Linear Recurrences of Order at Most Two in Nontrivial Small Divisors and Large Divisors

Hùng Việt Chu¹, Kevin Huu Le² Steven J. Miller³, Yuan Qiu⁴, and Liyang Shen⁵

¹ Department of Mathematics, Texas A&M University, College Station, TX 77843, USA,

hungchu@tamu.edu; hung.viet.chu@gmail.com

² Department of Mathematics, Texas A&M University, College Station, TX 77843, USA,

kevinhle@tamu.edu

 3 Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA,

sjm1@williams.edu; Steven.Miller.MC.96@aya.yale.edu

⁴ Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA,

yq1@williams.edu

 5 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA,

Liyang.Shen@nyu.edu

Abstract. For each positive integer N, define

 $S'_N \ = \ \{ 1 < d < \sqrt{N} : d | N \} \ \text{and} \ L'_N \ = \ \{ \sqrt{N} < d < N : d | N \}.$

Recently, Chentouf characterized all positive integers N such that the set of small divisors $\{d \leq \sqrt{N} : d|N\}$ satisfies a linear recurrence of order at most two. We nontrivially extend the result by excluding the trivial divisor 1 from consideration, which dramatically increases the analysis complexity. Our first result characterizes all positive integers N such that S'_N satisfies a linear recurrence of order at most two. Moreover, our second result characterizes all positive N such that L'_N satisfies a linear recurrence of order at most two, thus extending considerably a recent result that characterizes N with L'_N being in an arithmetic progression.

Keywords: divisors, linear recurrence, order two

1 Introduction

For a positive integer N, the set of small divisors of N is

$$S_N := \{d : 1 \le d \le \sqrt{N}, d \text{ divides } N\}.$$

Since the case N = 1 is trivial, we assume throughout the paper that N > 1. In 2018, Iannucci characterized all positive integers N whose S_N forms an

$\mathbf{2}$ Chu et al.

arithmetic progression (or AP, for short). Iannucci's key idea was to show that if S_N forms an AP, then the size $|S_N|$ cannot exceed 6. Observing that the trivial divisor 1 plays an important role in Iannucci's proofs (see [4, Lemma 3 and Theorem 4), Chu [3] excluded both 1 and \sqrt{N} from the definition of S_N to obtain a more general theorem that characterizes all N whose

$$S'_N := \{d : 1 < d < \sqrt{N}, d \text{ divides } N\}$$

is in an AP. Interestingly, with the trivial divisor 1 excluded, [2, Theorem 1.1] still gives that $|S'_N| \leq 5$. Recently, Chentouf generalized Iannucci's result from a different perspective by characterizing all N whose S_N satisfies a linear recurrence of order at most two. In particular, for each tuple $(u, v, a, b) \in \mathbb{Z}^4$, there is an integral linear recurrence, denoted by U(u, v, a, b), of order at most two, given by

$$n_i = \begin{cases} u & \text{if } i = 1, \\ v & \text{if } i = 2, \\ an_{i-1} + bn_{i-2} & \text{if } i \ge 3. \end{cases}$$

Noting that the appearance of the trivial divisor 1 contributes nontrivially to the proof of [1, Theorem 3, Lemma 8, Theorem 10], we generalize Chentouf's result in the same manner as [2, Theorem 1.1] generalizes [4, Theorem 4]: we characterize all positive integers N whose S'_N satisfies a linear recurrence of order at most two.

Definition 1. A positive integer N is said to be small recurrent if S'_N satisfies a linear recurrence of order at most two. When $|S'_N| \leq 2$, N is vacuously small recurrent.

Theorem 1. Let p,q,r denote prime numbers such that p < q < r and k be some positive integer. A positive integer N > 1 is small recurrent if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \ge 1$. In this case, $S'_N = \{p, p^2, \dots, p^{\lfloor (k-1)/2 \rfloor}\}$ satisfies $U(p, p^2, p, 0).$
- 2. $N = p^k q$ or $N = pq^k$ for some $1 \le k \le 3$. A restriction for $N = p^3 q$ is that either $p < q < p^2$ or $p^3 < q$.
- 3. $N = p^k q$ for some $k \ge 4$ and $q > p^k$. In this case, $S'_N = \{p, p^2, p^3, \dots, p^k\}$ satisfies $U(p, p^2, p, 0)$.
- 4. $N = p^k q$ for some $k \ge 4$ and $\sqrt{q} . In this case, <math>S'_N = \{p, q, p^2, pq, \ldots\}$ satisfies U(p, q, 0, p).
- 5. $N = pq^k$ for some $k \ge 4$ and p < q. In this case, $S'_N = \{p, q, pq, q^2, \ldots\}$ satisfies U(p, q, 0, q).
- 6. $N = pq^k r$ for some $k \ge 2$, p < q, and $r > pq^k$. In this case, $S'_N = \{p, q, pq, q^2, \dots, pq^{k-1}, q^k, pq^k\}$ satisfies U(p, q, 0, q). 7. $N = p^2q^2$ for some $p < q < p^2$. In this case, $S'_N = \{p, q, p^2\}$. 8. N = pqr for some p < q < r. If r < pq, then $S'_N = \{p, q, r\}$. If r > pq, then
- $S'_N = \{p, q, pq\}.$

- 9. $N = p^3 q^2$ for some $p^{3/2} < q < p^2$. In this case, $S'_N = \{p, q, p^2, pq, p^3\}$ satisfies U(p, q, 0, p).
- 10. $N = p^2 qr$, where $p < q < p^2 < r < pq$, $(q^2 p^3)|(pq r)$, $(q^2 p^3)|(rq p^4)$, and $r = pq \sqrt{(q^2 p^3)(p^2 q)}$. In this case, $S'_N = \{p, q, p^2, r, pq\}$ satisfies $U\left(p, q, \frac{p(pq-r)}{q^2-p^3}, \frac{rq-p^4}{q^2-p^3}\right).$

Next, consider the set of large divisors of N

$$L_N := \{d : d \ge \sqrt{N}, d \text{ divides } N\},\$$

$$L'_N := \{d : \sqrt{N} < d < N, d \text{ divides } N\}$$

The second result of this paper is the characterization of all positive integers Nwhose L'_N satisfies a linear recurrence of order at most two. This considerably extends [2, Theorem 1].

Definition 2. A positive integer N is said to be large recurrent if L'_N satisfies a linear recurrence of order at most two. When $|L'_N| \leq 2$, N is vacuously large recurrent.

Theorem 2. Let p,q,r denote prime numbers such that p < q < r and k be some positive integer. A positive integer N > 1 is large recurrent if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \ge 1$. Then $L'_N = \{p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, \dots, p^{k-1}\}$ satisfies $U(p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, p, 0).$
- 2. $N = p^k q$ for some $k \ge 1$ and $q > p^k$. Then $L'_N = \{q, pq, p^2 q, ..., p^{k-1}q\}$ satisfies U(q, pq, p, 0).
- 3. $N = p^k q$ for some $k \ge 2$ and $p^{k-1} < q < p^k$. Then

$$L'_N = \{p^k, pq, p^2q, \dots, p^{k-1}q\}$$

satisfies $U(p^k, pq, p, 0)$.

4. $N = p^k q$ some for $k \ge 3$ and $p < q < p^2$. In this case,

$$L'_{N} = \begin{cases} \{p^{k/2+1}, p^{k/2}q, p^{k/2+2}, \dots, p^{k-1}q\} & \text{if } 2|k, \\ \{p^{(k-1)/2}q, p^{(k+3)/2}, p^{(k+1)/2}q, \dots, p^{k-1}q\} & \text{if } 2 \nmid k. \end{cases}$$

Note that L'_N satisfies $U(p^{k/2+1}, p^{k/2}q, 0, p)$ and $U(p^{(k-1)/2}q, p^{(k+3)/2}, 0, p)$

- Note that L_N satisfies 0 (p^{+−}, p^{+−}q, 0, p) that 0 (p^{+−−−}q, p^{+−−−−}, 0, p) for even and odd k, respectively.
 5. N = p⁴q with p² < q < p³, (p⁵ q²)|(p² q), and (p⁵ q²)|(p³ q). In this case, L'_N = {pq, p⁴, p²q, p³q}.
 6. N = p³q² for p < q < p². In this case, L'_N = {q², p²q, pq², p³q, p²q²} satisfies U(q², p²q, 0, p).
 7. N = p²q² for some p < q. If p < q < p², then L'_N = {q², p²q, pq²}.
 8. N = pq^k for some k ≥ 2 and p < q. In this case,</p>

$$L'_{N} = \begin{cases} \{pq^{k/2}, q^{k/2+1}, \dots, q^{k}\} & \text{if } 2 \mid k, \\ \{q^{(k+1)/2}, pq^{(k+1)/2}, \dots, q^{k}\} & \text{if } 2 \nmid k. \end{cases}$$

> Observe that L'_N satisfies $U(pq^{k/2}, q^{k/2+1}, 0, q)$ and $U(q^{(k+1)/2}, pq^{(k+1)/2}, 0, q)$ for even and odd k, respectively.

