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Abstract. Zeckendorf’s theorem states that every positive integer can be uniquely decom-
posed as a sum of nonconsecutive Fibonacci numbers, where the Fibonacci numbers satisfy
Fn = Fn−1 + Fn−2 for n ≥ 3, F1 = 1 and F2 = 2. The distribution of the number of
summands in such decomposition converges to a Gaussian, the gaps between summands
converges to geometric decay, and the distribution of the longest gap is similar to that of
the longest run of heads in a biased coin; these results also hold more generally, though for
technical reasons previous work needed to assume the coefficients in the recurrence relation
are non-negative and the first term is positive.

We extend these results by creating an infinite family of integer sequences called the m-
gonal sequences arising from a geometric construction using circumscribed m-gons. They
satisfy a recurrence where the first m+ 1 leading terms vanish, and thus cannot be handled
by existing techniques. We provide a notion of a legal decomposition, and prove that the
decompositions exist and are unique. We then examine the distribution of the number of
summands used in the decompositions and prove that it displays Gaussian behavior. There
is geometric decay in the distribution of gaps, both for gaps taken from all integers in an
interval and almost surely in distribution for the individual gap measures associated to each
integer in the interval. We end by proving that the distribution of the longest gap between
summands is strongly concentrated about its mean, behaving similarly as in the longest run
of heads in tosses of a coin.

1. Introduction

The Fibonacci numbers are a heavily studied sequence which arise in many different ways
and places. By defining them by F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1, we have the
remarkable property that every positive integer can be uniquely written as a sum of non-
consecutive Fibonacci numbers; further, this property is equivalent to the Fibonaccis (i.e., if
{an} is a sequence of numbers such that every integer can be written uniquely as a sum of
non-adjacent terms in the sequence, then an = Fn). Zeckendorf proved this in 1939, though
he did not publish this result until 1972 [Ze].
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In recent years many have studied generalizations to Zeckendorf’s theorem by exploring
different notions of decompositions and the properties of the associated sequences, see among
others [Al, Day, DDKMMV, DDKMV, DG, FGNPT, GT, GTNP, Ke, Len, MW1, MW2,
Ste1, Ste2]. Despite the vast literature in this area, the majority of the research on generalized
Zeckendorf decompositions have involved sequences with positive linear recurrences. Positive
linear recurrence sequences {Gn} satisfy a linear recurrence relation where the coefficients
are non-negative with the first and last term coefficients being positive1.

There has been little research which considers cases where the leading coefficient in the
recurrence is zero; one such case is found in [CFHMN1]. They studied what they call the
Kentucky Sequence, which is defined by the recurrence relationHn+1 = Hn−1+2Hn−3, Hi = i
for i ≤ 4. While the behavior there is similar to the positive linear recurrences, there are
sequences with very different behavior. One such is the Fibonacci Quilt, which arises from
creating a decomposition rule from the Fibonacci spiral2 (see [CFHMN2, CFHMN3]), where
the number of decompositions is not unique but in fact grows exponentially. This leads
to the major motivation of this paper (as well as the motivation for the three papers just
mentioned): how important is the assumption that the leading term be positive? The work
mentioned above shows that it is not just a technically convenient assumption; markedly
different behavior can emerge. Our goal is to try and determine when we have each type of
behavior, and thus the purpose of this paper is to explore infinitely many recurrences with
leading term absent and see the effect that has on the properties of the decompositions.

Specifically, we consider an infinite family of integer sequences called the m-gonal se-
quences, where m ≥ 3. These sequences arise from a geometric construction using circum-
scribed m-gons, and after defining them below we state our results.

1.1. Definition of m-gonal Sequence. One interpretation of the Zeckendorf’s theorem,
which state that every positive integer can be written uniquely as a sum of non-consecutive
Fibonacci numbers, is that we have infinitely many bins with just one number per bin, and
if we choose a bin to contribute a summand to a number’s decomposition then we cannot
choose a summand from an adjacent bin. We can generalize to bins with more elements, as
well as disallowing two bins to be used if they are within a given distance (see [CFHMN1,
CFHMN2, CFHMN3]). The m-gonal sequences are similar to these constructions, but have
a two-dimensional structure arising from circumscribing m-gons about one central m-gon.

Briefly we view the decomposition rule corresponding to the m-gonal sequence, for m ≥ 1,
by saying the sequence is partitioned into bins bi of length |bi|, where |b0| = 1 and |bi| = m
for all i ≥ 1. A valid decomposition has no two summands being elements from the same
bin. We refer to this decomposition as a legal m-gonal decomposition of a positive integer z.
We now give details and examples of this construction.

The m-gonal sequence was initially constructed by circumscribing m-gons. For m ≥ 3 we
let M0 denote a regular m-gon. Circumscribe the m-gon M1 onto M0 such that the vertices
of M0 bisect the edges of M1. Note that this adds m faces to the resulting figure. We
continue this process indefinitely, where we circumscribe the m-gon Mi onto Mi−1, such that
the vertices of Mi−1 bisect the edges of Mi. At each step we have added an additional m

1Thus Gn+1 = c1Gn + · · ·+ cLGn−(L−1) with c1cL > 0 and ci ≥ 0.
2Let fn = Fn−1, the standard definition of the Fibonacci numbers. Then the plane can be tiled in a spiral

where the dimensions of the nth square is fn × fn; we declare a decomposition legal if no two summands
used share an edge.
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faces to the resulting figure. We depict these initial iterations in Figure 1. LetM denote all
of the faces created through the process of circumscribing m-gons. Then

M = {f0} ∪

(
∞⋃
i=1

{f(i, 1), f(i, 2), . . . , f(i,m)}

)
, (1.1)

where f0 is the face of the m-gon M0 and for i ≥ 1, f(i, 1), f(i, 2), . . . , f(i,m) are the faces
added toM when Mi was circumscribed onto Mi−1.

Figure 1. Circumscribed m-gons

Fix an integer m ≥ 3. Suppose {an}∞n=0 is an increasing sequence of positive integers.
We define the following ordered lists, which we refer to as bins, b0 = [a0] and for i ≥ 1,
bi = [am(i−1)+1, am(i−1)+2, . . . , ami]. Note that for all i ≥ 1, bi has size m and b0 has size one.
The integers in bin bi will correspond directly with the integers which we place on the faces
added to M when Mi was circumscribed onto Mi−1. With the elements of our sequence
partitioned into bins, we define a legal m-gonal decomposition of any positive integer z. If
we have

z = a`t + a`t−1 + · · ·+ a`2 + a`1 , (1.2)
where `1 < `2 < · · · < `t and {a`j , a`j+1

} 6⊂ bi for any i ≥ 0 and 1 ≤ j ≤ t − 1, then we
call this a legal m-gonal decomposition of z. Namely, a legal m-gonal decomposition cannot
use more than one summand from the same bin. And with the generalized construction
of the sequence by partitioning the members into bins rather than relying solely on the
2-dimensional circumscribed polygons, we make it a formal definition for m ≥ 1.

