WHEN SETS CAN AND CANNOT HAVE SUM-DOMINANT SUBSETS
HUNG VIET CHU, NATHAN MCNEW, STEVEN J. MILLER, VICTOR XU, AND SEAN ZHANG

ABSTRACT. A finite set of integersi is a sum-dominant (also called an More Sums
Than Differences or MSTD) set [A + A| > |A — A|. While almost all subsets of
{0, ...,n} are not sum-dominant, interestingly a small positive petage are. We ex-
plore sufficient conditions on infinite sets of positive mges such that there are either
no sum-dominant subsets, at most finitely many sum-domisaimsets, or infinitely
many sum-dominant subsets. In particular, we prove no $whbs¢kee Fibonacci num-
bers is a sum-dominant set, establish conditions such ¢atiens to a recurrence
relation have only finitely many sum-dominant subsets, drmvsthere are infinitely
many sum-dominant subsets of the primes.
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1. INTRODUCTION
For any finite set of natural numbe#AsC N, we define the sumset
A+ A = {a+d :a,d € A} (1.2)

and the difference set
A—A ={a—d :a,d € A}; (1.2)
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A is sum-dominant (also called a More Sums Than Differenced®fD set) if|A +

Al > |A — A| (if the two cardinalities are equal it is called balanced] atherwise
difference-dominant). As addition is commutative and gaditon is not, it was nat-
ural to conjecture that sum-dominant sets are rare. Conwag the first example
of such a set{0,2,3,4,7,11,12,14}, and this is the smallest such set. Later au-
thors constructed infinite families, culminating in the waf Martin and O’Bryant,
which proved a small positive percentage of subset8of..,n} are sum-dominant
asn — oo, and Zhao, who estimated this percentage at arouhd 10~*. See
[EB, [He,[HM,[Ma, MO, Nall| Na2, Na3, Rull, Ru2, Zh3] for genenatroiews, ex-
amples, constructions, bounds on percentages and somealigat®ons, [MOS| MPR,
MS,[Zh1] for some explicit constructions of infinite fam#ief sum-dominant sets, and
[DKMMW, DKMMWW,IMV,Zh2] for some extensions to other settis.

Much of the above work looks at finite subsets of the naturallmers, or equivalently
subsets of 0, 1,...,n} asn — oo. We investigate the effect of restricting the initial
set on the existence of sum-dominant subsets. In partjagilen an infinite setd =
{ax}>°, when doesi have no sum-dominant subsets, only finitely many sum-domina
subsets, or infinitely many sum-dominant subsefé® assume throughout the rest of
the paper that every such sequentes strictly increasing and non-negative.

Ouir first result shows that if the sequence grows sulfficiaagbydly and there are no
‘small’ subsets which are sum-dominant, then there are nedgominant subsets.

Theorem 1.1.Let A = {a;};2, be a strictly increasing sequence of non-negative num-
bers. If there exists a positive integesuch that

Q) ar > ap_1 +ay_,.forall k > r+1,and

(2) A does not contain any sum-dominant Sewith |S| < 2r — 1,

then A contains no sum-dominant set.

We prove this in B2. As the smallest sum-dominant set hasr@esits (see [He]),
the second condition is trivially true if < 4. In particular, we immediately obtain the
following interesting result.

Corollary 1.2. No subset of the Fibonaccinumbéfs 1, 2,3, 5,8, ... } isa sum-dominant
set.

The proof is trivial, and follows by taking = 3 and noting
F, = Fro_1+ Fi,_o > Fi_4 +Fk_3 (13)

fork > 4.
After defining a class of subsets we present a partial reaultteen there are at most
finitely many sum-dominant subsets.

Definition 1.3 (Special Sum-Dominant Setfjor a sum-dominant set, we call.S a
special sum-dominant set|i§ + S| — |S — S| > |5].

We prove sum-dominant sets exist [0 83.1. Not#& if a special sum-dominant set
then if S’ = S U {«} for any sufficiently large: thenS’ is also a sum-dominant set. We
have the following result about a sequence having at mogtlfnmany sum-dominant
sets (seel83 for the proof).
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Theorem 1.4.Let A = {a;}72, be a strictly increasing sequence of non-negative num-
bers. If there exists a positive integesuch that the sequende,. } satisfies

Q) ap > ap_1 + a,_z forall £ > s, and
(2) {ay,...,a4s16} has no special sum-dominant subsets,

then A contains at most finitely many sum-dominant sets.