9. $N = pq^k r$ for some $k \ge 1$ and $p < q < pq^k < r$. In this case, $L'_N = \{r, pr, qr, pqr, q^2r, \ldots, q^kr\}$ satisfies U(r, pr, 0, q).

The paper is structured as follows: Section 2 studies the case when N has a small number of divisors and establish some preliminary results; Section 3 characterizes small recurrent numbers, while Section 4 characterizes large recurrent numbers.

$\mathbf{2}$ Preliminaries

For each $N \in \mathbb{N}$ with the prime factorization $\prod_{i=1}^{\ell} p_i^{a_i}$, the divisor-counting function is

$$\tau(N) := \sum_{d|N} 1 = \prod_{i=1}^{c} (a_i + 1).$$
 (1)

It is easy to verify that for N > 1,

$$\tau(N) := \begin{cases} 2|S'_N| + 3 = 2|L'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 = 2|L'_N| + 2 & \text{otherwise.} \end{cases}$$
(2)

Using (1), we can characterize all N with $\tau(N) \leq 9$; equivalently, $|S'_N|, |L'_N| \leq 3$.

- 1. If $\tau(N) = 2$ or 3, (1) gives that N = p or p^2 for some prime p,

- 1. If $\tau(N) = 2$ of 0, (1) gives that 1 = p if p = 1 if q = 12. If $\tau(N) = 4$ or 5, $N = pq, p^3, p^4$ for some primes p < q, 3. If $\tau(N) = 6$ or 7, $N = p^5, pq^2, p^2q, p^6$ for some primes p < q, 4. If $\tau(N) = 8$ or 9, $N = pqr, pq^3, p^3q, p^7, p^2q^2, p^8$ for some primes p < q < r.

2.1 Regarding S'_N

Proposition 1. If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N}

Proof. Suppose that N has two prime factors p_1 and p_2 at least \sqrt{N} . Then $p_1p_2 \ge N$ and p_1p_2 divides N; hence, $N = p_1p_2$, which contradicts that $|S'_N| \ge 2$.

Proposition 2. If all elements of S'_N are divisible by some prime p and $|S'_N| \ge 4$, then either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

Proof. If all divisors (except 1) of N are divisible by p, then $n = p^k$ for some $k \geq 1$. Assume that N has a prime factor $q \neq p$. Then $q \geq \sqrt{N}$. Proposition 1 implies that N cannot have another prime factor at least \sqrt{N} . Hence, $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

Let p < q < r < s be distinct prime numbers. Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 1. Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p,q,a,b), the following hold:

- i) gcd(a,b) = 1.
- ii) if $d_{2i} \in S'_N$, then $p \mid d_{2i}$; however, if $d_{2i-1} \in S'_N$, then $p \nmid d_{2i-1}$.
- iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1$. iv) for $d_i, d_{i+1} \in S'_N$, we have $gcd(d_i, d_{i+1}) = 1$. v) for $d_{2i-1}, d_{2i+1} \in S'_N$, we have $gcd(d_{2i-1}, d_{2i+1}) = 1$.

Proof. i) Since $r = ap^2 + bq$, we have gcd(a, b)|r. Observe that gcd(a, b) = rcontradicts $p^2 = aq + bp$. Hence, gcd(a, b) = 1.

ii) We prove by induction. The claim is true for $i \leq 2$. Assume that the claim holds for $i = j \ge 2$. We show that it holds for i = j + 1. Since $p^2 = aq + bp$, we know that p|a. By item i), $p \nmid b$. Write

$$d_{2(j+1)} = ad_{2(j+1)-1} + bd_{2(j+1)-2} = ad_{2j+1} + bd_{2j}$$

= $(a^2 + b)d_{2j} + abd_{2j-1}$.

By the inductive hypothesis, $p|d_{2j}$. Since p|a, we obtain $p|d_{2(j+1)}$. Furthermore, write

$$d_{2(j+1)-1} = ad_{2(j+1)-2} + bd_{2(j+1)-3} = ad_{2j} + bd_{2j-1}.$$

Since $p \nmid bd_{2j-1}$ by the inductive hypothesis and $p \mid ad_{2j}$, we obtain $p \nmid d_{2(j+1)-1}$. This completes our proof.

iii) Suppose that $k = \gcd(b, d_i) > 1$ for some *i*. If i = 2, then p|b, which contradicts that p|a and gcd(a,b) = 1. If i = 3, then q|b, which contradicts $p^2 = aq + bp$. If $i \ge 4$, write $d_i = ad_{i-1} + bd_{i-2}$. Since $k \mid bd_{i-2}$ and gcd(a, b) = 1, we get $k|d_{i-1}$ and so, $k|\operatorname{gcd}(b, d_{i-1})$. By induction, we obtain $k|\operatorname{gcd}(b, d_3)$, which has been shown to be impossible.

Next, suppose that $k = \gcd(a, d_{2i-1}) > 1$ for some *i*. If i = 2, then q|a, contradicting $r = ap^2 + bq$. If $i \ge 3$,

$$k \mid d_{2i-1}, d_{2i-1} = ad_{2i-2} + bd_{2i-3}, \text{ and } gcd(a,b) = 1 \implies k \mid d_{2i-3}.$$

By induction, $k|d_3$; that is, $gcd(a, d_3) > 1$, which has been shown to be impossible.

iv) The claim holds for $i \leq 4$. For $i \geq 5$, using the recurrence $d_{i+1} = ad_i + ad_i$ bd_{i-1} , we have

$$gcd(d_i, d_{i+1}) = gcd(d_i, bd_{i-1}) \stackrel{\text{iii}}{=} gcd(d_i, d_{i-1}).$$

By induction, we obtain $gcd(d_i, d_{i+1}) = 1$.

v) The claim holds for $i \leq 2$. For $i \geq 3$, we have

$$gcd(d_{2i-1}, d_{2i+1}) = gcd(d_{2i-1}, ad_{2i}) \stackrel{\text{iii}}{=} gcd(d_{2i-1}, d_{2i}) \stackrel{\text{iv}}{=} 1.$$

This completes our proof.

Lemma 2. Suppose that the first 4 numbers in S'_N are $p < q < r < p^2$. If N is small recurrent with U(p, q, a, b), the following hold:

- i) gcd(a, b) = 1 and $p \nmid a$.
- ii) For all $d_i \in S'_N$, $gcd(b, d_i) = 1$.
- *iii)* For all $d_i, d_{i+1} \in S'_N$, $gcd(d_i, d_{i+1}) = 1$.
- iv) Let $d_i \in S'_N$. Then $p|d_i$ if and only if $i \equiv 2 \mod 3$.

Proof. i) We have gcd(a, b) divides r because r = aq + bp. Furthermore, gcd(a, b) divides p because $p^2 = ar + bq$. Hence, gcd(a, b) = 1.