Definition 1.1. Let an increasing sequence of positive integers {an}∞n=0 be given and partition
the elements into ordered lists that we call bins

bk := [am(k−1)+1, am(k−1)+2, . . . , amk] (1.3)

for m ≥ 1, k ≥ 1, and b0 = [a0]. We declare a decomposition of an integer

z = a`t + a`t−1 + · · ·+ a`1 (1.4)

where `1 < `2 < · · · < `t and {a`j , a`j+1
} 6⊂ bi for any i, j to be a legalm-gonal decomposition.

The following definition details the construction of the m-gonal sequence, which is the
focus of this paper.

Definition 1.2. For m ≥ 1, an increasing sequence of positive integers {an}∞n=0 is called an
m-gonal sequence if every ai (i ≥ 0) is the smallest positive integer that does not have a legal
m-gonal decomposition using the elements {a0, a1, . . . , ai−1}.
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Example 1.3. For m = 1, all the bins have size 1 and the 1-gonal sequence {ai}∞i=0 is defined
by ai = 2i. This is equivalent to writing an integer in binary. When m = 2 we have bins
bi = [a2i−1, a2i] for i ≥ 1 and b0 = [a0]. The first few terms of the sequence are

1
b0

, 2, 4

b1

, 6, 12

b2

, 18, 36

b3

, 54, 108

b4

, 162, 324

b5

, . . . .

In the case where m = 3 the triangle (3-gonal) sequence begins with the terms

1
b0

, 2, 4, 6

b1

, 8, 16, 24

b2

, 32, 64, 96

b3

, 128, 256, 384

b4

, 512, 1024, 1536

b5

, . . . .

Figure 2 gives a visualization of the beginning of the triangle sequence when the integers are
placed in the faces of the circumscribed triangles. Moreover, we note that the triangles used
need not be equilateral.

12 4

6
8

16

24

Figure 2. Beginning of triangle sequence

Also one can observe that the triangle decomposition of 2015 is given by

2015 = a15 + a12 + a6 + a3 + a0 = 1536 + 384 + 64 + 24 + 6 + 1. (1.5)

In Section 2 we derive the recurrence relation and explicit closed form expressions for the
terms of the the m-gonal sequence, which we state below.

Theorem 1.4. Let m ≥ 1. If {an}∞n=0 is the m-gonal sequence, then

an =


1 if n = 0

2n if 1 ≤ n ≤ m

(m+ 1)an−m if n > m.

(1.6)

Then for n ≥ 1, with n = km+ r, k ≥ 0 and 1 ≤ r ≤ m

an = 2r(m+ 1)k . (1.7)

1.2. Uniqueness of Decomposition. Notice that for m ≥ 2, the recurrence given in
Theorem 1.4 is not a positive linear recurrence as the leading coefficients of the first m terms
are zero. Therefore past results on positive linear recurrences do not apply to the m-gonal
sequence; however, we do still obtain unique decomposition.

Theorem 1.5 (Uniqueness of decompositions). Fix m ≥ 1. Every positive integer can
be written uniquely as a sum of distinct terms from the m-gonal sequence, where no two
summands are in the same bin.

A proof of Theorem 1.5 is given in Appendix A.
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1.3. Gaussianity. Previous work with positive linear recurrence sequences proved the num-
ber of summands in the decomposition of positive integers converges to a Gaussian (see
among others [DDKMMV, MW2]). The same holds for Kentucky decompositions despite
the fact that the Kentucky sequence is not a positive linear recurrence [CFHMN1], and also
for the m-gonal sequences.

Theorem 1.6 (Gaussian Behavior of Summands). Let the random variable Yn denote the
number of summands in the (unique) m-gonal decomposition of an integer picked at random
from [0, amn+1) with uniform probability.3 Normalize Yn to Y ′n = (Yn−µn)/σn, where µn and
σn are the mean and variance of Yn respectively. Then

µn =
mn

m+ 1
+

1

2
, σ2

n =
mn

(m+ 1)2
+

1

4
, (1.8)

and Y ′n converges in distribution to the standard normal distribution as n→∞.

The proof of Theorem 1.6 is given in Section 3.

1.4. Gaps between summands. Another property studied of positive linear recurrence
sequences is the behavior of the gaps between adjacent summands in decompositions, where,
in many instances, it has been shown that there is exponential decay in the distribution of
gaps, see [BBGILMT, B-AM, BILMT].4 Similarly, the Kentucky Sequence displays exponen-
tial decay in the distribution of gaps [CFHMN1]. We obtain similar behavior again, though
now there is a slight dependence on the residue of gap modulo m (if we split by residue we
obtain geometric decay).

Before stating our result we first fix some notation. For the legal m-gonal decomposition

z = a`k + a`k−1
+ · · ·+ a`1 with `1 < `2 < · · · < `k (1.9)

and z ∈ [0, amn+1), we define the multiset of gaps as follows:

Gapsn(z) := {`2 − `1, `3 − `2, . . . , `k − `k−1}. (1.10)

Observe that we do not consider `1 − 0, as a gap. However, doing so would not affect the
limiting behavior. For example, notice z = a15 + a12 + a6 + a3 + a0 contributes three gaps of
length 3, and one gap of length 6.

Considering all the gaps between summands in legal m-gonal decompositions of all z ∈
[0, amn+1), we let Pn(g) be the fraction of all these gaps that are of length g. That is, Pn(g)
is the probability of a gap of length g among legal m-gonal decompositions of z ∈ [0, amn+1).

Theorem 1.7 (Average Gap Measure). Let g = mα+ β, where α ≥ 0 and 0 ≤ β < m. For
Pn(g) as defined above, the limit P (g) := limn→∞ Pn(g) exists, and

P (g) =

{
β

m(m+1)
if α = 0

m+1−β
(m+1)α+1 if α > 0.

(1.11)

3Using the methods of [BDEMMTTW], these results can be extended to hold almost surely for a suffi-
ciently large sub-interval of [0, amn+1).

4The proofs involve technical arguments concerning roots of polynomials associated to the recurrence; in
many cases one needs to assume all the recurrence coefficients are positive.
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The proof for Theorem 1.7 is given in Section 4.
Via an application of [DFFHMPP, Theorem 1.1] we extract a result on individual gaps for

the m-gonal case. In order to state the theorem, we need the following definitions, as were
presented in [DFFHMPP], but specialized to the m-gonal case. Let {an} denote the m-gonal
sequence with its unique decomposition as given in Definition 1.1. Let In := [0, amn+1) for
all n > 0 and let δ(x− a) denotes the Dirac delta functional, assigning a mass of 1 to x = a
and 0 otherwise.

