
MOMENTS OF THE RANK OF ELLIPTIC CURVES

STEVEN J MILLER AND SIMAN WONG

Abstract. Fix an elliptic curve E/Q, and assume the Riemann Hypothesis for the L-
function L(ED, s) for every quadratic twist ED of E by D ∈ Z. We combine Weil’s ex-
plicit formula with techniques of Heath-Brown to derive an asymptotic upper bound for the
weighted moments of the analytic rank of ED. We derive from this an upper bound for the
density of low-lying zeros of L(ED, s) which is compatible with the random matrix models
of Katz and Sarnak. We also show that for any unbounded increasing function f on R,
the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture) the
number of integral points of ED are less than f(D) for almost all D.

1. Introduction

Let E be an elliptic curve over Q. The Birch and Swinnerton-Dyer conjecture predicts
that the geometric rank

rmw(E) := the rank of the Mordell-Weil group of E/Q

is equal to the analytic rank

ran(E) := the order at s = 1 of the L-function L(E, s).

This implies in particular the Parity Conjecture:

w(E) = (−1)rmw(E),

where w(E) denotes the sign of the functional equation of L(E, s). Nekovár [29] shows that
this follows from the finiteness of the Tate-Shafarevich group. Denote by NE the conductor of
E/Q and by ED the quadratic twist of E by an integerD. If E/Q is given by y2 = x3+Ax+B,
then an equation for ED is Dy2 = x3 +Ax+B. If D is square-free and is prime to 2NE, we
have the relation [25]

w(ED) = w(E)χD(−NE),

where χD denotes the quadratic character associated to Q(
√
D). Thus among the square-

free integers D prime to 2NE, the Parity Conjecture implies that half of the twists ED have
odd Mordell-Weil rank, and the other half, even. Early experimental investigations (see
for instance [3, 10, 11, 37]) suggested that a positive portion of families of elliptic curves
(including the family of all curves, curves with prime conductor, one-parameter families,
quadratic and cubic twists, et cetera) have rank ≥ 2. The numerical investigations can
be misleading, though, as the convergence could be on the order of the logarithm of the
conductor, which is still small for the families above. Recently Watkins [35] considered
the family of cubic twists studied by Zagier-Kramarz [37], and went far enough to see the
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percentage of the higher ranks drop, with his data suggesting the proportion of rank 2 and
higher tends to zero in the limit.

On the other hand, the random matrix models of Katz and Sarnak ([20, §4 and §5], [18,
p. 9-10]), which presuppos the Riemann Hypothesis (RH), predict that half of the twists
should have analytic rank 0, and the other half, analytic rank 1, whence the average analytic
rank over all twists should be 1/2. In fact, function field analogues suggest that as the
conductors tend to infinity, the limiting behavior of the normalized zeros near the central
point should agree with the scaling limit of eigenvalues near one of orthogonal groups (if
we split by sign of the functional equation, the even sub-family should agree with SO(even)
and the odd with SO(odd)). See [5, 20, 21] for general surveys on random matrix theory,
and [1, 6, 7, 8, 22, 23, 26, 27, 30, 36] for some of the many results on ranks in elliptic curve
families, as well as agreements with scaling limits of random matrix ensembles.

Goldfeld seems to have been the first person to investigate the average rank of elliptic
curves in a quadratic twist family. His main tool is Weil’s explicit formula. For the rest of
this paper F denotes the triangle function

(1.1) F (x) = max(0, 1− |x|).

The explicit formula says that the sum over powers of traces of Frobenius of ED, weighted
by F , is essentially equal to a sum of the Mellin transform of F extended over the non-trivial
zeros of L(ED, s). Under RH, each term of this latter sum is non-negative. Since ran(ED) is
the order of L(ED, s) at s = 1, to bound the average analytic rank we are led to study the
average of the non-Archimedean side of the twisted explicit formula. In this way, Goldfeld
[13] shows that under RH, for x�E,ε 1 we have

(1.2)
∑
|D|<x

ran(ED) ≤ (3.25 + ε)
∑
|D|<x

1.

He also points out that any improvement of the constant 3.25 to a number strictly less than
2 would imply that a positive portion of the twists would have analytic rank 0, a statement
which at present has been proved unconditionally only for special classes of E. Heath-Brown
[14] makes a major breakthrough by improving Goldfeld’s constant, also under RH, from 3.25
to 1.5, and with D restricted to twists with the same root number. This implies that under
RH, a positive portion of the twists of E have rank 0 and 1, respectively. This improvement
is a result of better control over the non-Archimedean side of the twisted explicit formula, so
Heath-Brown’s upper bounds are in fact upper bounds for the average of the Archimedean
side.

For the rest of this paper, the constants involved in any O, o and � expressions are with
respect to the variable x only and depend only on those parameters printed as subscripts
next to these symbols. In particular, any unadorned O, o and � constants are absolute.
The elliptic curve L-functions are normalized to have functional equation s→ 2−s, so s = 1
corresponds to the central point.

Theorem 1.1. Fix a positive, thrice continuously differentiable function W compactly sup-
ported on (1/2, 1) or (−1,−1/2). Fix an elliptic curve E/Q, and assume RH for every
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L(ED, s). For any positive integer k = oE(log log log x), as 1 + iτD runs through the non-
trivial zeros of L(ED, s) with τD 6= 0 we have∑

D

[
ran(ED) +

∑
τD 6=0

(sin(τD(log x)/2)

τD(log x)/2

)2]k
W
( D

xk/2 log2k+2 x

)
≤ 1

2

[(
k +

1

2
+

1√
3

)k
+
(
k +

1

2
− 1√

3

)k
+ oE,W (1)

]∑
D

W
( D

xk/2 log2k+2 x

)
.

We now investigate consequences of Theorem 1.1. First, fixing a number R > 0 and setting
k = [R/e]+1, we get the following weighted upper bound on the density of large rank twists.

Corollary 1.2. Fix an elliptic curve E/Q, and assume RH for every L(ED, s). Then for
any fixed R > 0 and x�R 1, we have∑

ran(ED)≥R

W
(D
x

)
≤ e−R/e

(
O(1) + oE,W ((e/R)R/e)

)∑
D

W
(D
x

)
. �

Remark 1.3. For k = 1, Theorem 1.1 is essentially due to Heath-Brown [14]. More precisely,
denote by ∆E(+) and ∆E(−) the set of square-free integers D prime to NE for which L(ED, s)
has root numbers +1 and −1, respectively. Then Heath-Brown shows that

(1.3)
∑

D∈∆E(±)

ran(ED)W
(D
x

)
≤
(3

2
+ oE(1)

) ∑
D∈∆E(±)

W
(D
x

)
.

It then follows that ∑
D∈∆E(+)
ran(ED)=0

W
(D
x

)
≥

(1

4
+ oE(1)

) ∑
D∈∆E(+)

W
(D
x

)
,(1.4)

∑
D∈∆E(−)
ran(ED)=1

W
(D
x

)
≥

(3

4
+ oE(1)

) ∑
D∈∆E(−)

W
(D
x

)
.(1.5)

The general outline of the proof of Theorem 1.1 follows that of Heath-Brown; specifically,
we make crucial use of his smooth averaging, resulting in a better asymptotic constant in
the Theorem, cf. §4. Note that Heath-Brown considered a two parameter family of elliptic
curves; in general, one obtains better results the larger the family is (for example, see the
larger support M. Young [36] obtains for the 1-level density (or the better estimates on
vanishing at the central point) for two-parameter families of elliptic curves than S. J. Miller
[27] obtains for one-parameter families)1. Our main contribution is in the handling of certain
truncated multivariable sums (Proposition 4.3) and in the arithmetic applications (Theorem
1.9 and the Corollaries). In particular, for k > 1 Theorem 1.1 (and hence Corollary 1.2) can
also be refined to sum over D ∈ ∆E(±) only; we can even drop the condition (D,NE) = 1,
at the cost of introducing tedious congruence argument on D in the proof of Theorem 1.1.

1Additionally, in Heath-Brown’s analysis he only needed to study moments of the prime sums, whereas
for our applications towards bounding the analytic rank we must compute the moments of the full explicit
formula.
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Such refinements, however, do not improve the lower bounds (1.4) and (1.5), so we will not
pursue these issues here.

From the proof of Theorem 1.1 we see that xk/2 log2k+2 x can be replaced by xk/2+ε for any
ε > 0, provided that we stipulate the o(1)-term on the right side be dependent upon ε. We
can then rewrite Theorem 1.1 in a more suggestive form:∑

D

[
ran(ED) +

∑
τD 6=0

(sin( τD log T
k+ε

)
τD log T
k+ε

)2]k
W
(D
T

)
≤ 1

2

[(
k +

1

2
+

1√
3

+ ε
)k

+
(
k +

1

2
− 1√

3
+ ε
)k

+ oE,W,ε(1)
]∑

D

W
(D
T

)
.(1.6)

The factor k + ε in the τD-sum is due to the fact that the asymptotic formula in (1.6)
sums over |D| �W xk/2+ε. If we can prove a similar formula – even just an upper bound
– by summing over |D| �W xα for some fixed α, uniformly for infinitely many k, then we
would be able to prove that almost all ED have analytic rank ≤ 2α+ 1. The reason we need
to take such a long sum is to ensure that the main term dominates the error term in (1.6).
Now, our argument leading up to (1.6) is essentially optimal, except in one step where we
estimate a difference of two terms by bounding each term; cf. Remark 4.5.

