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Abstract

We analyze a game theoretic model of social learning about a consumption good with

endogenous timing and heterogeneous accuracy of private information. We show that if

individuals value their reputation for the degree to which they are informed, this reduces

the incentive to learn by observing others and exacerbates the incentive to consume the

good before others, i.e., to attempt to be an “opinion leader.” Consequently, reputation

concerns reduce the average delay of consumption of new goods, and increase (reduce) the

probability of herding on consumption (non-consumption).
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1 Introduction

The seminal models of social learning and herding (Bikhchandani, Hirshleifer, and Welch

(1992), Banerjee (1992)), and many of the models that followed, assume that the order in

which individuals take actions is exogenously determined. This assumption is not innocuous.

In fact, the premise of this literature–that people gain information by observing the actions

of others–makes exogenous timing immediately questionable. If there is a benefit to waiting

and observing others, why would anyone want to act first?

On the other hand, there is strong empirical evidence that some people actually prefer

to try new things before their peers. That is, some people want to be opinion leaders, early

adopters, or market mavens, despite this causing them to lose valuable information they

would have gained by waiting and observing others. See, e.g., Feick and Price (1987) for a

discussion of this type of behavior and numerous examples of its occurrence. To elaborate on

one particular example, there is evidence consumers prefer to be first to see new movies, as

box office sales are on average highest in the first week of release and decline thereafter (?).

But consumers do indeed learn about how good movies are by waiting and observing their

success (Moretti (2008)).1

This paper analyzes a very simple game theoretic model that reconciles social learning and

opinion leader behavior. The motivation is both to better understand these conflicting forces,

and to gain insight into how their presence may affect social outcomes via rational herding.

Our a priori hypothesis was that incorporating opinion leader incentives would weaken the

informational content of publicly observable actions, which would increase the chances of

inefficient herding. Our results provide some support for this hypothesis, but turn out to be

somewhat more complex. We also introduce a new refinement concept for Perfect Bayesian

Equilibrium, which may have applications in other settings.

In the model, two consumers decide whether to buy a new product whose quality is

1If the timing of movie-going was mostly driven by learning motives, we would expect ticket sales for
a successful movie to increase over time initially after release, since only the most informed consumers
would be willing to see it at first. That is, if time after release and cumulative ticket sales were
plotted against each other, the “diffusion curve” would take the well known “S” shape (see e.g. Kapur
(1995)). While this does happen for movies occasionally, it is relatively rare, as the average curve
appears uniformly concave (?).
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unknown. Both can either buy immediately, or wait and have the option to buy after observing

their peer’s decision, so the order of actions is endogenous. The consumers have different

abilities to obtain and process a private signal about the product’s quality. We show that in

equilibrium, if consumers only care about utility from consumption, then a consumer buys

the product immediately only if her information indicates the product is high quality and is

sufficiently accurate such that waiting cannot convince her to change her mind, as long as

she is at least marginally impatient. A consumer waits if her information is less accurate, or

indicates the good is low quality. Consequently, if a consumer cares about her reputation for

the degree to which she is informed–in addition to direct consumption utility–this increases

the incentive to buy immediately, increasing average consumption in the initial period, for

two reasons. First, buying immediately signals high accuracy of private information. Second,

and more subtly, reputation concerns reduce the incentive to wait, learn and imitate one’s

peer, since this would signal low accuracy of private information. Since these effects interact

and reinforce each other, the tradeoff between reputation and social learning is exacerbated.

To examine the effects of the tradeoff on rational herding, we extend the model in a simple

way and find that reputation concerns have different effects on the formation of different types

of information cascades and herd behaviors. When reputation concerns are low, consumers

sometimes delay consumption even when their private information indicates the product is

high quality in order to wait and learn. This is observationally equivalent to their peers

to not buying due to having private information indicating the product’s quality is poor,

so consuming and not consuming are asymmetric, from a learning perspective. This causes

herding on non-consumption to be more likely, as compared to when the order of actions

is exogenous. When reputation becomes more important, herding on consumption becomes

more likely. Although both the incentives to consume immediately and to abstain from

consumption later are increased, and these have competing effects on the probability of herding

on consumption, the first effect is dominant.

An increased probability of herding on consumption is socially beneficial when the product

is high quality, and harmful otherwise. The magnitudes of the effects in both cases are

approximately the same, and so changes in the level of reputation concerns cause socially

beneficial and harmful herding effects that approximately cancel, assuming the product is
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equally likely to be good or bad. Thus, within our model, introducing reputation concerns is

neither socially beneficial nor harmful. We discuss directions for future research in the paper’s

final section.

1.1 Related Literature

There is a substantial literature on social learning with endogenous timing, but most of it

assumes a key reason to take action sooner rather than later is to avoid an exogenous cost of

delay.2 Our paper can be thought of as endogenizing this cost (reputation loss) driving early

action. Moreover, in situations in which it is ambiguous whether or not reputation is driving

delay costs, our paper suggests a comparative static for determining this: if reputation is a key

factor, then people more concerned with reputation (such as “the new guy” whose reputation

is relatively uncertain and malleable) will be more likely to consume early, and/or to avoid

herding late. We do not formalize this prediction, but it follows directly from the model.

However, even in the absence of heterogeneity in reputation concerns, reputation loss

and other costs of delay do not have equivalent behavioral effects. To see this, suppose the

alternative to reputational costs of delay is pure impatience. Very impatient consumers who

do not act immediately are willing to learn from and and imitate earlier-acting peers, as the

costs of impatience become sunk. Reputation-concerned consumers are unwilling to learn and

imitate, since reputation is always variable. There are almost certainly other insights that

can be gained by incorporating reputation in social learning models; we consider our model

just a first step in this direction.

While there is some literature on opinion leaders,3 we are not aware of literature on

the opinion leader/social learning tradeoff we identify. The literature on bandwagon effects,

e.g. Corneo and Jeanne (1997) is related, but only indirectly since it does not focus on

information. The literature on reputation and herding focuses on incentives to conform, e.g.

Scharfstein and Stein (1990), and not on the effects of reputation concerns on the order of

actions. See ? for an analysis of leadership in organizations, which also does not address

2See, e.g., ?, Gul and Lundholm (1995), ?, and Sgroi (2003).
3See Kircher and Postlewaite (2008) in particular. Bikhchandani, Hirshleifer, and Welch (1998)

briefly discuss this phenomenon, which they refer to as “fashion leaders,” but do not discuss how
it would be affected by reputation concerns or refer to any formal analysis.
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reputation.