• Spacing gap measure: We define the spacing gap measure of a z ∈ In with k(z)
summands as

νz,n(x) :=
1

k(z)− 1

k(z)∑
j=2

δ(x− (`j − `j−1)). (1.12)

• Average spacing gap measure: Note that the total number of gaps for all z ∈ In is

Ngaps(n) :=

amn+1−1∑
z=a0

(k(z)− 1). (1.13)

The average spacing gap measure for all z ∈ In is

νn(x) :=
1

Ngaps(n)

amn+1−1∑
z=a0

k(z)∑
j=2

δ (x− (`j − `j−1))

=
1

Ngaps(n)

amn+1−1∑
z=a0

(k(z)− 1) νz,n(x). (1.14)

Letting Pn(g) denote the probability of a gap of length g among all gaps from the
decompositions of all z ∈ In, we have

νn(x) =
mn∑
g=0

Pn(g)δ(x− g). (1.15)

• Limiting average spacing gap measure, limiting gap probabilities: If the limits exist,
we let

ν(x) = lim
n→∞

νn(x), P (k) = lim
n→∞

Pn(k). (1.16)

• Indicator function for two gaps: For g1, g2 ≥ 0

Xj1,j1+g1,j2,j2+g2(n) := #
{
z ∈ In :

aj1 ,aj1+g1 ,aj2 ,aj2+g2 in z’s decomposition,
but not aj1+q ,aj2+p for 0<q<g1,0<p<g2

}
. (1.17)

• Specific gap length probability: Recall that Pn(g) is the probability

Pn(g) :=
1

Ngaps(n)

mn+1−g∑
i=1

Xi,i+g(n). (1.18)

Now can now state the result of the individual gap measure for the m-gonal case.

Theorem 1.8 (Individual Gap Measure). For z ∈ In, the individual gap measures νz,n(x)
converge almost surely in distribution to the limiting gap measure ν(x).

We give a proof of Theorem 1.8 in Section 5.
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1.5. Longest Gap. Another interesting problem is to determine the distribution of the
longest gap between summands as n → ∞. The structure of the legal m-gonal decomposi-
tions allows us to easily prove the following.

Theorem 1.9 (Distribution of the Longest Gap). Consider the m-gonal sequence {an}.
Then as n → ∞ the mean of the longest gap between summands in legal m-gonal decompo-
sitions of integers in [an, an+1) is m log2(n/2m) +Om(1), and the variance is Om(1).

The proof of Theorem 1.9 is given in Section 6 and bypasses many of the technical argu-
ments used in [BILMT]. There the authors had to deduce properties of somewhat general
associated polynomials; the nature of the legal m-gonal decompositions here allows us to
immediately convert this problem to a simple generalization of the longest run of heads
problem.

2. Recurrence relations and generating functions

Let m ≥ 1. We can use the division algorithm to observe that the integer amk+r is the rth

integer in the bin bk+1 for mk + r ≥ 1. Hence 1 ≤ r ≤ m denotes the location of the integer
within its bin. We let the first bin b0 contain the element a0 = 1. Then for any k ≥ 0, we
let bk+1 denote the set of elements of the (k + 1)th bin. Namely

a0
b0

, a1, a2, . . . , am
b1

, am+1, am+2, . . . , a2m
b2

, . . . , amk+1, amk+2, . . . , am(k+1)

bk+1

, . . . . (2.1)

We can now begin our work in describing the terms of this sequence.
The following result, which follows immediately from the definition, is used in many of

the proofs in this section. We record it here for easy reference.

Definition 2.1. Let Ωn denote the integer with summands from each bin b0, b1, b2, . . . , bn.
Then

Ωn =
n∑
i=0

ami. (2.2)

The first result that makes use of Definition 2.1 is given below.

Lemma 2.2. Let m ≥ 1 and k ≥ 1. If amk+1 is the first entry in bin bk+1, then amk+1 =
amk + am(k−1)+1.

Proof. We note that since amk+1 and am(k−1)+1 are the first numbers in the bins bk+1 and bk,
respectively, by Equation (2.2) we have that

amk+1 = 1 + Ωk = 1 +
k∑
i=0

ami (2.3)

am(k−1)+1 = 1 + Ωk−1 = 1 +
k−1∑
i=0

ami. (2.4)

Then Equations (2.3) and (2.4) yield

amk+1 = 1 + Ωk = 1 + amk + Ωk−1 = amk + (1 + Ωk−1) = amk + am(k−1)+1, (2.5)

as claimed. �
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We now prove the more general result.

Lemma 2.3. If k ≥ 0 and 1 ≤ r ≤ m, then amk+r = r · amk+1.

Proof. First consider the bin b1. As b0 = [a0] = 1, by construction of the m-gonal sequence
it is straightforward to determine that b1 = [2, 4, . . . , 2m] and ar = r · a1 for all 1 ≤ r ≤ m.

We proceed for bins bk with k ≥ 1 by induction on r, where 1 ≤ r ≤ m. The basis case
when r = 1 clearly holds.
Let 1 ≤ x ≤ m− 1 and assume that for any 1 ≤ r ≤ x, we have that amk+r = r · amk+1. We
want to show that amk+x+1 = (x+1)amk+1. Recall that amk+x+1 is the entry in bin bk+1 after
amk+x and by definition amk+x+1 is one more than the largest integer we can create using the
elements of bins b0, b1, . . . , bk along with the element amk+x. Using Equation (2.2), we have
that

amk+x+1 = 1 + amk+x + Ωk = 1 + amk+x +
k∑
i=0

ami. (2.6)

Recalling that 1 + Ωk = amk+1 and by the use of the induction hypothesis, Equation (2.6)
yields

amk+x+1 = amk+x + amk+1 = xamk+1 + amk+1 = (x+ 1)amk+1. (2.7)
�

We now provide a closed formula for the terms of the m-gonal sequence.

Proposition 2.4. Let m ≥ 2, k ≥ 0, and 1 ≤ r ≤ m. Then amk+r = 2r(m + 1)k. For
m = 1, ai = 2i.

Proof. For the case where m = 1, each of our bins have size 1 and a legal decomposition
has distinct summands. Thus the rule for legal decomposition is precisely a description of
writing the positive integers in binary.

We will proceed by induction on k, the subscript on the bin, and r, the location of amk+r
within the bin considered. The basis case k = 0 and r = 1 gives the expected result,
am·0+1 = 2(1)(m+ 1)0 = 2. We now assume that for some k ≥ 0 and some r, 1 ≤ r ≤ m, we
have

amk+r = 2r(m+ 1)k. (2.8)
We need to show that the following two equations hold:

amk+r+1 = 2(r + 1)(m+ 1)k (2.9)

am(k+1)+r = 2r(m+ 1)k+1. (2.10)

Suppose that 1 ≤ r ≤ m − 1. To show Equation (2.9) holds it suffices to observe that by
Lemma 2.3 and our induction hypothesis we have

amk+r+1 = (r + 1)amk+1 = (r + 1) · 2(1)(m+ 1)k = 2(r + 1)(m+ 1)k. (2.11)

When r = m, we use Lemma 2.2 and our induction hypothesis to quickly deduce

amk+m+1 = 2(m+ 1)k+1. (2.12)
By iterating (2.11) till r = m − 1, we find that (2.12) holds. Then (2.10) holds by

Lemma 2.3. �
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The final result gives the recurrence relation stated in Theorem 1.4.

Corollary 2.5. If n > m, then an = (m+ 1)an−m.