Question 1. Can we improve the main term in (1.6)?

Corollary 1.2 gives an upper bound for the weighted average of the multiplicity of the
(potential) zero at s = 1 of L(ED, s). This argument can be extended to count non-trivial
zeros of bounded height. We begin with some notation. If ED is an even twist, then
under RH the non-trivial zeros of L(ED, s) come in complex conjugate pairs 1 + iτED,j with
0 ≤ τED,1 ≤ τED,2 ≤ · · · . If ED is an odd twist, then L(ED, s) has a zero at s = 1; we label
the remaining zeros as 1 + iτED,j with 0 ≤ τED,1 ≤ τED,2 ≤ · · · . Finally, regardless of the
parity of ED, define

τ̃ED,j = τED,j(logNED)/2π.

Since
(
sin(x

2
)/x

2

)2
is decreasing for 0 < x < 2π, for any fixed α > 0, if for some |D| �E 1 we

have τ̃ED,3k < α/2π, then for this D and for every j ≤ 3k,(sin(τED,j(log |D|)/2)

τED,j(log |D|)/2

)2

>
(sin(α/2)

α/2

)2

.

We invoke Theorem 1.1, noting that |D| ≤ x since W is compactly supported on (1/2, 1) or
(−1,−1/2), and we get

Corollary 1.4. Fix an elliptic curve E/Q, assume RH for every L(ED, s), and let W be as
in Theorem 1.1. For any α ∈ (0, 2π), any integer k > 0 and x�k 1, we have∑

τ̃ED,3k<α/2π

W
(D
x

)
≤ O(1) + oE,W (1)(

(sin α
2 )/α2

)2k

∑
D

W
(D
x

)
.
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Remark 1.5. To deduce the Corollary from Theorem 1.1, first note that since the summands
in the left side of the theorem are non-negative, the contribution from the square-free D
with 1

2
xk/2 log2k+2 x < D ≤ xk/2 log2k+2 x < D ≤ is already included in the left side of the

theorem. To run through all square-free D we can then apply a geometric series, and to
remove the square-free condition, a simple sieve argument, all the while maintaining the
denominator on the right side of the Corollary (at the price of scaling the numerator by a
finite constant).

To put this result into context, recall that random matrix theory [19, §6.9, §7.5.5] furnishes
a family of probability measures for the scaling limits of classical compact groups. For
SO(even) and SO(odd) we have the measures v(+, j), v(−, j) on R, j = 1, 2, . . ., with respect
to which Katz and Sarnak formulate the following conjecture.

Conjecture 1.6 (Katz-Sarnak). For any integer j ≥ 1 and any compactly supported complex-
value function h on R,∑′

w(ED)=+1

h(τ̃ED,j) =
( ∑′

w(ED)=+1

1 + oE,h(1)
)∫

R

h · dv(+, j),

where
∑′

D
signifies that D runs through all square-free integers D. Similarly for v(−, j).

As is pointed out in ([20, p. 21], [18, p. 10]), this Conjecture implies that almost all even
(resp. odd) twists of E have analytic rank 0 (resp. 1). By choosing h to be supported on
an arbitrarily small neighborhood of 0 ∈ R, this Conjecture implies that for any fixed j and
any ε > 0, there exists δj(ε) > 0 so that

• δj(ε)→ 0 as ε→ 0; and
• the set of square-free D for which τ̃ED,j < ε and w(ED) = 1 has density < δj(ε).

In particular, for any ε > 0 the δj(ε) (if they exist) form a non-increasing sequence that
converges to 0. With respect to this formalism, Corollary 1.4 can be viewed as proving
the existence of δj(α/2π) under RH (instead of the full random matrix theory conjecture),
such that δj(1/2π)→ 0 as j →∞. However, our present argument does not allow us to
replace (sinα)/α with an arbitrarily large constant by replacing α/2π with an arbitrarily
small number.

Remark 1.7. If instead of sending ε to zero we kept ε fixed, we are asking about the number
of normalized zeros in a given neighborhood. The answer here can also be predicted from
the Katz-Sarnak conjectures; using the one-level density Goes and Miller [12] have recently
obtained explicit results for one-parameter families; their calculations are similar to those
by Mestre [28] and Hughes-Rudnick [15].

Remark 1.8. The method leading up to Theorem 1.1 and the Corollaries readily extends
to twists by higher order Dirichlet characters; cf. Remark 4.4. We can also replace E by a
cuspidal newform of weight 2 and trivial Nebentypus.

As we mentioned before, Random Matrix Theory predicts that almost all twists of ED
have analytic rank ≤ 1. Under RH alone we can show that the analytic rank grows slower
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than any unbounded increasing function for almost all twists. This is significantly better
than what can be shown for an arbitrary elliptic curve; due to Mestre [28] we know that the
rank of an elliptic curve E with conductor NE is O(logNE/ log logNE).

Theorem 1.9. Let f be an unbounded increasing function on R. Fix an elliptic curve E/Q,
and assume RH for every L(ED, s). Then the set of integers D for which ran(ED) > f(D)
has density zero.

Proof. Let f be an unbounded, increasing function on R. Then∑
|D|<T

ran(D) ≥
∑

T/2<|D|<T

ran(D) ≥ f(T/2)×#
{
T/2 < D < T : ran(D) > f(D)

}
.

On the other hand, by Goldfeld’s theorem (1.2) the left side is OE,W (T ). Since f is increasing
and unbounded, the number of such D must be oE(T ), as desired. �

Remark 1.10. This proof of Corollary 1.2 is essentially due to Heath-Brown. Our original
(longer) proof made use of the effective nature of Theorem 1.1 with respect to k.

Conjectures of Lang (and others) giving height bounds for rational and integral points on
elliptic curves suggest that ‘most’ elliptic curves have no integral points.2 Thanks to Theorem
1.9 and the work of Silverman, we can make this precise for quadratic twist families. Let

(1.7) E : y2 = x3 + Ax+B

be a quasi-minimal model for E/Q (i.e. |4A3 + 27B2| is minimal subject to A,B ∈ Z).
Silverman [33, Theorem A] shows that there exists an absolute constant κ such that, if the
j-invariant of E/Q is non-integral for ≤ δ primes, then

(1.8)
[

the number of S-integral points
on the quasi-minimal model (1.7)

]
≤ κ(1+rmw(E))(1+δ)+#S.

Since (1.7) is quasi-minimal for E, up to a bounded power of 2 and 3 the Weierstrass equation

(1.9) y2 = x3 + AD2x+BD3

is quasi-minimal for ED if D is square-free. Since the j-invariant is constant in a quadratic
twist family, Silverman’s theorem plus Theorem 1.9 immediately yields the following condi-
tional result which makes precise for quadratic twist families the heuristic above on integral
points.3

Corollary 1.11. Fix an elliptic curve E/Q, and assume RH and the Birch and Swinnerton-
Dyer conjecture for every L(ED, s). Then for any unbounded increasing function f on R,
the set of integers D for which the Weierstrass equation (1.9) has more than f(NED) integral
points has density zero. �

2We would like to thank Joe Silverman for bringing this to our attention.
3To see this, note that for any elliptic curve E′/Q and for any prime p, we have ordp(NE′) ≤ 2 if p > 3,

ord3(NE′) ≤ 5, and ord2(NE′) ≤ 10 [17, p. 385].
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Denote by EA,B the Weierstrass equation y2 = x3 +Ax+B so that 4A3 + 27B2 6= 0, and
such that there exists no prime p with p4|A and p6|B. The latter condition implies that the
discriminant of this equation differs from the minimial discriminant by at most 612. Also, as
H(EA,B) := max(|A|1/3, |B|1/2) goes to infinity we capture all elliptic curves over Q. Under
RH for the L-functions of all elliptic curves over Q, Brumer [2] shows that as x→∞,

(1.10)
∑

H(EA,B)≤x

ran(EA,B) ≤ (2.3 + o(1))
∑

H(EA,B)≤x

1.

The same argument for Theorem 1.9 readily yields the following result. Young [36] has
improved this, replacing 2.3 with 25/14; as this constant is less than 2, under RH we find
that a positive percentage of curves have rank 0 or 1.

Corollary 1.12. Assume RH for the L-function of every elliptic curve over Q. For any
unbounded, increasing function f on R, the set of elliptic curves EA,B, as ordered by the
height function H(A,B), for which ran(E) > f(H(A,B)) has density zero.

Lang [24, p. 140] conjectures that the number of integral points on a quasi-minimal model
of any E/Q should be bounded solely in terms of rmw(ED). Silverman [32, p. 251] conjectures
that (1.8) should hold for all E with no δ-dependence. This conjecture plus Corollary 1.12
would imply an analog of Corollary 1.11 for the set of all elliptic curves over Q.

Added in proof. Bhargava et al. recently announced an unconditional proof that the 2-Selmer
rank of the quadratic twists of any elliptic curve over Q is bounded by 1.5.

Acknowledgment. We are indebted to Professor Heath-Brown for sending a copy of his
preprint [14], and for showing a simpler proof of Theorem 1.9. We would like to thank Profes-
sors Hajir, Hoffstein, Mazur, Rosen and Silverman for many useful discussions and comments,
and the referee for numerous helpful and detailed comments on an earlier draft. The first
named author was partially supported by NSF Grants DMS0855257 and DMS0970067, and
the second named author was partially supported by NSF grant DMS0901506.

