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ABSTRACT. A finite set of integersA is a sum-dominant (also called a More Sums
Than Differences or MSTD) set if|A + A| > |A − A|. While almost all subsets of
{0, . . . , n} are not sum-dominant, interestingly a small positive percentage are. We ex-
plore sufficient conditions on infinite sets of positive integers such that there are either
no sum-dominant subsets, at most finitely many sum-dominantsubsets, or infinitely
many sum-dominant subsets. In particular, we prove no subset of the Fibonacci num-
bers is a sum-dominant set, establish conditions such that solutions to a recurrence
relation have only finitely many sum-dominant subsets, and show there are infinitely
many sum-dominant subsets of the primes.
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1. INTRODUCTION

For any finite set of natural numbersA ⊂ N, we define the sumset

A+ A := {a+ a′ : a, a′ ∈ A} (1.1)

and the difference set
A− A := {a− a′ : a, a′ ∈ A}; (1.2)
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A is sum-dominant (also called a More Sums Than Differences orMSTD set) if |A +
A| > |A − A| (if the two cardinalities are equal it is called balanced, and otherwise
difference-dominant). As addition is commutative and subtraction is not, it was natural
to conjecture that sum-dominant sets are rare. Conway gave the first example of such a
set,{0, 2, 3, 4, 7, 11, 12, 14}, and this is the smallest such set. Later authors constructed
infinite families, culminating in the work of Martin and O’Bryant, which proved a small
positive proportion of subsets of{0, . . . , n} are sum-dominant asn → ∞, and Zhao,
who estimated this percentage at around4.5 ·10−4. See [3, 6, 7, 9, 10, 15, 16, 17, 18, 19,
23] for general overviews, examples, constructions, bounds on percentages and some
generalizations, [11, 13, 12, 21] for some explicit constructions of infinite families of
sum-dominant sets, and [1, 2, 14, 22] for some extensions to other settings.

Much of the above work looks at finite subsets of the natural numbers, or equivalently
subsets of{0, 1, . . . , n} asn → ∞. We investigate the effect of restricting the initial
set on the existence of sum-dominant subsets. In particular, given an infinite setA =
{ak}

∞
=1, when doesA have no sum-dominant subsets, only finitely many sum-dominant

subsets, or infinitely many sum-dominant subsets?We assume throughout the rest of
the paper that every such sequenceA is strictly increasing and non-negative.

Our first result shows that if the sequence grows sufficientlyrapidly and there are no
‘small’ subsets which are sum-dominant, then there are no sum-dominant subsets.

Theorem 1.1.LetA = {ak}
∞
k=1 be a strictly increasing sequence of non-negative num-

bers. If there exists a positive integerr such that
(1) ak > ak−1 + ak−r for all k ≥ r + 1, and
(2) A does not contain any sum-dominant setS with |S| ≤ 2r − 1,

thenA contains no sum-dominant set.

We prove this in §2. As the smallest sum-dominant set has 8 elements (see [6]), the
second condition is trivially true ifr ≤ 4. In particular, we immediately obtain the
following interesting result.

Corollary 1.2. No subset of the Fibonacci numbers{0, 1, 2, 3, 5, 8, . . .} is a sum-dominant
set.

The proof is trivial, and follows by takingr = 3 and noting

Fk = Fk−1 + Fk−2 > Fk−1 + Fk−3 (1.3)

for k ≥ 4.
After defining a class of subsets we present a partial result on when there are at most

finitely many sum-dominant subsets.

Definition 1.3 (Special Sum-Dominant Set). For a sum-dominant setS, we callS a
special sum-dominant set if|S + S| − |S − S| ≥ |S|.

We prove sum-dominant sets exist in §3.1. Note ifS is a special sum-dominant set
then ifS ′ = S ∪{x} for any sufficiently largex thenS ′ is also a sum-dominant set. We
have the following result about a sequence having at most finitely many sum-dominant
sets (see §3 for the proof).