Proof. Let n > m and write n = mk + r, where k ≥ 1 and 1 ≤ r ≤ m. By Proposition 2.4,
an = amk+r = 2r(m + 1)k and an−m = am(k−1)+r = 2r(m + 1)k−1. So it directly follows that
an = (m+ 1)an−m. �

2.1. Counting integers with exactly k summands. In [KKMW], Koloğlu, Kopp, Miller
and Wang introduced a very useful combinatorial perspective to attack Zeckendorf decom-
position problems by partitioning the integers z ∈ [Fn, Fn+1) into sets based on the number
of summands in their Zeckendorf decomposition. We use a similar technique to prove that
the distribution of the average number of summands in the m-gonal decomposition displays
Gaussian behavior.

let pn,k denote the number of integers in In := [0, amn+1) whose m-gonal decomposition
contains exactly k summands, where k ≥ 0. We begin our analysis with the following result.

Proposition 2.6. If n, k ≥ 0, then

pn,k =


1 if k = 0

mk
(
n
k

)
+mk−1( n

k−1

)
if 1 ≤ k ≤ n+ 1

0 if k > n+ 1.

(2.13)

Proof. Let n, k ≥ 0. Observe that the unique integer in the interval In = [0, amn+1) which
has zero summands is zero itself. Thus pn,0 = 1. Now if k is larger than the number of
available bins, it would be impossible to have k summands as one can draw no more than
one summand per bin. Therefore pn,k = 0, whenever k > n+ 1.

We now show that for 1 ≤ k ≤ n + 1, pn,k = mk
(
n
k

)
+ mk−1( n

k−1

)
. There are two cases to

consider:
Case 1. One of the k summands is chosen from b0.
Case 2. None of the k summands are chosen from b0.

Case 1. Since one of the k summands is coming from b0 there are k− 1 available summands
to take from the bins b1, . . . , bn. The number of ways to select k − 1 bins from n bins is(
n
k−1

)
. As each of the bins b1, . . . , bn has exactly m elements and |b0| = 1, once the (k − 1)

bins are selected, the number of ways to select an element from these bins is mk−1. Thus
the number of z ∈ In which have exactly k summands with one summand coming from bin
b0 is mk−1( n

k−1

)
.

Case 2. We choose k summands from any bin but b0. Using a similar argument as in Case
1, we can see that the total number of ways to select these k summands is mk

(
n
k

)
.

As the two cases are disjoint, we have shown that the total number of integers in the
interval In with exactly k summands is

pn,k = mk

(
n

k

)
+mk−1

(
n

k − 1

)
. (2.14)

�

We also provide a recursive formula for the value of pn,k as it is used in the proof of
Proposition 2.8.
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Proposition 2.7. If 0 < k < n+ 1, then pn,k = mpn−1,k−1 + pn−1,k.

We omit the proof of Proposition 2.7 as it is a straightforward application of the combi-
natorial identity

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. With the recursive formula at hand, we now create a

generating function for pn,k.

Proposition 2.8. Let
F (x, y) :=

∑
n,k≥0

pn,kx
nyk (2.15)

be the generating function of the pn,k’s arising from m-gonal decompositions. Then

F (x, y) =
1 + y

1− (my + 1)x
. (2.16)

Proof. Noting that pn,k = 0 if either n < 0 or k < 0, using explicit values of pn,k and the
recurrence relation from Proposition 2.7, after some straightforward algebra we obtain

F (x, y) = mxyF (x, y) + xF (x, y) + 1 + y. (2.17)

From this, Equation (2.16) follows. �

3. Gaussian behavior

To motivate this section’s main result, we point the reader to the following experimental
observations. Taking samples of 200,000 integers from the intervals [0, 2(4)600), [0, 2(5)600),
[0, 2(6)600) and [0, 2(7)600), in Figure 3 we provide a histogram for the distribution of the
number of summands in the m-gonal decomposition of these integers, when m = 3, 4, 5 and
6, respectively. Moreover, Figure 3 provides the histograms and Gaussian curves (associated
to the respective value of m and n; the interval is [0, amn+1) so n = 600 in all experiments).
In Table 1 we give the values of the predicted means and variances (as computed using
Proposition 3.2), as well as the sample means and variances, for each of the cases considered.

Figure m Predicted Mean Sample Mean Predicted Variance Sample Variance
3a 3 450.50 450.49 112.75 112.34
3b 4 480.50 480.52 96.25 95.73
3c 5 500.50 450.49 83.58 83.38
3d 6 514.79 514.76 73.72 73.64

Table 1. Predicted means and variances versus sample means and variances
for simulation from Figure 3.

From these observations it is expected that for any m ≥ 1, the distribution of the number
of summands in the m-gonal decompositions of integers in the interval In displays Gaussian
behavior. This is in fact the statement of Theorem 1.6. We begin by proving a technical
result and follow it with the formulas for the mean and variance, which make use of some
properties associated with the generating function for the pn,k’s.

Proposition 3.1. If gn(y) denotes the coefficient of xn in F (x, y), then

gn(y) = (1 + y)(my + 1)n. (3.1)
10
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Figure 3. Distributions for the number of summands in the m-gonal decom-
position for a random sample with n = 600.

Proof. Using the fact that F (x, y) = 1+y
1−mxy−x we have by geometric series that

F (x, y) =
∞∑
n=0

(1 + y)(my + 1)nxn. (3.2)

Thus the coefficient of xn in F (x, y) is (1 + y)(my + 1)n. �

We can now use gn(y) to find the mean and variance for the number of summands for
integers z ∈ In.

Proposition 3.2. Let Yn be the number of summands in the m-gonal decomposition of a
randomly chosen integer in the interval In, where each integer has an equal probability of
being chosen. Let µn and σ2

n denote the mean and variance of Yn. Then

µn =
nm

m+ 1
+

1

2
, σ2

n =
nm

(m+ 1)2
+

1

4
. (3.3)

Proof. By Propositions 4.7 annd 4.8 in [DDKMMV] the mean and variance of Yn are

µn =
n∑
i=0

iP (Yn = i) =
n∑
i=0

i
pn,i
n∑
k=0

pn,k

=
g′n(1)

gn(1)
, and (3.4)

σ2
n =

n∑
i=0

(i− µn)2P (Yn = i) =
n∑
i=0

i2
pn,i
n∑
k=0

pn,k

− µ2
n =

d
dy

[yg′n(y)]|y=1

gn(1)
− µ2

n. (3.5)

Our result follows directly from these formulas and the fact that gn(y) = (1+y)(my+1)n. �
11



Normalize Yn to Y ′n = Yn−µn
σn

, where µn and σn are the mean and variance of Yn respectively,
as given in Proposition 3.2. We are now ready to prove that Y ′n converges in distribution to
the standard normal distribution as n→∞.