The above results concern situations where there are nof suan-dominant sets;
we end with an example of the opposite behavior.

Theorem 1.5. There are infinitely many sum-dominant subsets of the primes

We will see later that this result follows immediately frohetGreen-Tao Theorem
[GT], which asserts that the primes contain arbitrarilyg@nogressions. We also give a
conditional proof in B4. There we assume the Hardy-Littledoonjecture (see Conjec-
ture[4.1) holds. The advantage of such an approach is thaawedn explicit formula
for the number of the needed prime tuples uprtavhich gives a sense of how many
such solutions exist in a given window.

2. SUBSETS WITH NO SUMDOMINANT SETS

We prove Theorein 111, establishing a sufficient conditi@mngure the non-existence
of sum-dominant subsets.

Proof of Theorerh Il1Let S = {s1,s2,...,5x} = {ag1), ag(2): - - -, agy } be @ finite
subset of4, whereg : Z* — Z7 is an increasing function. We show th&tis not a
sum-dominant set by strong induction gfi).

We proceed by induction. We show thatdfhas no sum-dominant subsets of size
then it has no sum-dominant subsets of dize 1; as any sum-dominant set has only
finitely many elements, this completes the proof.

For the Basis Step, we know (see [He]) that all sum-dominat# kave at least 8
elements, so any subsgtof A with exactly & elements is not a sum-dominant set if
k < 7;in particular,S is not a sum-dominant setgf k) < 7. Thus we may assume for

g(k) > 8thatallS” of the form{s, ..., sp_1} with s,_; < ayq are not sum-dominant
sets. The proof is completed by showing
S = S'U{ag(k)} = {81,...,8k_1,ag(k)} (2.1)

is not sum-dominant sets for any,.

We now turn to the Inductive Step. We know tht#tis not a sum-dominant set by
the inductive assumption. Also, #f < 2r — 1 then|S| < 2r — 1 andS is not a sum-
dominant set by the second assumption of the theorein>I2r, consider the number
of new sums and differences obtained by addipg . As we have at most new sums,
the proof is completed by showing there are at léasew differences.

Sincek > 2r, we havek — || > r. Lett = [EH|. Thent < k — r, which
impliess; < s,_,. The largest difference in absolute value between elemerfisis
sk—1 — s1; we now show that we have added at Iefast 1 distinct differences greater
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thans,_; — s; in absolute value, which will complete the proof. We have

Ag(k) = St = Gg(k) = Sk—r = Og(k) — Qg(k—r)
= Ag(k) = Qgk)—r
> Gg(k)—1 — Q1 (by the first assumption ofu,, })
> Sp—1— Q1 = Sp—1 — S1. (2.2)

Sinceag ) — s; > sp—1 — s1, we know that

Qg(k)y = Sty -y Qg(k) — 52, Ag(k) — 51
aret differences greater than the greatest differenc& irAs we could subtract in the
opposite orders contains at least

k+1
2% — 2 {%J > 2.3)
new differences. ThuS§ + S has at most more sums tha’” + S’ but S — S has at
leastk more differences compared 18 — S’. SinceS’ is not a sum-dominant set, we
see thatS is not a sum-dominant set. O

Remark 2.1. We thank the referee for the following alternative proofvési any infinite
increasing sequencl, ;) } thatis a subset of a set satisfyinga;, > ax, + a;—, for all
k>, letSy = {agq), ..., a9} and A, = |Si — Si| — [ Sk + Sk|. Similar arguments
as above show thdtA,} is increasing fork > 2r.

We immediately obtain the following.

Corollary 2.2. Let A = {a}2, be a strictly increasing sequence of non-negative
numbers. I, > a,_1 + a,_4 forall k£ > 5, thenA contains no sum-dominant subsets.

Proof. From [He] we know that all sum-dominant sets have at lease®ehts. When
r = 4 the second condition of Theordm11.1 holds, completing tbhefpr O

For another example, we consider shifted geometric pregnes.

