# Linear Recurrences of Order at Most Two in Nontrivial Small Divisors and Large Divisors 

Hùng Việt Chu ${ }^{1}$, Kevin Huu Le ${ }^{2}$ Steven J. Miller ${ }^{3}$, Yuan Qiu ${ }^{4}$, and Liyang Shen ${ }^{5}$<br>${ }^{1}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA,<br>hungchu@tamu.edu; hung.viet.chu@gmail.com<br>${ }^{2}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA,<br>kevinhle@tamu.edu<br>${ }^{3}$ Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA,<br>sjm1@williams.edu; Steven.Miller.MC.96@aya.yale.edu<br>${ }^{4}$ Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA,<br>yq1@williams.edu<br>${ }^{5}$ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA,<br>Liyang. Shen@nyu.edu

## Abstract. For each positive integer $N$, define

$$
S_{N}^{\prime}=\{1<d<\sqrt{N}: d \mid N\} \text { and } L_{N}^{\prime}=\{\sqrt{N}<d<N: d \mid N\}
$$

Recently, Chentouf characterized all positive integers $N$ such that the set of small divisors $\{d \leq \sqrt{N}: d \mid N\}$ satisfies a linear recurrence of order at most two. We nontrivially extend the result by excluding the trivial divisor 1 from consideration, which dramatically increases the analysis complexity. Our first result characterizes all positive integers $N$ such that $S_{N}^{\prime}$ satisfies a linear recurrence of order at most two. Moreover, our second result characterizes all positive $N$ such that $L_{N}^{\prime}$ satisfies a linear recurrence of order at most two, thus extending considerably a recent result that characterizes $N$ with $L_{N}^{\prime}$ being in an arithmetic progression.

Keywords: divisors, linear recurrence, order two

## 1 Introduction

For a positive integer $N$, the set of small divisors of $N$ is

$$
S_{N}:=\{d: 1 \leq d \leq \sqrt{N}, d \text { divides } N\} .
$$

Since the case $N=1$ is trivial, we assume throughout the paper that $N>$ 1. In 2018, Iannucci characterized all positive integers $N$ whose $S_{N}$ forms an
arithmetic progression (or AP, for short). Iannucci's key idea was to show that if $S_{N}$ forms an AP, then the size $\left|S_{N}\right|$ cannot exceed 6. Observing that the trivial divisor 1 plays an important role in Iannucci's proofs (see [4, Lemma 3 and Theorem 4]), Chu [3] excluded both 1 and $\sqrt{N}$ from the definition of $S_{N}$ to obtain a more general theorem that characterizes all $N$ whose

$$
S_{N}^{\prime}:=\{d: 1<d<\sqrt{N}, d \text { divides } N\}
$$

is in an AP. Interestingly, with the trivial divisor 1 excluded, [2, Theorem 1.1] still gives that $\left|S_{N}^{\prime}\right| \leq 5$. Recently, Chentouf generalized Iannucci's result from a different perspective by characterizing all $N$ whose $S_{N}$ satisfies a linear recurrence of order at most two. In particular, for each tuple $(u, v, a, b) \in \mathbb{Z}^{4}$, there is an integral linear recurrence, denoted by $U(u, v, a, b)$, of order at most two, given by

$$
n_{i}= \begin{cases}u & \text { if } i=1, \\ v & \text { if } i=2, \\ a n_{i-1}+b n_{i-2} & \text { if } i \geq 3\end{cases}
$$

Noting that the appearance of the trivial divisor 1 contributes nontrivially to the proof of [1, Theorem 3, Lemma 8, Theorem 10], we generalize Chentouf's result in the same manner as [2, Theorem 1.1] generalizes [4, Theorem 4]: we characterize all positive integers $N$ whose $S_{N}^{\prime}$ satisfies a linear recurrence of order at most two.

Definition 1. A positive integer $N$ is said to be small recurrent if $S_{N}^{\prime}$ satisfies a linear recurrence of order at most two. When $\left|S_{N}^{\prime}\right| \leq 2, N$ is vacuously small recurrent.

Theorem 1. Let $p, q, r$ denote prime numbers such that $p<q<r$ and $k$ be some positive integer. A positive integer $N>1$ is small recurrent if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \geq 1$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, \ldots, p^{\lfloor(k-1) / 2\rfloor}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
2. $N=p^{k} q$ or $N=p q^{k}$ for some $1 \leq k \leq 3$. A restriction for $N=p^{3} q$ is that either $p<q<p^{2}$ or $p^{3}<q$.
3. $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{k}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
4. $N=p^{k} q$ for some $k \geq 4$ and $\sqrt{q}<p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots\right\}$ satisfies $U(p, q, 0, p)$.
5. $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots\right\}$ satisfies $U(p, q, 0, q)$.
6. $N=p q^{k} r$ for some $k \geq 2, p<q$, and $r>p q^{k}$. In this case, $S_{N}^{\prime}=$ $\left\{p, q, p q, q^{2}, \ldots, p q^{k-1}, q^{k}, p q^{k}\right\}$ satisfies $U(p, q, 0, q)$.
7. $N=p^{2} q^{2}$ for some $p<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}\right\}$.
8. $N=p q r$ for some $p<q<r$. If $r<p q$, then $S_{N}^{\prime}=\{p, q, r\}$. If $r>p q$, then $S_{N}^{\prime}=\{p, q, p q\}$.
9. $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
10. $N=p^{2} q r$, where $p<q<p^{2}<r<p q,\left(q^{2}-p^{3}\right)\left|(p q-r),\left(q^{2}-p^{3}\right)\right|\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, r, p q\right\}$ satisfies $U\left(p, q, \frac{p(p q-r)}{q^{2}-p^{3}}, \frac{r q-p^{4}}{q^{2}-p^{3}}\right)$.
Next, consider the set of large divisors of $N$

$$
\begin{aligned}
L_{N} & :=\{d: d \geq \sqrt{N}, d \text { divides } N\} \\
L_{N}^{\prime} & :=\{d: \sqrt{N}<d<N, d \text { divides } N\}
\end{aligned}
$$

The second result of this paper is the characterization of all positive integers $N$ whose $L_{N}^{\prime}$ satisfies a linear recurrence of order at most two. This considerably extends [2, Theorem 1].

Definition 2. A positive integer $N$ is said to be large recurrent if $L_{N}^{\prime}$ satisfies a linear recurrence of order at most two. When $\left|L_{N}^{\prime}\right| \leq 2, N$ is vacuously large recurrent.

Theorem 2. Let $p, q, r$ denote prime numbers such that $p<q<r$ and $k$ be some positive integer. A positive integer $N>1$ is large recurrent if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \geq 1$. Then $L_{N}^{\prime}=\left\{p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, \ldots, p^{k-1}\right\}$ satisfies $U\left(p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, p, 0\right)$.
2. $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$. Then $L_{N}^{\prime}=\left\{q, p q, p^{2} q, \ldots, p^{k-1} q\right\}$ satisfies $U(q, p q, p, 0)$.
3. $N=p^{k} q$ for some $k \geq 2$ and $p^{k-1}<q<p^{k}$. Then

$$
L_{N}^{\prime}=\left\{p^{k}, p q, p^{2} q, \ldots, p^{k-1} q\right\}
$$

satisfies $U\left(p^{k}, p q, p, 0\right)$.
4. $N=p^{k} q$ some for $k \geq 3$ and $p<q<p^{2}$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p^{k / 2+1}, p^{k / 2} q, p^{k / 2+2}, \ldots, p^{k-1} q\right\} & \text { if } 2 \mid k \\ \left\{p^{(k-1) / 2} q, p^{(k+3) / 2}, p^{(k+1) / 2} q, \ldots, p^{k-1} q\right\} & \text { if } 2 \nmid k\end{cases}
$$

Note that $L_{N}^{\prime}$ satisfies $U\left(p^{k / 2+1}, p^{k / 2} q, 0, p\right)$ and $U\left(p^{(k-1) / 2} q, p^{(k+3) / 2}, 0, p\right)$ for even and odd $k$, respectively.
5. $N=p^{4} q$ with $p^{2}<q<p^{3}$, $\left(p^{5}-q^{2}\right) \mid\left(p^{2}-q\right)$, and $\left(p^{5}-q^{2}\right) \mid\left(p^{3}-q\right)$. In this case, $L_{N_{2}}^{\prime}=\left\{p q, p^{4}, p^{2} q, p^{3} q\right\}$.
6. $N=p^{3} q^{2}$ for $p<q<p^{2}$. In this case, $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}, p^{3} q, p^{2} q^{2}\right\}$ satisfies $U\left(q^{2}, p^{2} q, 0, p\right)$.
7. $N=p^{2} q^{2}$ for some $p<q$. If $p<q<p^{2}$, then $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}\right\}$.
8. $N=p q^{k}$ for some $k \geq 2$ and $p<q$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p q^{k / 2}, q^{k / 2+1}, \ldots, q^{k}\right\} & \text { if } 2 \mid k, \\ \left\{q^{(k+1) / 2}, p q^{(k+1) / 2}, \ldots, q^{k}\right\} & \text { if } 2 \nmid k .\end{cases}
$$

Observe that $L_{N}^{\prime}$ satisfies $U\left(p q^{k / 2}, q^{k / 2+1}, 0, q\right)$ and $U\left(q^{(k+1) / 2}, p q^{(k+1) / 2}, 0, q\right)$ for even and odd $k$, respectively.
9. $N=p q^{k} r$ for some $k \geq 1$ and $p<q<p q^{k}<r$. In this case, $L_{N}^{\prime}=$ $\left\{r, p r, q r, p q r, q^{2} r, \ldots, q^{k} r\right\}$ satisfies $U(r, p r, 0, q)$.

