancelation in sums of the Fourier coefficients
aE(p) andaE(p)2.

We quote the best known results for general one-parameter families.

Theorem 2.3(Miller (Theorem 7.8 of [Mil1] or Theorem 5.8 of [Mil2])).
Notation:

∙ Let ℰ be a one-parameter family of elliptic curves of geometric rank r over
ℚ(T ).

∙ Let� be a twice continuously differentiable function8 with supp(�̂) ⊂ (−�, �).
∙ Consider the sieved family (see Definition 1.1), and denote the degree of the

conductor polynomial bym.
∙ LetG denote eitherSO, SO(even) or SO(odd).

Assume

8While the theorem was proved under the assumption that� is Schwartz, a careful analysis of the
argument reveals it suffices that� be twice differentiable.
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∙ If ℰ is not a rational surface (see Remark A.1 for a definition) then assume
Tate’s conjecture.

∙ If the discriminant has an irreducible polynomial factor ofdegree at least 4,
assume either the ABC or the Square-free Sieve Conjecture.

Then

Dlocal
ℱR

(�) =

∫
�̂(y)Ŵr;G(y)dy =

(
r +

1

2

)
�(0) + �̂(0) +O

(
log logR

logR

)
(2.15)

provided� < min (1/2, 2/3m); a similar result holds forDglobal
ℱR

(�) (without the as-
sumptions thatℰ satisfies Tate’s hypothesis and without assuming either theABC or
Square-free Sieve Conjecture).

Remark 2.4. We briefly discuss some consequences and generalizations ofthe above
theorem.

∙ Similar statements hold for quadratic twist families and the family of all elliptic
curves.

∙ The above result provides evidence that the zeros of one-parameter families of
rankr overℚ(T ) are modeled by the scaling limits of orthogonal matrices with
r independent eigenvalues of 1.

∙ Assupp(�̂) ⊂ (−1, 1), the three orthogonal groups have indistinguishable one-
level densities. We can see which group correctly models ourfamily by studying
the 2-level density, which requires us to understand the distribution of signs of
the functional equations in our family.

3. PROOF OFTHEOREM 1.3

3.1. Preliminaries. Before proving Theorem 1.3, we first prove general results for
the upper and lower bounds in a window of variable size for a general family ofL-
functions. Theorem 1.3 then follows immediately from Theorem 3.1, Theorem 2.3 and
the constructions of test-functions satisfying the necessary conditions, which are given
below.

Theorem 3.1. LetℱR denote a family ofL-functions, and letZ(global)
ave,ℱ ,R(�), Z

(local)
ave,ℱ ,R(�)

be defined as in Definition 1.2. Let�(x) and (x) be twice continuously differentiable
functions with Fourier transform supported in(−�, �). Assume for both normalizations
of zeros that there are constantsa andb such that one has

DℱR
(�) = a�(0) + b�̂(0) +O

(
log logR

logR

)
, (3.1)

as well as the corresponding formula forDℱR
( ) with replacing� by  in (3.1). If

�(x) ≥ 0 for ∣x∣ ≤ � and�(x) ≤ 0 whenever∣x∣ ≥ � , and if �(x) is largest when
x = 0, then

Z
(global)
ave,ℱ ,R(�), Z

(local)
ave,ℱ ,R(�) ≥ a+ b

�̂(0)

�(0)
+O

(
log logR

�(0) logR

)
, (3.2)
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while if (x) ≥ 0 for all x and is monotonically decreasing on(0, �), then

Z
(global)
ave,ℱ ,R(�), Z

(local)
ave,ℱ ,R(�) ≤ a+

a( (0)−  (�)) + b ̂(0)

 (�)
+O

(
log logR

 (0) logR

)
. (3.3)

Proof. We give the proof for the local rescaling; the global case follows analogously.
As �(x) is non-positive for∣x∣ ≥ � , the contribution to the one-level density from the
scaled zeros as large or larger than� in absolute value is non-positive; thus if we remove
these contributions then the one-level density gives the lower bound

1

∣ℱR∣
∑

f∈ℱR

∑

∣
f ;j ∣≤�

�(
̃f ;j) ≥ a�(0) + b�̂(0) +O

(
log logR

logR

)
. (3.4)

As � is maximized at 0, we increase the left-hand side above by replacing�(
̃f ;j) with
�(0); doing so and dividing by�(0) yields the claimed bound forZ(local)

ave,ℱ ,R(�). The
upper bound is proved analogously. □

Remark 3.2. These results are of course not of interest unless we are ableto construct
� and satisfying the conditions in Theorem 3.1. For one-parameter families of elliptic
curves of rankr overℚ(T ), we havea = r + 1

2
andb = 1.