Theorem 1.4.LetA = {ak}
∞
k=1 be a strictly increasing sequence of non-negative num-

bers. If there exists a positive integers such that the sequence{ak} satisfies
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(1) ak > ak−1 + ak−3 for all k ≥ s, and
(2) {a1, . . . , a4s+6} has no special sum-dominant subsets,

thenA contains at most finitely many sum-dominant sets.

The above results concern situations where there are not many sum-dominant sets;
we end with an example of the opposite behavior.

Theorem 1.5.There are infinitely many sum-dominant subsets of the primes.

We will see later that this result follows immediately from the Green-Tao Theorem
[4], which asserts that the primes contain arbitrarily longprogressions. We also give a
conditional proof in §4. There we assume the Hardy-Littlewood conjecture (see Conjec-
ture 4.1) holds. The advantage of such an approach is that we have an explicit formula
for the number of the needed prime tuples up tox, which gives a sense of how many
such solutions exist in a given window.

2. SUBSETS WITH NO SUM-DOMINANT SETS

We prove Theorem 1.1, establishing a sufficient condition toensure the non-existence
of sum-dominant subsets.

Proof of Theorem 1.1.Let S = {s1, s2, . . . , sk} = {ag(1), ag(2), . . . , ag(k)} be a finite
subset ofA, whereg : Z+ → Z

+ is an increasing function. We show thatS is not a
sum-dominant set by strong induction ong(k).

We proceed by induction. We show that ifA has no sum-dominant subsets of sizek,
then it has no sum-dominant subsets of sizek + 1; as any sum-dominant set has only
finitely many elements, this completes the proof.

For the Basis Step, we know (see [6]) that all sum-dominant sets have at least 8
elements, so any subsetS of A with exactlyk elements is not a sum-dominant set if
k ≤ 7; in particular,S is not a sum-dominant set ifg(k) ≤ 7. Thus we may assume for
g(k) ≥ 8 that allS ′ of the form{s1, . . . , sk−1} with sk−1 < ag(k) are not sum-dominant
sets. The proof is completed by showing

S = S ′ ∪ {ag(k)} = {s1, . . . , sk−1, ag(k)} (2.1)

is not sum-dominant sets for anyag(k).
We now turn to the Inductive Step. We know thatS ′ is not a sum-dominant set by

the inductive assumption. Also, ifk ≤ 2r − 1 then|S| ≤ 2r − 1 andS is not a sum-
dominant set by the second assumption of the theorem. Ifk ≥ 2r, consider the number
of new sums and differences obtained by addingag(k). As we have at mostk new sums,
the proof is completed by showing there are at leastk new differences.

Sincek ≥ 2r, we havek − ⌊k+1
2
⌋ ≥ r. Let t = ⌊k+1

2
⌋. Thent ≤ k − r, which

impliesst ≤ sk−r. The largest difference in absolute value between elementsin S is
sk−1 − s1; we now show that we have added at leastk + 1 distinct differences greater
thansk−1 − s1 in absolute value, which will complete the proof. We have

ag(k) − st ≥ ag(k) − sk−r = ag(k) − ag(k−r)

≥ ag(k) − ag(k)−r

> ag(k)−1 − a1 (by the first assumption on{an})

≥ sk−1 − a1 ≥ sk−1 − s1. (2.2)
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Sinceag(k) − st ≥ sk−1 − s1, we know that

ag(k) − st, . . . , ag(k) − s2, ag(k) − s1

aret differences greater than the greatest difference inS ′. As we could subtract in the
opposite order,S contains at least

2t = 2

⌊

k + 1

2

⌋

≥ k (2.3)

new differences. ThusS + S has at mostk more sums thanS ′ + S ′ but S − S has at
leastk more differences compared toS ′ − S ′. SinceS ′ is not a sum-dominant set, we
see thatS is not a sum-dominant set. �

Remark 2.1. We thank the referee for the following alternative formulation of our
proof. Given any infinite increasing sequence{ag(i)} that is a subset of a setA satisfying
ak > ak1+ak−r for all k > r, letSk = {ag(1), . . . , ag(k)} and∆k = |Sk−Sk|−|Sk+Sk|.
Similar arguments as above show that{∆k} is increasing fork ≥ 2r.