Corollary 2.3. Let A = {a;}32, with a, = ¢p* + d for all k > 1, where0 # ¢ € N,
d € N, andl < p € N. ThenA contains no sum-dominant subsets.

Proof. Without loss of generality we may shift and assuine 0 andc = 1; the result
now follows immediately from simple algebra. O

Remark 2.4. Note that ifp is an integer greater than the positive root:df — 22 — 1
(the characteristic polynomial associateddp= a;_; + a;_4 from Theorermi 114, which
is approximately 1.3803) then the above corollary holds{fer* + d}.

3. SUBSETS WITHFINITELY MANY SUM-DOMINANT SETS

We start with some properties of special sum-dominant aatsthen prove Theorem
[I.4. The arguments are similar to those used in proving Bmadr.1.In this section, in
particular in all the statements of the lemmas, we assumedhditions of Theorein 1.4
hold. ThusA = {a}?2, and there is an integersuch that the sequende, } satisfies

Q) ap > ap_1 + a3 forall k > s, and
(2) {a1,...,a4s16} has no special sum-dominant subsets.
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3.1. Special Sum-Dominant Sets Recall a sum-dominant sétis special if|S + S| —
|S =S| > |S]. Foranyx > " _. a, addingz createqS| 4+ 1 new sums and|S| new
differences. LetS* = S U {z}. Then

|57+ 5% =157 =57 = S|+ (IS[+1) =2[5] = 1, 3.1)

and S* is also a sum-dominant set. Hence, from one special sumrgomsetS C
{a,}>2, =: A, we can generate infinitely many sum-dominant sets by adthigdarge
integer inA. We immediately obtain the following converse.

Lemma 3.1. If a setS is not a special sum-dominant set, tHén- S| — |S — S| < |S],

and by adding any large > > _. a, SU{x} has at least as many differences as sums.
Thus only finitely many sum-dominant sets can be generateg®nding one integer
from A to a non-special sum-dominant set

Note that special sum-dominant sets exist. We use the basm&on method (see
[He]), which states that given a sét for all m sufficiently large if

t
At = {Zaimi_l Ta; € A} (32)
=1

then

|A; £ A = |Ax Al (3.3)
the reason is that forn large the various elements are clustered with differentspai
clusters yielding well-separated sums. To construct thséreld special sum-dominant
set, consider the smallest sum-dominant$et {0,2,3,4, 7, 11, 12,14}. Using the
method of base expansion, takimg= 102°'” we obtainS; containing|S;| = 8% = 512
elements such thas; + S| = |S + S|? = 263 = 17576 and|S; — S5| = |S — S|® =
253 = 15625. Then|53 + 53| — |Sg — 53| > |53|

3.2. Finitely Many Sum-Dominant Sets on a Sequencelf a sequencel = {a,, }>2
contains a special sum-dominant setthen we can get infinitely many sum-dominant
subsets on the sequence just by adding sufficiently largeesits ofA to S. Therefore
for a sequencel to have at most finitely many sum-dominant subsets, it is s&0g
that it has no special sum-dominant sets. Using the resut the previous subsection,
we can prove Theorem1.4.

We establish some notation before turning to the proof imthe subsection. We can
write A as the union ofd; = {ay,...,as 1} and Ay = {as, as.1,...}. By Corollary
2.2, we know thatd, contains no sum-dominant sets. Thus any sum-dominant st mu
contain some elements frory .

We prove a lemma about;.

Lemma 3.2. Let S = {s1,...,s,_1} be a subset ofi containing at least 3 elements
Apy s Qry, Gry 1N Ao, With r3 > r9 > r;. Consider the indey(k) > rs3, and letS =
S"U{aym }- Then eithelS is not a sum-dominant set, 6rsatisfiegS — S| — |5 + 5| >
|S"—S"|—|S"+5’|. Thus the excess of sums to differences ffdaless tharthe excess
fromS’.

Proof. We follow a similar argument as in Theorém]|1.1.
If £ <7, thenS is not a sum-dominant set.
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If k> 8, thenk — [E£2]| > 3. Lett = [£22]. Thent < k — 3, ands, < s;_3, and

Ag(k) = St 2 Qg(k) — Sk—3 = Qg(k) — Ug(k—3)
2 Gg(k) — Ag(k)-3
> Qg(k)—1 = Qg(k)—1 — Q1 (by assumption on)
> Sg—1— Q1 = Sg—1 — S1. (3.4)

In the setS’, the greatest difference is_; — s;. Sinceayy — s, > s,_1 — 51, we know
thataggy — si, ..., agm) — S2,a40) — s1 are all differences greater than the greatest
difference inS’.