2. Explicit formula

Fix a modular elliptic curve E/Q of conductor NE. Denote by an(E) the n-th coefficient of
L(E, s). For any prime p - NE, denote by αp(E) and αp(E) the eigenvalues of the Frobenius
of E/Fp. Define

(2.1) cn(E) =

 αp(E)m + αp(E)m if n = pm > 1 and p - NE;
ap(E)m if n = pm > 1 and p|NE;
0 otherwise.

Note that cp(E) = ap(E). For any λ > 0, define Fλ(x) = F (x/λ), where F is the triangle
function given by (1.1) (F (x) = max(0, 1− |x|)). Following Weil’s explicit formula, we set

Φλ(u) =

∫ ∞
−∞

Fλ(x)e(u−1)xdx
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(which is closely related to the Laplace transform of Fλ). Note that if s = 1 + it with t ∈ R,
then

(2.2) Φλ(s) = λ
(sin(λt/2)

λt/2

)2

;

in fact, when Re(s) = 1 then Φλ is essentially the Fourier transform of Fλ. As ρ = β + iτ
runs through the zeros of L(E, s) with 0 < β < 2, counted with multiplicity, Weil’s explicit
formula [28, §II.2] says that∑

ρ

Φλ(ρ) := lim
z→∞

∑
|ρ|<z

Φλ(ρ)

= logNE − 2
∑
pm>1

cpm(E) log p

pm
F
( log pm

λ

)
− 2 log 2π − 2

∫ ∞
0

(F (t/λ)

et − 1
− 1

tet

)
dt.(2.3)

Note that |cpm(E)| ≤ 2pm/2. Since ||F || ≤ 1, that means∑
p,m
m≥3

cpm(E) log p

pm
F
( log pm

λ

)
�

∑
p,m
m≥3

log p

pm/2
�

∑
n>1

log n

n3/2
� 1.

The integral in (2.3) is O(1/λ), so for λ ≥ 1, the explicit formula now takes the form∑
ρ

Φλ(ρ) = logNE − 2
∑
p

cp(E) log p

p
F
( log p

λ

)
− 2

∑
p

cp2(E) log p

p2
F
( log p2

λ

)
+O(1).

Next, we study how the explicit formula behaves under quadratic twists. If p - 2NED
(note that 2NE and D need not be coprime and D need not be square-free), then

(2.4) cp(ED) := ap(E)
(D
p

)
, cp2(ED) := cp2(E).

Since ||F || ≤ 1,∑
p|2NED

F
( log p

λ

) log p

p

(
cp(ED)− ap(E)

(D
p

))
�

∑
p|2NED

log p
√
p
,

∑
p|2NED

F
( log p2

λ

) log p

p2

(
cp2(ED)− cp2(E)

)
�

∑
p|2NED

log p

p
.

Since log p� p1/4, for |D| ≥ 2 the right side of both expressions above are

�
∑

p|2NED

p−1/4.

As the summands are decreasing and there are at most 1 + log(2NED) terms, the sum is
bounded by ∑

p≤1+log(2NE |D|)

p−1/4 �E log3/4 |D|.

8



As ρD runs through the zeros of L(ED, s) with 0 < Re(ρD) < 2, the explicit formula becomes∑
ρD

Φλ(ρD) = logNED − 2
∑
p

cp(E) log p

p

(D
p

)
F
( log p

λ

)
− 2

∑
p

cp2(E) log p

p2
F
(2 log p

λ

)
+O(log3/4 |D|).(2.5)

Remark 2.1. Though it does not matter for the purposes of this paper, we note that
we can improve the error term above, replacing O(log3/4 |D|) with (log |D|)1/2. Clearly∑

p|2NED
log p
p
�
∑

p|2NED
log p√
p

, so it suffices to bound the latter sum. This sum has ≤
1+log(2NED) terms, and the function log t√

t
is decreasing for t ≥ 8. Thus

∑
p| log(2NED)

log p√
p
�

O(1) +
∑

p≤log(2NED)
log p√
p
� (log(2NE|D|))1/2 �E (log |D|)1/2, as claimed.

Lemma 2.2. We have the estimates∑
p

cp2(ED) log p

p2
F
(2 log p

λ

)
= −λ/4 + oE(λ),

∑
p

ap(ED)2 log2 p

p2
F
( log p

λ

)2

= λ2/12 + oE(λ2),

which imply∑
ρD

Φλ(ρD) = logNED +
λ

2
− 2

∑
p

cp(E)
(
D
p

)
log p

p
F

(
log p

λ

)
+ oE(λ).(2.6)

Proof. If p - 2NED, then by (2.4) cp2(ED) = cp2(E) and cp(ED) = ap(E); as L(s, E) is a
cusp form, we immediately obtain cp2(E) = ap(E)2 − 2p. Thus∑

p-2NED

cp2(E) log p

ps
=

∑
p-2NED

ap(E)2 log p

ps
− 2

∑
p-2NED

log p

ps−1
.

Up to the bad primes and a term holomorphic for <(s) > 3/2, the two sums on the right
are (−1) times the logarithmic derivative of, respectively, the Rankin-Selberg L-function of
the cusp form associated to E with itself, and ζ(s− 1). Each of the convolution L-function
and ζ(s − 1) has a simple pole at s = 2. The Tauberian theorem and trivially estimating
the bad primes now immediately implies that

both −
∑
p<x

ap(E)2 log p

p
and

∑
p<x

cp2(E) log p

p
are − x+ oE(x) +O((log |D|)1/2).

The first two claims now follow from partial summation, and the third follows from substi-
tuting the first claim into (2.5). �

Set λ = log x and define

(2.7) βp =
ap(E) log p

p
F
( log p

log x

)
, Xk = xk/2 log2k+2 x.
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In what follows, we will take D so that |D| ≤ Xk. From now on, assume4

(2.8) k = oE(log log log x),

whence OE(log3/4 |D|) = oE(log x). Combine all these and recall that NED � NED
2, we

now arrive at the final form of the explicit formula for ED, obtained by combining the last
definitions of λ and βp and the bound OE(log3/4 |D|) = oE(log x):∑

ρD

Φlog x(ρD) ≤ log(D2) +
log x

2
− 2

∑
p>2

βp

(D
p

)
+ oE(log x).(2.9)

We emphasize again that D need not be coprime to 2NE or square-free.

3. Moments of analytic rank

Below we reduce the proof of Theorem 1.1 to a weighted sum of the βp’s (defined in (2.7)).
Define

f(x,D) = 2 log |D|+ log x

2
, R(x,D) = 2

∑
p>2

βp

(D
p

)
;

we will apply this to our test function Fλ with λ = log x (which is why we have a (log x)/2
term above). Let W be a positive, thrice continuously differentiable function with compact
support on (1/2, 1) or (−1,−1/2). The k-th moment of the twisted explicit formula, weighted
by W , now becomes∑

D

(∑
ρD

Φlog x(ρD)
)k
W
( D
Xk

)
≤

∑
D

(
2 log |D|+ log x

2
+ oE(log x)

)k
W
( D
Xk

)

+
k∑
r=1

(
k

r

)
(−1)r

∑
D

f(x,D)k−rR(x,D)rW
( D
Xk

)
+

k∑
r=1

(
k

r

)
oE,k

(k−r∑
i=1

(
k − r
i

)
logi x

∑
D

f(x,D)k−r−iR(x,D)rW
( D
Xk

))
.

We begin by tackling the first of the three sums on the right.

Lemma 3.1. For l ≥ 0, we have∑
D

(
f(x,D)+oE(log x)

)l
W
( D
Xk

)
=
(

(k+1/2) log x+oE,W (log x)
)l[∑

D

W
( D
Xk

)
+oW (Xk)

]
.

4We choose this o-bound for k to simplify the exposition. The optimal choice would be that which renders
the O-term in Proposition 3.2 to be oE(log x), but such refinements have no material impact on the arithmetic
applications of the main theorem.
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Proof. Since W (x) = 0 if |x| ≥ 1, the sum in the lemma extends over |D| ≤ Xk only. Thus
with X ′ := xk/2, from (2.8) we see that(

(k + 1/2) log x+ oE(log x)
)l ∑
|D|>X′

W
( D
Xk

)
≥

∑
|D|>X′

(
f(x,D) + oE(log x)

)l
W
( D
Xk

)
≥

(
(k + 1/2) log x+ oE(log x)

)l ∑
|D|>X′

W
( D
Xk

)
.

The condition |D| > X ′ can be dropped at the cost of introducing a term

�
(

(k + 1/2) log x+ oE(log x)
)l ∑
|D|≤X′

W
( D
Xk

)
�W

(
(k + 1/2) log x+ oE(log x)

)l
xk/2,

and the lemma follows. �

The rest of the paper is devoted to proving the following result. The proof of Theorem 1.1
makes use of the conditional estimate only; we state the unconditional result for comparison.

Proposition 3.2. For r > 0, we have the estimate∑′

D

f(x,D)iR(x,D)rW
( D
Xk

)


=
(

2 logXk +
log x

2
+ oE,W (log x)

)i(1

3
+ oE(1)

)r/2
logr x

∑
D

W
( D
Xk

)
+OE,W (4rr3x3r

(
logX2

k + log x
2

)r+i
/Xk

2) if r is even,

= OE,W (4rr3x3r
(
logX2

k + log x
2

)r+i+1
/Xk

2) if r is odd.