Remark 3.3. For test functions whose Fourier transform is supported in(−1, 1), all
known one-level densities of families ofL-functions are in the form of Theorem 3.1,
and thus our results are immediately applicable. For some families where the support
exceeds(−1, 1) (such as families of cuspidal newforms of square-free levelsplit by sign
of the functional equation), a little more work is needed as the functional form of the
one-level density is different.9 For ease of exposition in this paper we confine ourselves
to the(−1, 1) case.

3.2. Proof of Theorem 1.3. The main step in the proof of Theorem 1.3 is showing that
our result is non-vacuous by constructing� and with the claimed properties. Our
construction of� is almost surely similar to the construction implicit in Mestre’s work
[Mes]; see also Hughes and Rudnick [HR].

Proof of the Lower Bound in Theorem 1.3.We give the lower bound for the number of
zeros in[−�, � ] by constructing a good test function�. As our results depend on the
support of�̂ (which is finite), it is convenient to normalize our test function and express
everything in terms ofℎ, which we take to be an even, twice continuously differentiable
function supported on(−1, 1) and monotonically decreasing on[0, 1). For fixed�, � >
0 let f(y) = ℎ(2y/�), g(y) = (f ∗ f)(y) (the convolution10 of f with itself), and let
�(x) equal the Fourier transform ofg(y)+(2��)−2g′′(y). We must show (i)supp(�̂) ⊂
(−�, �) and (ii)�(x) is non-negative for∣x∣ < � and non-positive for∣x∣ > � .

9For the family of Dirichlet characters of prime conductor, the 1-level density is known to bê�(0) for
support is known up to(−2, 2), and thus is of the desired form.

10The convolution is defined by(A ∗B)(x) =
∫
∞

−∞
A(t)B(x − t)dt.
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The proof of (i) follows from standard properties of convolution. Specifically, as
supp(f) ⊂ (−�/2, �/2), we havesupp(g) ⊂ (−�, �).11 As the support ofg′′ is con-
tained in the support ofg and�̂(y) = g(y)+(2��)−2g′′(y), the support of̂� is contained
in (−�, �) as claimed.

For (ii), the Fourier transform ofg′′(y) is −(2�y)2ĝ(y) (the Fourier transform con-
verts differentiation to multiplication by2�ix in our normalization). Furtherg = f ∗ f
impliesg′′ = f ∗ f ′′. Combining the above, we find12 the Fourier transform of̂�(y) =
g(y) + (2��)−2g′′(y) is �(x) = ĝ(x) ⋅ (1− (x/�)2).

To complete the proof, we must show

�̂(0)

�(0)
=

(
∫ 1

0
ℎ(u)2du) + ( 1

���
)2(
∫ 1

0
ℎ(u)ℎ′′(u)du)

�(
∫ 1

0
ℎ(u)du)2

. (3.5)

By construction we have

�̂(0)

�(0)
=

g(0) + (2��)−2g′′(0)

ĝ(0)
. (3.6)

Sinceg is even and monotonically decreasing near the origin (asg has a maximum at
0), g′′(0) < 0. Thus larger values of� should decrease the ratio above, at the cost of
increasing the size of our window.

From our construction, asℎ andf are even we have

g(0) =

∫ �/2

−�/2

f(t)2dt = 2

∫ �/2

0

ℎ

(
2t

�

)
dt = �

∫ 1

0

ℎ(u)2du (3.7)

and

g′′(0) =

∫ �/2

−�/2

f(t)f ′′(t)dt

= 2

∫ �/2

0

f(t)f ′′(t)dt

=
8

�2

∫ �/2

0

ℎ

(
2t

�

)
ℎ′′
(
2t

�

)
dt

(
since f(t) = ℎ

(
2t

�

)
, f ′′(t) =

4

�2
ℎ

(
2t

�

))

=
4

�

∫ 1

0

ℎ(u)ℎ′′(u)du. (3.8)

As the Fourier transform of a convolution is the product of the Fourier transforms, a
straightforward calculation yields

ĝ(0) = f̂(0) ⋅ f̂(0) = �2

(∫ 1

0

ℎ(u)du

)2

. (3.9)

11We may interpret the relation betweenf andg as follows. LetX be a random variable with density
f supported in(−�/2, �/2). Theng = f ∗ f is the density ofX +X , and is supported in(−�, �).