Proof of Theorem 1.6. For convenience we set r := t
σn

. Since σn =
√

nm
(m+1)2

+ 1
4
, we know

that r → 0 as n→∞ for any fixed value of t. Hence we will expand er using its power series
expansion. We start with

MY ′n(t) =
gn(e

t
σn )e

−tµn
σn

gn(1)
. (3.6)

Taking the logarithm of Equation (3.6)

log(MY ′n(t)) = log[gn(er)]− log[gn(1)]− tµn
σn

. (3.7)

We proceed using Taylor expansions of the exponential and logarithmic functions to expand
the following:

log[gn(er)] = log(1 + er) + n log(mer + 1)

= log

(
1 +

(
1 + r +

r2

2

))
+ n log

(
m

(
1 + r +

r2

2

)
+ 1

)
+O(r3)

= log(2) +
1

2

(
r +

r2

2

)
− 1

8

(
r +

r2

2

)2

+ n

log(m+ 1) +

(
mr + mr2

2

)
m+ 1

−

(
mr + mr2

2

)2
2(m+ 1)2

+O(r3)

= log(2(m+ 1)n) +
r

2
+
r2

8
+

nmr

m+ 1
+

nmr2

2(m+ 1)2
+O(r3). (3.8)

From Proposition 3.1 we have that gn(1) = 2(m+ 1)n, hence

log[2(m+ 1)n] = log[gn(1)]. (3.9)

Substituting Equations (3.8) and (3.9) and the values µn = nm
m+1

+ 1
2
and σn =

√
nm

(m+1)2
+ 1

4

into Equation (3.7) yields

log(MY ′n(t)) =
r

2
+
r2

8
+

nmr

m+ 1
+

nmr2

2(m+ 1)2
−

t
(
nm
m+1

+ 1
2

)√
nm

(m+1)2
+ 1

4

+O(r3). (3.10)

After some straightforward algebra we arrive at

log(MY ′n(t)) =
t2

2
+ o(1); (3.11)

the moment generating proof of the Central Limit Theorem now yields that the distribution
converges to that of the standard normal distribution as n→∞. �
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4. Average Gap Measure

We now turn our attention to our final result in which we determine the behavior of gaps
between summands. We begin with some preliminary notation in order to make our approach
precise. For a positive integer z ∈ In = [0, amn+1) with m-gonal decomposition

z = a`t + a`t−1 + · · ·+ a`1 (4.1)

where `1 < `2 < · · · < `t, we define the multiset of gaps of z as

Gapsn(z) := {`2 − `1, `3 − `2, . . . , `t − `t−1}. (4.2)

Our result will average over all z ∈ [0, amn+1) since we are interested in the average gap
measure arising from m-gonal decompositions.

We follow the methods of [BBGILMT, BILMT]. In order to have a gap of length exactly
g in the decomposition of z, there must be some index i such that ai and ai+g occur in z’s
decomposition, but aj does not for any j between i and i + g. Thus for each i we count
how many z have ai and ai+g but not aj for i < j < i + g; summing this count over i gives
the number of occurrences of a gap of length g among all the decompositions of z in our
interval of interest. We want to compute the fraction of the gaps (of length g) arising from
the decompositions of all z ∈ In. This probability is given by

Pn(g) :=
1

(µn − 1)amn+1

amn+1−1∑
z=0

mn+1−g∑
i=0

Xi,g(z), (4.3)

where Xi,g(z) is the indicator function5.
We are now ready to prove the result on the exponential decay in the distribution of gaps.

The arguments in the proof of our main result (Theorem 1.7) are quite straightforward,
however a bit tedious. To simplify our arguments, we write the gap length g as mα + β,
where α ≥ 0 and 0 ≤ β < m.

Proof of Theorem 1.7. Let g = mα + β, where α ≥ 0 and 0 ≤ β < m. We proceed by
considering the following two cases:
Case 1. α = 0,
Case 2. α > 0.
Case 1. Let α = 0. Hence g = β, where 0 < β < m and so our gap is less than the size of

each bin bi for i > 0 (α = 0 and β = 0 would give us a gap of length 0 which is not m-gonal
legal). We first consider gaps of length g = β beginning at index 0. If ai = a0 then the only
way to have a gap of length g = β is if ai+1 = aβ. Now we are counting integers with m-gonal
decompositions of the form a`t + · · ·+ a`3 + aβ + a0. The number of z ∈ In with summands
a`3 , . . . , a`t coming from bins b2, b3, . . . , bn is (m+ 1)n−1.

If ai = amk+r, k ≥ 0 and 1 ≤ r ≤ m, then ai+g = amk+r+β. Notice that the case r+β ≤ m
cannot occur as this would force {ai, ai+g} ⊂ bk+1, which leads to a decomposition that is

5For 1 ≤ i, g ≤ mn Xi,g(z) denotes whether the decomposition of z has a gap of length g beginning at
index i. That is, for z = a`t + a`t−1 + · · ·+ a`1 ,

Xi,g(z) =

{
1 if ∃ j, 1 ≤ j ≤ t with i = `j and i + g = `j+1

0 otherwise.
(4.4)
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not m-gonal legal as only one summand can be taken per bin. Now if r + β > m, then
ai+g ∈ bk+2.

Notice that in this case ai = amk+r is one of the largest β entries in bin bk+1 and thus
there are β many choices for r, namely r ∈ {m− β + 1,m− β + 2, . . . ,m}.

Now we need to count the number of z ∈ In \ {0} = [1, amn+1) which have summands
ai ∈ bk+1 and ai+g ∈ bk+2. We must have 0 ≤ k ≤ n− 2.

As we have already used bins bk+1 and bk+2, it follows from a straightforward combina-
torial counting argument that the total number of integers z ∈ In that can be created with
summands ai ∈ bk+1 and ai+g ∈ bk+2 (with no summands in between) is given by

2β(m+ 1)n−2, (4.5)

where the factor of β comes from the β possible choices of ai within the bin bk+1. As we can
vary k from 0 to (n− 2), we find that the total number of integers z ∈ In which contribute
a gap between ai (i 6= 0) and ai+g (assuming that r + β > m) is given by

2(n− 1)β(m+ 1)n−2. (4.6)

Observe that Equation (4.6) does not account for the case when i = 0, which adds an
extra factor of (m+ 1)n−1. Therefore

amn+1−1∑
z=0

mn+1−g∑
i=0

Xi,g(z) = 2β(n− 1)(m+ 1)n−2 + (m+ 1)n−1. (4.7)

Using Proposition 3.2 and Proposition 2.4 we have that

(µn − 1)amn+1 =

(
mn

m+ 1
− 1

2

)
(2(m+ 1)n) = (m+ 1)n−1(2mn− (m+ 1)). (4.8)

By Equations (4.7) and (4.8), for g = β, with 0 ≤ β < m, we have that

Pn(g) =
2β(n− 1)

(m+ 1)(2mn−m− 1)
+

1

2mn−m− 1
. (4.9)

Now recall that P (g) = limn→∞ Pn(g), so by letting n→∞ in Equation (4.9) we have that

P (g) =
β

m(m+ 1)
, (4.10)

whenever g = β and 0 ≤ β < m. This completes Case 1.

Case 2. Let g = mα + β, where α ≥ 1 and 0 ≤ β < m. First consider when ai = a0. If
β = 0, then ai+g = amα ∈ bα. Otherwise, when 0 < β < m, ai+g = amα+β ∈ bα+1. In the
case of the former, the number of z ∈ In with summands coming from bins bα+1, bα+2, . . . , bn
is (m + 1)n−α. In the latter case, the number of z ∈ In with summands coming from bins
bα+2, bα+3, . . . , bn is (m+ 1)n−(α+1).

