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ABSTRACT. Zeckendorf’s theorem states that every positive integer can be uniquely decom-
posed as a sum of nonconsecutive Fibonacci numbers. The distribution of the number of
summands converges to a Gaussian, and the individual measures on gaps between summands
for m € [F,, F+1) converge to geometric decay for almost all m as n — co. While similar
results are known for many other recurrences, previous work focused on proving Gaussianity
for the number of summands or the average gap measure. We derive general conditions,
which are easily checked, that yield geometric decay in the individual gap measures of gen-
eralized Zeckendorf decompositions attached to many linear recurrence relations.

1. INTRODUCTION

Zeckendorf |Ze] proved the remarkable property that every positive integer can be uniquely
written as a sum of non-consecutive Fibonacci numbers {F,}2,, where F; =1, F; = 2 and
F,.1 = F, + F,_1, and that this property is equivalent to this definition of the Fibonaccis
(if we used the more common Fy = 0, F; = 1 and F; = 1 then clearly such decompositions
are not always unique). Zeckendorf’s theorem has been generalized to other sequences,
see among others [AlL Day, DDKMMYV| DDKMV| DG| |GT], IGTNP], [Stell, [Ste2|. Many
authors proved that sequences {a,} defined by suitable linear recurrences lead to unique
decompositions, with the number of summands of m € [a,, a,,1) converging to a Gaussian
(see for example [LT, IMW]) and the average gap measure converging to geometric decay (see
IBBGILMT! BILMT]). Tt is significantly easier to focus on the average gap measures rather
than the individual gap measures associated to each m; in this note we isolate a general
set of conditions which suffice to prove these individual measures converge almost surely to
geometric decay.

We work in great generality so the arguments below will apply to numerous sequences.
We assume we have a strictly increasing integer sequence {b,} and a decomposition rule that
leads to unique decomposition. Fix constants ¢y, dy, ¢a, dy such that I, := [be,nidy, begntdy) 18
a well-defined interval for all n > 0. Let §(z —a) denote the Dirac delta functional (assigning
a mass of 1 to x = a and 0 otherwise), k(z) be the number of summands in z’s decomposition
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(z="by + -+, ), and the total number of gaps for all z € I, is

b02n+d2_1
Noww(®) = 3 (k(z) = 1). (L1)
Z:bc1n+d1
We always assume the summands are ordered from least to greatest, so {1 < ly < -+ < L)

e Spacing gap measure: We define the spacing gap measure of a z € [, by

Von(z) = _125 =) (1.2)

if k(z) > 0 and 6(0) if k(z) = 0; note that the number of z € I,, with k(z) =0 is
o Awverage spacing gap measure: The average spacing gap measure for all z € [, is

c2n+d2 1 k(z 1 b62n+d2_1
Up(x) = Z 25 i —li_1)) = m Z (k(2) = D vz p().
gaps = bc1n+d1 Jj=2 gaps Z:bCI”JFdl

(1.3)

Letting P, (g) denote the probability of a gap of length ¢ among all gaps from the
decompositions of all m € I,,, we have

con+do—1
v(@) = Y Pul9)d(z—g). (1.4)
g=0
e Limiting average spacing gap measure, limiting gap probabilities: 1f the limits exist:
v(z) = nll_)rilol/n(:t), P(k) = JLIEOPn(k) (1.5)
e Indicator function for two gaps: For gi,g2 > 0

b bi,,b in z’s decomposition,
.o .. fp— . J17 31+91:%5i2:%52+92 p
XJ17J1+£]1,]27J2+92 (n) T # {Z €I, * but not bj; 44,bj,4p for 0<g<g1,0<p<g2 } ) (1'6)

We generalize the work in [BILMT]. The authors there concentrated on a specific class of
recurrences; our arguments are general and apply to any sequence where certain conditions
can be verified. In addition to holding for the oft studied positive linear recurrences, they
hold for new systems such as the m-gonal numbers of [DFFHMPP]. Our result below also
holds for some sequences without unique decomposition (see [CEFHMN]); in the cases we
have studied to date there is a natural decomposition, frequently constructed from a greedy
algorithm, which always exists and to which these results hold.