If we assume RH for every L(ED, s), then the O-term can be improved to

�E,W crEr
r+3xr/2

(
logX2

k +
log x

2

)r+i
for some constant cE depending on E only.

Assuming the RH-estimate, we then see that

1

logk x

∑
D

(∑
ρD

Φlog x(ρD)
)k
W
( D
Xk

)
≤ (k + 1/2 + oE(1))k

∑
D

W
( D
Xk

)

+
k∑
r=1
r even

(
k
r

)
(1 + oE(1))r/2(k + 1/2 + oE,W (1))k−r(1/

√
3)r
∑
D

W
( D
Xk

)

+OE,W

(
k4+kckEx

k/2
(

logX2
k +

log x

2

)2k)
.

From (2.8) we have k = oE(log log log x) and Xk = xk/2(log x)2k+2, which implies that this
O-term is oE,W (Xk). We replace

∑
r even g(r) with the equivalent 1

2

∑
all r(1 + (−1)r)g(r).

11



Expanding the rest of the second line above accordingly and using (2.2) for Φ (note we have
chosen λ to equal log x), we find∑

D

[
ran(ED) +

∑
τD 6=0

(sin(τD(log x)/2)

τD(log x)/2

)2]k
W
( D
Xk

)
≤ 1

2

[(
k +

1

2
+

1√
3

)k
+
(
k +

1

2
− 1√

3

)k
+ oE,W (1)

]∑
D

W
( D
Xk

)
,(3.1)

and Theorem 1.1 follows.

4. Poisson summation

In this section we adapt Heath-Brown’s argument to reduce Proposition 3.2 to a ‘multi-
variable prime number theorem’ for elliptic curves, to be proved in Section 6.

We first set notation, and then prove an auxiliary result. We define the Fourier transform
by

ĝ(y) =

∫ ∞
−∞

g(x)e−2πixydx;

this normalization of the Fourier transform facilitates applying the Poisson Summation for-
mula later.

Recall W is a positive, thrice continuously differentiable function with compact support
on (1/2, 1) or (−1,−1/2). Denote by Ŵl the Fourier transform with respect to t of

Wl(x, t,Xk) :=

(
log(t2X2

k) +
log x

2

)l
W (t).

Note that the integral defining Ŵl makes sense since W (0) = 0.

Lemma 4.1. There exists a constant γW > 0 depending on W only, so that for Xk > 2 and
integers l ≥ 0, m 6= 0, as t→∞,

(a) |W (t)| < γW , |Wl(t)| < γW l(logX2
k+ log x

2
)l, and |Ŵl| < γW l

3(logX2
k+ log x

2
)l min(1, |t|−3)

for all l ≥ 1;

(b)

∫ xr

2

∣∣∣ ∂
∂t

(
Ŵl

(
x,
Xkm

t
,Xk

) 1√
t

)∣∣∣dt
< γW max(1, l3)

(
logX2

k + log x
2

)l
(Xk|m|)−1/2 min

(
1,
(

xr

Xk|m|

)3/2)
.

Proof. For the rest of this proof, γi denotes a constant depending on W only. Since W (t) is
zero around an open neighborhood of 0 and since W has compact support,

∂3

∂t3
Wl(x, t,Xk) < γ1l

3

(
logX2

k +
log x

2

)l
.

Apply integration by parts three times and recall that W has compact support. We get∣∣∣Ŵl(x, t,Xk)
∣∣∣ < γ2

1

|t|3

∫ ∞
−∞

∣∣∣∣ ∂3

∂y3
Wl(x, y,Xk)

∣∣∣∣ dy
< γ3 l

3

(
logX2

k +
log x

2

)l
min(1, |t|−3).
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The same argument yields the same estimate for ∂
∂t
Ŵl(x, t,Xk) with a different constant

(note 1/|t| < 1/|t|3 as 1/2 < |t| < 1). Consequently,∣∣∣ ∂
∂t

[
Ŵl

(
x,
Xkm

t
,Xk

) 1√
t

]∣∣∣
≤

∣∣∣( ∂
∂t
Ŵl

)(
x,
Xkm

t
,Xk

)Xkm

t5/2

∣∣∣+
1

2

∣∣∣Ŵl

(
x,
Xkm

t
,Xk

)
t−3/2

∣∣∣ chain rule

<

{
γ4l

3

(
logX2

k +
log x

2

)l ∣∣∣(Xkm

t

)−3Xkm

t5/2
+
(Xkm

t

)−3

t−3/2
∣∣∣ if |Xkm/t| ≥ 1,

γ5l
3

(
logX2

k +
log x

2

)l ∣∣∣Xkm

t5/2
+ t−3/2

∣∣∣ if |Xkm/t| < 1

< γ6l
3

(
logX2

k +
log x

2

)l
t−3/2 min

(
1,
∣∣∣Xkm

t

∣∣∣−2)
.

So if |Xkm| ≥ xr, the integral in the lemma becomes

< γ7l
3

(
logX2

k +
log x

2

)l ∫ xr

2

t−3/2 t2

|Xkm|2
dt < γ8l

3

(
logX2

k +
log x

2

)l
x3r/2

|Xkm|2
.

On the other hand, if |Xkm| ≤ xr, then splitting the integral as
∫ Xk|m|

2
+
∫ xr
Xk|m|

gives

< γ9l
3

(
logX2

k +
log x

2

)l(
(Xk|m|)−1/2 +

∫ xr

Xk|m|
t−3/2dt

)
< γ10l

3

(
logX2

k +
log x

2

)l
(Xk|m|)−1/2.

Take γW to be the maximum of the γi and the lemma follows for l > 0. The argument for
l = 0 is similar and simpler. �

Recalling the definition of R(x,D)r, we have∑
D

f(x,D)iR(x,D)rW
( D
Xk

)
= 2r

∑
D

f(x,D)iW
( D
Xk

) ∑
p1,...,pr>2

βp1 · · · βpr
(D
p1

)
· · ·
(D
pr

)
.(4.1)

Note that the primes p1, . . . , pr in the inner-sum above need not be distinct. In particular,
the product of the quadratic symbols is a non-trivial character precisely when p1 · · · pr is not
a square, and is zero if any pj divides D. We proceed accordingly.

Contribution to (4.1) from those (p1, . . . , pr) whose product is a square

In this case, every prime in the r-tuple appears with even multiplicity, which means (i) r
is even, and (ii) the product of quadratic characters in (4.1) is 1 if every pi - D, and is zero
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otherwise. Thus the contribution in question is

2r
∑

p1,...,pr/2

(βp1 · · · βpr/2)
2
∑

D 6≡0(pi)

f(x,D)iW
( D
Xk

)
= 2r

∑
p1,...,pr/2

(βp1 · · · βpr/2)
2
∑
δ|π′

µ(δ)
∑
d

f(x, dδ)iW
( dδ
Xk

)
,(4.2)

where π′ = p1 · · · pr/2 and µ is the Möbius function.5 The terms in (4.2) with δ = 1 sum to

2r
∑

p1,...,pr/2

(βp1 · · · βpr/2)
2
∑
d

f(x, d)iW
( d

Xk

)
= 2r

(∑
p

β2
p

)r/2∑
d

(
2 log |d|+ log x

2

)i
W
( d

Xk

)
.(4.3)

By Lemma 2.2 and Lemma 3.1, this is

=
(
2 logXk +

log x

2
+ oE(log x)

)i(
1/3 + oE(1)

)r/2
logr x

∑
d

(
W
( d

Xk

)
+ oW (Xk)

)
.

where the factor of 2r was absorbed in the (1/12)r/2 factor.
We now bound the contribution from the terms in (4.2) with δ > 1. As W is supported

on either (−1,−1/2) or (1/2, 1), the d-sum below can be restricted to |d| ≤ Xk/δ, and we
find the contribution is bounded by

� 2r
∑

p1,...,pr/2

(βp1 · · · βpr/2)
2
∑
δ|π′
δ>1

∑
d

f(x, dδ)iW
( dδ
Xk

)

�W 2r
(

2 logXk +
log x

2
+ oE(log x)

)i ∑
p1,...,pr/2

(βp1 · · · βpr/2)
2
∑
δ|π′
δ>1

∑
|d|≤Xk/δ

1

�W 2r
(

2 logXk +
log x

2
+ oE(log x)

)i ∑
p1,...,pr/2

(βp1 · · · βpr/2)
2
∑
δ|π′
δ>1

Xk/δ,(4.4)

where in the second line we use Lemma 4.1(a). Recall that π′ = p1 · · · pr/2 with p1 < · · · < pr.

Hence
∑

δ|π′,δ>1
1
δ

=
∏

p|δ(1 + 1
p
)− 1 � 2r/2/p1. Thus (4.4) is

� Xk2
3r/2
(
2 logXk +

log x

2
+ oE(log x)

)i∑
p

β2
p

p

(∑
q

β2
q

)r/2−1

� Xk2
r/2(1/3 + oE(1))r/2−1

(
2 logXk +

log x

2
+ oE(log x)

)i
logr−2 x.

5The Möbius function is multiplicative, and µ(pr) = (−1)r.
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Keeping in mind that
∑

DW (D/Xk) �W Xk, we see that if r is even, then the terms in
(4.1) coming from those (p1, . . . , pr) whose product is a square, is(

2 logXk +
log x

2
+ oE(log x)

)i(
1/3 + oE(1)

)r/2(
logr x+OW (2r/2 logr−2 x)

)∑
d

W
( d

Xk

)
.