The paper is structured as follows: Section 2 studies the case when $N$ has a small number of divisors and establish some preliminary results; Section 3 characterizes small recurrent numbers, while Section 4 characterizes large recurrent numbers.

## 2 Preliminaries

For each $N \in \mathbb{N}$ with the prime factorization $\prod_{i=1}^{\ell} p_{i}^{a_{i}}$, the divisor-counting function is

$$
\begin{equation*}
\tau(N):=\sum_{d \mid N} 1=\prod_{i=1}^{\ell}\left(a_{i}+1\right) \tag{1}
\end{equation*}
$$

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3=2\left|L_{N}^{\prime}\right|+3 & \text { if } N \text { is a square }  \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2=2\left|L_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

Using (1), we can characterize all $N$ with $\tau(N) \leq 9$; equivalently, $\left|S_{N}^{\prime}\right|,\left|L_{N}^{\prime}\right| \leq 3$.

1. If $\tau(N)=2$ or $3,(1)$ gives that $N=p$ or $p^{2}$ for some prime $p$,
2. If $\tau(N)=4$ or $5, N=p q, p^{3}, p^{4}$ for some primes $p<q$,
3. If $\tau(N)=6$ or $7, N=p^{5}, p q^{2}, p^{2} q, p^{6}$ for some primes $p<q$,
4. If $\tau(N)=8$ or $9, N=p q r, p q^{3}, p^{3} q, p^{7}, p^{2} q^{2}, p^{8}$ for some primes $p<q<r$.

### 2.1 Regarding $S_{N}^{\prime}$

Proposition 1. If $\left|S_{N}^{\prime}\right| \geq 2$, then $N$ cannot have two (not necessarily distinct) prime factors $p_{1}$ and $p_{2}$ at least $\sqrt{N}$
Proof. Suppose that $N$ has two prime factors $p_{1}$ and $p_{2}$ at least $\sqrt{N}$. Then $p_{1} p_{2} \geq N$ and $p_{1} p_{2}$ divides $N$; hence, $N=p_{1} p_{2}$, which contradicts that $\left|S_{N}^{\prime}\right| \geq 2$.
Proposition 2. If all elements of $S_{N}^{\prime}$ are divisible by some prime $p$ and $\left|S_{N}^{\prime}\right| \geq$ 4, then either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.
Proof. If all divisors (except 1) of $N$ are divisible by $p$, then $n=p^{k}$ for some $k \geq 1$. Assume that $N$ has a prime factor $q \neq p$. Then $q \geq \sqrt{N}$. Proposition 1 implies that $N$ cannot have another prime factor at least $\sqrt{N}$. Hence, $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.

Let $p<q<r<s$ be distinct prime numbers. Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with $d_{2}$ since the smallest divisor of $N$ is usually denoted by $d_{1}=1$, which is excluded from $S_{N}^{\prime}$.)

Lemma 1. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<p^{2}<r$. If $N$ is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) if $d_{2 i} \in S_{N}^{\prime}$, then $p \mid d_{2 i}$; however, if $d_{2 i-1} \in S_{N}^{\prime}$, then $p \nmid d_{2 i-1}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.
iv) for $d_{i}, d_{i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
v) for $d_{2 i-1}, d_{2 i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i+1}\right)=1$.

Proof. i) Since $r=a p^{2}+b q$, we have $\operatorname{gcd}(a, b) \mid r$. Observe that $\operatorname{gcd}(a, b)=r$ contradicts $p^{2}=a q+b p$. Hence, $\operatorname{gcd}(a, b)=1$.
ii) We prove by induction. The claim is true for $i \leq 2$. Assume that the claim holds for $i=j \geq 2$. We show that it holds for $i=j+1$. Since $p^{2}=a q+b p$, we know that $p \mid a$. By item i), $p \nmid b$. Write

$$
\begin{aligned}
d_{2(j+1)}=a d_{2(j+1)-1}+b d_{2(j+1)-2} & =a d_{2 j+1}+b d_{2 j} \\
& =\left(a^{2}+b\right) d_{2 j}+a b d_{2 j-1} .
\end{aligned}
$$

By the inductive hypothesis, $p \mid d_{2 j}$. Since $p \mid a$, we obtain $p \mid d_{2(j+1)}$. Furthermore, write

$$
d_{2(j+1)-1}=a d_{2(j+1)-2}+b d_{2(j+1)-3}=a d_{2 j}+b d_{2 j-1} .
$$

Since $p \nmid b d_{2 j-1}$ by the inductive hypothesis and $p \mid a d_{2 j}$, we obtain $p \nmid d_{2(j+1)-1}$. This completes our proof.
iii) Suppose that $k=\operatorname{gcd}\left(b, d_{i}\right)>1$ for some $i$. If $i=2$, then $p \mid b$, which contradicts that $p \mid a$ and $\operatorname{gcd}(a, b)=1$. If $i=3$, then $q \mid b$, which contradicts $p^{2}=a q+b p$. If $i \geq 4$, write $d_{i}=a d_{i-1}+b d_{i-2}$. Since $k \mid b d_{i-2}$ and $\operatorname{gcd}(a, b)=1$, we get $k \mid d_{i-1}$ and so, $k \mid \operatorname{gcd}\left(b, d_{i-1}\right)$. By induction, we obtain $k \mid \operatorname{gcd}\left(b, d_{3}\right)$, which has been shown to be impossible.

Next, suppose that $k=\operatorname{gcd}\left(a, d_{2 i-1}\right)>1$ for some $i$. If $i=2$, then $q \mid a$, contradicting $r=a p^{2}+b q$. If $i \geq 3$,

$$
k \mid d_{2 i-1}, d_{2 i-1}=a d_{2 i-2}+b d_{2 i-3}, \text { and } \operatorname{gcd}(a, b)=1 \Longrightarrow k \mid d_{2 i-3} .
$$

By induction, $k \mid d_{3}$; that is, $\operatorname{gcd}\left(a, d_{3}\right)>1$, which has been shown to be impossible.
iv) The claim holds for $i \leq 4$. For $i \geq 5$, using the recurrence $d_{i+1}=a d_{i}+$ $b d_{i-1}$, we have

$$
\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=\operatorname{gcd}\left(d_{i}, b d_{i-1}\right) \stackrel{\text { iii }}{=} \operatorname{gcd}\left(d_{i}, d_{i-1}\right) .
$$

By induction, we obtain $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
v) The claim holds for $i \leq 2$. For $i \geq 3$, we have

$$
\operatorname{gcd}\left(d_{2 i-1}, d_{2 i+1}\right)=\operatorname{gcd}\left(d_{2 i-1}, a d_{2 i}\right) \stackrel{\mathrm{iii})}{=} \operatorname{gcd}\left(d_{2 i-1}, d_{2 i}\right) \stackrel{\mathrm{iv})}{=} 1 .
$$

This completes our proof.

Lemma 2. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<r<p^{2}$. If $N$ is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$ and $p \nmid a$.
ii) For all $d_{i} \in S_{N}^{\prime}, \operatorname{gcd}\left(b, d_{i}\right)=1$.
iii) For all $d_{i}, d_{i+1} \in S_{N}^{\prime}, \operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
iv) Let $d_{i} \in S_{N}^{\prime}$. Then $p \mid d_{i}$ if and only if $i \equiv 2 \bmod 3$.

Proof. i) We have $\operatorname{gcd}(a, b)$ divides $r$ because $r=a q+b p$. Furthermore, $\operatorname{gcd}(a, b)$ divides $p$ because $p^{2}=a r+b q$. Hence, $\operatorname{gcd}(a, b)=1$.