We refer to both herds and information cascades in our paper; see Smith and Sørensen

(2000) or Çelen and Kariv (2004) for discussion of the distinction between these terms.4 We

analyze cascades (and thus herds) because they are naturally of interest, have been a focus

of much of the related literature, and the quality of decisions made by herds provides a

natural measure of social welfare. The informational asymmetry of consumption and non-

consumption–essentially that consumption can only signal good news, while non-consumption

signals either no news or bad news–plays an important role in our paper. ? studied this

asymmetry, showing it surprisingly implies that products with larger customer bases are less

likely to have herds form that purchase the product.5 The literature on endogenous timing

in oligopoly (e.g., ?) is also related, but only indirectly.

2 The Model

The model is a two player, two period game. Before the first period a new product with

unknown quality θ ∈ {G,B} (good/bad) is released. The prior is common and for simplicity:

Pr(θ = G) = 0.5. Each player i has a private signal on quality, si ∈ {g, b}, with Pr(si =

g|θ = G) = Pr(si = b|θ = B) = πi ≥ 0.5. There is common knowledge that π2 is equal to a

particular value, denoted π. That is, player 2 (P2, a she) has a “secure” reputation, in that

both players know her signal’s informativeness, and know they both know it. Player 1 (P1,

a he) is “insecure”: he knows π1, but P2 does not know it and has the prior π1 ∼ U [
¯
π, π̄],

with 0.5 ≤
¯
π < π̄ ≤ 1.6 Since the parameter πi represents i’s ability to collect and process

information, it is assumed to be desirable to have others think it is higher (i.e., to have a

better reputation). We assume π = E(π1) = 0.5(
¯
π+ π̄) so P2 is as informed as P1 on average.

4The latter write, “When acting in a herd, individuals choose the same action, but they may have
acted differently from one another if the realization of their private signals had been different. In an
informational cascade, an individual considers it optimal to follow the behavior of her predecessors
without regard to her private signal since her belief is so strongly held that no signal can outweigh
it. Thus, an informational cascade implies a herd but a herd is not necessarily the result of an
informational cascade.”

5? studied another type of asymmetry in social learning models–that sellers of a unit good can
only be made worse off by the formation of a herd–since, given the lack of supply, only herding on
non-consumption can occur.

6The term insecure, as commonly used, sometimes refers to situations like this, but other times
refers to situations in which a person does not know his own ability.
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Each player chooses whether to consume the product in period t = 1, and also in t = 2

if he/she chose not to consume in t = 1. That is, consumption only occurs once or not at

all; this is a standard unit demand assumption.7 Both consumers’ actions in both periods

are publicly observable. Let Iit denote the information available to player i at the start of

period t. So, Ii1 includes i’s signal and if i = 1 the realization of π1; Ii2 includes Ii1 and the

history of both players’ actions, for i = 1, 2. P1’s objective is to maximize u(x1|θ)+αE2(π1),

with E2(π1) denoting P2’s posterior (to period 2) expectation of P1’s ability. The parameter

α represents the importance of reputation, with α ≥ 0. P2’s objective is just to maximize

her expectation of u(x2|θ), since her reputation is secure. We write xi = 1 if i consumes the

product in either period and xi = 0 otherwise. The utility function is normalized so that

u(xi = 1|θ = G) = 1, u(xi = 1|θ = B) = −1 and u(xi = 0|θ) = 0. Let xit denote player i’s

action in period t; xit=0/1 for not consume/consume.

We assume that if in t = 1 either player’s expected payoff from consuming in that pe-

riod is equal to her/his expected payoff from waiting (and making the optimal decision to

consume/not consume in t = 2), then the player consumes in t = 1. This assumption serves

the purpose of assuming both players are at least marginally impatient. For simplicity, and

because the focus of the analysis is on how other forces affect the order of actions, we do

not model impatience explicitly, since as discussed above this has been the focus of previous

literature. But it is natural to think that consuming “now” is preferable to consuming “later.”

This assumption is only important for the α = 0 case. For consistency and without loss of

generality we also assume if either player (who has not yet consumed) is indifferent between

consuming and not consuming in t = 2, then the player consumes.

The timing of the game is summarized as follows. 1) Nature chooses θ, π1, s1 and s2, the

product is released, P1 privately observes π1 and both players observe their s’s; 2) t = 1: each

player i chooses xi1 and then observes x−i1; 3) t = 2: each player i chooses xi2 if xi1 = 0 and

then observes x−i2; 4) P2 updates beliefs about π1 and both players obtain their payoffs.

7Zhang (2007) refers to this as “one-sided commitment” and gives the example of the consumer
decision of whether or not to buy a new computer operating system (once it is purchased, the consumer
is typically stuck with it, and does not buy another in the short-term future); another example is the
decision of whether to go to a movie opening weekend or wait until a later date, since people usually
do not go to the same movie more than once.
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We note that our model involves three extensions, and one (major) simplification to a

benchmark social learning model, which Bikhchandani, Hirshleifer, and Welch (1992) describe

as a special case of their general model, and typically used in experimental tests of social learn-

ing.8 In this model (henceforth the BHW model) a sequence of ex ante identical individuals

make a binary decision. The order in which they act is exogenous, and each individual has one

private binary signal and observes the decisions of any individuals who act before her/him.

The simplification we make to this set-up is that we drop all but two of the decision-makers.

Our extensions are: 1) the accuracy of one individual’s signal is his private information; 2)

this individual may care about his reputation for accuracy; and 3) the order in which the

two individuals act is endogenous. Further comments on the model are provided in the final

section.

3 Analysis

Let π̂1 denote the realization of π1. Let x∗it(Iit) denote the equilibrium strategy of player i

in period t, a function of the available information. It is convenient to sometimes just write

a particular component of Iit that is of interest, for example we sometimes write x∗i1(si). We

use the Perfect Bayesian Equilibrium solution concept (PBE).

It is helpful to first look at the case of α = 0, and recall that π = E[π1].
9

Proposition 3.1. If α = 0, the unique PBE is characterized as follows.

1. P1’s strategy is:

a) If π̂1 ≥ π, then x∗11(g) = 1, x∗11(b) = 0, and x∗12(I12) = 0 for all I12.

b) If π̂1 < π, then x∗11(s1) = 0 for all s1, and x∗12(I12) = 1 if and only if x21 = 1 ∈ I12.

2. P2’s strategy is:

x∗21(g) = 1, x∗21(b) = 0, and x∗22(I22) = 1 if and only if x21 = 0, x11 = 1 ∈ I22.

3. Out-of-equilibrium beliefs for both players are unrestricted.

8Weizsacker (forthcoming) provides a recent meta-study of data from 13 distinct experiments of
this type.

9It might be ideal to simply refer the reader to a paper from the endogenous timing literature for
a characterization of equilibrium for this case. However, even when α = 0 our model is distinct from
other endogenous timing models, as far as we aware, due to our model’s assumption that the signal
accuracy is a continuous variable that is private information for just one player.
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Proof. Showing P1’s strategy is optimal is simple. In case 1.a, his signal is weakly more

informative than P2’s, thus P1’s optimal action is unaffected by waiting and observing P2’s

action in t = 1, and so P1 consumes if and only if s1 = g and only in t = 1 (“early”), given

the tie-breaker assumption for cases where expected utility from consumption is the same in

both periods. Case 1.b is the opposite: P1’s signal is less informative than P2’s, and since

P1 knows P2 reveals her signal by her t = 1 action, P1 clearly has an incentive to wait until

t = 2 (“late”) and then mimic P2’s t = 1 action.