We immediately obtain the following.

Corollary 2.2. Let A = {ak}
∞
k=1 be a strictly increasing sequence of non-negative

numbers. Ifak > ak−1 + ak−4 for all k ≥ 5, thenA contains no sum-dominant subsets.

Proof. From [6] we know that all sum-dominant sets have at least 8 elements. When
r = 4 the second condition of Theorem 1.1 holds, completing the proof. �

For another example, we consider shifted geometric progressions.

Corollary 2.3. LetA = {ak}
∞
k=1 with ak = cρk + d for all k ≥ 1, where0 6= c ∈ N,

d ∈ N, and1 < ρ ∈ N. ThenA contains no sum-dominant subsets.

Proof. Without loss of generality we may shift and assumed = 0 andc = 1; the result
now follows immediately from simple algebra. �

Remark 2.4. Note that ifρ is an integer greater than the positive root ofx4 − x3 − 1
(the characteristic polynomial associated toak = ak−1+ak−4 from Theorem 1.4, which
is approximately 1.3803) then the above corollary holds for{cρk + d}.

3. SUBSETS WITH FINITELY MANY SUM-DOMINANT SETS

We start with some properties of special sum-dominant sets,and then prove Theorem
1.4. The arguments are similar to those used in proving Theorem 1.1.In this section, in
particular in all the statements of the lemmas, we assume theconditions of Theorem 1.4
hold. ThusA = {ak}

∞
k=1 and there is an integers such that the sequence{ak} satisfies

(1) ak > ak−1 + ak−3 for all k ≥ s, and
(2) {a1, . . . , a4s+6} has no special sum-dominant subsets.
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3.1. Special Sum-Dominant Sets.Recall a sum-dominant setS is special if|S+S|−
|S − S| ≥ |S|. For anyx ≥

∑

a∈S a, addingx creates|S|+ 1 new sums and2|S| new
differences. LetS∗ = S ∪ {x}. Then

|S∗ + S∗| − |S∗ − S∗| ≥ |S|+ (|S|+ 1)− 2|S| = 1, (3.1)

andS∗ is also a sum-dominant set. Hence, from one special sum-dominant setS ⊂
{an}

∞
n=1 =: A, we can generate infinitely many sum-dominant sets by addingany large

integer inA. We immediately obtain the following converse.

Lemma 3.1. If a setS is not a special sum-dominant set, then|S+S| − |S−S| < |S|,
and by adding any largex ≥

∑

a∈S a, S∪{x} has at least as many differences as sums.
Thus only finitely many sum-dominant sets can be generated byappending one integer
fromA to a non-special sum-dominant setS.

Note that special sum-dominant sets exist. We use the base expansion method (see
[6]), which states that given a setA, for all m sufficiently large if

At =

{

t
∑

i=1

aim
i−1 : ai ∈ A

}

(3.2)

then

|At ±At| = |A±A|t; (3.3)

the reason is that form large the various elements are clustered with different pairs of
clusters yielding well-separated sums. To construct the desired special sum-dominant
set, consider the smallest sum-dominant setS = {0, 2, 3, 4, 7, 11, 12, 14}. Using the
method of base expansion, takingm = 102017 we obtainS3 containing|S3| = 83 = 512
elements such that|S3 + S3| = |S + S|3 = 263 = 17576 and|S3 − S3| = |S − S|3 =
253 = 15625. Then|S3 + S3| − |S3 − S3| > |S3|.

3.2. Finitely Many Sum-Dominant Sets on a Sequence.If a sequenceA = {an}
∞
n=1

contains a special sum-dominant setS, then we can get infinitely many sum-dominant
subsets on the sequence just by adding sufficiently large elements ofA to S. Therefore
for a sequenceA to have at most finitely many sum-dominant subsets, it is necessary
that it has no special sum-dominant sets. Using the result from the previous subsection,
we can prove Theorem 1.4.