Since $r=a q+b p$ and $r$ is a prime, $p \nmid a$.
ii) Suppose that $k=\operatorname{gcd}\left(b, d_{i}\right)>1$ for some $i$. If $i=2$, then $k=p$ and $p \mid b$. It follows from $p^{2}=a r+b q$ that $p \mid a$, which contradicts that $\operatorname{gcd}(a, b)=1$. If $i=3$, then $k=q$ and $q \mid b$. It follows from $r=a q+b p$ that $q \mid r$, a contradiction. Hence, $i \geq 4$. Write

$$
1<\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(b, a d_{i-1}+b d_{i-2}\right)=\operatorname{gcd}\left(b, d_{i-1}\right)
$$

By induction, we obtain $\operatorname{gcd}\left(b, d_{3}\right)>1$, which has been shown to be impossible. iii) The claim holds for $i \leq 4$. Let $d_{i}, d_{i+1} \in S_{N}^{\prime}$ and $i \geq 5$. Then

$$
\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=\operatorname{gcd}\left(d_{i}, a d_{i}+b d_{i-1}\right)=\operatorname{gcd}\left(d_{i}, b d_{i-1}\right) \stackrel{\text { ii }}{=} \operatorname{gcd}\left(d_{i}, d_{i-1}\right)
$$

By induction, $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
iv) The claim holds for $i \leq 4$. Suppose that the claim holds for all $i \leq j$ for some $j \geq 5$. We show that it also holds for $i=j+1$ under the assumption that $d_{j+1} \in S_{N}^{\prime}$. We have

$$
p^{2}=a r+b q=a(a q+b p)+b q=\left(a^{2}+b\right) q+a b p .
$$

Hence, $p \mid\left(a^{2}+b\right)$. Write

$$
d_{j+1}=a d_{j}+b d_{j-1}=a\left(a d_{j-1}+b d_{j-2}\right)+b d_{j-1}=\left(a^{2}+b\right) d_{j-1}+a b d_{j-2}
$$

Therefore, $p \mid d_{j+1}$ if and only if $p \mid d_{j-2}$. By the inductive hypothesis, we know that $p \mid d_{j+1}$ if and only if $j+1 \equiv 2 \bmod 3$.

The proofs of the next two lemmas are similar to those of Lemmas 1 and 2. Thus, we move their proofs to the Appendix.

Lemma 3. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<r<p q$. If $N$ is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$ and $p \nmid a$.
ii) For all $d_{i} \in S_{N}^{\prime}, \operatorname{gcd}\left(b, d_{i}\right)=1$.
iii) For all $d_{i}, d_{i+1} \in S_{N}^{\prime}, \operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
iv) Let $d_{i} \in S_{N}^{\prime}$. Then $p \mid d_{i}$ if and only if $i \equiv 2 \bmod 3$.
v) Let $d_{i} \in S_{N}^{\prime}$. Then $q \mid d_{i}$ if and only if $i$ is odd.

Lemma 4. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<r<s$. If $N$ is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) For all $d_{i} \in S_{N}^{\prime}$ with $i \geq 3, \operatorname{gcd}\left(b, d_{i}\right)=1$.
iii) For $d_{i}, d_{i+1} \in S_{N}^{\prime}, \operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
iv For $d_{i} \in S_{N}^{\prime}, \operatorname{gcd}\left(a, d_{i}\right)=1$.
v) For $d_{i}, d_{i+2} \in S_{N}^{\prime}, \operatorname{gcd}\left(d_{i}, d_{i+2}\right)=1$.

## 3 Small recurrent numbers

We first find all small recurrent numbers with $\left|S_{N}^{\prime}\right| \geq 4$. Then we check which $N$ is small recurrent out of all $N$ with $\left|S_{N}^{\prime}\right| \leq 3$ at the end of this section. As we rely heavily on case analysis, we underline possible forms of $N$ throughout our analysis for the ease of later summary.

### 3.1 The case $\left|S_{N}^{\prime}\right| \geq 4$

Let $d_{2}=p$ for some prime $p$. Then $d_{3}$ is either $p^{2}$ or $q$ for some prime $q>p$. If $d_{3}=p^{2}$, according to Proposition 2, we know that

$$
N=p^{k} \text { or } N=p^{k} q \text { for some } k \geq 1 \text { and } q>p^{k} .
$$

Assume, for the rest of this subsection, that $d_{3}=q$ for some prime $q>p$. Then $d_{4}=p q, p^{2}, r$ for some prime $r>q$.

When $\boldsymbol{d}_{\mathbf{4}}=\boldsymbol{p q}$ Since $S_{N}^{\prime}$ satisfies $U(p, q, a, b)$, we get $p q=a q+b p$. So, $p \mid a$ and $q \mid b$. Write $a=p m$ for some $m \in \mathbb{Z}$ and get $b=(1-m) q$. Since $p^{2} \nmid N$ and $q$ divides $d_{5}=a p q+b q$, we can write

$$
d_{5}=p^{s} q^{t} r_{1}^{\ell_{1}} \cdots r_{k}^{\ell_{k}}
$$

where $s \leq 1, t \geq 1$, and $r_{i}$ 's are primes strictly greater than $p q$. If some $\ell_{i} \geq 1$, then $p q<r_{i}<d_{5}$ and $r_{i} \in S_{N}^{\prime}$, a contradiction. Hence, $\ell_{i}=0$ for all $i \leq k$ and $d_{5}=p^{s} q^{t}$. Since $d_{5}>p q$ and $s \leq 1$, we know that $t \geq 2$.
a) If $s=1, d_{5}=p q^{2}>q^{2}>d_{4}$ and $q^{2} \mid d_{5}$, so $q^{2} \in S_{N}^{\prime}$, a contradiction.
b) If $s=0, d_{5}=q^{t}$ for some $t \geq 2$. Since $d_{5}$ is the next number after $d_{4}$ in increasing order, $d_{5}=q^{2}$. Using the linear recurrence, we obtain $q^{2}=$ $a p q+b q$, so $q=a p+b=p^{2} m+(1-m) q$. It follows that $p^{2} m=m q$. We arrive at $m=0, a=0$, and $b=q$. Hence, all elements of $S_{N}^{\prime}$ are divisible by either $p$ or $q$. If $N$ has a prime factor $r \geq \sqrt{N}$, by Proposition $1, r$ is unique. We conclude that $N=p q^{k}$ or $p q^{k} r$ for some $k \geq 2, p<q$, and $p q^{k}<r$.

When $\boldsymbol{d}_{\boldsymbol{4}}=\boldsymbol{p}^{\mathbf{2}}$ The first few divisors of $N$ are $1<p<q<p^{2}$. We have $p^{2}=a q+b p$, so $p \mid a$. Write $a=p m$ and get $b=p-m q$. We argue for possible forms of $d_{5}$. Let $r$ be the largest prime factor of $d_{5}$. If $r>q$, then $r>p^{2}$ and $d_{5}=r$. Otherwise, if $r \leq q$, then $d_{5}=p^{\ell} q^{k}$ for some $\ell, k \geq 0$. Suppose that $k \geq 2$. We get

$$
d_{5} \geq q^{2}>p q>d_{4} \text { and } p q \mid N
$$

a contradiction. Hence, $k \leq 1$. If $k=0$, then

$$
d_{5}=p^{3}>p q>d_{4} \text { and } p q \mid N
$$

another contradiction. Therefore, $k=1$ and $d_{5}=p q$. We conclude that either $d_{5}=r$ for some $r>q$ or $d_{5}=p q$.
a) If $d_{5}=p q$, then $b q+a p^{2}=p q$. So, $(p-m q) q+m p^{3}=p q$, which gives $m q^{2}=m p^{3}$. Hence, $m=0, a=0$, and $b=p$. We know that elements of $S_{N}^{\prime}$ are divisible by either $p$ or $q$. If $N$ has a prime factor $r^{\prime}$ at least $\sqrt{N}$, by Proposition 1, $r^{\prime}$ is unique. Hence, either $N=p^{\ell} q^{k}$ or $p^{\ell} q^{k} r^{\prime}$ for some prime $r^{\prime}>p^{\ell} q^{k}, \ell \geq 2$, and $k \geq 1$.
Case a.i) $N=p^{\ell} q^{k} r^{\prime}$. We claim that $k=1$. Indeed, if $k \geq 2$, then

$$
q^{4}<q^{2} r^{\prime}<N \Longrightarrow q^{2}<\sqrt{N} \Longrightarrow q^{2} \in S_{N}^{\prime}
$$

Since $b=p$, we know that $p \mid d$ for all $d \geq d_{4}$ and $d \in S_{N}^{\prime}$, which contradicts $q^{2} \in S_{N}^{\prime}$. Hence,

$$
N=p^{\ell} q r^{\prime} \text { for some } \ell \geq 2, \text { some prime } r^{\prime}>p^{\ell} q \text {, and } \sqrt{q}<p<q .
$$

Case a.ii) $N=p^{\ell} q^{k}$. As above, $q^{2} \notin S_{N}^{\prime}$. If $k \geq 2$, then

$$
q^{2} \geq \sqrt{N} \Longrightarrow q^{4} \geq N=p^{\ell} q^{k}=p^{\ell-2} p^{2} q^{k}>q^{k+1}
$$

Hence, $k<3$, which implies that $k=2$. In this case, $N=p^{\ell} q^{2}$ and

$$
q^{2}>p^{\ell}>q^{\ell / 2} \Longrightarrow \ell \leq 3
$$

We conclude that one of the following holds:

- $N=p^{\ell} q$ for some $\ell \geq 2$ and $\sqrt{q}<p<q$,
$-\overline{N=p^{2} q^{2}}$ for some $p<q<p^{2}$,
$-\overline{N=p^{3} q^{2} \text { for some } p^{3 / 2}<q<p^{2} .}$
b) $d_{5}=r$.