Since r = aq + bp and r is a prime, $p \nmid a$.

ii) Suppose that $k = \gcd(b, d_i) > 1$ for some *i*. If i = 2, then k = p and p|b. It follows from $p^2 = ar + bq$ that p|a, which contradicts that $\gcd(a, b) = 1$. If i = 3, then k = q and q|b. It follows from r = aq + bp that q|r, a contradiction. Hence, $i \ge 4$. Write

$$1 < \gcd(b, d_i) = \gcd(b, ad_{i-1} + bd_{i-2}) = \gcd(b, d_{i-1}).$$

By induction, we obtain $gcd(b, d_3) > 1$, which has been shown to be impossible. iii) The claim holds for $i \leq 4$. Let $d_i, d_{i+1} \in S'_N$ and $i \geq 5$. Then

$$gcd(d_i, d_{i+1}) = gcd(d_i, ad_i + bd_{i-1}) = gcd(d_i, bd_{i-1}) \stackrel{\text{ii)}}{=} gcd(d_i, d_{i-1})$$

By induction, $gcd(d_i, d_{i+1}) = 1$.

iv) The claim holds for $i \leq 4$. Suppose that the claim holds for all $i \leq j$ for some $j \geq 5$. We show that it also holds for i = j + 1 under the assumption that $d_{j+1} \in S'_N$. We have

$$p^2 = ar + bq = a(aq + bp) + bq = (a^2 + b)q + abp.$$

Hence, $p|(a^2 + b)$. Write

$$d_{j+1} = ad_j + bd_{j-1} = a(ad_{j-1} + bd_{j-2}) + bd_{j-1} = (a^2 + b)d_{j-1} + abd_{j-2}.$$

Therefore, $p|d_{j+1}$ if and only if $p|d_{j-2}$. By the inductive hypothesis, we know that $p|d_{j+1}$ if and only if $j+1 \equiv 2 \mod 3$.

The proofs of the next two lemmas are similar to those of Lemmas 1 and 2. Thus, we move their proofs to the Appendix.

Lemma 3. Suppose that the first 4 numbers in S'_N are p < q < r < pq. If N is small recurrent with U(p,q,a,b), the following hold:

- i) gcd(a, b) = 1 and $p \nmid a$.
- ii) For all $d_i \in S'_N$, $gcd(b, d_i) = 1$.
- *iii)* For all $d_i, d_{i+1} \in S'_N$, $gcd(d_i, d_{i+1}) = 1$.
- iv) Let $d_i \in S'_N$. Then $p|d_i$ if and only if $i \equiv 2 \mod 3$.
- v) Let $d_i \in S'_N$. Then $q|d_i$ if and only if i is odd.

Lemma 4. Suppose that the first 4 numbers in S'_N are p < q < r < s. If N is small recurrent with U(p,q,a,b), the following hold:

i) gcd(a,b) = 1.

ii) For all $d_i \in S'_N$ with $i \ge 3$, $gcd(b, d_i) = 1$.

iii) For $d_i, d_{i+1} \in S'_N$, $gcd(d_i, d_{i+1}) = 1$.

iv For $d_i \in S'_N$, $gcd(a, d_i) = 1$.

v) For $d_i, d_{i+2} \in S'_N$, $gcd(d_i, d_{i+2}) = 1$.

3 Small recurrent numbers

We first find all small recurrent numbers with $|S'_N| \ge 4$. Then we check which N is small recurrent out of all N with $|S'_N| \le 3$ at the end of this section. As we rely heavily on case analysis, we underline possible forms of N throughout our analysis for the ease of later summary.

3.1 The case $|S'_N| \ge 4$

Let $d_2 = p$ for some prime p. Then d_3 is either p^2 or q for some prime q > p. If $d_3 = p^2$, according to Proposition 2, we know that

$$N = p^k$$
 or $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

Assume, for the rest of this subsection, that $d_3 = q$ for some prime q > p. Then $d_4 = pq, p^2, r$ for some prime r > q.

When $d_4 = pq$ Since S'_N satisfies U(p, q, a, b), we get pq = aq + bp. So, p|a and q|b. Write a = pm for some $m \in \mathbb{Z}$ and get b = (1 - m)q. Since $p^2 \nmid N$ and q divides $d_5 = apq + bq$, we can write

$$d_5 = p^s q^t r_1^{\ell_1} \cdots r_k^{\ell_k},$$

where $s \leq 1, t \geq 1$, and r_i 's are primes strictly greater than pq. If some $\ell_i \geq 1$, then $pq < r_i < d_5$ and $r_i \in S'_N$, a contradiction. Hence, $\ell_i = 0$ for all $i \leq k$ and $d_5 = p^s q^t$. Since $d_5 > pq$ and $s \leq 1$, we know that $t \geq 2$.

- a) If s = 1, $d_5 = pq^2 > q^2 > d_4$ and $q^2|d_5$, so $q^2 \in S'_N$, a contradiction.
- b) If s = 0, $d_5 = q^t$ for some $t \ge 2$. Since d_5 is the next number after d_4 in increasing order, $d_5 = q^2$. Using the linear recurrence, we obtain $q^2 = apq + bq$, so $q = ap + b = p^2m + (1 m)q$. It follows that $p^2m = mq$. We arrive at m = 0, a = 0, and b = q. Hence, all elements of S'_N are divisible by either p or q. If N has a prime factor $r \ge \sqrt{N}$, by Proposition 1, r is unique. We conclude that $N = pq^k$ or pq^kr for some $k \ge 2$, p < q, and $pq^k < r$.

When $d_4 = p^2$ The first few divisors of N are $1 . We have <math>p^2 = aq + bp$, so p|a. Write a = pm and get b = p - mq. We argue for possible forms of d_5 . Let r be the largest prime factor of d_5 . If r > q, then $r > p^2$ and $d_5 = r$. Otherwise, if $r \leq q$, then $d_5 = p^{\ell}q^k$ for some $\ell, k \geq 0$. Suppose that $k \geq 2$. We get

$$d_5 \geq q^2 > pq > d_4$$
 and $pq \mid N$,

a contradiction. Hence, $k \leq 1$. If k = 0, then

$$d_5 = p^3 > pq > d_4$$
 and $pq \mid N$,

another contradiction. Therefore, k = 1 and $d_5 = pq$. We conclude that either $d_5 = r$ for some r > q or $d_5 = pq$.

a) If $d_5 = pq$, then $bq + ap^2 = pq$. So, $(p - mq)q + mp^3 = pq$, which gives $mq^2 = mp^3$. Hence, m = 0, a = 0, and b = p. We know that elements of S'_N are divisible by either p or q. If N has a prime factor r' at least \sqrt{N} , by Proposition 1, r' is unique. Hence, either $N = p^{\ell}q^k$ or $p^{\ell}q^kr'$ for some prime $r' > p^{\ell}q^k$, $\ell \ge 2$, and $k \ge 1$.

Case a.i) $N = p^{\ell} q^k r'$. We claim that k = 1. Indeed, if $k \ge 2$, then

$$q^4 < q^2 r' < N \implies q^2 < \sqrt{N} \implies q^2 \in S'_N$$

Since b = p, we know that p|d for all $d \ge d_4$ and $d \in S'_N$, which contradicts $q^2 \in S'_N$. Hence,

$$N = p^{\ell}qr'$$
 for some $\ell \ge 2$, some prime $r' > p^{\ell}q$, and $\sqrt{q} .$

Case a.ii) $N = p^{\ell}q^k$. As above, $q^2 \notin S'_N$. If $k \ge 2$, then

$$q^2 \ge \sqrt{N} \implies q^4 \ge N = p^\ell q^k = p^{\ell-2} p^2 q^k > q^{k+1}.$$

Hence, k < 3, which implies that k = 2. In this case, $N = p^{\ell}q^2$ and

$$q^2 > p^{\ell} > q^{\ell/2} \implies \ell \leq 3.$$

We conclude that one of the following holds:

$$- N = p^{\ell}q \text{ for some } \ell \geq 2 \text{ and } \sqrt{q}
$$- \frac{N = p^2q^2 \text{ for some } p < q < p^2,}{N = p^3q^2 \text{ for some } p^{3/2} < q < p^2}.$$$$

b)
$$d_5 = r$$

Proposition 3. Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \leq 7$. As a result, $|S'_N| \leq 6$.