We establish some notation before turning to the proof in thenext subsection. We can
writeA as the union ofA1 = {a1, . . . , as−1} andA2 = {as, as+1, . . . }. We assume this
is done with ans ≥ 5 so that we can use Corollary 2.2, which implies thatA2 contains
no sum-dominant sets. Thus any sum-dominant set must contain some elements from
A1.

We prove a lemma aboutA2.

Lemma 3.2. Let S ′ = {s1, . . . , sk−1} be a subset ofA containing at least 3 elements
ar1 , ar2 , ar3 in A2, with r3 > r2 > r1. Consider the indexg(k) > r3, and letS =
S ′∪{ag(k)}. Then eitherS is not a sum-dominant set, orS satisfies|S−S|−|S+S| >
|S ′−S ′|−|S ′+S ′|. Thus the excess of sums to differences fromS is less thanthe excess
fromS ′.
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Proof. We follow a similar argument as in Theorem 1.1.
If k ≤ 7, thenS is not a sum-dominant set.
If k ≥ 8, thenk − ⌊k+3

2
⌋ ≥ 3. Let t = ⌊k+2

2
⌋. Thent ≤ k − 3, andst ≤ sk−3, and

ag(k) − st ≥ ag(k) − sk−3 = ag(k) − ag(k−3)

≥ ag(k) − ag(k)−3

> ag(k)−1 = ag(k)−1 − a1 (by assumption ona)

≥ sk−1 − a1 ≥ sk−1 − s1. (3.4)

In the setS ′, the greatest difference issk−1− s1. Sinceag(k)− st ≥ sk−1− s1, we know
that ag(k) − st, . . . , ag(k) − s2, ag(k) − s1 are all differences greater than the greatest
difference inS ′.

By a similar argument,st−ag(k), . . . , s2−ag(k), s1−ag(k) are all differences smaller
than the smallest difference inS ′.

SoS contains at least2t = 2⌊k+3
2
⌋ > 2 · k+1

2
= k + 1 new differences compared to

S ′, andS satisfies

|S − S| − |S + S| > |S ′ − S ′| − |S ′ + S ′|, (3.5)

completing the proof. �

3.3. Proof of Theorem 1.4. Recall that we writeA = A1 ∪ A2 with A1 = {a1, . . . ,
as−1}, A2 = {as, as+1, . . . }, and by Corollary 2.2A2 contains no sum-dominant sets
(thus any sum-dominant set must contain some elements fromA1). We first prove a
series of useful results which imply the main theorem.

Our first result classifies the possible sum-dominant subsets ofA. Since any such set
must have at least one element ofA1 in it but not necessarily any elements ofA2, we use
the subscriptn below to indicate how many elements ofA2 are in our sum-dominant
set.

Lemma 3.3(Classification of Sum-Dominant Subsets ofA). Notation as above, letKn

be a sum-dominant subset ofA = A1 ∪ A2 with n elements inA2. Thus we may write

Kn = S ∪ {ar1 , . . . , arn}

for some
S ⊂ A1 = {a1, . . . , as−1}, s ≤ r1 < r2 < · · · < rn.

Set
d = max

K3

(|K3 +K3| − |K3 −K3|, 1).

Thenn ≤ d + 3. In other words, a sum-dominant subset ofA can have at mostd + 3
elements ofA2.

Proof. Let Sm be any subset ofA with m elements ofA2. Lemma 3.2 tells us that for
anySm with m ≥ 3, when we add any new elementarm+1

to getSm+1, eitherSm+1 is
not a sum-dominant set, or

|Sm+1 − Sm+1| − |Sm+1 + Sm+1| ≥ |Sm − Sm| − |Sm + Sm|+ 1.

For ann > d + 3, assume there exists a sum-dominant set; if so, denote it byKn.
For 3 ≤ k ≤ n, defineSk as the set obtained by deleting the(n − k) largest elements
fromKn (equivalently, keeping only thek smallest elements fromKn which are inA2).
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We prove that eachSk is sum-dominant, and then show that this forcesSn not to be
sum-dominant; this contradiction proves the theorem asKn = Sn.