Proposition 3. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof. Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$. By Lemma 1 item ii), $p \nmid d_{2 i-1}, p \mid d_{2 i-2}$, and $p \nmid d_{2 i-3}$. By Lemma 1 item v $), \operatorname{gcd}\left(d_{2 i-1}, d_{2 i-3}\right)=1$, so $p^{2} d_{2 i-1} d_{2 i-3}$ divides $N$. Hence, $p d_{2 i-3} \in S_{N}^{\prime}$.

If $p d_{2 i-3}=d_{2 i-2}$, then

$$
p d_{2 i-3}=a d_{2 i-3}+b d_{2 i-4} \Longrightarrow d_{2 i-3} \mid b d_{2 i-4}
$$

which contradicts Lemma 1 items iii) and iv).
If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$. It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} \bmod a^{2}+b$ is congruent to

$$
1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots
$$

Hence, we can write

$$
d_{2 i-3}=\left(a^{2}+b\right) \ell+a^{k} b^{k} s
$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in\left\{p, q, p^{2}\right\}$. Since $d_{2 i-3} \mid\left(a^{2}+b\right)$, $d_{2 i-3} \mid a^{k} b^{k} s$. By Lemma 1 item iii), $d_{2 i-3} \mid s$; that is, $d_{2 i-3} \leq p^{2}$. However, $d_{2 i-3} \geq d_{5}>d_{4}=p^{2}$, a contradiction.
We conclude that $p d_{2 i-3} \geq d_{2 i+2}$. Since $p d_{2 i-3} \in S_{N}^{\prime}$, we know that $d_{2 i+2} \in$ $S_{N}^{\prime}$ and $\left|S_{N}\right| \geq 2 i+2$.

Proposition 4. Suppose that the first 4 numbers in $S_{N}^{\prime}$ are $p<q<p^{2}<r$. If $N$ is small recurrent, then $\left|S_{N}^{\prime}\right| \neq 4,6$.

Proof. If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 . Note that $N$ has three distinct prime factors $p, q, r$ and the power of $p$ is at least 2 . Since $2^{3} \cdot 3>11$, $N$ cannot have another prime factor besides $p, q, r$. Write $N=p^{a} q^{b} r^{c}$, for some $a \geq 2, b \geq 1, c \geq 1$. However, neither $(a+1)(b+1)(c+1)=10$ nor $(a+1)(b+1)(c+1)=11$ has a solution. Therefore, $\left|S_{N}^{\prime}\right| \neq 4$. A similar argument gives $\left|S_{N}^{\prime}\right| \neq 6$.

By Propositions 3 and 4 , we know that $\left|S_{N}^{\prime}\right|=5$; that is, $\tau(N)=12$ or 13 . Using the same reasoning as in the proof of Proposition 4, we know that $\tau(N)=12$ and $N=p^{2} q r$, where $p<q<p^{2}<r$.

When $\boldsymbol{d}_{\mathbf{4}}=\boldsymbol{r}$ for some $\boldsymbol{r}>\boldsymbol{q}$ The possible values for $d_{5}$ are $p^{2}, p q, s$ for some prime $s>r$.
a) If $d_{5}=p^{2}$, we can generalize the method by Chentouf.

Proposition 5. If $N$ is small recurrent and the first four numbers of $S_{N}^{\prime}$ are $p<q<r<p^{2}$, then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof. Suppose that $\left|S_{N}\right| \geq 8$. We show that $\left|S_{N}\right| \geq 3 i+2$ for all $i \in \mathbb{N}$, which is a contradiction. The claim holds for $i=2$. Assume that $\left|S_{N}\right| \geq 3 j+2$ for some $j \geq 2$. By Lemma $2, p \nmid d_{3 j} d_{3 j+1}$ and $\operatorname{gcd}\left(d_{3 j}, d_{3 j+1}\right)=1$. Hence, $p^{2} d_{3 j} d_{3 j+1}$ divides $N$, which implies that $p d_{3 j} \in S_{N}^{\prime}$.
If $p d_{3 j}=d_{3 j+2}=a d_{3 j+1}+b d_{3 j}$, then $d_{3 j}$ divides $a d_{3 j+1}$. By Lemma 2, $d_{3 j} \mid a$. Observe that for $d_{i} \in S_{N}^{\prime}$, the sequence $d_{i} \bmod a$ is

$$
1, p, q, b p, b q, b^{2} p, b^{2} q, \ldots
$$

Write $d_{3 j}=a \ell+b^{k} s$, for some $\ell \in \mathbb{Z}$, some $k \geq 0$, and some $s \in\{p, q\}$. We see that $d_{3 j} \mid b^{k} s$ for some $k \geq 0$ and $s \in\{p, q\}$. By Lemma $2, d_{3 j} \leq q$. However,

$$
d_{3 j} \geq d_{6}>d_{3}=q
$$

a contradiction.
If $p d_{3 j}>d_{3 j+2}$, then $p d_{3 j} \geq d_{3(j+1)+2}$ by Lemma 2 . Therefore, $\left|S_{N}\right| \geq$ $3(j+1)+2$.

Proposition 6. There is no small recurrent $N$ whose the first four numbers of $S_{N}^{\prime}$ are $p<q<r<p^{2}$.

Proof. By Proposition $5,\left|S_{N}^{\prime}\right| \in\{4,5,6\}$. If $\left|S_{N}^{\prime}\right|=4$, then $\tau(N)=10$ or 11, none of which can be written as a product of at least three integers, each of which is at least 2 . This contradicts (2) and the fact that $N$ has three distinct prime factors. We arrive at the same conclusion when $\left|S_{N}^{\prime}\right|=6$. For $\left|S_{N}^{\prime}\right|=5$, we obtain $N=p^{2} q r$ for some primes $p<q<r<p^{2}$. However, this poses another contradiction. Observe that $(p q)^{2}<p^{2} q r$, so the divisors in $S_{N}^{\prime}$ are $p<q<r<p^{2}<p q$. Since $p q=a p^{2}+b r$, we get $p \mid b$, which contradicts Lemma 2 item ii).
b) Suppose that $d_{5}=p q$.

Proposition 7. There is no small recurrent number $N$ such that the first four numbers of $S_{N}^{\prime}$ are $p<q<r<p q$.

Proof. Assume that $\left|S_{N}^{\prime}\right| \geq 8$. Since $p^{2} \notin S_{N}^{\prime}, p$ divides $N$ exactly. By Lemma $3, d_{6}$ is divisible neither by $p$ nor $q$. Hence, $d_{6}=s$ for some prime $s>p q$. The divisor $d_{7}$ is divisble by $q$; hence, $d_{7}=q r$ or $q^{2}$. The divisor $d_{8}$ is divisible by $p$ but not by $q$. So, $d_{8}=p r$, which gives that $d_{7}$ must be $q^{2}$ because $d_{7}<d_{8}$. Now $q \mid d_{9}$ and $p \nmid d_{9} \Longrightarrow d_{9}=q r$. However, that $\operatorname{gcd}\left(d_{8}, d_{9}\right)=r$ contradicts Lemma 3. Therefore, $\left|S_{N}^{\prime}\right| \in\{4,5,6,7\}$. Using the same argument as in the proof of Proposition 6, we know that $\left|S_{N}^{\prime}\right| \neq 4,6$ and so, $\left|S_{N}^{\prime}\right| \in\{5,7\}$. By the above argument, if $\left|S_{N}^{\prime}\right| \geq 5$, then $d_{6}$ is a prime greater than $p q$. Hence, $N$ has at least 4 distinct prime factors, so $\tau(N)$ can be written as a product of at least 4 integers greater than 1 . Clearly, (1) rules out the case $\left|S_{N}^{\prime}\right|=5$. If $\left|S_{N}^{\prime}\right|=7$, the above argument shows that $q^{2} \mid N$; hence, $\tau(N)$ can be written as a product of at least 4 integers greater than 1 , one of which is greater than 2 . This cannot happen as $\tau(N) \in\{16,17\}$.
c) Suppose that $d_{5}=s$.

Proposition 8. There is no small recurrent number $N$ such that the first four numbers of $S_{N}^{\prime}$ are $p<q<r<s$.

Proof. Observe that $p q$ and $p r$ are in $S_{N}^{\prime}$. Let $d_{j}=p v$ be the largest element of $S_{N}^{\prime}$ that is divisible by $p$. Clearly, $v>p$ and $j \geq 7$. By Lemma $4, d_{j}, d_{j-1}$, and $d_{j-2}$ are pairwise coprime. Hence, $p v d_{j-1} d_{j-2}$ divides $N$, so $p d_{j-2} \in S_{N}^{\prime}$. If $p d_{j-2}=d_{j-1}$, then $p \mid d_{j-1}$ and so, $p \mid \operatorname{gcd}\left(d_{j-1}, d_{j}\right)$, which contradicts Lemma 4 item iii).
If $p d_{j-2}=d_{j}$, then $d_{j-2}=v$ and $\operatorname{gcd}\left(d_{j-2}, d_{j}\right)=v>1$, which contradicts Lemma 4 item v).
Therefore, we have $p d_{j-2}>d_{j}$, which, however, contradicts that $d_{j}$ is the largest element of $S_{N}^{\prime}$ that is divisible by $p$. We conclude that there is no small recurrent number $N$ such that the first four numbers of $S_{N}^{\prime}$ are $p<q<r<s$.