Proof. Assume that $|S_N| \geq 2i$ for some $i \geq 4$. We obtain a contradiction by showing that $|S_N| \geq 2i + 2$. By Lemma 1 item ii), $p \nmid d_{2i-1}$, $p|d_{2i-2}$, and $p \nmid d_{2i-3}$. By Lemma 1 item v), $gcd(d_{2i-1}, d_{2i-3}) = 1$, so $p^2d_{2i-1}d_{2i-3}$ divides N. Hence, $pd_{2i-3} \in S'_N$. If $pd_{2i-3} = d_{2i-2}$, then

$$pd_{2i-3} = ad_{2i-3} + bd_{2i-4} \implies d_{2i-3} \mid bd_{2i-4},$$

which contradicts Lemma 1 items iii) and iv). If $pd_{2i-3} = d_{2i}$, then

$$pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$$

= $(a^2 + b)d_{2i-2} + abd_{2i-3}$.

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j \mod a^2 + b$ is congruent to

$$1, p, q, p^2, abp, abq, abp^2, (ab)^2 p, (ab)^2 q, (ab)^2 p^2, \dots$$

Hence, we can write

$$d_{2i-3} = (a^2 + b)\ell + a^k b^k s_i$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in \{p, q, p^2\}$. Since $d_{2i-3}|(a^2+b)$, $d_{2i-3}|a^kb^ks$. By Lemma 1 item iii), $d_{2i-3}|s$; that is, $d_{2i-3} \leq p^2$. However, $d_{2i-3} \geq d_5 > d_4 = p^2$, a contradiction.

We conclude that $pd_{2i-3} \ge d_{2i+2}$. Since $pd_{2i-3} \in S'_N$, we know that $d_{2i+2} \in S'_N$ and $|S_N| \ge 2i+2$.

Proposition 4. Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent, then $|S'_N| \neq 4, 6$.

Proof. If $|S'_N| = 4$, then (2) gives $\tau(N) = 10$ or 11. Note that N has three distinct prime factors p, q, r and the power of p is at least 2. Since $2^3 \cdot 3 > 11$, N cannot have another prime factor besides p, q, r. Write $N = p^a q^b r^c$, for some $a \ge 2, b \ge 1, c \ge 1$. However, neither (a + 1)(b + 1)(c + 1) = 10 nor (a + 1)(b + 1)(c + 1) = 11 has a solution. Therefore, $|S'_N| \ne 4$. A similar argument gives $|S'_N| \ne 6$.

By Propositions 3 and 4, we know that $|S'_N| = 5$; that is, $\tau(N) = 12$ or 13. Using the same reasoning as in the proof of Proposition 4, we know that $\tau(N) = 12$ and $N = p^2 qr$, where $p < q < p^2 < r$.

When $d_4 = r$ for some r > q The possible values for d_5 are p^2, pq, s for some prime s > r.

a) If $d_5 = p^2$, we can generalize the method by Chentouf.

Proposition 5. If N is small recurrent and the first four numbers of S'_N are $p < q < r < p^2$, then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof. Suppose that $|S_N| \geq 8$. We show that $|S_N| \geq 3i + 2$ for all $i \in \mathbb{N}$, which is a contradiction. The claim holds for i = 2. Assume that $|S_N| \geq 3j+2$ for some $j \geq 2$. By Lemma 2, $p \nmid d_{3j}d_{3j+1}$ and $gcd(d_{3j}, d_{3j+1}) = 1$. Hence, $p^2d_{3j}d_{3j+1}$ divides N, which implies that $pd_{3j} \in S'_N$.

If $pd_{3j} = d_{3j+2} = ad_{3j+1} + bd_{3j}$, then d_{3j} divides ad_{3j+1} . By Lemma 2, $d_{3j}|a$. Observe that for $d_i \in S'_N$, the sequence $d_i \mod a$ is

$$1, p, q, bp, bq, b^2p, b^2q, \ldots$$

Write $d_{3j} = a\ell + b^k s$, for some $\ell \in \mathbb{Z}$, some $k \ge 0$, and some $s \in \{p, q\}$. We see that $d_{3j}|b^k s$ for some $k \ge 0$ and $s \in \{p, q\}$. By Lemma 2, $d_{3j} \le q$. However,

$$d_{3j} \geq d_6 > d_3 = q,$$

a contradiction.

If $pd_{3j} > d_{3j+2}$, then $pd_{3j} \ge d_{3(j+1)+2}$ by Lemma 2. Therefore, $|S_N| \ge 3(j+1)+2$.

Proposition 6. There is no small recurrent N whose the first four numbers of S'_N are $p < q < r < p^2$.

Proof. By Proposition 5, $|S'_N| \in \{4, 5, 6\}$. If $|S'_N| = 4$, then $\tau(N) = 10$ or 11, none of which can be written as a product of at least three integers, each of which is at least 2. This contradicts (2) and the fact that N has three distinct prime factors. We arrive at the same conclusion when $|S'_N| = 6$. For $|S'_N| = 5$, we obtain $N = p^2 qr$ for some primes $p < q < r < p^2$. However, this poses another contradiction. Observe that $(pq)^2 < p^2 qr$, so the divisors in S'_N are $p < q < r < p^2 < pq$. Since $pq = ap^2 + br$, we get p|b, which contradicts Lemma 2 item ii).

b) Suppose that $d_5 = pq$.

Proposition 7. There is no small recurrent number N such that the first four numbers of S'_N are p < q < r < pq.

Proof. Assume that $|S'_N| \ge 8$. Since $p^2 \notin S'_N$, p divides N exactly. By Lemma 3, d_6 is divisible neither by p nor q. Hence, $d_6 = s$ for some prime s > pq. The divisor d_7 is divisible by q; hence, $d_7 = qr$ or q^2 . The divisor d_8 is divisible by p but not by q. So, $d_8 = pr$, which gives that d_7 must be q^2 because $d_7 < d_8$. Now $q|d_9$ and $p \nmid d_9 \Longrightarrow d_9 = qr$. However, that $gcd(d_8, d_9) = r$ contradicts Lemma 3. Therefore, $|S'_N| \in \{4, 5, 6, 7\}$. Using the same argument as in the proof of Proposition 6, we know that $|S'_N| \neq 4, 6$ and so, $|S'_N| \in \{5, 7\}$. By the above argument, if $|S'_N| \ge 5$, then d_6 is a prime greater than pq. Hence, N has at least 4 distinct prime factors, so $\tau(N)$ can be written as a product of at least 4 integers greater than 1. Clearly, (1) rules out the case $|S'_N| = 5$. If $|S'_N| = 7$, the above argument shows that $q^2|N$; hence, $\tau(N)$ can be written as a product of at least 4 integers greater than 1, one of which is greater than 2. This cannot happen as $\tau(N) \in \{16, 17\}$.

Linear Recurrences of Order at Most Two in Nontrivial Divisors

c) Suppose that $d_5 = s$.

Proposition 8. There is no small recurrent number N such that the first four numbers of S'_N are p < q < r < s.

Proof. Observe that pq and pr are in S'_N . Let $d_j = pv$ be the largest element of S'_N that is divisible by p. Clearly, v > p and $j \ge 7$. By Lemma 4, d_j, d_{j-1} , and d_{j-2} are pairwise coprime. Hence, $pvd_{j-1}d_{j-2}$ divides N, so $pd_{j-2} \in S'_N$. If $pd_{j-2} = d_{j-1}$, then $p|d_{j-1}$ and so, $p|\operatorname{gcd}(d_{j-1}, d_j)$, which contradicts Lemma 4 item iii).

If $pd_{j-2} = d_j$, then $d_{j-2} = v$ and $gcd(d_{j-2}, d_j) = v > 1$, which contradicts Lemma 4 item v).

Therefore, we have $pd_{j-2} > d_j$, which, however, contradicts that d_j is the largest element of S'_N that is divisible by p. We conclude that there is no small recurrent number N such that the first four numbers of S'_N are p < q < r < s.

From the above analysis, we arrive at the following proposition.

Proposition 9. If N is small recurrent and $|S'_N| \ge 4$, then N belongs to one of the following forms.

 $\begin{array}{l} (S1) \ N = p^k \ or \ N = p^k q \ for \ some \ k \geq 1 \ and \ q > p^k. \\ (S2) \ N = pq^k \ or \ pq^k r \ for \ some \ k \geq 2, \ p < q, \ and \ pq^k < r. \\ (S3) \ N = p^k q \ for \ some \ k \geq 2, \ some \ prime \ r > p^k q, \ and \ \sqrt{q}$

These forms together establish the necessary condition for a small recurrent N to have $|S'_N| \ge 4$. We now refine each form (if necessary) to obtain a necessary and sufficient condition.