Regarding P2’s strategy, it is clear that if s2 = b and she has no other information,

her expected utility from consumption is negative and so x21 = 0 is optimal. If P2 then

observes x11 = 1, P2 will infer that s1 = g and that P1’s information is better in expectation

(E(π1|x11 = 1) > π), so it will be optimal for P2 to choose x22 = 1. If s2 = g, expected

utility from consumption in t = 1 is positive, but it is possible P2 could benefit from waiting

and observing x11. This would only be true if observing x11 = 0 would cause P2’s expected

utility from consumption to become negative. We verify this is not the case by showing P2’s

belief that θ = G after observing x11 = 0 is still greater than 0.5:

Pr(θ = G|x11 = 0, s2 = g) =
Pr(x11 = 0|θ = G, s2 = g)Pr(θ = G|s2 = g)

Pr(x11 = 0|s2 = g)
≥ 0.5

[
∫ π

¯
π
f(π1)dπ1 +

∫ π̄

π
(1− π1)f(π1)dπ1]π

[
∫ π

¯
π
f(π1)dπ1 +

∫ π̄

π
(1− π1)f(π1)dπ1]π + [

∫ π

¯
π
f(π1)dπ1 +

∫ π̄

π
π1f(π1)dπ1](1 − π)

≥ 0.5

⇔ −0.625
¯
π2 +

¯
π(0.5 + 0.25π̄) + (0.375π̄ − 0.5)π̄) ≥ 0. (1)

A lower-bound for the left-hand side is obtained when
¯
π is at its minimum, 0.5, or maxi-

mum, π̄. When
¯
π = 0.5, the left-hand side is strictly positive given π̄ ∈ (0.5, 1]. When

¯
π = π̄,

the left-hand side is zero, implying it is strictly positive if
¯
π < π̄.

It is possible there exists an equilibrium in which P2 does not follow a good signal in

t = 1 (i.e., x∗21(g) = 0), since P2 could learn from x11 it is optimal to not consume. In this

case, P1 would never be able to learn from P2’s t = 1 action, so P1 would follow his signal

in t = 1 for all π̂1 (again, due to the tie-breaker assumption). However, this would not cause

P2’s observation of x11 to change her optimal action when s2 = g since E(π1|x11) = π for all

x11 in this case, and so even if x11 = 0 this would cause abstaining from consumption to be

8



strictly optimal. Thus, P2 would have no incentive to wait and learn if s2 = g, which implies

that P2 always does prefer to follow her signal in t = 1, which causes P1 to prefer to wait if

s1 = g and π̂1 < π. This proves the equilibrium’s uniqueness.

Out-of-equilibrium beliefs are unrestricted because the only actions that occur outside

equilibrium are consumption in the second period after neither player consumed in the first

period. But the beliefs of either player after observing this action do not affect either player’s

payoff, so they can take any value.

This result implies both players are potentially opinion leaders and potentially observa-

tional learners who imitate the first mover. P1 is a leader when s1 = g and is more accurate

than s2, as in this case he cannot learn useful information from waiting (i.e. waiting cannot

convince him to not consume), so he may as well consume as soon as possible. P2 is a leader

when s2 = g because waiting cannot bring her useful information either. This is because for

waiting to convince her to not consume, she would have to know both that s1 = b and s1 is

accurate. This never occurs because P1 only reveals that s1 is accurate when s1 = g. This is

due to the inherent asymmetry of consumption actions; consuming early is unambiguous as

it can only occur when the player’s signal is g, while not consuming early can either result

from a bad signal or an inaccurate signal. As a result, learning only goes in one direction, in

a sense, for P2. P2 only imitates P1 when P2’s signal is b, P1’s is g, and π̂1 ≥ π. P2 never

imitates when s2 = g. P1 can learn both to consume and not consume from P2 (i.e., P1 can

learn whether s1 is g or b) as long as π̂1 < π.

The proposition provides an explanation for the timing of actions without invoking repu-

tation concerns. However, it is clear that since players who consume early are better informed

on average, if players do value their reputation for the degree to which they are informed,

this will increase the incentive to be a first mover–and mitigate the incentive to be a social

learner. In this case, the beliefs of P2 after observing an unexpected action by P1 will affect

P1’s incentives. We focus on a class of PBE with off-equilibrium-path beliefs restricted in a

particular way, which we argue is natural, defined as follows.

Definition 3.1. A Reputational Equilibrium is a PBE in which: 1) x∗12(I12) = 0 if {x11 =
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0, x21 = 0} ⊂ I12; 2) x∗11(I11) = 1 iff s1 = g ∈ I11 and π̂1 ≥ γ >
¯
π; 3) E2(π1|x11 = 0, x21 =

0, x12 = 1) ≤ γ.

In a Reputational Equilibrium (hereafter RE), P1 never consumes late if both players

abstained early (part 1). Part 2 says in equilibrium P1 does consume early if his signal is good

and sufficiently accurate (greater than some threshold γ). Part 3 describes off-equilibrium-

path beliefs: if P1 consumes late after both players abstained early, then P2 takes a skeptical

view of P1’s accuracy, π̂1–that it is not greater than γ. The logic is that P1 has the least

disincentive to take the off-path action of consuming late when his expected utility from

consumption is highest. In general, this is true when s1 = g and π̂1 is as high as possible. But

if s1 = g and π̂1 ≥ γ, then P1 should have consumed early. Since he did not, it is natural for

P2 to infer that if s1 = g then π̂1 < γ. Moreover, if s1 = b, then P1’s incentive to consume

would be highest when π̂1 is as low as possible, i.e.
¯
π, which is also consistent with the RE

off-path restriction.

RE is a refinement of PBE is in the spirit of the Intuitive Criterion (Cho and Kreps (1987))

and other PBE refinements in which it is generally assumed that when forming beliefs about

the type of a deviating player, the non-deviating player places more weight on types with

lower disincentives to deviate. Our innovation is to exploit the dynamic nature of the game,

so that when P1 deviates in the second period, P2 restricts attention to P1’s types consistent

with P1’s first period action, since that action is always on the equilibrium path. We are not

aware of other refinements that restrict off-path beliefs this way. We use RE instead of other

refinements (e.g., the Intuitive Criterion) both because RE makes the analysis tractable, and

it seems more realistic. It would be implausible for P2 to think P1 has a very informative

signal if he consumed late but not early, given that P1’s equilibrium strategy is to consume

early when his signal is highly informative.