From the above analysis, we arrive at the following proposition.
Proposition 9. If $N$ is small recurrent and $\left|S_{N}^{\prime}\right| \geq 4$, then $N$ belongs to one of the following forms.
(S1) $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.
(S2) $N=p q^{k}$ or $p q^{k} r$ for some $k \geq 2, p<q$, and $p q^{k}<r$.
(S3) $N=p^{k} q$ r for some $k \geq 2$, some prime $r>p^{k} q$, and $\sqrt{q}<p<q$.
(S4) $N=p^{k} q$ for some $k \geq 2$ and $\sqrt{q}<p<q$.
(S5) $N=p^{2} q^{2}$ for some $p<q<p^{2}$.
(S6) $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$.
(S7) $N=p^{2} q r$, where the first four numbers in $S_{N}^{\prime}$ are $p<q<p^{2}<r$.
These forms together establish the necessary condition for a small recurrent $N$ to have $\left|S_{N}^{\prime}\right| \geq 4$. We now refine each form (if necessary) to obtain a necessary and sufficient condition.

- If $N=p^{k}$, then $N$ is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if $k \geq 9$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{\lfloor(k-1) / 2\rfloor}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
- If $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$, then $N$ is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if $k \geq 4$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{k}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
(S2)
- If $N=p q^{k}$ for some $k \geq 2$ and $p<q$, then $N$ is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if $\sqrt{N}=\sqrt{p q^{k}}>q^{2}$. Hence, $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots\right\}$ satisfies $U(p, q, 0, q)$.
- If $N=p q^{k} r$ for some $k \geq 2, p<q$, and $r>p q^{k}$, then $N$ is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots, p q^{k-1}, q^{k}, p q^{k}\right\}$ satisfies $U(p, q, 0, q)$.
(S3) If $N$ belongs to (S3), then $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots, p^{k}, p^{k-1} q, p^{k} q\right\}$. Since $p^{2}=a q+b p$, we know that $p \mid a$. Write $a=p m$ for some $m \in \mathbb{Z}$ and get $b=p-m q$. Hence,

$$
p q=a p^{2}+b q=p^{3} m+(p-m q) q \Longrightarrow m q^{2}=p^{3} m
$$

Therefore, $(m, a, b)=(0,0, p)$. However, the largest element in $S_{N}^{\prime}, p^{k} q$, is not equal to $p \cdot p^{k}$. We conclude that form (S3) does not give a small recurrent number.
(S4) If $N=p^{k} q$ for some $k \geq 2$ and $\sqrt{q}<p<q$, then the nontrivial divisors of $N$ in increasing order is $p<q<p^{2}<p q<\cdots$. In order that $\left|S_{N}^{\prime}\right| \geq 4$, we need $(p q)^{2}<p^{k} q$, so $q<p^{k-2}$. Hence, $k \geq 4$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots\right\}$ satisfies $U(p, q, 0, p)$.
(S5) If $N=p^{2} q^{2}$ for some $p<q<p^{2}$, then $\tau(N)=9$. However, if $\left|S_{N}^{\prime}\right| \geq 4$, then $\tau(N) \geq 10$ by (2). We conclude that form (S5) does not give a small recurrent number.
(S6) If $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$, then $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
(S7) Let $N$ have form (S7). Since the first four numbers of $S_{N}^{\prime}$ are $p<$ $q<p^{2}<r$ and $\tau(N)=12$, we know that the fifth number in $S_{N}^{\prime}$ must be $p q$. That $p<q<p^{2}<r<p q$ satisfies some $U(p, q, a, b)$ gives $a=$ $\frac{p(p q-r)}{q^{2}-p^{3}}, b=\frac{r q-p^{4}}{q^{2}-p^{3}}$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. We conclude that a number of form (S7) is small recurrent if and only if $p<q<p^{2}<r<p q$, $\left(q^{2}-p^{3}\right)\left|(p q-r),\left(q^{2}-p^{3}\right)\right|\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. An example is $(p, q, r)=(2,3,5)$. We do not know if $(2,3,5)$ is the only set of primes that satisfy all these conditions or not.

From the above analysis, we obtain the proposition, which is a refinement of Proposition 9.
Proposition 10. Let $p, q, r$ denote prime numbers and $k$ be some positive integer. A positive integer $N$ is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \geq 9$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{\lfloor(k-1) / 2\rfloor}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
2. $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{k}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
3. $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots\right\}$ satisfies $U(p, q, 0, q)$.
4. $N=p q^{k} r$ for some $k \geq 2, p<q$, and $r>p q^{k}$. In this case, $S_{N}^{\prime}=$ $\left\{p, q, p q, q^{2}, \ldots, p q^{k-1}, q^{k}, p q^{k}\right\}$ satisfies $U(p, q, 0, q)$.
5. $N=p^{k} q$ for some $k \geq 4$ and $\sqrt{q}<p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots\right\}$ satisfies $U(p, q, 0, p)$.
6. $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
7. $N=p^{2} q$, where $p<q<p^{2}<r<p q,\left(q^{2}-p^{3}\right)\left|(p q-r),\left(q^{2}-p^{3}\right)\right|\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, r, p q\right\}$ satisfies $U\left(p, q, \frac{p(p q-r)}{q^{2}-p^{3}}, \frac{r q-p^{4}}{q^{2}-p^{3}}\right)$.

### 3.2 The case $\left|S_{N}^{\prime}\right| \leq 3$

If $\left|S_{N}^{\prime}\right| \leq 3$, then $\tau(N) \leq 9$. We use the classifications of those $N$ from the introduction to obtain the following proposition.

Proposition 11. Let $p, q, r$ denote prime numbers and $k$ be some positive integer. A positive integer $N>1$ is small recurrent with $\left|S_{N}^{\prime}\right| \leq 3$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \leq 8$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, \ldots, p^{\lfloor(k-1) / 2\rfloor}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
2. $N=p q$ for some $p<q$. In this case, $S_{N}^{\prime}=\{p\}$.
3. $N=p q^{2}$ for some $p<q$. In this case, $S_{N}^{\prime}=\{p, q\}$.
4. $N=p^{2} q$ for some $p<q$. If $q<p^{2}$, then $S_{N}^{\prime}=\{p, q\}$. If $q>p^{2}$, then $S_{N}^{\prime}=\left\{p, p^{2}\right\}$.
5. $N=p q^{3}$ for some $p<q$. In this case, $S_{N}^{\prime}=\{p, q, p q\}$.
6. $N=p^{3} q$ for some $p<q$. If $p<q<p^{2}$, then $S_{N}^{\prime}=\left\{p, q, p^{2}\right\}$. If $p^{3}<q$, then $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}\right\}$. (The case $p^{2}<q<p^{3}$ is eliminated because the three elements in $S_{N}^{\prime}$ would be $p<p^{2}<q$. However, there is no integral solution $(a, b)$ to $q=a p^{2}+b p$.)
7. $N=p^{2} q^{2}$ for some $p<q$. If $p<q<p^{2}$, then $S_{N}^{\prime}=\left\{p, q, p^{2}\right\}$. (The case $p^{2}<q$ is eliminated due to the same reason as in item (6).)
8. $N=p q r$ for some $p<q<r$. If $r<p q$ and there is an integral solution $(a, b)$ to $r=a q+b p$, then $S_{N}^{\prime}=\{p, q, r\}$. If $r>p q$, then $S_{N}^{\prime}=\{p, q, p q\}$.

Combining Propositions 10 and 11, we obtain Theorem 1.

## 4 Large recurrent numbers

Now we characterize all positive integers $N$ whose $L_{N}^{\prime}$ satisfies a linear recurrence of order at most two. By a simple observation, instead of working directly with divisors in $L_{N}^{\prime}$, we work with divisors in $S_{N}^{\prime}$. Again, the set of divisors of a positive integer $N$ is $1=d_{1}<d_{2}<\cdots<d_{\tau(N)}$ and the set $S_{N}^{\prime}=\left\{d_{2}, d_{3}, \ldots\right\}$.

### 4.1 The case $\left|L_{N}^{\prime}\right| \geq 4$

Note that $\left|L_{N}^{\prime}\right| \geq 4$ is equivalent to $\left|S_{N}^{\prime}\right| \geq 4$.
Lemma 5. For any $d \in L_{N}^{\prime}$, we have $N / d \in S_{N}^{\prime}$. If $N$ is large recurrent with $\left|L_{N}^{\prime}\right| \geq 4$, then

$$
\begin{equation*}
a d_{i+2}+b d_{i+1}=\frac{d_{i+1} d_{i+2}}{d_{i}}, \forall d_{i}, d_{i+1}, d_{i+2} \in S_{N}^{\prime} \tag{3}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
a d_{4}+b d_{3}=\frac{d_{3} d_{4}}{d_{2}} \tag{4}
\end{equation*}
$$

Proof. If $d \in L_{N}^{\prime}$, then $\sqrt{N}<d<N$. Then $1<N / d<\sqrt{N}$, so $N / d \in S_{N}^{\prime}$. Let

$$
d_{i}^{\prime}:=d_{\tau(n)+1-i}=\frac{N}{d_{i}} \in L_{N}^{\prime}, \forall d_{i} \in S_{N}^{\prime}
$$

If $N$ is large recurrent, then we have

$$
d_{i}^{\prime}=a d_{i+1}^{\prime}+b d_{i+2}^{\prime}, \forall d_{i}^{\prime}, d_{i+1}^{\prime}, d_{i+2}^{\prime} \in L_{N}^{\prime}
$$

Therefore,

$$
\frac{N}{d_{i}}=a \frac{N}{d_{i+1}}+b \frac{N}{d_{i+2}}, \forall d_{i}, d_{i+1}, d_{i+2} \in S_{N}^{\prime}
$$

which gives

$$
a d_{i+2}+b d_{i+1}=\frac{d_{i+1} d_{i+2}}{d_{i}}, \forall d_{i}, d_{i+1}, d_{i+2} \in S_{N}^{\prime}
$$

This completes our proof.
Since $d_{2}$ is a prime number $p$ and $d_{3}$ is either $p^{2}$ or a prime number $q>p$, we consider two cases.