Now if ai = amk+r, with k ≥ 0 and 1 ≤ r ≤ m, then ai+g = am(k+α)+r+β. Hence ai ∈ bk+1

and ai+g ∈ bk+α+1 whenever 1 ≤ r + β ≤ m, or ai+g ∈ bk+α+2 whenever m < r + β < 2m.
Hence we consider the following subcases:

Subcase 1. Let 1 ≤ r + β ≤ m.
Subcase 2. Let m < r + β < 2m.

14



Subcase 1. Let 1 ≤ r + β ≤ m. In this case ai ∈ bk+1 and ai+g ∈ bk+α+1. Notice that in
this case ai must be one of the smallest m−β entries in bin bk+1. Namely r = 1, 2, . . . ,m−β.

Now we need to count the number of z ∈ In which have summands ai ∈ bk+1 and ai+g ∈
bk+α+1 (and no summands in between). For the decomposition to only have summands from
bins b0, . . . , bk+1, bk+α+1, . . . , bn, we must have 0 ≤ k ≤ n− (α + 1).

In order to have a gap created by ai ∈ bk+1 and ai+g ∈ bk+α+1, there must be no summands
taken from bj, where k + 1 < j < k + α + 1. Again using a straightforward combinatorial
counting argument, the total number of integers z ∈ In which have summands ai ∈ bk+1 and
ai+g ∈ bk+α+1 (with no summands in between) is given by

2(m− β)(m+ 1)n−α−1, (4.11)

where the factor of m− β comes from the m− β possible choices of ai within the bin bk+1.
As we can vary k from 0 to n − (α + 1) we find that the total number of integers z ∈ In

which contribute a gap between ai (i 6= 0) and ai+g in this case is

2(n− α)(m− β)(m+ 1)n−α−1. (4.12)

Subcase 2. Let m < r + β < 2m. In this case ai ∈ bk+1 and ai+g ∈ bk+α+2. Notice that in
this case ai can be any of the largest β entries in bin bk+1 so ai ∈ bk+1 and ai+g ∈ bk+α+2.
Namely r = m+ 1− β,m+ 2− β, . . . ,m.

Using the same reasoning as in Subcase 1, we determine that the total number of integers
meeting the conditions is

2β(n− α− 1)(m+ 1)n−α−2. (4.13)

This completes Subcase 2.
We still need to account for the number of integers z ∈ In which contribute a gap of length

g = mα + β (α ≥ 1 and 0 ≤ β < m) beginning at index a0. Recall we previously computed
this quantity to be (m+ 1)n−α−1 when β > 0 and the quantity is (m+ 1)n−α when β = 0.

Therefore we need to sum the values of Equations (4.12), (4.13) along with (m+ 1)n−α−1

when β > 0 to get that
amn+1−1∑
z=0

mn+1−g∑
i=0

Xi,g(z) = 2(n− α)(m− β)(m+ 1)n−α−1

+ 2β(n− α− 1)(m+ 1)n−α−2 + (m+ 1)n−α−1. (4.14)

By Equations (4.14) and (4.8), for g = mα + β, with α ≥ 1 and 0 < β < m, we have that

Pn(g) =
2(n− α)(m− β)

(m+ 1)α(2mn−m− 1)
+

2β(n− α− 1)

(m+ 1)α+1(2mn−m− 1)

+
1

(m+ 1)α(2mn−m− 1)
. (4.15)

Now recall that P (g) = limn→∞ Pn(g), so by letting n→∞ in Equation (4.15) we have that

P (g) =
2(m− β)

(m+ 1)α(2m)
+

2β

(m+ 1)α+1(2m)
=

m+ 1− β
(m+ 1)α+1

, (4.16)

whenever g = mα + β, α ≥ 1 and 0 < β < m.
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Now for β = 0 we do not need to consider when α = 0 as this would give us a gap g = 0.
Also, as 1 ≤ r ≤ m, we only meet the conditions of Subcase 1. Thus for α > 0 and β = 0
we need to sum the values of Equations (4.12) along with (m+ 1)n−α to get

amn+1−1∑
z=0

mn+1−g∑
i=0

Xi,g(z) = 2(n− α)m(m+ 1)n−α−1 + (m+ 1)n−α. (4.17)

By Equations (4.17) and (4.8), for g = mα, with α ≥ 1, we have that

Pn(g) =
2(n− α)m

(m+ 1)α(2mn−m− 1)
+

1

(m+ 1)α−1(2mn−m− 1)
. (4.18)

Now recall that P (g) = limn→∞ Pn(g), so by letting n→∞ in Equation (4.18) we have that

P (g) =
1

(m+ 1)α
=

m+ 1

(m+ 1)α+1
(4.19)

whenever g = mα + β, α ≥ 1 and β = 0. This completes the proof. �

5. Individual Gap Measure

In this section, we prove Theorem 1.8, by checking that the conditions given in [DFFHMPP,
Theorem 1.1] are satisfied in the m-gonal case. We restate this theorem below for ease of
reference.

Theorem 5.1. [DFFHMPP] For z ∈ In, the individual gap measures νz,n(x) converge almost
surely in distribution to the average gap measure ν(x) if the following hold.

(1) The number of summands for decompositions of z ∈ In converges to a Gaussian with
mean µn = cmeann+O(1) and variance σ2

n = cvarn+O(1), for constants cmean, cvar > 0,
and k(z)� n for all z ∈ In.

(2) We have the following, with limn→∞
∑

g1,g2
error(n, g1, g2) = 0:

2

|In|µ2
n

∑
j1<j2

Xj1,j1+g1,j2,j2+g2(n) = P (g1)P (g2) + error(n, g1, g2). (5.1)

(3) The limits in Equation (1.16) exist.

We note that the above theorem is more general than we need, and in our particular case
our interval of interest is In = [0, amn+1). Now observe that Proposition 3.2 and Theorem 1.6
ensure that the first criterion is met, and k(z) is clearly at most mn+ 1 and thus k(z)� n.
In addition, the exponential decay seen in Theorem 1.7 shows that Condition (3) is met. It
remains to show that Condition (2) of Theorem 5.1 holds.

Proposition 5.2. We have that

2

|In|µ2
n

∑
j1<j2

Xj1,j1+g1,j2,j2+g2(n) = P (g1)P (g2) + error(n, g1, g2) (5.2)

and the sum of the error over all pairs (g1, g2) goes to zero as n→∞.
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Proof. Let g1 = α1m + β1, g2 = α2m + β2, j1 = k1m + r1, and j2 = k2m + r2 where
0 ≤ β1, β2 < m, 1 ≤ k1, k2 ≤ m and k1 < k2. Thus aj1 and aj2 are in bins (k1 + 1)
and (k2 + 1) respectively. There are a number of cases to consider when determining∑

j1<j2
Xj1,j1+g1,j2,j2+g2(n), depending on whether or not α1 = 0 or α2 = 0. We include

only the case when both α1, α2 ≥ 1, as the other cases are similar.
There are several subcases to consider. We will first consider the four subcases which

contribute to the main term and then bound the remaining cases. In all of the cases con-
tributing to the main term we have j1 + g1 6= j2 and j1 6= 0 and thus we will suppose these
conditions hold below.