If Sk is not a sum-dominant set for anyk ≥ 3, by Lemma 3.2 eitherSk+1 is not a
sum-dominant set, or

|Sk+1 − Sk+1| − |Sk+1 + Sk+1| ≥ |Sk − Sk| − |Sk + Sk|+ 1 ≥ 0,

in which caseSk+1 is also not a sum-dominant set (becauseSk is not sum-dominant,
the setSk+1 generates at least as many differences as sums). As we are assumingKn

(which is justSn) is a sum-dominant set, we findSn−1 is sum-dominant. Repeating the
argument, we find thatSn−2 down toS3 must also all be sum-dominant sets, and we
have

|Sn − Sn| − |Sn + Sn| ≥ |S3 − S3| − |S3 + S3|+ (n− 3). (3.6)

SinceS3 is one of theK3’s (i.e., it is a sum-dominant subset ofA with exactly three
elements ofA2), by the definition ofd the right hand side above is at leastn − 3 − d.
As we are assumingn > d+3 we see it is positive, and henceSn is not sum-dominant.
As Sn = Kn we see thatKn is not a sum-dominant set, contradicting our assumption
that there is a sum-dominant setKn with n > d+ 3, proving the theorem. �

Lemma 3.4. For n ≥ 0, let kn denote the number of subsetsKn ⊂ A which are sum-
dominant and contain exactlyn elements fromA2. We write

Kn = S ∪ {ar1 , . . . , arn} with S ⊂ A1. (3.7)

Then

(1) kn is finite for alln ≥ 0, and
(2) everyKn is not a special sum-dominant set.

Proof. We prove each part by induction. It is easier to do both claimssimultaneously
as we induct onn. We break the analysis inton ∈ {0, 1, 2, 3} andn ≥ 4. The proof
for n = 0 is immediate, whilen ∈ {1, 2, 3} follow by obtaining bounds on the indices
permissible in aKn, and thenn ≥ 4 follows by induction. We thus must check (1) and
(2) for n ≤ 3. While the arguments forn ≤ 3 are all similar, it is convenient to handle
each case differently so we can control the indices and use earlier results, in particular
removing the largest element inA2 yields a set which is not a special sum-dominant set.

Casen = 0: As A1 is finite, it has finitely many subsets and thusk0, which is the
number of sum-dominant subsets ofA1, is finite (it is at most2|A1|). Further anyK0 is
a subset of

A1 = {a1, . . . , as−1},

which is a subset of

A′ = {a1, . . . , a4s+6}. (3.8)

As we have assumedA′ has no special sum-dominant set, noK0 can be a special sum-
dominant set.
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Casen = 1: We start by obtaining upper bounds onr1, the index of the smallest (and
only) element in our set coming fromA2. Consider the index4s. We claim that

a4s >
∑

a∈A1

a. (3.9)

This is because|A1| < s andak > ak−1 + ak−3 for all k ≥ s, and hence

∑

a∈A1

a < s · as

<
s

2
(as + as+2) <

s

2
· as+3

<
s

4
(as+3 + as+5) <

s

4
· as+6 . . .

<
s

2⌈log2 s⌉
as+3⌈log2(s)⌉

< as+3s = a4s

(by doing the above⌈log2 s⌉ times we ensure thats/2⌈log2 s⌉ < 1, and sinces ≥ 1 we
have3s ≥ 3⌈log2(s)⌉). Therefore for allr1 sufficiently large,

ar1 > a4s >
∑

a∈A1

a. (3.10)

Clearly there are only finitely many sum-dominant subsetsK1 with r1 ≤ 4s; the
analysis is completed by showing there are no sum-dominant sets withr1 > 4s. Imagine
there was a sum-dominantK1 with ar1 > a4s. ThenK1 is the union of a set of elements
S = {s1, . . . , sm} in A1 andar1 in A2. As

∑

s∈S s < ar1 , by Lemma 3.1 we findK1 is
not a sum-dominant set.