(S1)

- If $N = p^k$, then N is small recurrent with $|S'_N| \ge 4$ if $k \ge 9$. In this case, $S'_N = \{p, p^2, p^3, \dots, p^{\lfloor (k-1)/2 \rfloor}\}$ satisfies $U(p, p^2, p, 0)$.
- If $N = p^k q$ for some $k \ge 1$ and $q > p^k$, then N is small recurrent with $|S'_N| \ge 4$ if $k \ge 4$. In this case, $S'_N = \{p, p^2, p^3, \dots, p^k\}$ satisfies $U(p, p^2, p, 0)$.
- (S2)
 - If $N = pq^k$ for some $k \ge 2$ and p < q, then N is small recurrent with $|S'_N| \ge 4$ if $\sqrt{N} = \sqrt{pq^k} > q^2$. Hence, $N = pq^k$ for some $k \ge 4$ and p < q. In this case, $S'_N = \{p, q, pq, q^2, \ldots\}$ satisfies U(p, q, 0, q).
- $|S_N| \ge 1 \text{ if } \forall N = \sqrt{pq} > q \text{ if index}, N = pq \text{ for some } k \ge 1 \text{ tank}$ $p < q. \text{ In this case}, S'_N = \{p, q, pq, q^2, \ldots\} \text{ satisfies } U(p, q, 0, q).$ $\text{ If } N = pq^k r \text{ for some } k \ge 2, p < q, \text{ and } r > pq^k, \text{ then } N \text{ is small recurrent}$ $\text{ with } |S'_N| \ge 4. \text{ In this case}, S'_N = \{p, q, pq, q^2, \ldots, pq^{k-1}, q^k, pq^k\} \text{ satisfies}$ U(p, q, 0, q).

11

> (S3) If N belongs to (S3), then $S'_N = \{p, q, p^2, pq, ..., p^k, p^{k-1}q, p^kq\}$. Since $p^2 = aq + bp$, we know that p|a. Write a = pm for some $m \in \mathbb{Z}$ and get b = p - mq. Hence,

$$pq = ap^2 + bq = p^3m + (p - mq)q \implies mq^2 = p^3m.$$

Therefore, (m, a, b) = (0, 0, p). However, the largest element in S'_N , $p^k q$, is not equal to $p \cdot p^k$. We conclude that form (S3) does not give a small recurrent number.

(S4) If $N = p^k q$ for some $k \ge 2$ and $\sqrt{q} , then the nontrivial$ (34) If $N = p^{-}q$ for some $n \geq 2$ and $\sqrt{q} , then the hold Wal$ $divisors of N in increasing order is <math>p < q < p^{2} < pq < \cdots$. In order that $|S'_{N}| \geq 4$, we need $(pq)^{2} < p^{k}q$, so $q < p^{k-2}$. Hence, $k \geq 4$. In this case, $S'_{N} = \{p, q, p^{2}, pq, \ldots\}$ satisfies U(p, q, 0, p). (S5) If $N = p^{2}q^{2}$ for some $p < q < p^{2}$, then $\tau(N) = 9$. However, if $|S'_{N}| \geq 4$,

then $\tau(N) \ge 10$ by (2). We conclude that form (S5) does not give a small recurrent number.

(S6) If $N = p^3 q^2$ for some $p^{3/2} < q < p^2$, then $S'_N = \{p, q, p^2, pq, p^3\}$ satisfies U(p,q,0,p).

(S7) Let N have form (S7). Since the first four numbers of S'_N are $p < \infty$ $q < p^2 < r$ and $\tau(N) = 12$, we know that the fifth number in S'_N must be pq. That $p < q < p^2 < r < pq$ satisfies some U(p,q,a,b) gives a = $\frac{p(pq-r)}{q^2-p^3}$, $b = \frac{rq-p^4}{q^2-p^3}$, and $r = pq - \sqrt{(q^2-p^3)(p^2-q)}$. We conclude that a number of form (S7) is small recurrent if and only if $p < q < p^2 < r < pq$, $(q^2 - p^3)|(pq - r), (q^2 - p^3)|(rq - p^4), \text{ and } r = pq - \sqrt{(q^2 - p^3)(p^2 - q)}$. An example is (p, q, r) = (2, 3, 5). We do not know if (2, 3, 5) is the only set of primes that satisfy all these conditions or not.

From the above analysis, we obtain the proposition, which is a refinement of Proposition 9.

Proposition 10. Let p, q, r denote prime numbers and k be some positive integer. A positive integer N is small recurrent with $|S'_N| \geq 4$ if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \ge 9$. In this case, $S'_N = \{p, p^2, p^3, \dots, p^{\lfloor (k-1)/2 \rfloor}\}$ satisfies
- $U(p, p^2, p, 0).$ 2. $N = p^k q$ for some $k \ge 4$ and $q > p^k$. In this case, $S'_N = \{p, p^2, p^3, \dots, p^k\}$ satisfies $U(p, p^2, p, 0)$.
- 3. $N = pq^k$ for some $k \ge 4$ and p < q. In this case, $S'_N = \{p, q, pq, q^2, \ldots\}$ satisfies U(p,q,0,q).
- 4. $N = pq^k r$ for some $k \ge 2$, p < q, and $r > pq^k$. In this case, $S'_N = \{p, q, pq, q^2, \dots, pq^{k-1}, q^k, pq^k\}$ satisfies U(p, q, 0, q).
- 5. $N = p^k q$ for some $k \ge 4$ and $\sqrt{q} . In this case, <math>S'_N = \{p, q, p^2, pq, \ldots\}$ satisfies U(p, q, 0, p).
- 6. $N = p^3 q^2$ for some $p^{3/2} < q < p^2$. In this case, $S'_N = \{p, q, p^2, pq, p^3\}$ satisfies U(p, q, 0, p).
- 7. $N = p^2 qr$, where $p < q < p^2 < r < pq$, $(q^2 p^3)|(pq r)$, $(q^2 p^3)|(rq p^4)$, and $r = pq \sqrt{(q^2 p^3)(p^2 q)}$. In this case, $S'_N = \{p, q, p^2, r, pq\}$ satisfies $U\left(p,q,\frac{p(pq-r)}{q^2-p^3},\frac{rq-p^4}{q^2-p^3}\right).$

$\mathbf{3.2}$ The case $|S'_N| \leq 3$

If $|S'_N| \leq 3$, then $\tau(N) \leq 9$. We use the classifications of those N from the introduction to obtain the following proposition.

Proposition 11. Let p, q, r denote prime numbers and k be some positive integer. A positive integer N > 1 is small recurrent with $|S'_N| \leq 3$ if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \leq 8$. In this case, $S'_N = \{p, p^2, \dots, p^{\lfloor (k-1)/2 \rfloor}\}$ satisfies $U(p, p^2, p, 0).$

- 2. N = pq for some p < q. In this case, $S'_N = \{p\}$. 3. $N = pq^2$ for some p < q. In this case, $S'_N = \{p,q\}$. 4. $N = p^2q$ for some p < q. If $q < p^2$, then $S'_N = \{p,q\}$. If $q > p^2$, then
- 4. If = p q for some p < q. If q < p , each S_N = {p,q}? If q > p , each S_N = {p,q}? If q > p , each S_N = {p,pq}? If q > p , each S_N = {p,pq}? If q > p , each S_N = {p,pq}? If p > q < p? , then S_N = {p,q,p?}.
 5. N = p³q for some p < q. If p < q < p², then S_N = {p,q,p?}. If p³ < q, then S'_N = {p,p²,p³}. (The case p² < q < p³ is eliminated because the three elements in S'_N would be p < p² < q. However, there is no integral solution (a, b) to q = ap² + bp.)
 7. N = ²q² for some p < q. If p < q < p² then S'_N = {p,q,p²}. (The case p² < q. for some p < q. If p < q < p² then S'_N = {p,q,p²}.
- 7. $N = p^2 q^2$ for some p < q. If $p < q < p^2$, then $S'_N = \{p, q, p^2\}$. (The case $p^2 < q$ is eliminated due to the same reason as in item (6).)
- 8. N = pqr for some p < q < r. If r < pq and there is an integral solution (a,b) to r = aq + bp, then $S'_N = \{p,q,r\}$. If r > pq, then $S'_N = \{p,q,pq\}$.