By a similar arguments, — a,(x), - - ., 52 — ag(), 51 — ag() are all differences smaller
than the smallest difference #1.

So S contains at leastt = 2[¥3| > 2. £:L — k 4 1 new differences compared to
S’, andS satisfies

IS =S| —|S+ 8| > |S=95—|5+ 95, (3.5)
completing the proof. O

3.3. Proof of Theorem[1.4. Recall that we writed = A; U Ay with A; = {a4, ...,
as_1}, As = {as, asy1, ... }, and by Corollary 2]24, contains no sum-dominant sets
(thus any sum-dominant set must contain some elements frgmWe first prove a
series of useful results which imply the main theorem.

Ouir first result classifies the possible sum-dominant selidet. Since any such set
must have at least one elementAyfin it but not necessarily any elements4f, we use
the subscript: below to indicate how many elements 4f are in our sum-dominant
set.

Lemma 3.3(Classification of Sum-Dominant Subsets4Qf Notation as above, lek’,
be a sum-dominant subset4f= A; U A, with n elements iMd,. Thus we may write

K, = Su{a,,...,a.}

for some
S C A = {a,...,asf, s<ri<rg <<y
Set
d = max(|Ks + K| — [K3 - K|, 1),

Thenn < d + 3. In other words, a sum-dominant subsetdb€an have at most + 3
elements ofl,.

Proof. Let S,, be any subset afl with m elements ofd,. Lemma 3.2 tells us that for
any S,, with m > 3, when we add any new element, , to getS,,,,, eitherS,, ., is
not a sum-dominant set, or

|Sm+1 - Sm+1| - |Sm+1 + Sm+1| 2 |Sm - Sm| - |Sm + Sm| + 1.

For ann > d + 3, assume there exists a sum-dominant set; if so, denote/if by
For3 < k < n, defineS; as the set obtained by deleting the— k) largest elements
from K,, (equivalently, keeping only thiesmallest elements froiy,, which are inA,).
We prove that eacly), is sum-dominant, and then show that this forégsnot to be
sum-dominant; this contradiction proves the theoreras= S,,.
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If S) is not a sum-dominant set for ay> 3, by Lemmd_3.R eithef,.; is not a
sum-dominant set, or

|Sk+1 — Skt1| = [Sk1 + Sks1] = Sk — Skl — |9k + Skl +1 > 0,

in which caseS;.; is also not a sum-dominant set (becasds not sum-dominant,
the setS,.; generates at least as many differences as sums). As we araiagss,,
(which is justS,,) is a sum-dominant set, we firff),_; is sum-dominant. Repeating the
argument, we find tha%,,_, down toS; must also all be sum-dominant sets, and we
have

S = Sul = [Su + Sul = S5 — S — 1S5 + Sa| + (n — 3). (3.6)

Since S; is one of theKs's (i.e., it is a sum-dominant subset dfwith exactly three
elements of4,), by the definition ofd the right hand side above is at least- 3 — d.

As we are assuming > d + 3 we see it is positive, and hengg is not sum-dominant.
As S, = K, we see thaf{, is not a sum-dominant set, contradicting our assumption
that there is a sum-dominant g€}, with n > d + 3, proving the theorem. O

Lemma 3.4. For n > 0 let k,, denote the number of subsdts C A which are sum-
dominant and contain exactty elements fromi,. We write

K, = Su{a,,...,a,,} withS C A;. (3.7)

Then

(1) k, is finite for alln > 0, and
(2) everyK, is not a special sum-dominant set.

Proof. We prove each part by induction. It is easier to do both claimsailtaneously
as we induct om. We break the analysis inte € {0, 1,2,3} andn > 4. The proof

for n = 0 is immediate, whilex € {1, 2,3} follow by obtaining bounds on the indices
permissible in &,,, and them > 4 follows by induction. We thus must check (1) and
(2) forn < 3. While the arguments fat < 3 are all similar, it is convenient to handle
each case differently so we can control the indices and u$iera@sults, in particular
removing the largest element iy yields a set which is not a special sum-dominant set.