All that remains is to show none of theK1 are special sum-dominant sets. This is
immediate, as each sum-dominantK1 is a subset of{a1, . . . , a4s}, which is a subset of
A′ (defined in (3.8)). As we have assumedA′ has no special sum-dominant set, noK1

can be a special sum-dominant set.

Casen = 2: Consider the index4s + 3. If K2 is a sum-dominant set then it has two
elements,ar1 < ar2 , that are inA2. We show that ifr2 ≥ 4s + 3 then there can be no
sum-dominant sets, and thus there are only finitely manyK2.

For all r2 ≥ 4s+ 3,

ar2 − ar2−1 > ar2−3 ≥ a4s >
∑

a∈A1

a. (3.11)

Assume there is a sum-dominantK2 with r2 ≥ 4s + 3. It contains some elements
S = {s1, . . . , sm} in A1 andar1 , ar2 in A2. We have

ar2 − ar1 ≥ ar2 − ar2−1 >
∑

a∈S

a.
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Thereforear2 >
(
∑

a∈S a
)

+ ar1 , andS ∪ {ar1} is not a special sum-dominant set by
then = 1 case1. Hence, by Lemma 3.1 we findK2 = (S ∪ {ar1}) ∪ {ar2} is not a
sum-dominant set.

Finally, asK2 is a subset of{a1, . . . , a4s+1}, which is a subset ofA′, by assumption
K2 is not a special sum-dominant set.

Casen = 3: LetK3 be a sum-dominant set with three elements fromA2. We show that
if r3 ≥ 4s+ 6 then there are no suchK3; as there are only finitely many sum-dominant
sets withr3 < 4s+ 6, this completes the counting proof in this case.

Consider the index4s+ 6. For allr3 ≥ 4s+ 6,

ar3−3 − ar3−4 > ar3−6 ≥ a4s >
∑

a∈A1

a. (3.12)

Consider anyK3 with r3 ≥ 4s + 6. We writeK3 asS ∪ {ar1 , ar2, ar3} andS ⊂ A1.
If |S| < 5, we know that|K3| < 8, andK3 is not a sum-dominant set as such a set has
at least 8 elements. We can therefore assume that|S| ≥ 5. We have two cases.

Subcase 1:r2 ≤ r3 − 3: Thus

ar3 − ar2 − ar1 ≥ ar3 − ar3−3 − ar3−4 ≥ ar3−1 − ar3−4 ≥ ar3−2 > ar3−6 >
∑

a∈S

a.

As S ∪ {ar1, ar2} is not a special sum-dominant set by then = 2 case2, addingar3 with

ar3 >

(

∑

s∈S

s

)

+ ar1 + ar2

creates a non-sum-dominant set by Lemma 3.1.

Subcase 2:r2 > r3 − 3: Using (3.12) we find

ar3 − ar2 ≥ ar3 − ar3−1 >
∑

a∈S

a

and

ar2 − ar1 > ar3−2 − ar3−3 >
∑

a∈S

a.

Therefore the differences betweenar1, ar2 , ar3 are large relative to the sum of the el-
ements inS, and our new sums and new differences are well-separated from the old
sums and differences. Explicitly,K3 +K3 consists ofS +S, ar1 +S, ar2 + S, ar3 +S,
plus at most 6 more elements (from the sums of thear ’s), while K3 − K3 consists of
S − S, ±(ar1 − S), ±(ar2 − S), ±(ar3 − S), plus possibly some differences from the
differences of thear’s.

1If S′ = S ∪ {ar1} is sum-dominant then it is not special, while if it is not sum-dominant then clearly
it is not a special sum-dominant set.