Combining Propositions 10 and 11, we obtain Theorem 1.

Large recurrent numbers 4

Now we characterize all positive integers N whose L'_N satisfies a linear recurrence of order at most two. By a simple observation, instead of working directly with divisors in L'_N , we work with divisors in S'_N . Again, the set of divisors of a positive integer N is $1 = d_1 < d_2 < \dots < d_{\tau(N)}$ and the set $S'_N = \{d_2, d_3, \dots\}$.

The case $|L'_N| \ge 4$ 4.1

Note that $|L'_N| \ge 4$ is equivalent to $|S'_N| \ge 4$.

Lemma 5. For any $d \in L'_N$, we have $N/d \in S'_N$. If N is large recurrent with $|L'_N| \geq 4$, then

$$ad_{i+2} + bd_{i+1} = \frac{d_{i+1}d_{i+2}}{d_i}, \forall d_i, d_{i+1}, d_{i+2} \in S'_N.$$
(3)

In particular, we have

$$ad_4 + bd_3 = \frac{d_3d_4}{d_2}.$$
 (4)

Proof. If $d \in L'_N$, then $\sqrt{N} < d < N$. Then $1 < N/d < \sqrt{N}$, so $N/d \in S'_N$. Let

$$d'_i := d_{\tau(n)+1-i} = \frac{N}{d_i} \in L'_N, \forall d_i \in S'_N.$$

If N is large recurrent, then we have

$$d'_i \ = \ ad'_{i+1} + bd'_{i+2}, \forall d'_i, d'_{i+1}, d'_{i+2} \in L_N^{'}.$$

Therefore,

$$\frac{N}{d_i} = a \frac{N}{d_{i+1}} + b \frac{N}{d_{i+2}}, \forall d_i, d_{i+1}, d_{i+2} \in S'_N,$$

which gives

$$ad_{i+2} + bd_{i+1} = \frac{d_{i+1}d_{i+2}}{d_i}, \forall d_i, d_{i+1}, d_{i+2} \in S'_N.$$

This completes our proof.

Since d_2 is a prime number p and d_3 is either p^2 or a prime number q > p, we consider two cases.

When $d_3 = p^2$ Then d_4 is either p^3 or a prime number $q > p^2$.

a) If $d_4 = p^3$, then (4) implies that $p^2 = ap + b$.

Claim. If $p \neq a$, then $S'_N = \{p, p^2, \dots, p^k\}$ for some $k \geq 4$.

Proof. We need to show that if $d_i \in S'_N$, then $d_i = p^{i-1}$. Base case: the claim holds for $i \leq 4$. Suppose that there exists a $j \geq 4$ such that $d_i = p^{i-1}$ for all $i \leq j$. Using (3), we have

$$ad_{j+1} + bp^{j-1} = ad_{j+1} + bd_j = \frac{d_{j+1}d_j}{d_{j-1}} = \frac{d_{j+1}p^{j-1}}{p^{j-2}} = pd_{j+1},$$

which, combined with $p^2 = ap + b$, gives

$$(p-a)(d_{j+1}-p^j) = 0.$$

Since $p \neq a$, we obtain $d_{j+1} = p^j$, as desired.

By Proposition 2, we know that when $p \neq a$, either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

Some $k \ge 1$ and some prime $q \ge p$. Now suppose that p = a. Then b = 0. We can write elements in L'_N as $\{g_1, g_2, pg_2, p^2g_2, \ldots, p^kg_2\}$ for some $k \ge 2$. Correspondingly, the set S'_N is $\{p, p^2, \ldots, p^k, p^{k+1}, p^{k+1}g_2/g_1\}$. If $p^{k+1}g_2/g_1$ is a power of p, then we have the same conclusion about N as when $p \ne a$. If $p^{k+1}g_2/g_1$ is not a power of p, then

$$\frac{p^{k+1}g_2}{g_1} = q, \text{ for some prime } q > p \implies g_1 = p^{k+1}\frac{g_2}{q}$$

Note that $g_2/q \in \mathbb{N}$. Furthermore, we claim that $g_2/q = p$. Indeed, since $1 < g_2/q < g_1$, we know that $g_2/q \in S'_N$. If $g_2/q = q$, then

$$pq < p^{k+1}\frac{g_2}{q} = g_1,$$

which implies that $pq \in S'_N$, a contradiction. If $g_2/q = p^j$ for some j > 1, then

$$p^{k+2} < p^{k+1+j} = p^{k+1}\frac{g_2}{q} = g_1,$$

which implies that $p^{k+2} \in S'_N$, another contradiction. Therefore, $g_2/q = p$, and we obtain $g_1 = p^{k+2}$ and $g_2 = pq$. Hence, $N = p^{k+2}q$ for some $k \ge 2$ and $p^{k+1} < q < p^{k+2}$.

b) If $d_4 = q$, we claim that $a \neq p$. Suppose otherwise. Applying (4) to d_2, d_3 , and d_4 gives $aq + bp^2 = pq$. Hence, a = p implies that b = 0. However, applying (3) to d_3, d_4 , and d_5 gives $(p^3 - q)d_5 = 0$, a contradiction. Therefore, $a \neq p$. By (4), we have

$$d_4 = \frac{bp^2}{p-a} = q \implies q|b \implies b = kq \text{ for some } k \in \mathbb{Z} \setminus \{0\}.$$

Hence, $a = p - kp^2$. By (3) applied to d_3, d_4 , and d_5 ,

$$d_5 = \frac{kp^2q^2}{q - p^3 + kp^4},\tag{5}$$

which implies that $p^2|d_5$ since $gcd(p^2, q-p^3+kp^4) = 1$. Hence, $d_5 = p^3$, and (5) gives $k = p(p^3 - q)/(p^5 - q^2)$.

Case b.i) If S'_N has exactly four elements, which are p, p^2, q, p^3 , then $\tau(N) = 10$, which implies that $N = p^4 q$. Hence, $L'_N = \{pq, p^4, p^2 q, p^3 q\}$ with $a = pq(p^2 - q)/(p^5 - q^2)$ and $b = pq(p^3 - q)/(p^5 - q^2)$. We conclude that $N = p^4 q \ (p^2 < q < p^3), \ (p^5 - q^2)|(p^2 - q), \ \text{and} \ (p^5 - q^2)|(p^3 - q).$ Case b.ii) If $|S'_N| > 4$, then (3) gives

$$d_6 = \frac{bp^3q}{p^3 - aq} \implies q|d_6 \implies d_6 = pq.$$

However, since (a, b) = (p(1 - kp), kq), we have

$$pq = d_6 = \frac{bp^3q}{p^3 - aq} = \frac{kp^2q^2}{p^2 - q(1 - kp)},$$

which gives $p^2 = q$, a contradiction.

We summarize our result when $d_3 = p^2$.