When $\boldsymbol{d}_{\mathbf{3}}=\boldsymbol{p}^{\mathbf{2}}$ Then $d_{4}$ is either $p^{3}$ or a prime number $q>p^{2}$.
a) If $d_{4}=p^{3}$, then (4) implies that $p^{2}=a p+b$.

Claim. If $p \neq a$, then $S_{N}^{\prime}=\left\{p, p^{2}, \ldots, p^{k}\right\}$ for some $k \geq 4$.
Proof. We need to show that if $d_{i} \in S_{N}^{\prime}$, then $d_{i}=p^{i-1}$. Base case: the claim holds for $i \leq 4$. Suppose that there exists a $j \geq 4$ such that $d_{i}=p^{i-1}$ for all $i \leq j$. Using (3), we have

$$
a d_{j+1}+b p^{j-1}=a d_{j+1}+b d_{j}=\frac{d_{j+1} d_{j}}{d_{j-1}}=\frac{d_{j+1} p^{j-1}}{p^{j-2}}=p d_{j+1}
$$

which, combined with $p^{2}=a p+b$, gives

$$
(p-a)\left(d_{j+1}-p^{j}\right)=0
$$

Since $p \neq a$, we obtain $d_{j+1}=p^{j}$, as desired.
By Proposition 2, we know that when $p \neq a$, either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.
Now suppose that $p=a$. Then $b=0$. We can write elements in $L_{N}^{\prime}$ as $\left\{g_{1}, g_{2}, p g_{2}, p^{2} g_{2}, \ldots, p^{k} g_{2}\right\}$ for some $k \geq 2$. Correspondingly, the set $S_{N}^{\prime}$ is $\left\{p, p^{2}, \ldots, p^{k}, p^{k+1}, p^{k+1} g_{2} / g_{1}\right\}$. If $p^{k+1} g_{2} / g_{1}$ is a power of $p$, then we have the same conclusion about $N$ as when $p \neq a$. If $p^{k+1} g_{2} / g_{1}$ is not a power of $p$, then

$$
\frac{p^{k+1} g_{2}}{g_{1}}=q, \text { for some prime } q>p \Longrightarrow g_{1}=p^{k+1} \frac{g_{2}}{q}
$$

Note that $g_{2} / q \in \mathbb{N}$. Furthermore, we claim that $g_{2} / q=p$. Indeed, since $1<g_{2} / q<g_{1}$, we know that $g_{2} / q \in S_{N}^{\prime}$. If $g_{2} / q=q$, then

$$
p q<p^{k+1} \frac{g_{2}}{q}=g_{1}
$$

which implies that $p q \in S_{N}^{\prime}$, a contradiction. If $g_{2} / q=p^{j}$ for some $j>1$, then

$$
p^{k+2}<p^{k+1+j}=p^{k+1} \frac{g_{2}}{q}=g_{1}
$$

which implies that $p^{k+2} \in S_{N}^{\prime}$, another contradiction. Therefore, $g_{2} / q=p$, and we obtain $g_{1}=p^{k+2}$ and $g_{2}=p q$. Hence, $N=p^{k+2} q$ for some $k \geq 2$ and $p^{k+1}<q<p^{k+2}$.
b) If $d_{4}=q$, we claim that $a \neq p$. Suppose otherwise. Applying (4) to $d_{2}, d_{3}$, and $d_{4}$ gives $a q+b p^{2}=p q$. Hence, $a=p$ implies that $b=0$. However, applying (3) to $d_{3}, d_{4}$, and $d_{5}$ gives $\left(p^{3}-q\right) d_{5}=0$, a contradiction. Therefore, $a \neq p$. By (4), we have

$$
\left.d_{4}=\frac{b p^{2}}{p-a}=q \Longrightarrow q \right\rvert\, b \Longrightarrow b=k q \text { for some } k \in \mathbb{Z} \backslash\{0\}
$$

Hence, $a=p-k p^{2}$. By (3) applied to $d_{3}, d_{4}$, and $d_{5}$,

$$
\begin{equation*}
d_{5}=\frac{k p^{2} q^{2}}{q-p^{3}+k p^{4}} \tag{5}
\end{equation*}
$$

which implies that $p^{2} \mid d_{5}$ since $\operatorname{gcd}\left(p^{2}, q-p^{3}+k p^{4}\right)=1$. Hence, $d_{5}=p^{3}$, and (5) gives $k=p\left(p^{3}-q\right) /\left(p^{5}-q^{2}\right)$.

Case b.i) If $S_{N}^{\prime}$ has exactly four elements, which are $p, p^{2}, q, p^{3}$, then $\tau(N)=10$, which implies that $N=p^{4} q$. Hence, $L_{N}^{\prime}=\left\{p q, p^{4}, p^{2} q, p^{3} q\right\}$ with $a=p q\left(p^{2}-q\right) /\left(p^{5}-q^{2}\right)$ and $b=p q\left(p^{3}-q\right) /\left(p^{5}-q^{2}\right)$. We conclude that $N=p^{4} q\left(p^{2}<q<p^{3}\right),\left(p^{5}-q^{2}\right) \mid\left(p^{2}-q\right)$, and $\left(p^{5}-q^{2}\right) \mid\left(p^{3}-q\right)$. Case b.ii) If $\left|S_{N}^{\prime}\right|>4$, then (3) gives

$$
\left.d_{6}=\frac{b p^{3} q}{p^{3}-a q} \Longrightarrow q \right\rvert\, d_{6} \Longrightarrow d_{6}=p q
$$

However, since $(a, b)=(p(1-k p), k q)$, we have

$$
p q=d_{6}=\frac{b p^{3} q}{p^{3}-a q}=\frac{k p^{2} q^{2}}{p^{2}-q(1-k p)}
$$

which gives $p^{2}=q$, a contradiction.
We summarize our result when $d_{3}=p^{2}$.
Proposition 12. A number $N$ is large recurrent with $\left|L_{N}^{\prime}\right| \geq 4$ and $\left(d_{2}, d_{3}\right)=$ $\left(p, p^{2}\right)$ for some prime $p$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \geq 9$. Then $L_{N}^{\prime}=\left\{p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, \ldots, p^{k-1}\right\}$ satisfies $U\left(p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, p, 0\right)$.
2. $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $L_{N}^{\prime}=\left\{q, p q, p^{2} q, \ldots, p^{k-1} q\right\}$ satisfies $U(q, p q, p, 0)$.
3. $N=p^{k} q$ for some $k \geq 4$ and $p^{k-1}<q<p^{k}$. Then

$$
L_{N}^{\prime}=\left\{p^{k}, p q, p^{2} q, \ldots, p^{k-1} q\right\}
$$

satisfies $U\left(p^{k}, p q, p, 0\right)$.
4. $N=p^{4} q$ with $p^{2}<q<p^{3}$, $\left(p^{5}-q^{2}\right) \mid\left(p^{2}-q\right)$, and $\left(p^{5}-q^{2}\right) \mid\left(p^{3}-q\right)$. In this case, $L_{N}^{\prime}=\left\{p q, p^{4}, p^{2} q, p^{3} q\right\}$.

When $\boldsymbol{d}_{\mathbf{3}}=\boldsymbol{q}$ By (3),

$$
p\left(a d_{4}+b q\right)=d_{4} q \Longrightarrow p \mid d_{4} .
$$

Write $d_{4}=k p$ for some integer $k$. Since $d_{2}=p$ and $d_{3}=q, d_{4}$ must be either $p^{2}$ or $p q$.
a) If $d_{4}=p^{2}$, (3) gives $a p^{2}+b q=p q$. Hence, $q \mid a$ and $p \mid b$. Write $a=m q$ and $b=n p$ for some integers $m, n$ to get $m p+n=1$. By (3), we see that

$$
\left.d_{5}=\frac{b p^{2} q}{p^{2}-a q} \Longrightarrow q \right\rvert\, d_{5} \Longrightarrow d_{5}=p q
$$

Therefore,

$$
\frac{b p^{2} q}{p^{2}-a q}=\frac{n p^{3} q}{p^{2}-m q^{2}}=\frac{(1-m p) p^{3} q}{p^{2}-m q^{2}}=p q \Longrightarrow m\left(p^{3}-q^{2}\right)=0
$$

which gives $m=0$ and so, $(a, b)=(0, p)$. By $(3), d_{i+2}=p d_{i}$ for all $d_{i}, d_{i+2} \in$ $S_{N}^{\prime}$ and

$$
S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots\right\}
$$

 $\left|S_{N}^{\prime}\right| \geq 5$, then $p^{3} \in S_{N}^{\prime}$.