The PBE of Proposition 3.1 is indeed an RE, with γ = π. The RE we characterize below

with α > 0 is thus the natural extension of the unique PBE with α = 0.

Proposition 3.2. If α is sufficiently small but strictly positive, then there exists an RE

characterized as follows.

1. P1’s strategy is characterized by two thresholds, γ∗1 ∈ (
¯
π, π) and γ∗2 ∈ (

¯
π, π), such that:
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a) if π̂1 > max{γ∗1 , γ
∗
2}, then x∗11(g) = 1, x∗11(b) = 0, x∗12(I12) = 0 for all I12;

b) if γ∗2 ≥ γ∗1 and γ∗2 ≥ π̂1 ≥ γ∗1 , then x∗11(g) = 1, x∗11(b) = 0, x∗12(I12) = 1 if and only if

x11 = 0, x21 = 1 ∈ I12;

c) if γ∗1 > γ∗2 and γ∗1 = π̂1, then x∗11(g) = 1, x∗11(b) = 0, x∗12(I12) = 0 for all I12;

d) if γ∗1 > γ∗2 and γ∗1 > π̂1 > γ∗2 , then x∗11(s1) = 0 for all s1, x
∗
12(I12) = 1 if and only if

s1 = g, x21 = 1 ∈ I12;

e) otherwise x∗11(s1) = 0 for all s1 and x∗12(I12) = 1 if and only if x21 = 1 ∈ I12.

2. P2’s strategy is x∗21(g) = 1, x∗21(b) = 0, and x∗22(I22) = 1 if and only if x21 = 0, x11 =

1 ∈ I22, and beliefs off the equilibrium path are E2(π1|x11 = 0, x21 = 0, x12 = 1) = ρ for any

ρ ≤ γ∗1 .

The proof is in Appendix A; it is complicated but the intuition is fairly straightforward.

The proposition says that, just as in the α = 0 case, P1 consumes early if his signal is good and

π̂1 is sufficiently high, and never consumes early, while imitating P2’s early action regardless

of his signal, if π̂1 is sufficiently low. However, while in the α = 0 case there was one threshold

for π̂1 for both types of behavior, π, in the α > 0 case there are two thresholds and they are

both strictly less than π. The first threshold, γ∗1 , determines whether P1 can be an opinion

leader, and the second, γ∗2 , determines whether P1 will refuse to be a social learner when

s1 = b. P1 may refuse to be a social learner, i.e. refuse to act on information inferred from

P2’s action that makes expected direct utility from consumption positive, because imitation

signals that P1 has inaccurate private information. Since both γ∗1 and γ∗2 are strictly less than

π, individuals with insecure reputations are strictly more likely to be opinion leaders, and to

avoid social learning, than insecure individuals unconcerned with reputation. Thus average

consumption in t = 1 is higher with α > 0 than α = 0. The threshold γ∗1 is the analog to the

generic parameter γ used in the definition of RE.

It may be unclear in what sense γ∗1 and γ∗2 are chosen by P1; they are indeed chosen, as

they define the optimal strategy for P1. However, they are equilibrium values, so they are

known by P2, thus they are only optimal for P1 given that P2 believes that they are being

used by P1. It should also be noted that the proposition is an existence result, and does not

specify the range of α, and relationship between α and the γ∗’s precisely. We determine the
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relationship between both γ∗1 and γ∗2 and α numerically, and present the results in Figure 1.

They are unique, for fixed α, although this is not shown in the proof, so there is no question

of whether the players will be able to coordinate on particular values. The figure shows how,

as implied by Proposition 3.1, they are both equal to π when α = 0 and both decrease as α

increases. It also shows that γ∗1 is always less than γ∗2 . Intuitively, an increase in α causes γ∗1

to decrease for two reasons–an increased incentive to signal high π1 in t = 1 and decreased

incentive to wait, learn and act in t = 2. But only the latter incentive applies to γ∗2 , so it is

not driven down as “quickly” by increasing α as γ∗1 .
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0.5
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0.54

0.56
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0.6
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Figure 1: Equilibrium thresholds for P1: π = 0.625 (left); π = 0.75 (center); π = 0.875
(right).

We do not formally characterize equilibria for large α, but it is clear that as reputation

concerns increase, P1’s incentives to be an opinion leader, and to not be a social learner, both

increase. In fact, if α is sufficiently high P1 will never be a social learner, since the benefit

from learning is limited while the reputation cost is increasing in α. Thus, for large α P1

will either consume in t = 1 or not at all. High types will follow their signal in t = 1, since

they are confident in its accuracy, and if their signal is correct following the signal improves

reputation (since P2 follows her signal too). While some low types may either consume in

t = 1 for all s1 or not consume for all s1, either sort of pooling behavior can only happen for

a limited fraction of types in equilibrium, as otherwise either consuming in t = 1 or not at all

will signal P1 is a high type, given reasonable off-path beliefs (like those discussed above). In

other words, P1 will likely follow his signal in t = 1 for almost all π̂1 and not consume in t = 2
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for all π̂1. This behavior is very similar to the behavior in the equilibrium we characterize with

relatively large α, as shown in Figure 1 (i.e., both γ∗’s are close to
¯
π when α = 2, especially

in the left graph).

4 Application to Herding

We next address the implications of these results for the quality of decisions made by larger

groups of people. We do this by examining the effect of endogenous order and reputation

concerns on what Anderson and Holt (1997) refer to as a reverse cascade–a sequence of actions

causing each subsequent consumer to herd on a suboptimal decision: either buying a low

quality product, or not buying a high quality product. As discussed at the very end of section

2, our model can be viewed as an adaptation of the BHW model of social learning. It would

be difficult to extend our model to allow for a large set of players with reputation concerns and

endogenous order. A simpler way to extend our model that allows us to analyze an infinite

sequence of decision-makers is to assume the BHW model starts when our model ends. That

is, we assume that after P1 and P2 interact in the two-period game described above, an infinite

sequence of decision-makers decides whether to consume the product. Each decision-maker

is ex ante identical, has a private signal with accuracy π, and has perfect information about

all the decisions made before him and is fully informed about the equilibrium of the game

involving P1 and P2. The equilibrium of this game is not affected by the added presence of

the later decision-makers if we make the somewhat restrictive assumption that P1 only values

his reputation in the eyes of P2. In other words, we concatenate the BHW model to the end

of our model.