Contribution to (4.1) from those (p1, . . . , pr) whose product is not a square

Set

(4.5)


π = p1 · · · pr,
π0 = largest perfect square divisor of π such that (π0, π/π0) = 1,
π1 = the product of the distinct prime divisors of π0, so π1 =

∏
p|π0 p,

π2 = the product of the distinct prime divisors of π/π0, so π2 =
∏

p|π/π0 p.

For example, if π = 25345378112 = (327411)22553, then π0 = (327411)2, π1 = 3 · 7 · 11 and
π2 = 2 · 5.

We write D as j +mπ1π2 with m ∈ Z and j ∈ {0, 1, . . . , π1π2 − 1}. Note(
D

π

)
=

(
D

π2
1π2

)
=

(
j

π2
1π2

)
=

(
j

π2
1

)(
j

π2

)
.

Then the contribution in question to (4.1) is equal to

2r
∑

p1,...,pr
π2>1

βp1 · · · βpr
∑

j mod π1π2

(
j

π2
1

)( j
π2

) ∞∑
m=−∞

f(x, j +mπ1π2)iW
(j +mπ1π2

Xk

)
.

Set e(z) = exp(2πiz). Applying Poisson summation gives

2r
∑

p1,...,pr
π2>1

βp1 · · · βpr
∑

j mod π1π2

(
j

π2
1

)( j
π2

) ∞∑
m=−∞

Ŵi

(
x,
Xkm

π1π2

, Xk

) Xk

π1π2

e
(
− mj

π1π2

)

= 2rXk

∑
p1,...,pr
π2>1

βp1 · · · βpr
π1π2

∞∑
m=−∞

Ŵi

(
x,
Xkm

π1π2

, Xk

) ∑
j mod π1π2

(
j

π2
1

)( j
π2

)
e
(
− mj

π1π2

)
.(4.6)

We break the analysis into cases.

Lemma 4.2. The contribution to (4.6) from m divisible by π1π2 is

(4.7) O

(
23ri3

(
2 logXk +

log x

2

)r+i
xr/2

X2
k

)
.

Proof. As π1π2|m, e(−mj/π1π2) = 1. If we didn’t have the
(
j
π2
1

)
factor (which is the case

if π1 = 1) then the sum over j would be zero. In general it is present, and the j-sum is
bounded by the number of numbers at most π1π2 that share a divisor with π1, which we may
trivially bound by π1π2.
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As βp = ap(E) log p

p
F
(

log p
log x

)
, we see each prime is at most x, and for p ≤ x we have

|βp| ≤ 2 log p√
p

by Hasse’s bound (|ap(E)| ≤ 2
√
p). We use Lemma 4.1(a) to trivially bound Ŵi

by

Ŵi

(
x,
Xkm

π1π2

, Xk

)
� i3

(
logX2

k +
log x

2

)i
min(1,

(
π1π2

Xk

)3
1

m3
)

� i3
(

logX2
k +

log x

2

)i
1

X3
km̃

3
,

where we write m as π1π2m̃. The sum over m̃ converges, and we are left with

2rXki
3

(
logX2

k +
log x

2

)i ∑
p1,...,pr≤x
π1,π2>1

2r log p1 · · · log pr√
p1 · · · pr

· 1

X3
k

.

Ignoring now the restrictions on the primes, our contribution is bounded by

22rX−2
k i3

(
logX2

k +
log x

2

)i(∑
p≤x

log p
√
p

)r

.

Since k = o(log log log x) and r ≤ k, we have6
(∑

p≤x
log p√
p

)r � (2x1/2)r and thus the contri-

bution to (4.6) from m with π1π2|m is bounded by

� 22rX−2
k i3

(
logX2

k +
log x

2

)i
(2x1/2)r � 23ri3

(
logX2

k +
log x

2

)i
xr/2/X2

k .

�

The error term from Lemma 4.2 is significantly smaller than the other error terms which
arise below. We may now assume that π1π2 - m; in particular, m 6= 0. For l = 1, 2, set

δl = (πl,m), πl = δlπ
′
l, m = δlnl.

6By partial summation,∑
p≤x

log p · 1

p1/2
≤
∑
p≤x log p

x1/2
+

1

2

∫ x

2

∑
p≤u log p

u3/2
du.

Using
∑
p≤u log p = u+O(u/ log u) (see [9]), there is a c such that

∑
p≤x

log p · 1

p1/2
≤ 2x1/2

(
1 +

c

log x

)

(in bounding the contribution of the integral, it’s convenient to split it to [2, x1/8] and [x1/8, x], where on the

latter interval we replace 1/ log u with 8/ log x). As r ≤ k = o(log log log x),
(

1 + c
log x

)r
�
(

1 + c
log x

)log x
�

ec, and thus
(∑

p≤x
log p√
p

)r
� (2x1/2)r.
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Since (π1, π2) = 1, by the Chinese remainder theorem we may write j as j = j1π2 + j2π1

with j1 ∈ {0, . . . , π1 − 1} and j2 ∈ {0, . . . , π2 − 1}. The j-sum in (4.6) is thus[∑
j1(π1)

(
j1π2

π2
1

)
e
(
−mj1

π1

)][∑
j2(π2)

(j2π1

π2

)
e
(
−mj2
π2

)]
=

(
π1

π2

)[∑
j1(π1)

(
j1

π2
1

)
e
(
−mj1

π1

)][∑
l2(π′2)

( l2
π′2

)
e
(
−n2l2
π′2

) ∑
j2(π2)

j2≡l2(π′2)

(j2

δ2

)]
,(4.8)

where we used the fact that π1 and π2 are relatively prime to replace
(
π2
π2
1

)
with 1. Note that

the j2-sum in (4.8) is zero unless δ2 = 1. As
(
j1
π2
1

)
=
(
j1
π1

)2
, we see that we have the principal

character, and the j1-sum becomes a Ramanujan sum, as the Ramanujan sums are defined
by

S(π1,m) :=
∑

d|(π1,m)

µ
(π1

d

)
d =

∑
j1 mod π1
(j1,π1)=1

e

(
mj1
π1

)
.

While we have a negative sign in the exponential’s argument, this does not matter as its
presence is equivalent to taking the complex conjugate of the Ramanujan sum; as the Ra-
manujan sum is real valued, we may add or remove the minus sign. Note π1 = δ1π

′
1 and

δ1 = (π1,m). As π1 is square-free, we must have δ1 and π′1 relatively prime. In particular, if
d|δ1 then d does not divide π′1, so in this case µ(π′1δ1/d) = µ(π′1)µ(δ1/d). Thus the j1-sum is
just ∑

d|δ1

µ

(
π′1δ

d

)
d = µ(π′1)

∑
d|δ1

µ

(
δ1

d

)
d.

As δ1 is a product of a subset of the r primes, we may write δ1 = pν1 · · · pν` . Using the
multiplicativity of the Ramanujan sums, we find the d-sum equals (pν1−1) · · · (pν`−1) = ϕ(δ1)
(where ϕ is Euler’s totient function).

Using the above, (4.8) simplifies to

=

(
π1

π2

)
µ(π′1)ϕ(δ1)

∑
j(π2)

( j
π2

)
e
(
−nδ1j

π2

)
=

(
π1

π2

)
µ(π′1)

ϕ(δ1)
√
π2

1 + i

(−nδ1

π2

)(
1− i

(−1

π2

))
,

by the standard quadratic Gauss sum calculation. Note |
(
π1
π2

)
µ(π′1)ϕ(δ1)| ≤ δ1. In the

analysis below, remember m = n1δ1 6= 0. Thus the terms in (4.6) where π1π2 does not divide
m contribute

� 2rXk

∑
p1,...,pr
π2>1

βp1 · · · βpr
π1
√
π2

∑
δ1|π1

∑
|n1|6=0

Ŵi

(
x,
Xkδ1n1

π1π2

, Xk

)
δ1

(±n1δ1

π2

)

� 2rXk

∑
|n1|6=0

∣∣∣ ∑
p1,...,pr
π2>1

βp1 · · · βpr
∑
δ1|π1

(±n1δ1

π2

) 1

π′1
√
π2

Ŵi

(
x,
Xkn1

π′1π2

, Xk

)∣∣∣.(4.9)
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There is no contribution from any n1 divisible by a pj which divides π2 because of the
presence of the factor

(
n1δ1
π2

)
.

We now estimate (4.9) in two ways, first unconditionally and then assuming RH.

Unconditional Estimate

Since ||F || ≤ 1, we have |βp| ≤ 2 log p√
p

(and βp = 0 if p > x). Letting u = π′1π2, we rewrite

(4.9) as

(4.10) 2rXk

∑
|n1|6=0

∣∣∣∑
u≥2

Ŵi

(
x,
Xkn1

u
,Xk

) 1√
u

∑
p1,...,pr
π2>1

p1···pr=u

Q(p1, . . . , pr, n1)
∣∣∣,

where

Q(p1, . . . , pr, n1) := βp1 · · · βpr
∑
δ1|π1

(±n1δ1

π2

) 1√
π′1
.