Subcase 1: Let 1 ≤ r1 + β1 ≤ m and 1 ≤ r2 + β2 ≤ m. First we determine the possible
values of k1 and k2. In this case, the gap from g1 spans α1 + 1 bins and the gap from g2
spans α2 + 1 bins. Thus 0 ≤ k1 ≤ (n− α1 − α2 − 3) and (k1 + α1 + 2) ≤ k2 ≤ (n− α2 − 1)
and the number of choices for k1 and k2 is n2/2 + O(n). Because of the restrictions of
1 ≤ r1 + β1 ≤ m and 1 ≤ r2 + β2 ≤ m, within each bin there are (m − β1) choices for
where to place aj1 and (m − β2) choices for where to place aj2 . Lastly, we determine the
number of ways to choose the remaining elements for the decomposition. Because we are
spanning α1 +1 bins for the gap from g1 and α2 +1 bins for the gap from g2, using a straight
forward combinatorial counting argument, the number of integers that can be made using
what remains is 2(m+ 1)n−α1−α2−2. Thus the total number of integers that can be made in
this case is

2(m− β1)(m− β2)(m+ 1)n−α1−α2−2(n2/2 +O(n))

= (m− β1)(m− β2)(m+ 1)n−α1−α2−2(n2 +O(n)). (5.3)

Through similar arguments we can obtain the remaining three subcases that contribute to
the main term.
Subcase 2: Let 1 ≤ r1 + β1 ≤ m and m < r2 + β2 < 2m. Then the number of integers

that can be made in this case is

(m− β1)β2(m+ 1)n−α1−α2−3(n2 +O(n)). (5.4)

Subcase 3: Let m < r1 + β1 < 2m and 1 ≤ r2 + β2 ≤ m. Then the number of integers
that can be made in this case is

(m− β2)β1(m+ 1)n−α1−α2−3(n2 +O(n)). (5.5)

Subcase 4: Let m < r1 + β1 < 2m and m < r2 + β2 < 2m. Then the number of integers
that can be made in this case is

β1β2(m+ 1)n−α1−α2−4(n2 +O(n)). (5.6)

The remaining cases occur when j1 + g1 = j2 or j1 = 0. In these cases, the number of
choices for k1 and k2 is on the order of n instead of n2 and thus the number of integers that
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can be made in these cases is O(n(m+ 1)n−α1−α2). Combining all cases, we have∑
j1<j2

Xj1,j1+g1,j2,j2+g2(n) = n2(m− β1)(m− β2)(m+ 1)n−α1−α2−2

+ n2(m− β1)β2(m+ 1)n−α1−α2−3

+ n2(m− β2)β1(m+ 1)n−α1−α2−3

+ n2β1β2(m+ 1)n−α1−α2−4 +O(n(m+ 1)n−α1−α2). (5.7)

Next, recall that by Proposition 3.2 µn = nm
m+1

+ 1
2
. In addition, |In| = amn+1 = 2(m + 1)n.

Thus in our case we have
2

|In|µ2
n

∑
j1<j2

Xj1,j1+g1,j2,j2+g2(n)

=
1

(m+ 1)n
(
nm
m+1

+ 1
2

)2 ∑
j1<j2

Xj1,j1+g1,j2,j2+g2(n)

=

(
1

(m+ 1)n
(
nm
m+1

+ 1
2

)2
)(

n2(m− β1)(m− β2)(m+ 1)n−α1−α2−2

+ n2(m− β1)β2(m+ 1)n−α1−α2−3

+ n2(m− β2)β1(m+ 1)n−α1−α2−3

+ n2β1β2(m+ 1)n−α1−α2−4 +O(n(m+ 1)n−α1−α2)

)
=

(
1

(m+ 1)α1+α2+2m2n2 +O(n)

)(
n2(m− β1)(m− β2)(m+ 1)2

+ n2(m− β1)β2(m+ 1) + n2(m− β2)β1(m+ 1) + n2β1β2

)
+ O

(
1

n(m+ 1)α1+α2

)
. (5.8)

Taking the limit as n→∞ and rearranging we obtain
m2(m+ 1− β1)(m+ 1− β2)

m2(m+ 1)α1+α2+2
= P (g1)P (g2). (5.9)

The fact that the error term decays exponentially in g1 and g2 ensures that the error summed
over all g1 and g2 goes to zero. �

6. Longest Gap

Using the techniques introduced by Bower, Insoft, Li, Miller and Tosteson in [BILMT],
we can determine the mean and variance of the distribution of the longest gap between
summands in the decomposition of integers in [an, an+1) as n→∞. There are no obstructions
to using those methods; however, there are some book-keeping issues due to the nature of
our legal m-gonal decomposition. Specifically, we have to worry a little about the residue of
the longest gap modulo m. This is a minor issue, as with probability 1 the longest gap is
much larger than m and thus we will not have two items in the same bin. Rather than going
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through the technical argument, we instead give a very short proof that captures the correct
main term of the mean of the longest gap, which grows linearly with log n; our error is at
the level of the constant term for the mean. We are able to handle the variance similarly,
and similarly compute that up to an error that is Om(1).

Proof of Theorem 1.9. The proof follows immediately from results on the longest run of
heads in tosses of a fair coin; we sketch the details below. If a coin has probability p of heads
and q = 1− p of tails, the expected longest run of heads and its variance in n tosses is

µn = log1/p(nq)−
γ

log p
− 1

2
+ r1(n) + ε1(n), σ2

n =
π2

6 log2 p
+

1

12
+ r2(n) + ε2(n); (6.1)

here γ is Euler’s constant, the ri(n) are at most .000016, and the εi(n) tend to zero as
n → ∞. Note the variance is bounded independently of n (by essentially 3.5); see [Sch] for
a proof.

Note that for legal m-gonal decompositions we either have an element in a bin, or we do
not. As all decompositions are equally likely, we see that these expansions are equivalent to
flipping a coin with probability 1/2 for each bin, and choosing exactly one of the m possible
summands in that bin if we have a tail. As the probability that the longest gap is at the
very beginning or very end of a sequence of coin tosses is negligible, we can ignore the fact
that the first bin has size 1 and that we may only use part of the last bin if n + 1 is not
a multiple of m. Thus gaps between bins used in a decomposition correspond to strings of
consecutive heads.

As our integers lie in [an, an+1), we have bn/mc + O(1) = n/m + O(1) bins (again, we
ignore the presence or absence of the initial bin of length one or a partial bin at the end).
We now invoke the results on the length of the longest run for tosses of a fair coin. For
us, this translates not to a result on the longest gap between summands, but to a result on
the longest number of bins between summands. It is trivial to pass from this to our desired
result, as all we must do is multiply by m (the error will be at most O(m) coming from the
location of where the summands are in the two bins). This completes the proof of our claim
on the mean; the variance follows similarly. �

Appendix A. Proof of Theorem 1.5

Proof of Theorem 1.5. Our proof is constructive. We build our sequence by only adjoining
terms that ensure that we can uniquely decompose a number while never using more than
one summand from the same bin. For a fixed m ≥ 1 the sequence begins:

1
b0

, 2, 4, 6, . . . , 2m

b1

, 2(m+ 1), 4(m+ 1), 6(m+ 1), . . . , 2m(m+ 1)

b2

, . . . (A.1)

Note we would not adjoin 7 because then there would be two legal m-gonal decompositions
for 7, one using 7 = 7 and the other being 7 = 6 + 1. The next number in the sequence must
be the smallest integer which cannot be legally decomposed using the current terms of the
sequence.