Numerical results for various values of π and α with both endogenous (concatenated

model) and exogenous (BHW model only) order are provided in Figure 2. We present results

for two variants of the exogenous order model; one in which players take each action with 50%

probability when indifferent, and one in which players follow their own signal when indifferent

between actions.10 The various signal sequences leading to cascades, which underlie the

10Bikhchandani, Hirshleifer, and Welch (1992) make the former assumption, but the latter seems
empirically more likely (see, e.g., Weizsacker (forthcoming)). Our assumption that P1/P2 consume
when indifferent with is still without loss of generality with α > 0 because then P2 is never indifferent,

13



probabilities depicted in the graphs, are presented in Appendix B. The first thing to note

from the figure is that endogenizing the order of actions has ambiguous effects on the reverse

cascade probabilities, as compared to the probabilities with exogenous order. The direction

of the effect depends on the assumption for how players behave when indifferent (endogenous

order is on average beneficial when compared to exogenous order with randomization, and

slightly harmful compared to exogenous order without randomization). Endogenous order is

worse than the latter type of exogenous order as endogenous order increases the probability

of a reverse cascade on non-consumption, since P1’s incentive to wait and learn causes him to

often not reveal his signal even when s1 = g. This result may be sensitive to the assumptions

on the binary action/signal space and number of players.11
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Figure 2: Reverse cascade probabilities (herding on consumption when θ = B and herding on
non-consumption when θ = G): π = 0.625 (left); π = 0.75 (center); π = 0.875 (right). “Exog.
order 1” = players randomize actions when indifferent; “Exog. order 2” = players follow own
signal when indifferent. Both exog. order probabilities are independent of θ.

The figure also shows that with exogenous order the probability of herding on the wrong

decision is the same whether θ = G or θ = B, but with endogenous order the reverse cascade

probability increases as α increases when θ = B, but is decreasing in α when θ = G. A

reverse cascade is least likely when order is endogenous, θ = B and α is low, because herding

and P1 is indifferent with probability zero (only for a measure-zero set of realizations of π1).
11It is worth noting though that these results show how the conclusion of ?–that endogenous timing

generally improves welfare–may be sensitive to his assumption that players have the option to “wait”
in each period, which is distinct from the other actions. Also, the exogenous order probabilities would
be even higher than those with randomization if we assumed players conformed to the action played
by the majority of their predecessors when indifferent.
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on consumption in this case requires either π̂1 ≥ γ∗1 and s1 = g, or s2 = g and π̂1 ≤ γ∗2 .

But the former event is highly unlikely, since when π̂1 is higher, it is less likely for s1 to be

incorrect. Also, while with exogenous order P2 consuming followed by P1 consuming starts

herding on consumption, with endogenous order it does not–if the third decision-maker gets

a bad signal he strictly prefers to not consume with endogenous order. This decision-maker

knows that his bad signal nullifies the good signal of P2, and that P1 consumes late for all

s1 if π̂1 < γ∗1 but only if s1 = b if π̂1 ∈ [γ∗1 , γ
∗
2 ]. The probability of the former event occurring

increases as α increases, because this causes γ∗1 to decrease, which makes it less informative

to others when P1 consumes in t = 1. This is why incorrect herding on consumption becomes

more likely as α increases. With endogenous order reverse cascades are most likely when

θ = G and α is low because herding on non-consumption is more likely when the incentive of

P1 to wait and learn from the action of P2 is stronger, since this causes P1 to often not reveal

his signal, which is observationally equivalent to P1 having a bad signal. The incentive to

learn and copy P2’s action declines as α increases, which makes herding on non-consumption

less likely as α increases.

The bottom line to these results is that reputation is a double-edged sword. When rep-

utation is more important, people consume early and attempt to be opinion leaders more

often. This increases (decreases) the probability of incorrect herding on (non)-consumption,

which is socially harmful (beneficial). These beneficial and harmful effects appear to more

or less cancel out, as Figure 2 indicates the overall (unconditional on θ) endogenous order

reverse cascade probability is approximately constant for all α. However, it is unambiguous

that increasing reputation concerns cause herding on consumption to be more likely, for all θ.

5 Concluding Remarks

We offer a signaling explanation for why individuals may take an action with limited informa-

tion, even though by waiting they may be able to make more informed decisions. Empirical

evidence shows adoption of new trends often seems too fast to be explained by pure learning

dynamics (see footnote 1); our model provides an explanation for this faster speed of adop-

tion. The higher reputation concerns are, the more likely it is both consumers will buy the
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new product in the initial period.

We now offer a few remarks on questionable aspects of the model and avenues for future

research. First, it may be useful to generalize the RE refinement. Regarding the model, we

assume only one of the two initial consumers is insecure only for simplicity; it should not

matter if both consumers in the basic model had uncertain reputations. Similarly, it should

not matter if the distribution of π1 were single-peaked rather than uniform. If there were

more than two players with uncertain reputations involved in the endogenous order game,

this would increase the expected π for the most informed player, increasing the value of

waiting and learning to other players. On the other hand, more players would be unwilling

to mimic the consumption of earlier moving peers, as compared to the late moving players

in the concatenated BHW model we examined. It is thus unclear how changing this would

affect the comparative statics for α; it may cause increasing α to have different and possibly

more harmful effects on social learning outcomes.

Another modeling assumption that stands out is the lack of direct communication. It

may be unrealistic to think of two acquaintances observing whether or not they go to a

movie on opening weekend, but not discussing whether they thought the movie was good

or not (though the assumption is more reasonable for products whose use is more likely to

be publicly observable, such as a cell phone or clothing item). Our primary reason for not

incorporating direct communication in the model is that we wanted to modify the BHWmodel

in a limited way, so the effects of the modifications could be easily seen. However, we are

skeptical that allowing direct communication would change the results drastically regardless,

if other appropriate changes were made to the model as well. We suspect, empirically at

least, individuals who attempt to be opinion leaders may bias their messages to attempt to

convince others to follow their actions, even if the early consumers do not enjoy the product

that much. This would cause the information value of the direct communication from early

consumers to be low. Of course, there would be no point to lying and saying a product was

good when it was in fact bad if the followers would realize this upon consuming the product

themselves. The followers may not realize the product’s quality after consuming it, however,

if there is heterogeneity in ability to evaluate a product’s quality. We are not aware of any

economics papers that model this type of heterogeneity, and think it may be worthy of future
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research.12

Finally, we note we our not fully satisfied with our model’s prediction that people who

consume new products before their peers are generally better informed (although the difference

becomes small as α becomes large). We conjecture that a model with different assumptions

may make the opposite prediction–that while people may attempt to be opinion leaders due

to reputation concerns, this may be a signal of weakness in some contexts, at least to those

who are well informed. Understanding other factors that may drive opinion leader behavior,

and their effects on consumer behavior in general, warrants future research.

A Proof of Proposition 3.2

To simplify notation, let E(π1|x1, I) denote P1’s expectation of P2’s posterior (to period 2)

expectation of π1, conditional on P1 taking actions x1 and any other information P1 may

have, here denoted just I. We now let xi refer to the vector of i’s actions, xi = (xi1, xi2). Let

Pr(G|I) denote P1’s belief that θ = G given his information set I, and note that expected

utility resulting directly from consumption (i.e., non-reputation payoff) is Pr(G) × 1 + (1 −

Pr(G)) × −1 = 2Pr(G) − 1, which we refer to as consumption utility. It is helpful to state

the following lemmas before proceeding.