In the theorem and proofs below, we use big-Oh and < notation interchangeably; thus
f(z) = O(g(x)) and f(x) < g(x) both mean there exists a constant C' and an x4 such that
for all z > g we have |f(x)| < Cg(z). By f(z) = o(1) we mean lim, ., f(z) = 0. We give
the proof when the number of summands converge to being normally distributed as that is
what happens in all cases of interest, and remark on the proof in general. We also assume
that very few numbers have exactly one summand in their decomposition (such a case causes
a small book-keeping issue, as we cannot have a k(z) — 1 in the denominator in this case as
that would vanish); in practice this is not a problem as in our cases of interest our sequence
(and thus |[,|) grows exponentially and the number of z € [,, with just one summand grows

linearly.
2



Theorem 1.1. For z € I, the individual gap measures v, ,(x) converge almost surely in
distribution to the average gap measure v(x) if the following hold.

(1) The sequence {b,} is a strictly increasing sequence of integers, there is a decompo-
sitton rule such that every positive integer has a unique decomposition in terms of
the b,’s (with the summands indexed from smallest to largest), and k(z) < n for all
z € I,,. Further, if S, s the set of z € I, which have exactly one summand in their
decomposition, then |S,|/|I,| = o(1).

(2) The number of summands for decompositions of z € I,, converge pointwise to a Gauss-
ian with mean ([, = Cpean + O(1) and variance UfL = ¢yt + O(1), for constants
Crneany Cvar > 0 independent of n (or, if we do not have pointwise convergence but still
have convergence to normal distributions, there exists a 6 € (0,1/2) such that the
probability of being at least n’ standard deviations from the mean decays faster than
1/n'*e for some € > 0).

(3) We have the following, with lim,, . 291792 error(n, g1, g2) = 0:

2
" Xjiitorgadara(n) = P(g1)Pg2) + error(n, g1, gs). (1.7)

2
|[n|'un J1<j2

(4) The limits in Equation (LI) ezist.

2. PROOF OF THEOREM [L.1]

We need the following definitions. We use the standard normalization that the character-
istic function of a random variable X with density fx is

Fx(@) = E[e™¥] = / e fx(z)dx. (2.1)
e U, ,(t): The characteristic function of v, ,(x).
e U(t): The characteristic function of the limiting average gap distribution v(z).
o E.[...]: The expected value over z € I,, with the uniform measure:
1 b62n+d2_1
E.[X] := 7 > X(2). (2.2)
" Z:bcln+d1

e Indicator function for one gap: For g > 0 let
Xiitg(n) = #{z € L, b;, b4y in 2’s decomposition, but not G,4, for 0 < ¢ < g}. (2.3)
Proposition 2.1. We have
lim E,[v,.,(t)] = v(t). (2.4)

n—oo

First notice that when k(z) > 1



where 2 = by, +--- + bgk(z). Therefore

bc n+d -1 k(z)
1 2 2 )
E[r(t)] = — LN ittt 2.6
[V (1)) 7 bz: k(z)_lge (2.6)
Z2=0cin+dq =

Lemma 2.2. We have

‘ 1 begntdy—1 (k’(Z) — i e
i 2 (e )Ze - 27

= bcanrdl

where we adopt the convention that for any z € I, with k(z) =1 the summand is just 1 (as
the corresponding spacing measure is just a delta spike at ().

Proof. We break into cases based on how far away k(z) is from the mean. For 0 < § < 1/2
L,(0) = {z €1, : k(2) € [ttn — (Cearn)*n°, ptn, + (cyarn)**n°]}. (2.8)

Case 1: Let z € [,,(5). Thus k(z) is close to p,. As k(z) < n

)-
)

begntd k(2) begntd k(2)
1 gntda™ (]{I(Z N )_ . 1 antda™ 1/2+6
_— al—li-1) e it(Lj—Lj—1)
2 ( (k(=) = Dt )Ze L. Z Ze
Z:bc1n+d1 Jj=2 Z:bcln+d1
z€In(0)
[ In|n —1/2+6

where the last line follows because k(z) < n.

Case 2: Let z € I, \ [,(6). By assumption the number of z € I, \ [,,(§) where k(z) =1
divided by I, is o(1), and thus trivial estimation shows the contribution of such z in ([2.7)) is
o(1). Henceforth we assume k(z) > 1.