2As before, if it is sum-dominant it is not special, while if itis not sum-dominant it cannot be sum-
dominant special; thus we have the needed inequalities concerning the sizes of the sets.
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As S is not a special sum-dominant set, we know|S + S| − |S − S| < |S| (if S is
not sum-dominant the claim holds trivially, while if it is sum-dominant it holds because
S is not special). Thus forK3 to be sum-dominant, we must have

0 < |K3 +K3| − |K3 −K3|

≤ (|S + S|+ 3|S|+ 6)− (|S − S|+ 6|S|)

< 6− 2|S|;

as|S| ≥ 5 this is impossible, and thusK3 cannot be sum-dominant.
Finally, as againK3 is a subset ofA′ = {a1, . . . , a4s+6}, no K3 is a special sum-

dominant set.

Casen ≥ 4 (inductive step):We proceed by induction. We may assume thatkn is finite
for somen ≥ 3, and must show thatkn+1 is finite. By the earlier cases we know there
is an integertn such that ifKn is a sum-dominant subset ofA with exactlyn elements
of A2, then the largest indexrn of anai ∈ Kn is less thantn.

We claim that ifKn+1 is a sum-dominant subset ofA then each index is less than
tn+1, wheretn+1 is the smallest index such that ifrn+1 ≥ tn+1 then

arn+1
>
∑

i<rn

ai. (3.13)

We write

Kn+1 = S ∪ {ar1, . . . , arn, arn+1
}, S ⊂ A1, {ar1 , . . . , arn} ⊂ A2.

We show that ifrn+1 ≥ tn+1 thenKn+1 is not sum-dominant. LetSn = Kn+1\{arn+1
}.

We have two cases.
• If rn < tn, then by the inductive hypothesisSn is not a special sum-dominant

set. So addingarn+1
>
∑

x∈Sn

x toSn gives a non-sum-dominant set by Lemma
3.1.

• If rn ≥ tn, then by the inductive hypothesisSn is not a sum-dominant set. So
|Sn − Sn| − |Sn + Sn| ≥ 0. Sincen ≥ 3, we can apply Lemma 3.2, and either
Kn+1 = Sn ∪ {arn+1

} is not a sum-dominant set, or

|Kn+1 −Kn+1| − |Kn+1 +Kn+1| > |Kn −Kn| − |Kn +Kn| > 0,

in which caseSn+1 is still not a sum-dominant set.
We conclude that for all sum-dominant setsSn+1, we must havern+1 < tn+1. So

kn+1 is finite.
Consider any sum-dominant setKn+1 = Sn ∪ {arn+1

}. Applying lemma 3.2 again,
we have|Kn+1 −Kn+1| − |Kn+1 +Kn+1| > |Sn − Sn| − |Sn + Sn|. We know, from
inductive hypothesis, thatSn is not a special sum-dominant set. Therefore all possible
Kn+1 are not special sum-dominant sets.

By induction,kn is finite for all n ≥ 0, and allKn are not special sum-dominant
sets. �

Proof of Theorem 1.4.By Lemma 3.3 every sum-dominant subset ofA is of the form
K0, K1, K2, . . . , Kd+3 where theKn are as in (3.7). By Lemma 3.4 there are only
finitely many sets of the formKn for n ≤ d + 3, and thus there are only finitely many
sum-dominant subsets ofA. �
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4. SUM-DOMINANT SUBSETS OF THE PRIME NUMBERS

We now investigate sum-dominant subsets of the primes. While Theorem 1.5 follows
immediately from the Green-Tao theorem, we first conditionally prove there are infin-
itely many sum-dominant subsets of the primes as this argument gives a better sense
of what the ‘truth’ should be (i.e., how far we must go before we find sum-dominant
subsets).

4.1. Admissible Prime Tuples and Prime Constellations.We first consider the idea
of primem-tuples. A primem-tuple(b1, b2, . . . , bm) represents a pattern of differences
between prime numbers. An integern matches this pattern if(b1+n, b2+n, . . . , bm+n)
are all primes.

A prime m-tuple (b1, b2, . . . , bm) is called admissible if for all integersk ≥ 2,
{b1, b2, . . . , bm} does not cover all values modulok. If a primem-tuple is not ad-
missible, whenevern > k then at least one ofb1 + n, b2 + n, . . . , bm + n is divisible
by k and greater thank, so this cannot be anm-tuple of prime numbers (in this case the
only n which can lead to anm-tuple of primes aren ≤ k, and there are only finitely
many of these).