Lemma A.1. If 0.5 ≤ x < y ≤ 1 and π1 ∼ U [x, y], then: 1) E(π1|s1 = g, θ = G) = E(π1|s1 =

b, θ = B) =
∫ y

x
π2

1
dπ1∫ y

x
π1dπ1

≤ (4/9)x + (5/9)y; 2) E(π1|s1 = b, θ = G) = E(π1|s1 = g, θ = B) =
∫ y

x
π1(1−π1)dπ1∫ y

x
(1−π1)dπ1

≥ (2/3)x + (1/3)y.

Lemma A.2. If 0.5 ≤ x < y < z ≤ 1, then max{

∫ y

x
π1dπ1+

∫ z

y
π1(1−π1)dπ1

∫ y

x
dπ1+

∫ z

y
(1−π1)dπ1

,

∫ y

x
π1dπ1+

∫ z

y
π2

1
dπ1

∫ y

x
dπ1+

∫ z

y
π1dπ1

} ≤

(4/9)x + (5/9)z.

The proofs are fairly straightforward and omitted. The results provide bounds on P2’s

posterior expectation of π1. The first lemma provides bounds for situations in which P1 is

known to follow his signal for π̂1 in the interval [x, y] (for part 1 the signal is “correct”, for

12We are referring to the “emperor’s new clothes” phenomenon–that people may be hesitant to say a
product (endorsed by opinion leaders) is bad even when they thought it was, for fear of gaining losing
reputation due to evaluating the product incorrectly. See ? for an interesting sociology study on this
topic.
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part 2 it is “incorrect”); the second lemma builds off the first, providing bounds for situations

in which P1 pools on the same action when ignoring his signal if π̂1 ∈ [x, y] and following his

signal if π̂1 ∈ [y, z].13

The following is the proof of the proposition, which is done by backward induction: we first

show P1’s behavior in t = 2 as described in the proposition is optimal (given P2’s equilibrium

behavior). We then show P1’s behavior in t = 1 is optimal, given his behavior in t = 2. We

then do the same for P2.

Proof. First consider P1’s decision in t = 2, given x11 = 0. I12 will include one of the four

permutations of the variables x21 and s1. Suppose x21 = 1 and s1 = b. P1 can infer s2 = g.

It is sufficient to show that, given any γ∗1 ∈ [
¯
π, π], there is a γ∗2 ∈ (

¯
π, π) such that,

αE(π1|x12 = 0, x21 = 1, s1 = b) > (=)(<) 2Pr(G|x21 = 1, s1 = b)− 1 +

αE(π1|x12 = 1, x21 = 1, s1 = b) (2)

if and only if π̂1 > (=)(<)γ∗2 , with the expectations taking into account the thresholds γ∗1 and

γ∗2 . That is, there exists a commonly known threshold in which P1 gets a higher expected

payoff from not consuming rather than consuming in t = 2 only if his signal accuracy is higher

than the threshold. We will also show that this threshold is unique (given γ∗1).

Let γ2 be the non-equilibrium analog of γ∗2 (that is, suppose there is common knowledge

P2 chooses x12 = 0 iff π̂1 > γ2), and let φ(γ∗1 , γ2, π̂1) denote the left-hand side (LHS) of (2)

minus the right-hand side (RHS). 2Pr(G|x21 = 1, s1 = b) − 1 is P1’s consumption utility,

which equals = (1−π̂1)π−π̂1(1−π)
(1−π̂1)π+π̂1(1−π) . This expression is strictly decreasing in π̂1 and equal to zero

when π̂1 = π, so it is strictly negative when π̂1 =
¯
π. Thus, when π̂1 =

¯
π, if α is sufficiently

small, then φ(γ∗1 , γ2, π̂1) < 0 for all γ∗1 , γ2 ∈ [
¯
π, π], since the expectation terms are bounded.

It can be shown that P1’s reputation is always higher when he does not consume in t = 2:

E(π1|x12 = 0, x21 = 1, s1 = b) > E(π1|x12 = 1, x21 = 1, s1 = b) for all γ∗1 , γ2 ∈ [
¯
π, π] and

13A sketch of the proof of Lemma A.2 is as follows. Both terms in the max{} expression are first
decreasing in y, then increasing (for y ∈ (x, z)). Thus an upper bound for the expression is attained
when y = x or y = z. It can be shown the expression is highest when y = x, and the bound for the
expression in this case is implied by Lemma A.1.
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π̂1 ≥
¯
π.14 Consequently when π̂1 ≥ π, if α > 0 then φ(.) > 0.

Now let φ∗(γ∗1 , γ2) = φ(γ∗1 , γ2, γ2); φ∗() is just φ() with π̂1 set equal to γ2. The above

arguments still apply: φ∗(γ∗1 , γ2)|γ2=π > 0 and φ∗(γ∗1 , γ2)|γ2=
¯
π < 0, for sufficiently small

α. φ∗(.) is continuous in its arguments so by the Intermediate Value Theorem, there exists

γ∗2 ∈ (
¯
π, π) such that φ∗(γ∗1 , γ

∗
2) = 0. Moreover, if α is sufficiently low, then ∂φ∗(.)

∂γ2
> 0 and

∂φ(.)
∂π̂

> 0, since the partial of 2Pr(G|x21 = 1, s1 = b) − 1 with respect to π̂1 is negative and

bounded below zero and the expectation terms’ partial derivatives with respect to γ2 and π̂1

are bounded.15 This implies a sufficient result for what we wanted to show: for all γ∗1 , there

exists a unique γ∗2 ∈ (
¯
π, π), such that the LHS of (2) equals the RHS if and only if π̂1 = γ∗2

(uniqueness follows from ∂φ∗(.)
∂γ2

> 0) and the LHS of (2) is strictly greater (less) than the RHS

iff π̂1 > (<)γ∗2 (this follows from ∂φ(.)
∂π̂1

> 0).

Now suppose x21 = 1 and s1 = g. Consumption utility is positive when π̂1 =
¯
π, so for α

sufficiently low, φ(.) < 0 when π̂1 =
¯
π and s1 = g. And in this case it can be shown ∂φ(.)

∂π̂1
< 0

for low α; the argument is analogous to the argument for ∂φ(.)
∂π̂1

> 0 if s1 = b. Thus, it is

optimal for P1 to have the strategy x∗12(s1 = g, x11 = 0, x21 = 1) = 1, for all π̂1.