Casen = 0: As A, is finite, it has finitely many subsets and thigs which is the
number of sum-dominant subsetsA4f, is finite (it is at mosg/4l). Further anyK, is
a subset of

Ay = {ay,...,a51},
which is a subset of

A" = {ay, ..., a4516} (3.8)
As we have assumed’ has no special sum-dominant set, iig can be a special sum-
dominant set.

Casen = 1. We start by obtaining upper bounds on the index of the smallest (and
only) element in our set coming from,. Consider the indexs. We claim that

ays > Z a. (3.9)

acA;
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This is becaused, | < s anday > a,_1 + a,_3 for all £ > s, and hence

d a<s-a,

a€Ay
S S
< 5 (as + as+2) < 5 *Usy3
S S
< Z (as+3 + a5+5) < Z . a,s+6 e
S
< STiog, 5] Yst3Mlogs (5)]
< Asy3s = Q4s

(by doing the abovélog, s] times we ensure that/2/°s251 < 1, and sinces > 1 we
have3s > 3[log,(s)]). Therefore for all-; sufficiently large,

4, > a > Y a (3.10)

acAy

Clearly there are only finitely many sum-dominant subgeétswith r; < 4s; the
analysis is completed by showing there are no sum-domietswsthr; > 4s. Imagine
there was a sum-dominaft;, with a,, > a4. ThenKj is the union of a set of elements
S ={s1,...,sm} In Ay anda,, in Ay. As) s < a,, by Lemmd3.Jl we find(; is
not a sum-dominant set.

All that remains is to show none of thi§; are special sum-dominant sets. This is
immediate, as each sum-domindti is a subset ofay, . . ., ays}, which is a subset of
A’ (defined in[(3.B)). As we have assuméthas no special sum-dominant set, kip
can be a special sum-dominant set.

Casen = 2: Consider the indexs + 3. If K5 is a sum-dominant set then it has two
elementsq,, < a,,, that are ind,. We show that ifr, > 4s + 3 then there can be no
sum-dominant sets, and thus there are only finitely nigsy

For allry > 4s + 3,

Qpy — Ay > Qpy3 > Qg > Z a. (3.11)
acAy
Assume there is a sum-dominalit with r, > 4s + 3. It contains some elements
S ={s1,...,sn}in Ay anda,,, a,, in A;. We have
ry — Qpy = Qpy — Qpy—q > Za.
a€esS

Thereforea,, > (3,.5a) + a,,, andS U {a,, } is not a special sum-dominant set by
then = 1 casB. Hence, by Lemm&3.1 we finel, = (S U {a,,}) U {a,,} is not a
sum-dominant set.

Finally, asK is a subset ofa, . .., ass+1}, which is a subset oft’, by assumption
K5 is not a special sum-dominant set.

Y 8’ = SU{a,, } is sum-dominant then it is not special, while if it is not saimminant then clearly
it is not a special sum-dominant set.
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Casen = 3: Let K3 be a sum-dominant set with three elements ftdmWe show that
if r3 > 4s + 6 then there are no sudks; as there are only finitely many sum-dominant
sets withrs < 4s + 6, this completes the counting proof in this case.

Consider the indexs + 6. For allrs > 4s + 6,

Upy—3 — Qpg—qg > Qpyg > Qg > Z a. (3.12)

a€Ay

Consider any\; with r3 > 4s + 6. We write K5 asS U {a,,, a,,, a,,} andsS C A;.
If |.S| < 5, we know thaf 3| < 8, andK5 is not a sum-dominant set as such a set has
at least 8 elements. We can therefore assume.$hat 5. We have two cases.

Subcase 1r, < r3 — 3: Thus

Ary — Upy — Apy 2 Qpg — Apz—3 — Arz—4 2 Arz—1 — Upz—4 Z Qpy—2 > Qry—6 > § Q.
aeS

As SuU{a,,,a,} is not a special sum-dominant set by ihe- 2 cas, addinga,, with

Apy > (Z s) + ap, + ay,

ses

creates a non-sum-dominant set by Leniméa 3.1.