As δ1 is a product of at most r distinct primes, there are at most 2r terms in the δ1-sum in
Q(p1, . . . , pr, n1). Since F vanishes outside (−1, 1), we have βp = 0 if p > x. We use Lemma

4.1(a) to bound Ŵi and we see that

(4.9) �W 2rXk

∑
|n1|6=0

∑
p1,...,pr<x

2r
log p1 · · · log pr

p1 · · · pr
(p1 · · · pr)3

X3
k |n1|3

i3(logXk + log x)i

�W 4ri3
(

2 logXk +
log x

2

)i
x3r/X2

k ,

where we trivially bounded
∑

p≤x p
2 log p with x2

∑
p≤x log p� x3.

RH Estimate
Note that if p1 · · · pr ≥ xr, then Q(p1, . . . , pr, n1) = 0 for any n1 because one of the βp

terms vanish. In particular, the u-sum in (4.10) is a finite sum. To evaluate this u-sum we
proceed by partial summation. That calls for the following estimate, to be proved in Sections
5 and 6.

Proposition 4.3. Assume RH for every L(ED, s), and let U ≤ xr with x ≥ 10. Then there
exists a constant cE depending only on E so that, for any integers m, r > 0, as p1, . . . , pr
run through all prime numbers,

∑
p1···pr≤U
π2>1

Q(p1, . . . , pr, n1) � (cEr)
r
[
logNE + log |n1|+ log x

]r
log2r+1 x.(4.11)
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Assuming this, the u-sum in (4.10) is

=
[ ∑
p1···pr≤xr
π2>1

Q(p1, . . . , pr, n1)
]
Ŵi

(
x,
Xkn1

xr
, Xk

) 1√
xr

−
∫ xr

2

[ ∑
p1···pr≤t
π2>1

Q(p1, . . . , pr, n1)
] ∂
∂t

(
Ŵi

(
x,
Xkn1

t
,Xk

) 1√
t

)
dt(4.12)

�W (cEr)
r
[
logNE + log |n1|+ log x

]r
log2r+1 x× i3(logXk + log x)i

×
[ 1√

xr
min

(
1,
∣∣∣ xr

Xkn1

∣∣∣3)+
1√

Xk|n1|
min

(
1,
∣∣∣ xr

Xkn1

∣∣∣ 32)]
�E,W rr+3crE(logXk + log x)i

[
log |n1|+ log x

]r log2r+1 x√
Xk|n1|

min
(

1,
∣∣∣ xr

Xkn1

∣∣∣ 32).
Consequently, (4.10) becomes

�E,W rr+3crE(logXk + log x)i
∑
|n1|6=0

(log |n1|+ log x)r
√
Xk√
|n1|

min
(

1,
∣∣∣ xr

Xkn1

∣∣∣ 32).(4.13)

Thus the contribution to the n-sum from those |n1| ≥ xr/Xk is

�E,W rr+3c̃rE(logXk + log x)i
√
Xk

∑
|n1|≥xr/Xk

(log |n1|+ log x)r
1
√
n1

( xr

Xkn1

) 3
2

�E,W rr+3c̃rE(logXk + log x)i
√
Xk

( xr
Xk

)3/2 ∑
|n1|≥xr/Xk

(log |n1|+ log x)r

n2
1

.(4.14)

We now proceed to analyze (4.14). We claim the n1-sum is bounded by O
(

(logXk +

log x)r+1 (Xk/x
r)
)

.

We split the n1-sum into two cases, |n1| ≤ Xk and |n1| > Xk, where Xk = xk/2 log2k+2 x.
In the first case, we replace (log |n1| + log x)r with (logXk + log x)r. The resulting n1 sum
is dominated by 2

∑
n1≥xr/Xk 1/n2

1, which is O(Xk/x
r).

Consider now |n1| ≥ Xk, and remember 0 < r ≤ k = o(log log log x). The claim is trivial
if r = k = 1. We may thus assume k ≥ 2, which implies Xk ≥ x so |n1| ≥ x. We have
(log |n1|+ log x)r ≤ 2r logr |n1|, and 2r � log log x. We are left with bounding∑

|n1|≥max(x,xr/Xk)

logr |n1|
n2

1

.

Note

logr |n1| ≤ |n1|r log log |n1|/ log |n1|,

and the exponent is decreasing with increasing |n1|.
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Assume first xr/Xk ≥ 10. We thus have∑
|n1|≥xr/Xk

logr |n1|
n2

1

≤ 2
∑

n1≥xr/Xk

n
−2+r

log log(xr/Xk)

log(xr/Xk)

1

�
(
xr

Xk

)−1+r
log log(xr/Xk)

log(xr/Xk)

=
Xk

xr
· exp

(
log(xr/Xk) · r

log log(xr/Xk)

log(xr/Xk)

)
≤ Xk

xr
· (log(xr/Xk))

r

≤ Xk

xr
· rr · logr x

≤ Xk

xr
(logXk + log x)r kk;(4.15)

however, kk ≤ log x (to see this, taking logarithms leads us to compare k log k and log log x,
and log log x is clearly larger since k = o(log log log x)). Combining the above with the factor
of 2r � log log x � (logXk + log x) proves the claim in the case xr/Xk ≥ 10. If instead
xr/Xk ≤ 10, we argue similarly except now the n1 sum starts at x instead of xr/Xk, and we
may add the factor of Xk/xr to our bound as it is bounded below by 1/10 .

We use the above analysis to finish bounding the contribution to the n1-sum from |n1| ≥
xr/Xk. Substituting into (4.14) yields the contribution is bounded by

�E,W rr+3c̃rE(logXk + log x)i+r+1
√
Xk

( xr
Xk

)3/2Xk

xr

�E,W rr+3c̃rE(logXk + log x)r+i+1xr/2.

On the other hand, the contribution from those |n1| < xr/Xk is

�E,W rr+3c̃rE(logXk + log x)i
√
Xk

∑
0<|n1|<xr/Xk

(log |n1|+ log x)r√
|n1|

We argue as before. As |n1| ≤ xr, (log |n1|+ log x)r ≤ (r + 1)r logr x, and from above we
know (r + 1)r � log log x. We thus find the contribution from these n1 is bounded by

�E,W rr+3c̃rE(logXk + log x)r+i+1xr/2.

This completes the proof of Proposition 3.2. �

Remark 4.4. The argument in this section readily extends to twists by Dirichlet characters
of fixed order n > 2. The main difference is that the argument now proceeds according
to whether p1 · · · pr is a perfect n-th power or not. Also, if n > 2 then

∑
p β

n
p converges.

The effect of this is that our family is now expected to agree with the scaling limits of
unitary matrices, and not orthogonal matrices (see [31]). The rest of the argument, including
Proposition 4.3, extends with no change. Going through the whole proof, we see that for
twists by characters of order n > 2 that Theorem 1.1 holds with the new asymptotic constant
(k + 1/2 + oE,W (1))k.
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In terms of arithmetic, given an elliptic curve E/Q and a number field K/Q with an
Abelian Galois group of order n, the L-function of E(K) is equal to the product of all the
twisted L-functions L(s, E, χ), where χ runs through all (non-necessarily primitive) Dirichlet
characters of orders dividing [K : Q] and of conductors dividing the Artin conductor of K/Q.
So the analog of Theorem 1.1 for twists by Dirichlet characters of order ≤ n would provide
information about the average analytic ranks for a fixed elliptic curve over Q as we vary
over Abelian extensions of degree ≤ n over Q.

Remark 4.5. While Proposition 4.3 gives an essentially optimal bound for the size of the Q-
sum, we have no control over the sign of this Q-sum as u varies. Because of that, to estimate
(4.12) using Proposition 4.3 we are forced to put absolute value signs everywhere. This is
essentially the only place in the proof of Theorem 1.1 where we might lose information (the
� in (4.9) does not have any material impact on the rest of the proof).

5. A complex prime number theorem

The results in this section are elliptic curves analogs of classical estimates. As is customary,
given a complex number s we denote by σ and t its real and imaginary part, respectively.

Lemma 5.1. Assume the Riemann hypothesis for L(E, s). Then for σ ≥ 1 + 1/ log x and
|t| ≥ 2, we have the estimate

L′(E, s)/L(E, s) � (logNE + log(|s|+ 2)) log x.

For a proof, see for example Theorem 5.17 of [16].

Lemma 5.2. Assume the Riemann Hypothesis for L(E, s). For 0 ≤ j ≤ log x, x�E 1 and
1 + 1/ log x ≤ σ ≤ 2, we have the estimate

1

logj x

∑
p<x

ap(E) log1+j p

ps
� (logNE + log(|s|+ 2) + log x) log2 x.(5.1)

The proof is standard, and is given in Appendix A for completeness.

From the definition of F and Lemma 5.2, we obtain immediately

Corollary 5.3. Assume the Riemann hypothesis for L(E, s). Then for 1+1/ log x ≤ σ ≤ 2,
we have the estimate∑

p<x

ap(E) log p

ps
F
( log p

log x

)
� (logNE + log(|s|+ 2)) log2 x.

6. Proof of Proposition 4.3

When r = 1, Brumer [2, (2.13)] deduces Proposition 4.3 from the explicit formula in
conjunction with an estimate of a weighted sum of zeros of L(ED, s). Another (essentially
equivalent) way is to apply the Perron formula as in the proof of the prime number theorem
to the logarithmic derivative of L(E, s). The explicit formula approach does not seem to
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generalize to r > 1, but the approach via the Perron formula does, with the key analytic
estimate provided by Corollary 5.3. We prove Proposition 4.3 in several steps.