Now suppose x21 = 0. In equilibrium, x∗12(x11 = 0, x21 = 0) = 0, so the following incentive

compatibility constraint must be satisfied (recall that ρ is the off-equilibrium-path E(π1)):

αE(π1|x1 = 0, x2 = 0, s1) > 2Pr(G|x2 = 0, s1)− 1 + αρ. (3)

There are two sub-cases: 1) s1 = b, 2) s1 = g. In sub-case 1, 2Pr(G|I) − 1 is bounded below

zero. Thus the condition will hold for sufficiently low α, since E(π1|x1 = 0, x2 = 0, s1) is

bounded. We address sub-case 2 later in the proof.

Now consider P1’s decisions in t = 1. γ∗2 is exogenous from the perspective of P1 when

14The LHS is clearly strictly greater than γ2, since that is the minimum value of π̂1 for which P1 will
choose x12 = 0 in equilibrium after observing P2 consume in t = 1 and γ2 ≤ π < π̄, and if γ2 ≥ γ∗

1
,

the RHS is weakly less than γ2, which is sufficient. If γ2 < γ∗

1
, then we use the facts that Lemma A.1

implies the LHS is weakly greater than (2/3)γ2 + (1/3)π̄ and Lemma A.2 implies the RHS is weakly
less than (4/9)

¯
π + (5/9)γ∗

1
, which together can be shown to imply the statement is true, given that

γ∗

1
≤ π = 0.5(π̄ +

¯
π).

15Since the derivatives are continuous on the closed interval [
¯
π, π], they must be bounded; this is

easily verified. The signs of the expectation terms’ partial derivatives are very likely consistent with
the sign of the φ() function’s partials, but this is difficult to show. It is sufficient for the proof to
exploit the fact that all the expectation terms are multiplied by α, and so for sufficiently low α the
derivative of the consumption utility term is “dominant”.
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making his decision in t = 1. It is sufficient then to confirm that there exists γ∗1 ∈ (
¯
π, π) such

that for all γ∗2 ∈ [
¯
π, π], if s1 = g, then:

2Pr(G|s1 = g)− 1 + αE(π1|x11 = 1, s1 = g) ≥ (<)

Pr(s2 = g|s1 = g)(2Pr(G|s1 = g, s2 = g)− 1 + αE(π1|x12 = 1, x21 = 1)) +

(1− Pr(s2 = g|s1 = g))max{αE(π1|x1 = 0, x2 = 0), 2Pr(G|s1 = g, s2 = b)− 1 + αρ} (4)

if and only if π̂1 ≥ (<)γ∗1 , with the expectations incorporating γ∗1 , γ
∗
2 . The LHS is P1’s

expected payoff from consuming in t = 1. The RHS is the expected payoff from not consuming

in t = 1. The first term of the RHS uses the fact shown above that if x21 = 1 then (for small

enough α) P1 will optimally choose x12 = 1, given s1 = g, for all π̂1. The second term (the

max term) allows for the fact that it may be optimal for P1 to consume in t = 2 even if

x11 = x21 = 0, although this does not occur in equilibrium.

When π̂1 =
¯
π, there is a gain in consumption utility from waiting/learning: 2Pr(G|s1 =

g)− 1 < Pr(s2 = g|s1 = g)(2Pr(G|s1 = g, s2 = g)− 1). Thus, if π̂1 =
¯
π, for sufficiently low α

the RHS of (4) is greater than the LHS, since all the expectation terms are bounded, making

x11 = 0 optimal. To analyze optimal behavior for higher π̂1, we consider two cases for the max

term of (4) in turn. In case one, for some π̂1 ∈ (
¯
π, π], αE(π1|x1 = 0, x2 = 0) ≤ 2Pr(G|s1 =

g, s2 = b) − 1 + αρ. Let π̂′
1 >

¯
π denote the minimum value of π̂ such that this inequality

holds (the inequality can be assured to be strict by α being sufficiently small). In this case P1

has no change in consumption utility from waiting until t = 2, since P1 consumes the good

regardless of what P2 does in t = 1. And it can be shown that P1 does gain reputation from

consuming in t = 1 for all π̂1 ∈ [
¯
π, π̄]: E(π1|x11 = 1, s1 = g) > Pr(s2 = g|s1 = g)E(π1|x12 =

1, I2) + (1 − Pr(s2 = g|s1 = g))ρ.16 So it will be optimal for P1 to consume in t = 1 if

π̂1 = π̂′
1. Also, 2Pr(G|s1 = g, s2 = b) is increasing in π̂1, while E(π1|x1 = 0, x2 = 0) is

independent of π̂1 (since P2 will only condition her posterior on s2 and x1), so it must be

true that αE(π1|x1 = 0, x2 = 0) ≤ 2Pr(G|s1 = g, s2 = b) − 1 + αρ for all π̂1 ≥ π̂′
1. Thus,

16The LHS can be shown to be greater than (7/12)γ∗

1
+(5/12)π̄ using Lemma A.1 and the facts that

E(π1|x11 = 1, G) > 0.5(γ∗

1
+ π̄) and Pr(G|s1 = g) > 0.5, given π̂1 >

¯
π ≥ 0.5. Lemma A.2 implies

E(π1|x12 = 1, x21 = 1) ≤ (4/9)
¯
π+(5/9)π, so the RHS in total is less than 0.5((4/9)

¯
π+(5/9)π)+ 0.5π

since ρ ≤ π. Together, these are sufficient.
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the LHS of (4) is strictly greater than the RHS and P1 will prefer x11 = 1 for all π̂1 ≥ π̂′
1,

and so if there exists a γ∗1 that satisfies (4), it must be weakly less than π̂′
1. Note that this

result implies that if the constraint of (3) would be violated (π̂1 sufficiently high and s1 = g)

this information set is never reached in equilibrium as P1 will choose x11 = 1. This addresses

what was referred to as sub-case 2 above.

In the second case, ∀π̂1 ∈ [
¯
π, π], αE(π1|x1 = 0, x2 = 0) > 2Pr(G|s1 = g, s2 = b)− 1 + αρ.

It can be shown that there is always a reputation gain from being a first mover (E(π1|x11 =

1, s1 = g) > Pr(s2 = g|s1 = g)E(π1|x12 = 1, x21 = 1) + (1 − Pr(s2 = g|s1 = g))E(π1|x1 =

0, x2 = 0)),17 and there is no gain in consumption utility if π̂1 = π, as 2Pr(G|s1 = g) − 1 =

Pr(s2 = g|s1 = g)(2Pr(G|s1 = g, s2 = g)− 1. Thus, if π̂1 = π, the LHS of (4) is greater than

the RHS and P1 will prefer x11 = 1. Moreover, the LHS consumption utility minus that of

the RHS, 2Pr(G|s1 = g) − 1− Pr(s2 = g|s1 = g)(2Pr(G|s1 = g, s2 = g)− 1) is increasing in

π̂1 and the derivative is bounded above zero, and the derivative of the reputation terms with

respect to π̂1 is bounded. (It is almost certainly true, but difficult to show, that the derivative

of the LHS minus the RHS of (4), in total, is increasing in π̂1 as well.) Thus, we can make an

argument similar to the one above using the φ() and φ∗() functions that for sufficiently small

α and any γ∗2 ∈ [
¯
π, π], there is a unique γ∗1 ∈ (

¯
π, π) such that (4) is satisfied.18 Moreover,

returning to case one, this same argument can be used to show there either exists γ∗1 ∈ (
¯
π, π̂′

1)

such that (4) is satisfied, or if not, γ∗1 = π̂′
1, and (4) is still satisfied, as the LHS of (4) is larger

than the RHS only if π̂1 ≥ γ∗1 .