Subcase 2r, > r3 — 3: Using [3.12) we find

Opy — Qpy 2 Qpy — Qpy_1 > E a

and
Apo = Qpy > Apg—2 — Qpy3 > Za.
aesS

Therefore the differences betweep, a,,, a,, are large relative to the sum of the el-
ements inS, and our new sums and new differences are well-separatedtfre old
sums and differences. Explicitls + K3 consists of5 + S, a,., + 5, a,, + S, a., + 5,
plus at most 6 more elements (from the sums ofdfig), while K5 — K3 consists of
S-S5, +(a, — 95), £(ar, — 5), £(a,, — 5), plus possibly some differences from the
differences of the,’s.

As S is not a special sum-dominant set, we kn@gw S| — |S — S| < |S] (if S'is
not sum-dominant the claim holds trivially, while if it issudominant it holds because
S'is not special). Thus foK; to be sum-dominant, we must have

0 < ‘Kg"‘Kg‘ —‘Kg—Kg‘
< (|S+S[+3|5]+6)—(S—S|+6|5])
< 6-2|9);
as|S| > 5 this is impossible, and thus; cannot be sum-dominant.

2As before, if it is sum-dominant it is not special, while ifi$t not sum-dominant it cannot be sum-
dominant special; thus we have the needed inequalitiesecoimg the sizes of the sets.
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Finally, as againk(; is a subset ofA’ = {ay, ..., a4s:6}, NO K3 is a special sum-
dominant set.

Casen > 4 (inductive step)We proceed by induction. We may assume thas finite
for somen > 3, and must show thakt, ,; is finite. By the earlier cases we know there
is an integer,, such that ifK,, is a sum-dominant subset dfwith exactlyn elements
of A,, then the largest index, of ana; € K, is less thart,,.

We claim that if K, ; is a sum-dominant subset df then each index is less than
t.+1, Wwheret, ., is the smallest index such thatif,; > ¢, then

Qr, ., > Zai. (3.13)

i<rp

We write
Ko = Su{ar,...,an, a0}, S CAL {an,...,a,,} CAs.

We show that ifr,; > ¢, thenk,,;, is not sum-dominant. Lef,, = K,.1 \ {a,,,, }.
We have two cases.

o If r, < t,, then by the inductive hypothesi, is not a special sum-dominant
set. So adding,,,, > > . 7105, gives a non-sum-dominant set by Lemma
B.1.

e If r, > t,, then by the inductive hypothesi, is not a sum-dominant set. So
|Sy, — Su| — |Sn + Si| > 0. Sincen > 3, we can apply Lemma 3.2, and either
Ky = S, U{a,,., } is nota sum-dominant set, or

‘Kn+1 - Kn—i—l‘ - ‘Kn+1 + Kn—i-l‘ > ‘Kn - Kn‘ - |Kn + Kn| > 07

in which cases,, ,; is still not a sum-dominant set.

We conclude that for all sum-dominant séts,;, we must have, .| < ¢,.1. So
k.1 is finite.

Consider any sum-dominant skt,., = S, U {a,,,, }. Applying lemmé&_3.P again,
we have|K, 1 — K| — | K1 + Kpga] > |Sn — S| — |Sn + Sa|. We know, from
inductive hypothesis, the, is not a special sum-dominant set. Therefore all possible
K, 1 are not special sum-dominant sets.

By induction, k,, is finite for alln > 0, and all K,, are not special sum-dominant
sets. d

Proof of Theorerh 114By Lemma3.B every sum-dominant subset4ofs of the form
Ky, K1, Ks, ..., K43 where theK,, are as in[(3]7). By Lemmia_3.4 there are only
finitely many sets of the fornk’,, for n < d + 3, and thus there are only finitely many
sum-dominant subsets df. O

4. SUM-DOMINANT SUBSETS OF THE PRIME NUMBERS

We now investigate sum-dominant subsets of the primes.aATtieorenh 1]5 follows
immediately from the Green-Tao theorem, we first conditilgrizrove there are infin-
itely many sum-dominant subsets of the primes as this argtigiees a better sense
of what the ‘truth’ should be (i.e., how far we must go before fmd sum-dominant
subsets).
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4.1. Admissible Prime Tuples and Prime Constellations.We first consider the idea
of primem-tuples. A primem-tuple (by, bo, . . ., b,,) represents a pattern of differences
between prime numbers. An integematches this pattern b, +n, by +n, ..., b, +n)
are all primes.