12As � and�̂ are even, the Fourier transform of the Fourier transform is the original function�(x); if
� were not even, we would have to replace�(x) with �(−x).
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Collecting the above equalities, after some elementary algebra we can express the ratio
�̂(0)/�(0) in terms ofℎ as

�̂(0)

�(0)
=

(
∫ 1

0
ℎ(u)2du) + ( 1

���
)2(
∫ 1

0
ℎ(u)ℎ′′(u)du)

�(
∫ 1

0
ℎ(u)du)2

. (3.10)

If we set this ratio equal to zero (i.e., if we choose� so that the numerator vanishes)
then we find13 that on average there are at leastr + 1

2
normalized zeros in the band

(− 1
�C(ℎ)�

, 1
�C(ℎ)�

), where

C(ℎ) =

(
−

∫ 1

0
ℎ(u)2du

∫ 1

0
ℎ(u)ℎ′′(u)du

)1/2

. (3.11)

□

Proof of the Upper Bound in Theorem 1.3.The proof is similar to that of the lower bound;
in particular, once we construct a function with the desired properties then the claim
follows immediately from straightforward algebra.

We are thus again reduced to constructing a function with thespecified properties.
For convenience we construct a which is not Schwartz, but which is twice differen-
tiable; a careful analysis of the proof of Theorem 2.3 shows that this suffices, and thus
such a is sufficient for our purposes.

Consider the function (x) =
(
sinx��
x��

)2
with a compactly supported Fourier trans-

form given by

 ̂(y) =

{
1
�

(
1− ∣y∣)

�

)
if y ∈ (−�, �)

0 if y ∕∈ (−�, �);
(3.12)

see Figure 2 for a plot. Away from the origin, the derivative is given by

 ′(x) =
2 sin(��x)

��x2

(
cos(��x)− sin(��x)

��x

)
. (3.13)

It is easy to see that the global maximum is atx = 0 and that (x) is decreasing
up tox = 1/�, proving the claim for any� ≤ 1/� (though the bound worsens as�
approaches1/� as (1/�) = 0). □

Proof of the Random Matrix Theory prediction in Theorem 1.3.We assume the conjec-
tures from Random Matrix Theory hold for any even test function, and not just Schwartz
test functions. We therefore take�(x) to be the characteristic function of the interval
[−�, � ], which has Fourier transform equal tosin(2��y)

2��y
⋅ 2� . Using such a test function

simply counts all normalized zeros in our family that are in[−�, � ] (there is no weight-
ing as� is identically 1 in this interval). Thus the predicted average number of such

13In obvious notation, we have
∫
1

0
ℎ2 ≥ −(���critical)

−2
∫
1

0
ℎℎ′′. We see

∫
1

0
ℎℎ′′ ≤ 0, and thus

�critical ≥ (−
∫ 1

0
ℎ2/

∫ 1

0
ℎℎ′′)−1/2(��)−1.
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FIGURE 2. Plot of (x) =
(

sin(x��)
x��

)2
for � = 1.

zeros in this interval asR → ∞ is
∫ ∞

−∞

�̂(y)Ŵr;SO(y)dy =

∫ ∞

−∞

�̂(y)

(
�(y) +

1

2
+ r

)
dy

=

(
r +

1

2

)
�(0) + �̂(0)

= r +
1

2
+ 2�. (3.14)

□

3.3. Explicit upper and lower bounds. We conclude by determining the upper and
lower bounds from Theorem 1.3 for the average number of normalized zeros in given
intervals asR → ∞.

We first consider the lower bound, which means we must maximizeC(ℎ) (as it is in
the denominator for� , the largerC(ℎ) the smaller the window). As the optimal choice
of ℎ (in a given class of functions) is only slightly better than similar ℎ, we do not spend
too much time on determining the truly bestℎ. Consider the family of functions given
by

ℎn(x) = (1− x2)(1 + a2x
2 + ⋅ ⋅ ⋅+ a2ix

2i + ⋅ ⋅ ⋅+ a2nx
2n). (3.15)

We seta0 = 1 as the maximum is to occur atx = 0, and since the ratio is invariant
under rescaling theai’s, we might as well takea0 = 1. Note that eacha2i+1 = 0 as our
function is even. We choseℎn of this form as this forcesℎn to be even and to vanish at
±1. We have