We first give an overview of the steps leading to the proof of the proposition. The difficulty
in the prime sums there is that we have factors such as

(±nδ1
π2

)
; in other words, only some of

the primes are involved in the Legendre symbols. We want to exploit cancelation from the
Legendre symbols. We are able to do that for the primes dividing π2, but not for the primes
dividing π1. Fortunately the contribution from primes dividing π1 is small. The reason is
that these primes occur at least twice, and

∑
p<x β

2k
p = O(log2k x).

We break the proof into four steps, which are given below. We assume x ≥ 10 below; as
we are only interested in the limit as x → ∞, this assumption is harmless. Remember also
that U ≤ xr.

Step I. Define

Lx(E, s) =
∑
p<x

ap(E) log p

ps
F
( log p

log x

)
.

As F has compact support, this is a finite sum and hence it is holomorphic for all s. A
standard application of Perron’s formula (see for instance [16] or [34]) gives∣∣∣∣∫ 1

log x
+i
√
x

1
log x
−i
√
x

Lx(E, s+ 1)r
U s

s
ds−

∑
p1···pr≤U

βp1(E) · · · βpr(E)

∣∣∣∣ � log2 x.(6.1)

Corollary 5.3 shows that there is a constant, which we denote cE,1/5, such that the integral
is

(6.2) ≤ (cE,1/5)rU1/ log x log2r x

∫ 1
log x

+i
√
x

1
log x
−i
√
x

(logNE + log(|s|+ 2) + log x)r
|ds|
|s|

.

For x ≥ 10 we have |s| + 2 ≤ x; further, U1/ log x ≤ er as U ≤ xr. Trivially estimating the
integrand gives that (6.2) is

≤ (cE,1e)
r
(
logNE + log x

)r
log2r+1x,

where we gained a log x from the integral. Using this in (6.1), we find∑
p1···pr≤U

βp1(E) · · · βpr(E) � (cE,1e)
r
(
logNE + log x

)r
log2r+1x.(6.3)

Step II. Fix an integer m 6= 0. With π2 defined as in (4.5), we claim that there is a

constant cE,2 such that∑
p1···pr≤U
π2>1

βp1 · · · βpr
( m

p1 · · · pr

)
� crE,2

(
logNE + 2 log |m|+ log x

)r
log2r+1x.(6.4)

Remember |βp| ≤ 2 log p√
p

if p ≤ x and 0 otherwise. We first show that we may drop the condi-

tion π2 > 1 at a negligible cost. To say that π2 = 1 means that r is even and π = (p1 · · · pr/2)2.
While this suggests that the π2 = 1 term would have a large contribution, as the character(

m
p1···pr

)
=
(
m
π2
1

)
(which is 1 if (m,π1) = 1), these terms give a small contribution because each
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prime occurs at least twice, leading to significantly smaller prime sums. Explicitly, instead

of having sums such as
∑

p<x
log p√
p

we have
∑

p<x
log2 p
p

, so

∑
p1···pr≤U
π2=1

βp1 · · · βpr
( m

p1 · · · pr

)
≤

∑
p1···pr/2�

√
U

(
βp1 · · · βpr/2

)2

≤
(∑
p<x

β2
p

)r/2
since βp = 0 if p ≥ x

� (4 log2 x)r/2,

which suffices for our purposes as it is dominated by the claimed error in (6.4). Thus it
suffices to study the sum in (6.4) without the additional condition π2 > 1.

If p - 2NEm then ap(E)
(
m
p

)
= ap(Em). If we didn’t have to worry about the p - 2NEm

condition, we could estimate the sum by a generalization of (6.3) (the only difference being
that now the conductor is NEm

2 and not NE). We therefore replace βp1 · · · βpr
(

m
p1···pr

)
with

βp1(Em) · · · βpr(Em) and control the error. We bound the error by the number of primes
dividing 2NEm as follows: we label the primes so that p1, . . . , pj are all the primes dividing
2NEm, with 1 ≤ j ≤ r (this is the error term, and at least one prime in our list divides
2NEm). We denote the remaining primes by q1, . . . , qr−j to emphasize the fact that they
are relatively prime to 2NEm. For these primes, we still have the character

(
m

q1···qr−j

)
, and

we bound the contribution from these primes sums by using (6.4) and induction. There is
no harm in doing so; even though we are trying to prove (6.4), we are only using it with
fewer primes, and thus we are fine by induction (note the base case is j = r, which leads to
a vacuous sum).

Using the above and |βp| ≤ 2 log p√
p

, the left side of (6.4), without the π2 condition, is∑
p1···pr≤U

βp1(Em) · · · βpr(Em) +

O
[ r∑
j=1

∑
p1,...,pj
pl|2NEm

2 log p1 · · · 2 log pj√
p1 · · · pj

∑
q1···qr−j≤U/p1···pj

βq1(E) · · · βqr−j(E)
( m

q1 · · · qr−j

)]
.

We estimate the first sum above by using a straightforward generalization of (6.3). Specifi-
cally, the bound in (6.3) depends on the conductor of the elliptic curve, NE; as we are twisting
by m, we must replace logNE with log(NEm

2) = logNE + 2 log |m|. We now estimate each
of the inner q-sum by using Step I applied to the elliptic curve Em. The only change in the
bound is that NE is replaced by NEm

2. All that remains is to bound the j-sum. We have

(6.5)
r∑
j=1

∑
p1,...,pj
pl|2NEm

2 log p1 · · · 2 log pj√
p1 · · · pj

≤
r∏
j=1

1 +
∑

p|2NEm

2 log p
√
p

 .

The worst case is when 2NEm is a primorial; if pmax denotes the largest prime, we would
have p1 · · · pmax = 2NEm, which implies

∑
p≤pmax

log p = log(2NEm), so pmax ≈ log(2NEm).
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Using the Prime Number Theorem and Partial Summation, we have∑
p≤y

log p
√
p
≤ 2y
√
y

+

∫ y 2tdt

2t3/2
≤ 2
√
y + 2

√
y ≤ 4

√
y.

All together, this yields

≤ (cE,1e)
r
[
logNE + 2 log |m|+ log x

]r
log2r+1 x

+8r(cE,1e)
r
[
logNE + 2 log |m|+ log x

]r
log2r+1 x.

≤ crE,2
[
logNE + 2 log |m|+ log x

]r
log2r+1 x

(with cE,2 = 9ecE,1), which completes the analysis of Step II.

Step III. Fix an integer A 6= 0, 1. We claim that there is a constant cE,3 such that∑
p1···pr≤U
(pj ,A)=1
π2>1

βp1 · · · βpr
( m

p1 · · · pr

)
(6.6)

� crE,3
(
logNE + 2 log |m|+ log |A|+ log x

)r
log2r+1x.

We proceed by induction. We first consider the base case when r = 1. We extend the sum
to be over all primes at most U with π2 > 1 (which we can handle by Step II), and bound
the error from primes dividing A. We have∑

p≤U
(p,A)=1
π2>1

βp

(m
p

)
� cE,2

(
logNE + 2 log |m|+ log x

)
log3x+

∑
p|A

log p
√
p

� cE,2
(
logNE + 2 log |m|+ log x

)
log3x+ log |A|

� cE,3
(
logNE + 2 log |m|+ log |A|+ log x

)
log3 x,

where cE,3 = max(1, cE,2). This gives the case r = 1. In general,∑
p1···pr≤U
(pj ,A)=1
π2>1

βp1 · · · βpr
( m

p1 · · · pr

)
=

∑
p1···pr≤U
π2>1

βp1 · · · βpr
( m

p1 · · · pr

)

+O
( r∑
j=1

∑
p1···pj≤U
pl|A

2 log p1 · · · 2 log pj√
p1 · · · pj

∣∣∣ ∑
q1···qr−j≤U/p1···pj

(ql,A)=1
π2>1

βq1 · · · βqr−j
( m

q1 · · · qr−j

)∣∣∣ ).

Step III now follows from a similar analysis as in Step II, the main difference being instead
of p|2NEm we now have p|A.
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Step IV. Finally we come to the proof of Proposition 4.3. We must show there is a

constant cE such that∑
p1···pr≤U
π2>1

Q(p1, . . . , pr, n1) � (cEr)
r
[
logNE + log |n1|+ log x

]r
log2r+1 x,

where

Q(p1, . . . , pr, n1) = βp1 · · · βpr
∑
δ1|π1

(
±n1δ1

π2

)
1√
π′1
.

We proceed by induction on r, the case r = 1 being automatic (in that case π2 = p and
π1 = 1). When π1 = 1 (which forces δ1 = 1), every prime occurs to an odd power, and in
particular

(
m

p1···pr

)
=
(
m
π2

)
. Thus by (6.4), the sum of the Q(p1, . . . , pr, n1) terms with π1 = 1

is

� (cE,2)r
(
logNE + 2 log |n1|+ log x

)r
log2r+1x

� (2cE,3)r
(
logNE + log |n1|+ log x

)r
log2r+1x(6.7)

(from pulling out the 2 and noting cE,2 ≤ cE,3). It remains to account for terms with π1 > 1.
That happens precisely when π is exactly divisible by an even prime power. In a slight abuse
of notation, let us write p1 · · · pr as p2

1 · · · p2
λ · q1 · · · qr−2λ. We do not assume the different

p’s are relatively prime to each other, nor do we assume the different q’s are relatively prime
to each other; however, it is important that the p’s are relatively prime to the q’s, and no q
prime occurs an even number of times. Then the contribution from these terms is therefore
equal to (bzc is the largest integer at most z)

(6.8)

br/2c∑
λ=1

∑
(p1···pλ)2≤U

β2
p1
· · · β2

pλ

∑
q1···qr−2λ≤U/(p1···pλ)2

(qj ,p1···pλ)=1
π2>1

βq1 · · · βqr−2λ

∑
δ1|π1

(±n1δ1

π2

) 1√
π′1
,

where π1 and π2 above are defined with respect to the r-tuple (p1, p1, . . . , pλ, pλ, q1, . . . , qr−2λ);
in particular, π1, π′1 and δ1 are independent of the q’s. We switch the order of the δ1 and
q-sums. Therefore (6.8) is bounded by

(6.9)

br/2c∑
λ=1

∑
(p1···pλ)2≤U

β2
p1
· · · β2

pλ

∑
δ1|π1

∣∣∣∣∣∣∣∣∣∣∣
∑

q1···qr−2λ≤U/(p1···pλ)2

(qj ,p1···pλ)=1
π2>1

βq1 · · · βqr−2λ

(
±n1δ1

π2

)
∣∣∣∣∣∣∣∣∣∣∣
.