We can now proceed with proof by induction. Note that the integers 1, 2, 3, . . . , 2m have
unique decompositions as they are either in the sequence or are the sum of an even number
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from bin b1 plus the 1 from bin b0. The sequence continues:

. . . , am(n−2)+1, am(n−2)+2, . . . , am(n−1)

bn−1

, am(n−1)+1, . . . , amn

bn

, amn+1, . . . , am(n+1)

bn+1

, . . . (A.2)

By induction we assume that there exists a unique decomposition for all integers z ≤ amn +
Ωn−1, where Ωn−1 is the maximum integer that can be legally decomposed using terms in
the set {a0, a1, a2, a3, . . . , am(n−1)}.

By construction we have

Ωn = amn + Ωn−1 = amn + am(n−1)+1 − 1.

Let x be the maximum integer that can be legally decomposed using terms in the set
{a1, a2, a3, . . . , am(n−1)}. Note x = am(n−1)+1 − 1 as this is why we include am(n−1)+1 in the
sequence.

Claim: amn+1 = Ωn + 1 and this decomposition is unique.
By induction we know that Ωn was the largest value that we could legally decompose

using only terms in {a0, a1, a2, . . . , amn}. Hence we choose Ωn + 1 as amn+1 and Ωn + 1 has
a unique decomposition.

Claim: All N ∈ [Ωn + 1,Ωn + 1 + x] = [amn+1, amn+1 + x] have a unique decomposition.
We can legally and uniquely decompose the integers 1, 2, 3, . . . , x using elements in the set
{a0, a1, a2, . . . , am(n−1)}. Adding amn+1 to the decomposition of any of these integers would
still yield a legalm-gonal decomposition since amn+1 is not in any of the bins b0, b1, b2, . . . , bn−1.
The uniqueness of these decompositions follows from the fact that if amn+1 was not included
as a summand, then the decomposition does not yield a number big enough to exceed Ωn+1.

Claim: amn+2 = Ωn + 1 + x+ 1 = amn+1 + x+ 1 and this decomposition is unique.
By construction the largest integer that can be legally decomposed using terms {a0, a1,

a2, . . . , amn+1} is Ωn + 1 + x.

Claim: All N ∈ [amn+2, amn+2 + x] have a unique decomposition.
First note that the decomposition exists as we can legally and uniquely construct amn+2+v,

where 0 ≤ v ≤ x. For uniqueness, we note that if we do not use amn+2, then the summation
would be too small.

Claim: amn+2+x is the largest integer that can be legally decomposed using terms {a0, a1, a2,
. . . , amn+2}.

This follows from construction. �

References

[Al] H. Alpert, Differences of multiple Fibonacci numbers, Integers 9 (2009), 745–749.
[BBGILMT] O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The

Average Gap Distribution for Generalized Zeckendorf Decompositions, Fibonacci Quart.
51 (2013), 13–27.

[B-AM] I. Ben-Ari and S. J. Miller, A Probabilistic Approach to Generalized Zeckendorf Decompo-
sitions, preprint. http://arxiv.org/pdf/1405.2379.

20

http://arxiv.org/pdf/1405.2379


[BDEMMTTW] A. Best, P. Dynes, X. Edelsbrunner, B. McDonald, S. J. Miller, K. Tor, C. Turnage-
Butterbaugh, M. Weinstein, Gaussian Distribution of Number Summands in Zeckendorf
Decompositions in Small Intervals, preprint.

[BILMT] A. Bower, R. Insoft, S. Li, S. J. Miller and P. Tosteson, Distribution of Gaps between
Summands in Generalized Zeckendorf Decompositions (and an appendix on Extensions to
Initial Segments with Iddo Ben-Ari), J. Combin. Theory Ser. A 135 (2015), 130–160.

[CFHMN1] M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Generalizing Zeckendorf ’s Theo-
rem: The Kentucky Sequence, Proc. of the Sixteenth Internat. Conf. on Fibonacci Numbers
and Their Appl., Vol. 52, Number 5, pp. 69–91.

[CFHMN2] M. Catral, P. Ford, P. E. Harris, S. J. Miller and D. Nelson, Legal Decompositions Arising
from Non-positive Linear Recurrences, preprint.

[CFHMN3] M. Catral, P. Ford, P. E. Harris, S. J. Miller and D. Nelson, New Behavior in Legal
Decompositions Arising from Non-positive Linear Recurrences, preprint.

[Day] D. E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Num-
bers, J. Lond. Math. Soc. 35 (1960), 143–160.

[DDKMMV] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, D. Moon and U. Varma, Generalizing
Zeckendorf ’s Theorem to f -decompositions, J. Number Theory 141 (2014), 136–158.

[DDKMV] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller and U. Varma, A Generalization of
Fibonacci Far-Difference Representations and Gaussian Behavior, Fibonacci Quart. 52
(2014), no. 3, 247–273.

[DFFHMPP] R. Dorward, P. Ford, E. Fourakis, P. E. Harris, S. J. Miller, E. Palsson and H. Paugh,
Individual Gap Measures from Generalized Zeckendorf Decompositions (2015), preprint.

[DG] M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J. Théor.
Nombres Bordeaux 10 (1998), no. 1, 17–32.

[FG] B. E. Fristedt and L. F. Gray, A modern approach to probability theory, Birkhäuser, Boston
(1996).

[FGNPT] P. Filipponi, P. J. Grabner, I. Nemes, A. Pethö, and R. F. Tichy, Corrigendum to: “Gen-
eralized Zeckendorf expansions”, Appl. Math. Lett., 7 (1994), no. 6, 25–26.

[GT] P. J. Grabner and R. F. Tichy, Contributions to digit expansions with respect to linear
recurrences, J. Number Theory 36 (1990), no. 2, 160–169.

[GTNP] P. J. Grabner, R. F. Tichy, I. Nemes, and A. Pethö, Generalized Zeckendorf expansions,
Appl. Math. Lett. 7 (1994), no. 2, 25–28.

[Ho] V. E. Hoggatt, Generalized Zeckendorf theorem, Fibonacci Quart. 10 (1972), no. 1 (special
issue on representations), pages 89–93.

[Ke] T. J. Keller, Generalizations of Zeckendorf ’s theorem, Fibonacci Quart. 10 (1972), no. 1
(special issue on representations), pages 95–102.

[LT] M. Lamberger and J. M. Thuswaldner, Distribution properties of digital expansions arising
from linear recurrences, Math. Slovaca 53 (2003), no. 1, 1–20.

[Len] T. Lengyel, A Counting Based Proof of the Generalized Zeckendorf ’s Theorem, Fibonacci
Quart. 44 (2006), no. 4, 324–325.

[Lek] C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van
Fibonacci, Simon Stevin 29 (1951-1952), 190–195.
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