C(ℎn) =

(
−

∫ 1

0
ℎn(u)

2du
∫ 1

0
ℎn(u)ℎ′′n(u)du

)1/2

. (3.16)
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The optimum value of the square-root appears to be2/�. For example, whenn = 2 we
must compute

max
a2,a4

(
−

8
15

+ 16a2
105

+
8a22
315

+ 16a4
315

+ 16a2a4
693

+
8a24
1287

−4
3
− 8a2

15
− 44a2

2

105
− 8a4

35
− 8a2a4

15
− 52a2

4

231

)1/2

= max
a2,a4

(
6006 + 286a22 + 572a4 + 70a24 + 52a2(33 + 5a4)

39(385 + 121a22 + 66a4 + 65a24 + 154a2(1 + a4))

)1/2

. (3.17)

Using Mathematica we find the optimal values area2 ≈ −.233428 anda4 ≈ .0189588,
which leads toC(ℎ) ≈ 0.63662; as2/� ≈ 0.63662, this suggests the optimal value of
C(ℎ) might be2/�. This yields the window

(
− 1

2�
, 1
2�

)
in which we have on average

(asR → ∞) r + 1
2

zeros.

Remark 3.4. As we expect the true answer to be a window of size0 (i.e., letting� = ∞),
it is not worthwhile to find the true optimum above merely to save a bit in a few decimal
places. The purpose of this analysis is to show that we do see the correct number of
zeros on average in the limit in a window of size proportionalto 1/�; the actual value
of the proportionality constant, while interesting, is in some sense immaterial as we
believe the density conjecture holds for arbitrary�.

We list some approximate values forC(ℎ) for other obvious candidates, which are
all less than the 0.63662 (which is approximately2/�) found above.

∙ ℎ(x) = (1− x2)2 hasC(ℎ) ≈ 0.57735 (with the quantity inside the square-root
looking like1/3); if we take just(1− x2) we getC(ℎ) =

√
2/5 ≈ 0.632456.

∙ ℎ(x) = exp(−1/(1− x2)) hasC(ℎ) ≈ 0.570024.
∙ ℎ(x) = exp(−.754212/(1 − x2)) hasC(ℎ) ≈ 0.575629 (the value of.754212

was obtained by searching for optimal test functions amongexp(−a/(1−x2))).
We now turn to finding explicit upper bounds for the average number of normalized

zeros in[−�, � ] asR → ∞. We continue to analyze the candidate function (x) =(
sin(��x)

��x

)2
(see Figure 2 for a plot). We have freedom in terms of how we rate our

approximation; for example, we can decrease the upper boundif we simultaneously
decrease the size of the interval.

A natural value to take for the size of our interval is the optimal interval found in the
lower bound analysis, namely� is of the order1/�. From (1.7), if we take2/� for C(ℎ)
then we take� = 1/2�. As

 ̂(y) =

{
1
�

(
1− ∣y∣

�

)
if ∣y∣ ≤ �

0 otherwise,
(3.18)

we have ̂(0) = 1/�,  (0) = 1 and (1/2�) = 4/�2 ≈ 0.405285. Thus after some
algebra (see (1.8) and the lines immediately following this) we see that the average
number of normalized zeros in the interval(− 1

2�
, 1
2�
) is at most�

2

4

(
r + 1

2
+ 1

�

)
.

APPENDIX A. STANDARD CONJECTURES

At various points in the paper we assume the following conjectures.
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Generalized Riemann Hypothesis (for Elliptic Curves). Let Λ(s, E) be the com-
pleted, normalizedL-function of an elliptic curveE with function equations→ 1− s.
The non-trivial zeros� ofΛ(s, E) have Re(�) = 1/2.

Birch and Swinnerton-Dyer Conjecture [BS-D1, BS-D2]. LetE be an elliptic curve
of geometric rankr overℚ with Mordell-Weil groupE(ℚ) = ℤr⊕T. Then the analytic
rank (the order of vanishing of the completedL-function at the critical point) equals
the geometric rank.

Tate’s Conjecture for Elliptic Surfaces [Ta]. Let ℰ/ℚ be an elliptic surface and
L2(ℰ , s) be theL-series attached toH2

ét(ℰ/ℚ,ℚl). L2(ℰ , s) has a meromorphic con-
tinuation toℂ and −ords=1L2(ℰ , s) = rank NS(ℰ/ℚ), whereNS(ℰ/ℚ) is theℚ-
rational part of the Néron-Severi group ofℰ . Further,L2(ℰ , s) does not vanish on the
line Re(s) = 1.