We first deal with the case when the number of summands converges pointwise to a
Gaussian with mean g, = cpeann + O(1) and variance 02 = cyn + O(1). For sufficiently
large n we have S2n < 02 < 2¢yaen, and thus the probability that z € I, is in I, \ I,,(9) is
bounded by

2016 - 2 / ., (27 cyarn/2m) 2 exp (—12/2 - 2eyn) dt < Y27/ (2.10)
1 1/246

(we do not need to be too careful here as this is a significantly lower order term; thus we have
bounded the probability by 2016 times the integral of a Gaussian, where we increased the
variance in the exponential and decreased it in the normalization constant in order to increase
the integral). Therefore the number of integers z € I,, \ I,,(6) is bounded by 2016|7,,|e~"""/*.
Thus, remembering that we can assume k(z) > 1 so there is no division by zero below,

begntdy—1 k(z)
1 S (k(z) - 1) v it 1 28 28
o n 7 (Zj_zjfl) . ] —n /4 . — —n /4 211
o2 (o) 2 TR
2=bcin+dy =

2¢1n(5)



which tends to zero as n — oo and proves the claim.

If the convergence were not pointwise but instead we had the probability of being more
than n? standard deviations away decaying faster than 1/n*¢ for some € > 0, the only change
is that now the left hand side of ([Z.I1]) is O(1/n¢), which still tends to zero as n — oo and
thus the rest of the argument is unchanged. 0

Through a similar argument we have

Lemma 2.3.

im L%Hdz (k(z) —1)" = Gt—t) | =
g 2 ( o ) Z i (2.12)

z= bcl n+dy

We can now conclude the proof of Proposition 2.1] as follows.

Proof of Proposition[Z1l By Lemma 22, we replace ¢ O ) ; with - with negligible error:

1 beyntdy,—1 k(2) begndy—1
Ez/z-\nt = — it(l;j—Li—1) it(l;—Lj_1) 1
2 |1,] 2 kz—lze |I|Mn > Ze +o(1)
z= bc1n+d1 z= bcln+d1 j=2
con+do—1 con+da—g contda—1 |
- Ih S 3 Kl o) = 3 Ao ol
n o

(2.13)

with the last equality follows by definition. Then

con+dso—1 oo
lim E,[7,,(t)] = lim ( > Pn(g)eitg—|—0(1)> = ) P(g)e™ = p(t), (2.14)

n—oo n—oo
g9=0

which completes the proof. L]

Proposition 2.4. We have

lim Var,(t) := lim E. [(Ton(t) —Dn()?] = 0. (2.15)
Proof. Note that
Var,(t) = lim E.[(72n(t) ~ 2(1))Y) = E.[7en(t)] — 9u(t)” (2.16)

We show that lim,, . E, [, ,(t)?] differs from

= > Plg)e™ Y Plga)e™ = 3 Pg)P(go)e" @+ (2.17)

g1=0 g2=0 91,92



by o(1). Let g; and go be two arbitrary gaps starting at the indices j; < j,. We have

beantdy—1 1 k(z) k(z)
Bl = = > e 3 A §7 il ()=t ()
|In| Z:bc1n+d1 (k(Z) N 1)) r=2 w=2
L itg1 ,itga 2itg1
= m— 2 Z Xj17j1+917j2,j2+92 (n)e e’ + Z le,j1+g1 (n)e + 0(1).(2.18)
i ]9112?22 I

The last line follows by Lemma 23] (the 2 is from j; < j;). The diagonal term doesn’t
contribute to the limit as the denominator is of order n?|I,| and D i Xy g (n)e?9 is
of order n|I,|. Using the second condition from Theorem [Tl gives lim,,_,, Var,(t) =0. O

Proof of Theorem[I1l Lévy’s Criterion (see |[FG|, page 361) states that if a sequence of
random variables {R,,} whose characteristic functions {¢,} converge pointwise to ¢, where
¢ is the characteristic function of some random variable R, then the random variables R,
converge to R in distribution. In our case, Propositions 2.I] and 2.4] along with Chebyshev’s
Theorem (bounding the probability of being s standard deviations from the mean by 1/s%)
ensure that for any ¢ > 0, almost all of the characteristic functions 7, ,(t) are within e of
v(t). Thus we can take a subset of z € I, where the individual gap measure of each z
converge to the average measure as n tends to infinity and almost all z € [,, are chosen. [J
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