Proposition 12. A number N is large recurrent with $|L'_N| \ge 4$ and $(d_2, d_3) = (p, p^2)$ for some prime p if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \ge 9$. Then $L'_N = \{p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, \dots, p^{k-1}\}$ satisfies $U(p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, p, 0)$.
- 2. $N = p^k q$ for some $k \ge 4$ and $q > p^k$. In this case, $L'_N = \{q, pq, p^2q, \dots, p^{k-1}q\}$ satisfies U(q, pq, p, 0).
- 3. $N = p^k q$ for some $k \ge 4$ and $p^{k-1} < q < p^k$. Then

$$L'_N = \{p^k, pq, p^2q, \dots, p^{k-1}q\}$$

satisfies $U(p^k, pq, p, 0)$. 4. $N = p^4 q$ with $p^2 < q < p^3$, $(p^5 - q^2)|(p^2 - q)$, and $(p^5 - q^2)|(p^3 - q)$. In this case, $L'_N = \{pq, p^4, p^2q, p^3q\}.$

When $d_3 = q$ By (3),

$$p(ad_4 + bq) = d_4q \implies p|d_4.$$

Write $d_4 = kp$ for some integer k. Since $d_2 = p$ and $d_3 = q$, d_4 must be either p^2 or pq.

a) If $d_4 = p^2$, (3) gives $ap^2 + bq = pq$. Hence, q|a and p|b. Write a = mq and b = np for some integers m, n to get mp + n = 1. By (3), we see that

$$d_5 = \frac{bp^2q}{p^2 - aq} \implies q|d_5 \implies d_5 = pq.$$

Therefore,

$$\frac{bp^2q}{p^2 - aq} \ = \ \frac{np^3q}{p^2 - mq^2} \ = \ \frac{(1 - mp)p^3q}{p^2 - mq^2} \ = \ pq \implies m(p^3 - q^2) = 0,$$

which gives m = 0 and so, (a, b) = (0, p). By (3), $d_{i+2} = pd_i$ for all $d_i, d_{i+2} \in$ S'_N and

$$S'_N = \{p, q, p^2, pq, \ldots\}.$$

If $|S'_N| = 4$, then $\tau(N) = 10$ and $N = p^4 q$ for $p < q < p^2$. Suppose that $|S'_N| \ge 5$, then $p^3 \in S'_N$. Case a.i) If $q^2|N$, let $k \ge 2$ and $\ell \ge 3$ be the largest power such that

 $q^k|N$ and $p^k|N$, respectively. Since $q^2 \notin S'_N$, we know that

$$q^4 \ge N \ge p^3 q^k > q^{k+3/2} \Longrightarrow k < 5/2.$$

It follows that k = 2. That $q^2 < p^2 q$ implies that

$$(p^2q)^2 > N \ge p^\ell q^2 \implies 3 \ge \ell \ge 3.$$

Hence, $\ell = 3$. If N does not have any other prime divisors besides p and q, then $N = p^3 q^2$ for $p < q < p^2$. If N has a prime divisor $r \neq p, q$, then $r > \sqrt{N}$. So, r must be the unique prime divisor different from p and q. We have $N = p^3 q^2 r$ for $p < q < p^2$ and $r > p^3 q^2$. Then $q^2 \in S'_N$, a contradiction.

Case a.ii) If $q^2 \nmid N$ and N has no prime divisors other than p and q, then $N = p^k q$ some for $k \ge 2$ and $p < q < p^2$.

Case a.iii) If $q^2 \nmid N$ and there exists a prime divisor r other than p or q, then $r > \sqrt{N}$ and r is the unique prime different from p and q. Therefore, $N = p^k qr$ for some $k \ge 2$ and $p < q < p^2 < p^k q < r$. Note that the two largest elements in S'_N are $p^{k-1}q$ and $p^k q$. Let d be the third largest divisor in S'_N . The relation $d_{i+2} = pd_i$ for all $d_i, d_{i+2} \in S'_N$ gives that $dp = p^k q$ and so, $d = p^{k-1}q$, which contradicts that $p^{k-1}q$ is the second largest in S'_N .

largest in S'_N . b) If $d_4 = pq$, then $p^2 \nmid N$ since $p^2 < pq$. By (4),

$$ap = q - b. (6)$$

17

We see that d_5 is equal to q^2 or r, for some prime r > pq. Case b.i) If $d_5 = q^2$, then (3) gives

$$bp = (p-a)q. (7)$$

From (6) and (7), we obtain $a(p^2 - q) = 0$, so (a, b) = (0, q). By (3), $d_{i+2} = qd_i$ for all $d_i, d_{i+2} \in S'_N$. Using [1, Proposition 5], we conclude that $N = pq^k$ or $N = pq^k r$ for some $k \ge 2$ and $p < q < pq^k < r$. Case b.ii) If $d_5 = r$, then we claim that $|S'_N| > 4$. If not, $|S'_N| = 4$

Case b.ii) If $d_5 = r$, then we claim that $|S'_N| > 4$. If not, $|S'_N| = 4$ implies that $\tau(N) = 10$, which contradicts that N has three distinct prime divisors. By (3), we see that

$$pq(ad_6+br) = d_6r,$$

so $pq|d_6$. So, $d_6 \in \{pq^2, pqr\}$. If $d_6 = pq^2$, then $q^2 < d_6$, but q^2 does not appear before d_6 in S'_N , a contradiction. If $d_6 = pqr$, then $pr < d_6$, but pr does not appear before d_6 in S'_N , again a contradiction.

Proposition 13. A number N is large recurrent with $|L'_N| \ge 4$ and $(d_2, d_3) = (p,q)$ for some primes p < q if and only if N belongs to one of the following forms.

- 1. $N = p^3 q^2$ for $p < q < p^2$. In this case, $L'_N = \{q^2, p^2 q, pq^2, p^3 q, p^2 q^2\}$ satisfies $U(q^2, p^2 q, 0, p)$.
- 2. $N = p^k q$ some for $k \ge 4$ and $p < q < p^2$. In this case,

$$L'_{N} = \begin{cases} \{p^{k/2+1}, p^{k/2}q, p^{k/2+2}, \dots, p^{k-1}q\} & \text{if } 2|k, \\ \{p^{(k-1)/2}q, p^{(k+3)/2}, p^{(k+1)/2}q, \dots, p^{k-1}q\} & \text{if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(p^{k/2+1}, p^{k/2}q, 0, p)$ and $U(p^{(k-1)/2}q, p^{(k+3)/2}, 0, p)$ for even and odd k, respectively.

3. $N = pq^k$ for some $k \ge 4$ and p < q. In this case,

$$L'_{N} = \begin{cases} \{pq^{k/2}, q^{k/2+1}, \dots, q^{k}\} & \text{if } 2|k, \\ \{q^{(k+1)/2}, pq^{(k+1)/2}, \dots, q^{k}\} & \text{if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(pq^{k/2}, q^{k/2+1}, 0, q)$ and $U(q^{(k+1)/2}, pq^{(k+1)/2}, 0, q)$ for even and odd k, respectively.

- 18Chu et al.
- 4. $N = pq^k r$ for some $k \ge 2$ and $p < q < pq^k < r$. In this case, $L'_N =$ $\{r, pr, qr, pqr, q^2r, \ldots, q^kr\}$ satisfies U(r, pr, 0, q).

Combining Propositions 12 and 13, we obtain the following.

Proposition 14. A number N is large recurrent with $|L'_N| \ge 4$ if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \ge 9$. Then $L'_N = \{p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, \dots, p^{k-1}\}$ satisfies $U(p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, p, 0)$.
- 2. $N = p^k q$ for some $k \ge 4$ and $q > p^k$. In this case, $L'_N = \{q, pq, p^2q, \dots, p^{k-1}q\}$ satisfies U(q, pq, p, 0).
- 3. $N = p^k q$ for some $k \ge 4$ and $p^{k-1} < q < p^k$. Then

$$L'_N = \{p^k, pq, p^2q, \dots, p^{k-1}q\}$$

satisfies $U(p^k, pq, p, 0)$.

4. $N = p^k q$ some for $k \ge 4$ and $p < q < p^2$. In this case,

$$L'_{N} = \begin{cases} \{p^{k/2+1}, p^{k/2}q, p^{k/2+2}, \dots, p^{k-1}q\} & \text{if } 2|k, \\ \{p^{(k-1)/2}q, p^{(k+3)/2}, p^{(k+1)/2}q, \dots, p^{k-1}q\} & \text{if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(p^{k/2+1}, p^{k/2}q, 0, p)$ and $U(p^{(k-1)/2}q, p^{(k+3)/2}, 0, p)$

- for even and odd k, respectively. 5. $N = p^4 q$ with $p^2 < q < p^3$, $(p^5 q^2)|(p^2 q)$, and $(p^5 q^2)|(p^3 q)$. In this case, $L'_N = \{pq, p^4, p^2q, p^3q\}.$
- 6. $N = p^{3} q^{2}$ for $p < q < p^{2}$. In this case, $L'_{N} = \{q^{2}, p^{2}q, pq^{2}, p^{3}q, p^{2}q^{2}\}$ satisfies $U(q^2, p^2q, 0, p).$
- 7. $N = pq^k$ for some $k \ge 4$ and p < q. In this case,

$$L'_{N} = \begin{cases} \{pq^{k/2}, q^{k/2+1}, \dots, q^{k}\} & \text{if } 2|k, \\ \{q^{(k+1)/2}, pq^{(k+1)/2}, \dots, q^{k}\} & \text{if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(pq^{k/2}, q^{k/2+1}, 0, q)$ and $U(q^{(k+1)/2}, pq^{(k+1)/2}, 0, q)$ for even and odd k, respectively.