Case a.i) If $q^{2} \mid N$, let $k \geq 2$ and $\ell \geq 3$ be the largest power such that $q^{k} \mid N$ and $p^{k} \mid N$, respectively. Since $q^{2} \notin S_{N}^{\prime}$, we know that

$$
q^{4} \geq N \geq p^{3} q^{k}>q^{k+3 / 2} \Longrightarrow k<5 / 2
$$

It follows that $k=2$. That $q^{2}<p^{2} q$ implies that

$$
\left(p^{2} q\right)^{2}>N \geq p^{\ell} q^{2} \Longrightarrow 3 \geq \ell \geq 3
$$

Hence, $\ell=3$. If $N$ does not have any other prime divisors besides $p$ and $q$, then $N=p^{3} q^{2}$ for $p<q<p^{2}$. If $N$ has a prime divisor $r \neq p, q$, then $r>\sqrt{N}$. So, $r$ must be the unique prime divisor different from $p$ and $q$. We have $N=p^{3} q^{2} r$ for $p<q<p^{2}$ and $r>p^{3} q^{2}$. Then $q^{2} \in S_{N}^{\prime}$, a contradiction.

Case a.ii) If $q^{2} \nmid N$ and $N$ has no prime divisors other than $p$ and $q$, then $N=p^{k} q$ some for $k \geq 2$ and $p<q<p^{2}$.
Case a.iii) If $q^{2} \nmid N$ and there exists a prime divisor $r$ other than $p$ or $q$, then $r>\sqrt{N}$ and $r$ is the unique prime different from $p$ and $q$. Therefore, $N=p^{k} q r$ for some $k \geq 2$ and $p<q<p^{2}<p^{k} q<r$. Note that the two largest elements in $S_{N}^{\prime}$ are $p^{k-1} q$ and $p^{k} q$. Let $d$ be the third largest divisor in $S_{N}^{\prime}$. The relation $d_{i+2}=p d_{i}$ for all $d_{i}, d_{i+2} \in S_{N}^{\prime}$ gives that $d p=p^{k} q$ and so, $d=p^{k-1} q$, which contradicts that $p^{k-1} q$ is the second largest in $S_{N}^{\prime}$.
b) If $d_{4}=p q$, then $p^{2} \nmid N$ since $p^{2}<p q$. By (4),

$$
\begin{equation*}
a p=q-b \tag{6}
\end{equation*}
$$

We see that $d_{5}$ is equal to $q^{2}$ or $r$, for some prime $r>p q$.
Case b.i) If $d_{5}=q^{2}$, then (3) gives

$$
\begin{equation*}
b p=(p-a) q \tag{7}
\end{equation*}
$$

From (6) and (7), we obtain $a\left(p^{2}-q\right)=0$, so $(a, b)=(0, q)$. By (3), $d_{i+2}=q d_{i}$ for all $d_{i}, d_{i+2} \in S_{N}^{\prime}$. Using [1, Proposition 5], we conclude that $N=p q^{k}$ or $N=p q^{k} r$ for some $k \geq 2$ and $p<q<p q^{k}<r$.
Case b.ii) If $d_{5}=r$, then we claim that $\left|S_{N}^{\prime}\right|>4$. If not, $\left|S_{N}^{\prime}\right|=4$ implies that $\tau(N)=10$, which contradicts that $N$ has three distinct prime divisors. By (3), we see that

$$
p q\left(a d_{6}+b r\right)=d_{6} r
$$

so $p q \mid d_{6}$. So, $d_{6} \in\left\{p q^{2}, p q r\right\}$. If $d_{6}=p q^{2}$, then $q^{2}<d_{6}$, but $q^{2}$ does not appear before $d_{6}$ in $S_{N}^{\prime}$, a contradiction. If $d_{6}=p q r$, then $p r<d_{6}$, but $p r$ does not appear before $d_{6}$ in $S_{N}^{\prime}$, again a contradiction.
Proposition 13. A number $N$ is large recurrent with $\left|L_{N}^{\prime}\right| \geq 4$ and $\left(d_{2}, d_{3}\right)=$ $(p, q)$ for some primes $p<q$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{3} q^{2}$ for $p<q<p^{2}$. In this case, $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}, p^{3} q, p^{2} q^{2}\right\}$ satisfies $U\left(q^{2}, p^{2} q, 0, p\right)$.
2. $N=p^{k} q$ some for $k \geq 4$ and $p<q<p^{2}$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p^{k / 2+1}, p^{k / 2} q, p^{k / 2+2}, \ldots, p^{k-1} q\right\} & \text { if } 2 \mid k, \\ \left\{p^{(k-1) / 2} q, p^{(k+3) / 2}, p^{(k+1) / 2} q, \ldots, p^{k-1} q\right\} & \text { if } 2 \nmid k .\end{cases}
$$

Observe that $L_{N}^{\prime}$ satisfies $U\left(p^{k / 2+1}, p^{k / 2} q, 0, p\right)$ and $U\left(p^{(k-1) / 2} q, p^{(k+3) / 2}, 0, p\right)$ for even and odd $k$, respectively.
3. $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p q^{k / 2}, q^{k / 2+1}, \ldots, q^{k}\right\} & \text { if } 2 \mid k \\ \left\{q^{(k+1) / 2}, p q^{(k+1) / 2}, \ldots, q^{k}\right\} & \text { if } 2 \nmid k .\end{cases}
$$

Observe that $L_{N}^{\prime}$ satisfies $U\left(p q^{k / 2}, q^{k / 2+1}, 0, q\right)$ and $U\left(q^{(k+1) / 2}, p q^{(k+1) / 2}, 0, q\right)$ for even and odd $k$, respectively.
4. $N=p q^{k} r$ for some $k \geq 2$ and $p<q<p q^{k}<r$. In this case, $L_{N}^{\prime}=$ $\left\{r, p r, q r, p q r, q^{2} r, \ldots, q^{k} r\right\}$ satisfies $U(r, p r, 0, q)$.

Combining Propositions 12 and 13, we obtain the following.
Proposition 14. A number $N$ is large recurrent with $\left|L_{N}^{\prime}\right| \geq 4$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \geq 9$. Then $L_{N}^{\prime}=\left\{p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, \ldots, p^{k-1}\right\}$ satisfies $U\left(p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, p, 0\right)$.
2. $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $L_{N}^{\prime}=\left\{q, p q, p^{2} q, \ldots, p^{k-1} q\right\}$ satisfies $U(q, p q, p, 0)$.
3. $N=p^{k} q$ for some $k \geq 4$ and $p^{k-1}<q<p^{k}$. Then

$$
L_{N}^{\prime}=\left\{p^{k}, p q, p^{2} q, \ldots, p^{k-1} q\right\}
$$

satisfies $U\left(p^{k}, p q, p, 0\right)$.
4. $N=p^{k} q$ some for $k \geq 4$ and $p<q<p^{2}$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p^{k / 2+1}, p^{k / 2} q, p^{k / 2+2}, \ldots, p^{k-1} q\right\} & \text { if } 2 \mid k \\ \left\{p^{(k-1) / 2} q, p^{(k+3) / 2}, p^{(k+1) / 2} q, \ldots, p^{k-1} q\right\} & \text { if } 2 \nmid k\end{cases}
$$

Observe that $L_{N}^{\prime}$ satisfies $U\left(p^{k / 2+1}, p^{k / 2} q, 0, p\right)$ and $U\left(p^{(k-1) / 2} q, p^{(k+3) / 2}, 0, p\right)$ for even and odd $k$, respectively.
5. $N=p^{4} q$ with $p^{2}<q<p^{3}$, $\left(p^{5}-q^{2}\right) \mid\left(p^{2}-q\right)$, and $\left(p^{5}-q^{2}\right) \mid\left(p^{3}-q\right)$. In this case, $L_{N}^{\prime}=\left\{p q, p^{4}, p^{2} q, p^{3} q\right\}$.
6. $N=p^{3} q^{2}$ for $p<q<p^{2}$. In this case, $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}, p^{3} q, p^{2} q^{2}\right\}$ satisfies $U\left(q^{2}, p^{2} q, 0, p\right)$.
7. $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p q^{k / 2}, q^{k / 2+1}, \ldots, q^{k}\right\} & \text { if } 2 \mid k \\ \left\{q^{(k+1) / 2}, p q^{(k+1) / 2}, \ldots, q^{k}\right\} & \text { if } 2 \nmid k .\end{cases}
$$

Observe that $L_{N}^{\prime}$ satisfies $U\left(p q^{k / 2}, q^{k / 2+1}, 0, q\right)$ and $U\left(q^{(k+1) / 2}, p q^{(k+1) / 2}, 0, q\right)$ for even and odd $k$, respectively.
8. $N=p q^{k} r$ for some $k \geq 2$ and $p<q<p q^{k}<r$. In this case, $L_{N}^{\prime}=$ $\left\{r, p r, q r, p q r, q^{2} r, \ldots, q^{k} r\right\}$ satisfies $U(r, p r, 0, q)$.