Remark A.1. Tate’s conjecture is known for rational elliptic surfaces.An elliptic sur-
faceℰ : y2 = x3 + A(T )x + B(T ) is rational if and only if one of the following
is true: (1) 0 < max{3 degA, 2 degB} < 12; (2) 3 degA = 2 degB = 12 and
ordT=0T

12Δ(T−1) = 0. See[RSi], pages46− 47 for more details.

ABC Conjecture. Fix � > 0. For co-prime positive integersa, b andc with c = a + b
andN(a, b, c) =

∏
p∣abc p, c≪� N(a, b, c)1+�.

The full strength of ABC is never needed; rather, we need a consequence of ABC,
the Square-Free Sieve Conjecture (see [Gr]):

Square-Free Sieve Conjecture.Fix an irreducible polynomialf(t) of degree at least
4. AsN → ∞, the number oft ∈ [N, 2N ] with f(t) divisible byp2 for somep > logN
is o(N).

For irreducible polynomials of degree at most3, the above is known, complete with
a better error thano(N) ([Ho], chapter4).

We use the Square-Free Sieve to handle the variations in the conductors. If our eval-
uation of the logarithm of the conductors is off by as little as a small constant, the
prime sums become untractable. This is why many works normalize by the average
log-conductor.

The following conjecture is used only to interpret some of our results (unless we are
calculating the 2-level density to distinguish the three orthogonal candidate groups).

Restricted Sign Conjecture (for the Familyℱ ). Consider a one-parameter family
ℱ of elliptic curves. AsN → ∞, the signs of the curvesEt are equidistributed for
t ∈ [N, 2N ].
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The Restricted Sign conjecture can fail (there are familieswith constantj(Et) where
all curves have the same sign, as well as more exotic examples). Helfgott [He] has
related the Restricted Sign conjecture to the Square-Free Sieve conjecture and standard
conjectures on sums of Moebius:

Polynomial Moebius Conjecture.Letf(t) be a non-constant polynomial such that no
fixed square dividesf(t) for all t. Then

∑2N
t=N �(f(t)) = o(N).

The Polynomial Moebius conjecture is known for linearf(t).
Helfgott shows the Square-Free Sieve and Polynomial Moebius imply the Restricted

Sign conjecture for many families; this is also discussed in[Mil1]. More precisely, let
M(t) be the product of the irreducible polynomials dividingΔ(t) and notc4(t).

Theorem: Equidistribution of Sign in a Family [He]: Let ℱ be a one-parameter
family withai(t) ∈ ℤ[t]. If j(Et) andM(t) are non-constant, then the signs ofEt, t ∈
[N, 2N ], are equidistributed asN → ∞. Further, if we restrict to goodt, t ∈ [N, 2N ]
such thatD(t) is good (usually square-free), the signs are still equidistributed in the
limit.

REFERENCES

[BMSW] B. Bektemirov, B. Mazur, W Stein and M. Watkins,Average ranks of elliptic curves: Tension
between data and conjecture, Bull. Amer. Math. Soc.44 (2007), 233–254.

[BS-D1] B. Birch and H. Swinnerton-Dyer,Notes on elliptic curves. I, J. reine angew. Math.212,
1963, 7− 25.

[BS-D2] B. Birch and H. Swinnerton-Dyer,Notes on elliptic curves. II, J. reine angew. Math.218,
1965, 79− 108.

[BCDT] C. Breuil, B. Conrad, F. Diamond and R. Taylor,On the modularity of elliptic curves over
Q: wild 3-adic exercises, J. Amer. Math. Soc.14, no.4, 2001, 843− 939.

[Bro] M. L. Brown, Heegner modules and elliptic curves, Lecture Notes In Mathematics, vol.
1849, Springer-Verlag, 2004.