A prime m-tuple (b1, bs, ..., b,,) is called admissible if for all integers > 2,
{b1,bs,...,b,} does not cover all values moduko If a prime m-tuple is not ad-
missible, wheneven > k then at least one df, + n,by +n,...,b,, + n is divisible
by k and greater thah, so this cannot be am-tuple of prime numbers (in this case the
only n which can lead to am-tuple of primes arer < k, and there are only finitely
many of these).

It is conjectured in[[HL] that all admissible-tuples are matched by infinitely many
integers.

Conjecture 4.1 (Hardy-Littlewood [HL]). Let b1, bo,...,b, be m distinct integers,
v,(b) = v(p; by, ba, ..., by) the number of distinct residues @f b, . . . b,,, to the mod-

ulusp, and P(x; by, bs, ..., b,,) the number of integers < n < z such that every
elementin{n +b;,n+by,...,n+ by} is prime. Assuméy, by, ..., b,,) is admissible
(thusw,(b) # p for all p). Then
T du
P ~ &(by, by, ..., by — 4.1
(ZE’) ( 1, Y2, ) )/2v (logu)m ( )
whenxz — oo, where
m—1
_ p p— up(b)
p>2
As (b1, bs, - -+, by,) is an admissiblen-tuple,v(p; by, bo, . . ., by,) IS Never equal te
and equalsn for p > max{|b; — b;|}. The productS(b;, b, ..., b,,) thus converges

to a positive number as each factor is non-zero and-isO,,,(1/p*). Therefore this
conjecture implies that every admissibletuple is matched by infinitely many integers.

4.2. Infinitude of sum-dominant subsets of the primes.We now show the Hardy-
Littlewood conjecture implies there are infinitely many sets of the primes which are
sum-dominant sets.

Theorem 4.2. If the Hardy-Littlewood conjecture holds for all admissbh-tuples
then the primes have infinitely many sum-dominant subsets.

Proof. Consider the smallest sum-dominantSet {0,2,3,4,7,11,12, 14}. We know
that{p,p+2s,p+3s,p+4s,p+7s,p+ 11s,p+ 125, p+ 14s} is a sum-dominant set
for all positive integerg, s. Sets = 30 and letT" = (0, 60, 90, 120, 210, 330, 360, 420).
We deduce that if there are infinitely manysuch that, + 7" = (n,n + 60, n + 90, n +
120, n + 210, n 4 330, n + 360, n + 420) is an 8-tuple of prime numbers, then there are
infinitely many sum-dominant sets of prime numbers.

We check thaf” is an admissible prime 8-tuple. When > 8, the eight numbers in
T clearly don't cover all values modula. Whenm < 8, one sees by straightforward
computation thaf” does not cover all values module.
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By Conjecturd 41, there are infinitely many integgrsuch that every element of
{p,p+60,p+90,p+ 120, p + 210, p + 330, p + 360, p + 420} is prime. These are all
sum-dominant sets, so there are infinitely many sum-doms®ta on primes. U

Of course, all we need is that the Hardy-Littlewood conjeetwlds for one admis-
sible m-tuple which has a sum-dominant subset. We may jake 19, which gives
an explicit sum-dominant subset of the primés9, 79, 109, 139, 229, 349, 379, 439} (a
natural question is which sum-dominant subset of the prinassthe smallest diame-
ter). If one wishes, one can use the conjecture to get sonmes loeunds on the number
of sum-dominant subsets of the primes at masihe proof of Theorerh 115 follows
similarly.

Proof of Theorerh 115By the Green-Tao theorem, the primes contain arbitrarihglo
arithmetic progressions. Thus for eadh > 14 there are infinitely many pair®, d)
such that

{pp+d,p+2d,....p+ Nd} 4.2)
are all prime. We can then take subsets as in the proof of Eh&@dr2. O

5. FUTURE WORK

We list some natural topics for further research.

e Can the conditions in Theordm 1L.1[or]1.4 be weakened?

e What is the smallest special sum-dominant set by diametdrbg cardinality?

e What is the smallest, in terms of its largest element, setioigs that is sum-
dominant?
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