### 4.2 The case $\left|L_{N}^{\prime}\right| \leq 3$

If $\left|L_{N}^{\prime}\right| \leq 3$, then $\tau(N) \leq 9$. We use the classifications of those $N$ from the introduction to obtain the following proposition

Proposition 15. Let $p, q$, r denote prime numbers and $k$ be some positive integer. A positive integer $N>1$ is small recurrent with $\left|L_{N}^{\prime}\right| \leq 3$ if and only if $N$ belongs to one of the following forms.

1. $N=p^{k}$ for some $k \leq 8$. In this case, $L_{N}^{\prime}=\left\{p^{\lceil(k-1) / 2\rceil+1}, \ldots, p^{k-1}\right\}$ satisfies $U\left(p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, p, 0\right)$.
2. $N=p q$ for some $p<q$. In this case, $L_{N}^{\prime}=\{q\}$.
3. $N=p q^{2}$ for some $p<q$. In this case, $L_{N}^{\prime}=\left\{p q, q^{2}\right\}$.
4. $N=p^{2} q$ for some $p<q$. If $q<p^{2}$, then $L_{N}^{\prime}=\left\{p^{2}, p q\right\}$. If $q>p^{2}$, then $L_{N}^{\prime}=\{q, p q\}$.
5. $N=p q^{3}$ for some $p<q$. In this case, $L_{N}^{\prime}=\left\{q^{2}, p q^{2}, q^{3}\right\}$.
6. $N=p^{3} q$ for some $p<q$. If $p<q<p^{2}$, then $L_{N}^{\prime}=\left\{p q, p^{3}, p^{2} q\right\}$. If $p^{3}<q$, then $L_{N}^{\prime}=\left\{q, p q, p^{2} q\right\}$. If $p^{2}<q<p^{3}$, then $L_{N}^{\prime}=\left\{p^{3}, p q, p^{2} q\right\}$.
7. $N=p^{2} q^{2}$ for some $p<q$. If $p<q<p^{2}$, then $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}\right\}$. The case $p^{2}<q$ is impossible as it gives $L_{N}^{\prime}=\left\{p^{2} q, p q^{2}, q^{2}\right\}$ and there is no integral solution $(a, b)$ to $a p q^{2}+b p^{2} q=q^{2}$.
8. $N=p q r$ for some $p<q<r$. If $r>p q$, then $L_{N}^{\prime}=\{r, p r, q r\}$. The case $r<p q$ is impossible as it gives $L_{N}^{\prime}=\{p q, p r, q r\}$ and there is no integral solution $(a, b)$ to apr $+b p q=q r$.
Combining Propositions 14 and 15, we obtain Theorem 2.

## 5 Appendix

Proof (Proof of Lemma 3). i) Since $r=a q+b p$ and $p q=a r+b q$, we know that $\operatorname{gcd}(a, b) \mid r$ amd $\operatorname{gcd}(a, b) \mid p q$, respectively. Hence, $\operatorname{gcd}(a, b)=1$.

Since $r=a q+b p$ and $r$ is a prime, $p \nmid a$.
ii) Suppose that $k=\operatorname{gcd}\left(b, d_{i}\right)>1$ for some $d_{i} \in S_{N}^{\prime}$. If $d_{i}=d_{2}$, then $p \mid b$. Since $p q=a r+b q$, we get $p \mid a$, which contradicts $\operatorname{gcd}(a, b)=1$. If $d_{i}=d_{3}$, then $q \mid b$. Since $r=a q+b p$, we get $q \mid r$, a contradiction. If $d_{i}>d_{3}$, then write

$$
\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(b, a d_{i-1}+b d_{i-2}\right) \stackrel{\text { i) }}{=} \operatorname{gcd}\left(b, d_{i-1}\right)
$$

which, by induction, gives $1<\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(b, d_{3}\right)$, which has been shown to be impossible.
iii) The claim holds for $i \leq 4$. Let $d_{i}, d_{i+1} \in S_{N}^{\prime}$ for some $i \geq 5$. We have

$$
\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=\operatorname{gcd}\left(d_{i}, a d_{i}+b d_{i-1}\right) \stackrel{\text { ii })}{=} \operatorname{gcd}\left(d_{i}, d_{i-1}\right)
$$

By induction, we obtain $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
iv) The claim holds for $i \leq 5$. Assume that it holds for all $i \leq j$ for some $j \geq 5$. We show that it holds for $i=j+1$. We have

$$
p q=a r+b q=a(a q+b p)+b q=\left(a^{2}+b\right) q+a b p
$$

Hence, $p \mid\left(a^{2}+b\right)$. Write

$$
d_{j+1}=a d_{j}+b d_{j-1}=a\left(a d_{j-1}+b d_{j-2}\right)+b d_{j-1}=\left(a^{2}+b\right) d_{j-1}+a b d_{j-2}
$$

Since $p \mid\left(a^{2}+b\right)$ and $\operatorname{gcd}(p, a b)=1$, we know that $p \mid d_{j+1}$ if and only if $p \mid d_{j-2}$. By the inductive hypothesis, $p \mid d_{j-2}$ if and only if $j-2 \equiv 2 \bmod 3$, or equivalently, $j+1 \equiv 2 \bmod 3$. By induction, we have the desired conclusion.
v) The claim holds for $i \leq 5$. Assume that it holds for all $i \leq j$ for some $j \geq 5$. We show that it holds for $i=j+1$. That $p q=a r+b q$ implies that $q \mid a$. Write

$$
d_{j+1}=a d_{j}+b d_{j-1}
$$

By ii), $q \mid d_{j+1}$ if and only if $q \mid d_{j-1}$. By the inductive hypothesis, $q \mid d_{j-1}$ if and only if $j+1 \equiv 1 \bmod 2$. This completes our proof.

Proof (Proof of Lemma 4). i) Same as the proof of Lemma 3 item i).
ii) Suppose, for a contradiction, that $\operatorname{gcd}\left(b, d_{i}\right)>1$ for some $i \geq 3$. If $i=3$, then $q \mid b$. We have $r=a q+b p$. Since $q \mid b$, we get $q \mid r$, a contradiction. If $i \geq 4$, write

$$
\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(b, a d_{i-1}+b d_{i-2}\right)=\operatorname{gcd}\left(b, d_{i-1}\right)
$$

By induction, $1<\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(b, d_{3}\right)$, which has been shown to be impossible. iii) The claim holds for $i \leq 4$. Pick $i \geq 5$. We have

$$
\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=\operatorname{gcd}\left(d_{i}, a d_{i}+b d_{i-1}\right)=\operatorname{gcd}\left(d_{i}, b d_{i-1}\right) \stackrel{\text { ii })}{=} \operatorname{gcd}\left(d_{i}, d_{i-1}\right)
$$

By induction, we obtain $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=\operatorname{gcd}\left(d_{4}, d_{5}\right)=1$.
iv) Assume that $\operatorname{gcd}\left(a, d_{i}\right)>1$ for some $i \geq 2$. If $i=2$, then $p \mid a$, which contradicts the primality of $r$ and the linear recurrence $r=a q+b p$. If $i=3$, then $q \mid b$, which contradicts the primality of $s$ and the linear recurrence $s=a r+b q$. Assume that $i \geq 4$. Write

$$
\operatorname{gcd}\left(a, d_{i}\right)=\operatorname{gcd}\left(a, a d_{i-1}+b d_{i-2}\right) \stackrel{\text { i) }}{=} \operatorname{gcd}\left(a, d_{i-2}\right)
$$

By induction, either $1<\operatorname{gcd}\left(a, d_{i}\right)=\operatorname{gcd}\left(a, d_{2}\right)$ or $1<\operatorname{gcd}\left(a, d_{i}\right)=\operatorname{gcd}\left(a, d_{3}\right)$, neither of which is possible.
v) The claims holds for $i \leq 3$. Pick $i \geq 4$ and suppose that $k=\operatorname{gcd}\left(d_{i}, d_{i+2}\right)>$ 1. Since $d_{i+2}=a d_{i+1}+b d_{i}, k$ divides $a d_{i+1}$. By iii), $\operatorname{gcd}\left(k, d_{i+1}\right)=1$, so $k \mid a$. However, $\operatorname{gcd}\left(a, d_{i}\right)>1$ contradicts iv).

## References

1. A. A Chentouf, Linear recurrences of order at most two in small divisors, J. Integer Seq. 25 (2022).
2. H. V. Chu, When the large divisors of a natural number are in arithmetic progression, J. Integer Seq. 23 (2020).
3. H. V. Chu, When the nontrivial, small divisors of a natural number are in arithmetic progression, Quaest. Math. 45 (2022), 969-977.
4. D. E. Iannucci, When the small divisors of a natural number are in arithmetic progression, Integers 18 (2018).