[Bru] A. Brumer,The average rank of elliptic curves I, Invent. Math.109(1992) 445-472.
[BM] A. Brumer and O. McGuinness,The behavior of the Mordell-Weil group of elliptic curves,

Bull. A.M.S. 23 (1990) 375-382.
[CW] J. Coates and A. Wiles,On the conjecture of Birch and Swinnerton-Dyer, Invent. Math.39

(1977), no. 3, 223–251.
[CPRW] J. B. Conrey, A. Pokharel, M. O. Rubinstein and M. Watkins, Secondary terms in the num-

ber of vanishings of quadratic twists of elliptic curveL-functions. In Ranks of elliptic curves
and random matrix theory, pages 215–232, London Math. Soc. Lecture Note Ser.341, Cam-
bridge Univ. Press, Cambridge, 2007.

[DFK] C. David, J. Fearnley and H. Kisilevsky,On the vanishing of twistedL-functions of elliptic
curves, Experiment. Math.13 (2004), no. 2, 185–198.

[DHKMS1] E. Dueñez, D. K. Huynh, J. Keating, S. J. Miller and N. Snaith,The lowest eigenvalue in
Jacobi ensembles and Painlevé VI, preprint.

[DHKMS2] E. Dueñez, D. K. Huynh, J. Keating, S. J. Miller and N. Snaith,Models for zeros at the
central point in families of elliptic curves, in preparation.

[FM] F. W. K. Firk and S. J. Miller,Nuclei, Primes and the Random Matrix Connection, Symmetry
1 (2009), 64–105; doi:10.3390/sym1010064.

[Gao] P. Gao,N -level density of the low-lying zeros of quadratic Dirichlet L-functions, Ph. D
thesis, University of Michigan, 2005.



TOWARDS AN ‘AVERAGE’ VERSION OF THE BIRCH AND SWINNERTON-DYER CONJECTURE 19

[Go] D. Goldfeld,Conjectures on elliptic curves over quadratic fields, in Number Theory, Car-
bondale, Lecture Notes in Mathematics751, 108-118. Springer-Verlag, 1979.

[GM] F. Gouvêa and B. Mazur,The square-free sieve and the rank of elliptic curves, J. AMS 4
(1991) 1-23.

[Gr] Granville, ABC Allows Us to Count Squarefrees, International Mathematics Research No-
tices19, 1998, 991− 1009.

[GKZ] B. H. Gross, W. Kohnen and D. B. Zagier,Heegner points and derivatives of L-series. II,
Mathematische Annalen278(1987), no. 1̋U4, 497–562.

[GZ] B. H. Gross and D. B. Zagier,Heegner points and derivatives of L-series, Inventiones Math-
ematicae84 (1986), no. 2, 225–320.

[H-B] D. R. Heath-Brown,The average rank of elliptic curves IV, Duke Math. J.122 (2004), no.
3, 591–623.

[Hej] D. Hejhal,On the triple correlation of zeros of the zeta function, Internat. Math. Res. Notices
1994, no. 7, 294-302.

[He] H. A. Helfgott, On the behaviour of root numbers in families of elliptic curves, preprint,
2004.http://arxiv.org/abs/math/0408141

[Ho] C. Hooley,Applications of Sieve Methods to the Theory of Numbers, Cambridge University
Press, Cambridge,1976.

[HM] C. Hughes and S. J. Miller,Low-lying zeros ofL-functions with orthogonal symmtry, Duke
Math. J.,136(2007), no. 1, 115–172.

[HR] C. Hughes and Z. Rudnick,Linear Statistics of Low-Lying Zeros ofL-functions, Quart. J.
Math. Oxford54 (2003), 309–333.

[Huy] D. K. Huynh,Elliptic curveL-functions of finite conductor and random matrix theory, PHD
Thesis, University of Bristol, 2009.

[KS1] N. Katz and P. Sarnak,Random Matrices, Frobenius Eigenvalues and Monodromy, AMS
Colloquium Publications45, AMS, Providence,1999.

[KS2] N. Katz and P. Sarnak,Zeros of zeta functions and symmetries, Bull. AMS 36, 1999, 1− 26.
[Kn] A. Knapp,Elliptic Curves, Princeton University Press, Princeton,1992.
[Kob] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1993.
[Kol1] V. A. Kolyvagin, The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves,

Izv. Akad. Nauk SSSR Ser. Mat.52 (1988), no. 6, 1154–1180, 1327; translation in Math.
USSR-Izv.33 (1989), no. 3, 473–499

[Kol2] V. A. Kolyvagin, Finiteness ofE(Q) andShah(E,Q) for a subclass of Weil curves, Izv.
Akad. Nauk SSSR Ser. Mat.52 (1988), no. 3, 522–540, 670–671; translation in Math.
USSR-Izv.32 (1989), no. 3, 523–541.