8. $N = pq^k r$ for some $k \ge 2$ and $p < q < pq^k < r$. In this case, $L'_N =$ $\{r, pr, qr, pqr, q^2r, \ldots, q^kr\}$ satisfies U(r, pr, 0, q).

4.2 The case $|L'_N| \leq 3$

If $|L'_N| \leq 3$, then $\tau(N) \leq 9$. We use the classifications of those N from the introduction to obtain the following proposition

Proposition 15. Let p, q, r denote prime numbers and k be some positive integer. A positive integer N > 1 is small recurrent with $|L'_N| \leq 3$ if and only if N belongs to one of the following forms.

- 1. $N = p^k$ for some $k \le 8$. In this case, $L'_N = \{p^{\lceil (k-1)/2 \rceil + 1}, \dots, p^{k-1}\}$ satisfies $U(p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, p, 0).$

- 2. N = pq for some p < q. In this case, $L'_N = \{q\}$. 3. $N = pq^2$ for some p < q. In this case, $L'_N = \{pq, q^2\}$. 4. $N = p^2q$ for some p < q. If $q < p^2$, then $L'_N = \{p^2, pq\}$. If $q > p^2$, then $L'_N = \{q, pq\}.$
- 5. $N = pq^3$ for some p < q. In this case, $L'_N = \{q^2, pq^2, q^3\}$. 6. $N = p^3q$ for some p < q. If $p < q < p^2$, then $L'_N = \{pq, p^3, p^2q\}$. If $p^3 < q$,
- 6. If p p q for some p < q. If p < q < p', inclu L_N = {pq, p', pq}. If p' < q, then L'_N = {q, pq, p²q}. If p² < q < p³, then L'_N = {p³, pq, p²q}.
 7. N = p²q² for some p < q. If p < q < p², then L'_N = {q², p²q, pq²}. The case p² < q is impossible as it gives L'_N = {p²q, pq², q²} and there is no integral solution (a, b) to apq² + bp²q = q².
- 8. N = pqr for some p < q < r. If r > pq, then $L'_N = \{r, pr, qr\}$. The case r < pq is impossible as it gives $L'_N = \{pq, pr, qr\}$ and there is no integral solution (a, b) to apr + bpq = qr.

Combining Propositions 14 and 15, we obtain Theorem 2.

Appendix $\mathbf{5}$

Proof (Proof of Lemma 3). i) Since r = aq + bp and pq = ar + bq, we know that gcd(a, b)|r and gcd(a, b)|pq, respectively. Hence, gcd(a, b) = 1.

Since r = aq + bp and r is a prime, $p \nmid a$.

ii) Suppose that $k = \text{gcd}(b, d_i) > 1$ for some $d_i \in S'_N$. If $d_i = d_2$, then p|b. Since pq = ar + bq, we get p|a, which contradicts gcd(a, b) = 1. If $d_i = d_3$, then q|b. Since r = aq + bp, we get q|r, a contradiction. If $d_i > d_3$, then write

$$gcd(b,d_i) = gcd(b,ad_{i-1}+bd_{i-2}) \stackrel{1)}{=} gcd(b,d_{i-1}),$$

which, by induction, gives $1 < \text{gcd}(b, d_i) = \text{gcd}(b, d_3)$, which has been shown to be impossible.

iii) The claim holds for $i \leq 4$. Let $d_i, d_{i+1} \in S'_N$ for some $i \geq 5$. We have

$$gcd(d_i, d_{i+1}) = gcd(d_i, ad_i + bd_{i-1}) \stackrel{\text{ii})}{=} gcd(d_i, d_{i-1})$$

By induction, we obtain $gcd(d_i, d_{i+1}) = 1$.

iv) The claim holds for $i \leq 5$. Assume that it holds for all $i \leq j$ for some $j \geq 5$. We show that it holds for i = j + 1. We have

$$pq = ar + bq = a(aq + bp) + bq = (a^2 + b)q + abp.$$

Hence, $p|(a^2 + b)$. Write

$$d_{j+1} = ad_j + bd_{j-1} = a(ad_{j-1} + bd_{j-2}) + bd_{j-1} = (a^2 + b)d_{j-1} + abd_{j-2}.$$

Since $p|(a^2+b)$ and gcd(p, ab) = 1, we know that $p|d_{j+1}$ if and only if $p|d_{j-2}$. By the inductive hypothesis, $p|d_{j-2}$ if and only if $j-2 \equiv 2 \mod 3$, or equivalently, $j+1 \equiv 2 \mod 3$. By induction, we have the desired conclusion.

v) The claim holds for $i \leq 5$. Assume that it holds for all $i \leq j$ for some $j \geq 5$. We show that it holds for i = j + 1. That pq = ar + bq implies that q|a. Write

$$d_{j+1} = ad_j + bd_{j-1}$$

By ii), $q|d_{j+1}$ if and only if $q|d_{j-1}$. By the inductive hypothesis, $q|d_{j-1}$ if and only if $j + 1 \equiv 1 \mod 2$. This completes our proof.

Proof (Proof of Lemma 4). i) Same as the proof of Lemma 3 item i).

ii) Suppose, for a contradiction, that $gcd(b, d_i) > 1$ for some $i \ge 3$. If i = 3, then q|b. We have r = aq + bp. Since q|b, we get q|r, a contradiction. If $i \ge 4$, write

$$gcd(b, d_i) = gcd(b, ad_{i-1} + bd_{i-2}) = gcd(b, d_{i-1}).$$

By induction, $1 < \text{gcd}(b, d_i) = \text{gcd}(b, d_3)$, which has been shown to be impossible. iii) The claim holds for $i \le 4$. Pick $i \ge 5$. We have

$$gcd(d_i, d_{i+1}) = gcd(d_i, ad_i + bd_{i-1}) = gcd(d_i, bd_{i-1}) \stackrel{\text{ii})}{=} gcd(d_i, d_{i-1}).$$

By induction, we obtain $gcd(d_i, d_{i+1}) = gcd(d_4, d_5) = 1$.

iv) Assume that $gcd(a, d_i) > 1$ for some $i \ge 2$. If i = 2, then p|a, which contradicts the primality of r and the linear recurrence r = aq + bp. If i = 3, then q|b, which contradicts the primality of s and the linear recurrence s = ar + bq. Assume that $i \ge 4$. Write

$$gcd(a, d_i) = gcd(a, ad_{i-1} + bd_{i-2}) \stackrel{1)}{=} gcd(a, d_{i-2}).$$

• \

By induction, either $1 < \text{gcd}(a, d_i) = \text{gcd}(a, d_2)$ or $1 < \text{gcd}(a, d_i) = \text{gcd}(a, d_3)$, neither of which is possible.

v) The claims holds for $i \leq 3$. Pick $i \geq 4$ and suppose that $k = \text{gcd}(d_i, d_{i+2}) > 1$. Since $d_{i+2} = ad_{i+1} + bd_i$, k divides ad_{i+1} . By iii), $\text{gcd}(k, d_{i+1}) = 1$, so k|a. However, $\text{gcd}(a, d_i) > 1$ contradicts iv).

References

- A. A Chentouf, Linear recurrences of order at most two in small divisors, J. Integer Seq. 25 (2022).
- H. V. Chu, When the large divisors of a natural number are in arithmetic progression, J. Integer Seq. 23 (2020).
- H. V. Chu, When the nontrivial, small divisors of a natural number are in arithmetic progression, *Quaest. Math.* 45 (2022), 969–977.
- D. E. Iannucci, When the small divisors of a natural number are in arithmetic progression, *Integers* 18 (2018).