It is conjectured in [5] that all admissiblem-tuples are matched by infinitely many
integers.

Conjecture 4.1(Hardy-Littlewood [5]). Letb1, b2, . . . , bm bem distinct integers,vp(b) =
v(p; b1, b2, . . . , bm) the number of distinct residues ofb1, b2, . . . bm to the modulusp,
andP (x; b1, b2, . . . , bm) the number of integers1 ≤ n ≤ x such that every element
in {n + b1, n + b2, . . . , n + bm} is prime. Assume(b1, b2, . . . , bm) is admissible (thus
vp(b) 6= p for all p). Then

P (x) ∼ S(b1, b2, . . . , bm)

∫ x

2

du

(log u)m
(4.1)

whenx → ∞, where

S(b1, b2, . . . , bm) =
∏

p≥2

(

(

p

p− 1

)m−1
p− vp(b)

p− 1

)

6= 0.

As (b1, b2, · · · , bm) is an admissiblem-tuple,v(p; b1, b2, . . . , bm) is never equal top
and equalsm for p > max{|bi − bj |}. The productS(b1, b2, . . . , bm) thus converges
to a positive number as each factor is non-zero and is1 + Om(1/p

2). Therefore this
conjecture implies that every admissiblem-tuple is matched by infinitely many integers.

4.2. Infinitude of sum-dominant subsets of the primes.We now show the Hardy-
Littlewood conjecture implies there are infinitely many subsets of the primes which are
sum-dominant sets.

Theorem 4.2. If the Hardy-Littlewood conjecture holds for all admissible m-tuples
then the primes have infinitely many sum-dominant subsets.

Proof. Consider the smallest sum-dominant setS = {0, 2, 3, 4, 7, 11, 12, 14}. We know
that{p, p+2s, p+3s, p+4s, p+7s, p+11s, p+12s, p+ 14s} is a sum-dominant set
for all positive integersp, s. Sets = 30 and letT = (0, 60, 90, 120, 210, 330, 360, 420).
We deduce that if there are infinitely manyn such thatn+ T = (n, n+60, n+90, n+
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120, n+210, n+330, n+360, n+ 420) is an 8-tuple of prime numbers, then there are
infinitely many sum-dominant sets of prime numbers.

We check thatT is an admissible prime 8-tuple. Whenm > 8, the eight numbers in
T clearly don’t cover all values modulom. Whenm ≤ 8, one sees by straightforward
computation thatT does not cover all values modulom.

By Conjecture 4.1, there are infinitely many integersp such that every element of
{p, p+ 60, p+ 90, p+ 120, p+ 210, p+ 330, p+ 360, p+ 420} is prime. These are all
sum-dominant sets, so there are infinitely many sum-dominant sets on primes. �

Of course, all we need is that the Hardy-Littlewood conjecture holds for one admis-
siblem-tuple which has a sum-dominant subset. We may takep = 19, which gives
an explicit sum-dominant subset of the primes:{19, 79, 109, 139, 229, 349, 379, 439} (a
natural question is which sum-dominant subset of the primeshas the smallest diame-
ter). If one wishes, one can use the conjecture to get some lower bounds on the number
of sum-dominant subsets of the primes at mostx. The proof of Theorem 1.5 follows
similarly.

Proof of Theorem 1.5.By the Green-Tao theorem, the primes contain arbitrarily long
arithmetic progressions. Thus for eachN ≥ 14 there are infinitely many pairs(p, d)
such that

{p, p+ d, p+ 2d, . . . , p+Nd} (4.2)
are all prime. We can then take subsets as in the proof of Theorem 4.2. �

5. FUTURE WORK

We list some natural topics for further research.
• Can the conditions in Theorem 1.1 or 1.4 be weakened?
• What is the smallest special sum-dominant set by diameter, and by cardinality?
• What is the smallest, in terms of its largest element, set of primes that is sum-

dominant?
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