We dropped the 1/
√
π′1 factor as it only marginally improves the final bound (at a cost

of more involved calculations), and the estimate without it suffices. We now apply (6.6)
from Step III to the q-sum. We use r − 2λ and U/(p1 · · · pλ)2 for r and U in Step III, take

A = p1 · · · pλ ≤
√
U = xλ/2 ≤ xr/2, m is ±n1δ1, and note δ1 ≤ π1 ≤ A ≤

√
U . Thus (6.9) is

bounded by

br/2c∑
λ=1

∑
(p1···pλ)2≤U

β2
p1
· · · β2

pλ

∑
δ1|π1

cr−2λ
E,3

(
logNE + 2 log |n1|+ log xr/2 + log x

)r
log2(r−2λ)+1x.
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There are at most 2r/2 choices for δ1 (as δ1|π1 and π1 is the product of at most r/2 distinct
primes); thus we may replace the δ1 sum with the harmless factor 2r/2.

We now turn to the sums over λ and the primes p1, . . . , pλ. Our definition of βp forces
each prime to be at most x. Using

∑
p≤x 1/p ≤ 4 log2 x and r ≤ 2r, we see that our sum is

clearly dominated by

br/2c∑
λ=1

(∑
p≤x

4 log2 p

p

)λ

2r/2cr−2λ
E,3

(
logNE + 2 log |n1|+ log xr/2 + log x

)r
log2(r−2λ)+1x

� (8cE,3)r
(
logNE + 2 log |n1|+ log xr/2 + log x

)r
log2r+1 x

br/2c∑
λ=1

1

log2λ x

(∑
p≤x

1

p

)λ

� (16cE,3r)
r (logNE + log |n1|+ log x)r log2r+1 x

br/2c∑
λ=1

4λ log2λ x

log2λ x

� r

2
(64cE,3r)

r (logNE + log |n1|+ log x)r log2r+1 x

� (128cE,3r)
r (logNE + log |n1|+ log x)r log2r+1;

the claim follows by taking cE = 128cE,3.

Appendix A. Proof of Lemma 5.2

Proof of Lemma 5.2. We first prove the j = 0 case, and then show how arbitrary j follows
by partial summation. In the arguments below σ ≥ 1 + 1

log x
, and thus x1−σ ≤ e.

For j = 0, we mimic the proof of the prime number theorem under the Riemann hypothesis.
Note that because of our normalization for the elliptic curve L-functions that the central
point is s = 1, the functional equation relates s to 2 − s, and the coefficients cp(E) (see
(2.1)) are on the order of

√
p. Set c = 1/2 + 1/ log x. Write s = σ + it with σ > 1. We

extend the sum to all prime powers; as the squared and higher powers lead to convergent
series, the cost of replacing p < x with pk < x is absorbed by the error term. Applying the
Perron formula (see for instance Chapter 17 of [4], taking the T there to be

√
x), a standard
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argument yields7 ∣∣∣∣∣
∫ c+i

√
x

c−i
√
x

−L
′(E, σ + it+ ξ)

L(E, σ + it+ ξ)

xξ

ξ
dξ −

∑
n<x

cn(E)Λn

nσ+it

∣∣∣∣∣
�

∞∑
n=1
n6=x

Λ(n)

nσ−1/2

(x
n

)c
min

(
1,

1
√
x
∣∣log x

n

∣∣)+
Λ(x)√
xxσ−1/2

,(A.1)

where Λ denotes the usual von Mongoldt function, and the last term on the right side of
(A.1) is present only if x is a prime power (though there is no harm in always including
it as it is dominated by other error terms). Unlike [4], we have the factor nσ−1/2 in the
denominator. The nσ is due to the fact that we’re integrating a shifted L-function, while the
n−1/2 (which is really

√
n in the numerator) is due to cn(E)� n1/2 for n a prime power.

If n ≥ 5
4
x or if n ≤ 3

4
x then | log x

n
| has a positive lower bound. Thus the contribution of

such n to the right side of (A.1) is (recall that σ > 1 and c = 1/2 + 1/ log x)

�
∑
n

Λ(n)

n1+1/ log x
� −ζ

′(1 + 1/ log x)

ζ(1 + 1/ log x)
� log x.

We assume now that x is not a prime power; if it is, we may replace x by x− 1 at the cost
of losing at most one term in (5.1), and the contribution from that term may be absorbed
by our error term. As x is not a prime power, the argument in [4, p. 107] shows that the
contribution from those n such that 3

4
x < n < 5

4
x is

� log x√
x

min
(

1,
x√
x〈x〉

)
+ log2 x,

where 〈x〉 is the distance from x to the nearest prime power. Putting everything together
gives∣∣∣∫ c+i

√
x

c−i
√
x

L′(E, σ + it+ ξ)

L(E, σ + it+ ξ)

xξ

ξ
dξ −

∑
n<x

cn(E) log n

nσ+it

∣∣∣� log2 x+
log x√
x

min
(

1,
x√
x〈x〉

)
.

Our next step is to estimate the integral. We are evaluating L′/L at σ + it + ξ, which has
real part σ+ c = σ+ 1

2
+ 1

log x
, which is greater than 3

2
+ 1

log x
as σ > 1. We shift the contour

and evaluate the integrand at arguments with real part 1 + 1
log x

, which means shifting ξ to

having real part 1− σ + 1
log x

. The ξ-rectangle has vertices

c± i
√
x, 1− σ +

1

log x
± i
√
x.

7We briefly comment on the modifications needed to Davenport’s argument. First, we need to change
the integration from (c − i∞, c + i∞) to (c − i

√
x, c + i

√
x). This is easily done through contours, as the

imaginary part is large where the two differ. We can thus look at the two vertical segments, each of which
we shift to a vertical segment to the right (this adds a horizontal segment, but by the same arguments as
below the contribution here is negligible). Using Hasse’s bound that |ap(E)| ≤ 2

√
p, we see L(E, s) converges

absolutely for <(s) > 3/2. As <(σ + it + ξ) > 3/2, we pass through no zeros or poles when shifting the
contour, and are left with two vertical integrals in a region where the series expansion for L′/L converges
absolutely. We can interchange the integral and the sum, and argue as in Davenport to obtain an error
subsumed in the error term below.
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Under the Riemann Hypothesis, there are no zeros or poles inside or on this rectangle. Thus
it remains to estimate the integral along the other three edges of this rectangle.

The integral along the top edge is (recall 1 < σ ≤ 2)

∫ 1−σ+1/ log x

c

−L′(E, σ + it+ ξ + i
√
x)

L(E, σ + it+ ξ + i
√
x)

xξ+i
√
x

ξ + i
√
x
dξ

�
∫ 1−σ+1/ log x

c

(
logNE + log(|ξ + σ + it+ i

√
x|+ 2)

)
log x · e

√
x√
x
dξ by Lemma 5.1

�
(
logNE + log(|s|+ 2) + log

√
x
)

log x

� (logNE + log(|s|+ 2)) log2 x.

The same bound holds for the integral along the bottom edge. As for the vertical edge
with real part of ξ equal to 1 − σ + 1

log x
(with σ > 1), using Lemma 5.1 again and noting

σ ≥ 1 + 1
log x

(so x1−σ+1/ log x ≤ 1) yields

∫ √x
−
√
x
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log x
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log x

+ it+ iτ)

x1−σ+1/ log x

1
log x

+ iτ
idτ

�
∫ √x
−
√
x

(
logNE + log

(
1 +

1

log x
+ |s|+ |τ |+ 2

))
log x · dτ

1
log x
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�
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log x
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[∫ e

0

log x dτ +

∫ √x
e
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� (logNE + log(|s|+ 2) + log x) log x · log x.

Putting everything together, we find that for σ ≥ 1 + 1/ log x,

∑
n<x

cn(E) log n

nσ+it
� log2 x+

log x√
x

+
(
logNE + log(|s|+ 2) + log x

)
log2 x.

Since σ > 1, the contribution to the sum on the left side from non-prime n is�
∑

m<
√
x

logm
m3/2

� 1, which completes the proof when j = 0.
The case of general j follows immediately by partial summation. Set

S(x) :=
∑
p≤x

ap(E) log p

pσ+it
� CE,s log2 x,
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where CE,s = logNE + log(|s|+ 2). Thus

1

logj x

∑
p≤x

ap(E) log1+j p
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� 1

logj x
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