[Kow1] E. Kowalski, Elliptic curves, rank in families and random matrices. In Ranks of Elliptic
Curves and Random Matrix Theory, London Mathematical Society Lecture Note Series (No.
341), edited by J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith, 2007.

[Kow2] E. Kowalski,On the rank of quadratic twists of elliptic curves over function fields, Interna-
tional J. Number Theory, 2006.

[Ma] B. Mazur,Rational isogenies of prime degree, Inventiones Math.44 (1978), no. 2, 129–162.
[Mes] J. Mestre,Formules explicites et minorations de conducteurs de variétés algébriques, Com-

positio Mathematica58 (1986), 209–232.
[Mi] P. Michel, Rang moyen de familles de courbes elliptiques et lois de Sato-Tate, Monat. Math.

120(1995),127− 136.
[Mil1] S. J. Miller, 1- and2-Level Densities for Families of Elliptic Curves: Evidencefor the Un-

derlying Group Symmetries, P.H.D. Thesis, Princeton University,2002.
http://www.williams.edu/go/math/sjmiller/public html/math/
thesis/SJMthesis Rev2005.pdf.

[Mil2] S. J. Miller, 1- and2-level densities for families of elliptic curves: Evidencefor the underly-
ing group symmetries, Compositio Mathematica140(2004), no. 4, 952–992.

[Mil3] S. J. Miller, Investigations of zeros near the central point of elliptic curveL-functions(with
an appendix by E. Dueñez), Experimental Mathematics15 (2006), no. 3, 257–279.



20 JOHN GOES AND STEVEN J. MILLER

[Mon] H. Montgomery,The pair correlation of zeros of the zeta function, Analytic Number Theory,
Proc. Sympos. Pure Math.24, Amer. Math. Soc., Providence,1973, 181− 193.

[RSi] M. Rosen and J. Silverman,On the rank of an elliptic surface, Invent. Math.133 (1998),
43− 67.

[Ru] K. Rubin,The one-variable main conjecture for elliptic curves with complex multiplication,
L-functions and arithmetic(Durham, 1989), in London Math. Soc. Lecture Note Series153,
Cambridge Univ. Press, Cambridge, 1991, pages 353–371.

[RuSi] K. Rubin and A. Silverberg,Ranks of elliptic curves, Bull. Amer. Math. Soc.39 (2002)
455-474.

[RS] Z. Rudnick and P. Sarnak,Zeros of principalL-functions and random matrix theory, Duke
Journal of Math.81, 1996, 269− 322.

[Sil1] J. Silverman,The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Vol. 106,
Springer-Verlag, New York, 1986.

[Sil2] J. Silverman,Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math-
ematics151, Springer-Verlag, Berlin - New York, 1994.

[Sil3] J. Silverman,The average rank of an algebraic family of elliptic curves, J. reine angew.
Math.504(1998), 227–236.

[ST] J. Silverman and J. Tate,Rational Points on Elliptic Curves, Springer-Verlag, New York,
1992.

[Ta] J. Tate,Algebraic cycles and the pole of zeta functions, Arithmetical Algebraic Geometry,
Harper and Row, New York,1965, 93− 110.

[TW] R. Taylor and A. Wiles,Ring-theoretic properties of certain Hecke algebras, Ann. Math.
141, 1995, 553− 572.

[Wi] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math141, 1995, 443 −
551.

[Wis] J. Wishart,The generalized product moment distribution in samples from a normal multi-
variate population, Biometrika20 A (1928), 32–52.

[Yo1] M. P. Young,Basics of elliptic curves, talk at the American Institute of Mathematics, June
1, 2006.http://www.aimath.org/conferences/ntrmt/talks/
BasicsofEllipticCurves.pdf.

[Yo2] M. P. Young,Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc.19 (2006),
no. 1, 205–250.

[ZK] D. Zagier and G. Kramarz,Numerical investigations related to theL-series of certain elliptic
curves, J. Indian Math. Soc.52 (1987) 51-69.

E-mail address: johnwgoes@gmail.com

DEPARTMENT OFMATHEMATICS, STATISTICS AND COMPUTERSCIENCE, UNIVERSITY OF ILLI -
NOIS AT CHICAGO, CHICAGO, IL 60680

E-mail address: Steven.J.Miller@williams.edu

DEPARTMENT OFMATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN , MA
01267