Thus, we have shown that for small α, for any γ∗2 ∈ [
¯
π, π], there is a unique γ∗1 ∈ (

¯
π, π)

such that (4) holds, and that for any γ∗1 ∈ [
¯
π, π], there is a unique γ∗2 ∈ (

¯
π, π) such that (2)

holds. We now make a fixed point argument to show there exists a pair, (γ∗1 , γ
∗
2), such that

both (4) and (2) hold. Define a function g2 : [
¯
π, π] → (

¯
π, π) by g2(γ

∗
1) = γ∗2 . We need to

show that this function is continuous on [
¯
π, π]. While it may be possible to use the Inverse

17As noted in the previous footnote, the LHS is greater than (7/12)γ∗

1
+ (5/12)π̄ and E(π1|x12 =

1, x21 = 1) is less than (4/9)
¯
π + (5/9)π. E(π1|x1 = 0, x2 = 0) is the tricky term. We can again use

Lemma A.2, however, to show it has an upper bound, (4/9)
¯
π + (5/9)π̄, since E(π1|x1 = 0, x2 = 0) is

first decreasing then increasing in γ∗

1
, and is greater when γ∗

1
=

¯
π and π = 1 than when γ∗

1
= π̄. This

can be used to show the result, using the facts that Pr(s2 = g|s1 = g) > 0.5 and γ∗

2
< 0.5(

¯
π + π̄).

18The arguments made in the previous two footnotes that refer to γ∗

1
also apply to a non-equilibrium

analog γ1 ∈ (
¯
π, π), which is necessary for the φ()/φ∗() argument above to be used.

21



/ Implicit Function Theorems for this purpose, as commonly stated these are for open sets,

and thus do not allow us to account for behavior on the boundary.

Lemma A.3. The function g2 is continuous on the closed interval [
¯
π, π].

Proof. For each positive integer n let δn = 1/n. Suppose g2 is not continuous at some

x0 ∈ [
¯
π, π]. Thus there is an ǫ > 0 such that for all positive integers n there is an xn ∈ [

¯
π, π]

such that |xn − x0| < δn but |g2(xn)− g2(x0)| ≥ ǫ.

As shown above, for each xn there is a unique yn ∈ [
¯
π, π] such that φ∗(xn, yn) = 0; thus

yn = g2(xn), and by assumption |yn−g2(x0)| ≥ ǫ. As δn → 0, xn → x0. Consider the sequence

{yn}
∞
n=1. As each yn ∈ [

¯
π, π] (a compact set), it must have a subsequence that converges, say

ynk
→ y0; as each ynk

is at least ǫ from g2(x0), so too is y0 (i.e., |y0 − g2(x0)| ≥ ǫ). As φ∗ is

continuous,

lim
k→∞

φ∗(xnk
, ynk

) = φ∗(x0, y0);

however, φ∗(xnk
, ynk

) = 0 for all k, thus φ∗(x0, y0) = 0. This is a contradiction, as we

know for any x there is a unique y such that φ∗(x, y) = 0; for the point x0, we now have

φ∗(x0, g2(x0)) = 0 and φ∗(x0, y0) = 0 with y0 6= g2(x0). Thus the function g2 is continuous in

the closed interval [
¯
π, π].

An analogous argument can be made for the existence of a continuous function g1 : [
¯
π, π] →

(
¯
π, π) such that g1(γ

∗
2) = γ∗1 . Thus, g1(g2(x)) is a continuous function of x, and g1(g2(

¯
π))−

¯
π >

0 and g1(g2(π))−π < 0, so there exists a γ∗1 ∈ (
¯
π, π) such that g1(g2(γ

∗
1)) = γ∗1 . If γ

∗
2 = g2(γ

∗
1),

then both (4) and (2) hold given the threshold pair (γ∗1 , γ
∗
2).

Now consider P1’s decision in t = 1 if s1 = b. If π̂1 =
¯
π, (4) is unchanged, so x11 = 0 must

still be optimal. And increasing π̂1 causes the consumption utility terms in (4) to change in

the opposite direction (as compared to the case of s1 = g), so the RHS of (4) must be greater

than the LHS for all π̂1 for sufficiently low α, implying x∗11(b) = 0 is optimal for all π̂1.

Finally, we check the strategy of P2. It is similar to the case in which α = 0. In t = 2,

it is optimal to play x22 = 1 if x11 = 1 − x21 = 1 and s2 = b, since P2 infers P1 has a more

informative signal (since π̂1 ≥ γ∗1 >
¯
π) and s1 = g. And if s2 = g and x11 = 0, it is easily
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shown it is optimal to play x21 = 1, from the reasoning provided in the proof of Lemma 3.1,

so P2 has no incentive to wait if s2 = g.

B Signal sequences that lead to information cascades

The following presents the various sequences of signals that lead to the formation of herding

on consumption and on non-consumption. The sequences are presented for the different cases

of P1’s signal accuracy and realization, so the first element of each sequence (after s1) is P2’s

signal, the second element (for sequences with two or more elements) is the signal of the first

player in the BHW model, the third is the signal of the second BHW player, etc. For example,

the sequence g implies a herd starts when P2 obtains the signal g, the sequence bg implies a

herd starts when P2 has signal b and the first player in the BHW model has signal g, etc. The

corresponding probabilities are fairly straightforward to calculate and the details are omitted.

1. Herding on consumption (probabilities calculated conditional on θ = B)

a) π̂1 ≥ γ∗1 , s1 = g: g, bg, bbgg, bbgbgg, bbgbgbgg, ...

b) π̂1 ≥ γ∗2 , s1 = b: ggg, ggbgg, ggbgbgg, ...

c) π̂1 < γ∗1 , s1 = g or π̂1 ≤ γ∗2 , s1 = b: gg, gbgg, gbgbgg, ...

2. Herding on non-consumption (probabilities calculated conditional on θ = G)

a) π̂1 ≥ γ∗1 , s1 = g: bbb, bbgbb, bbgbgbb, ...

b) π̂1 ≥ γ∗2 , s1 = b: b, gb, ggbb, ggbgbb, ...

c) π̂1 < γ∗1 , s1 = g or π̂1 ≤ γ∗2 , s1 = b: b, gbb, gbgbb, ...
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